Learning of new associations invokes a major change in modulations of cortical beta oscillations in human adults

Large‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement‐related β‐oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and mov...

Full description

Saved in:
Bibliographic Details
Published inPsychophysiology Vol. 60; no. 8; pp. e14284 - n/a
Main Authors Pavlova, Anna, Tyulenev, Nikita, Tretyakova, Vera, Skavronskaya, Valeriya, Nikolaeva, Anastasia, Prokofyev, Andrey, Stroganova, Tatiana, Chernyshev, Boris
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0048-5772
1469-8986
1469-8986
1540-5958
DOI10.1111/psyp.14284

Cover

Abstract Large‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement‐related β‐oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial–temporal characteristics of β‐oscillations accompanying cue‐triggered movements underwent a major transition. Early in learning, widespread suppression of β‐power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β‐suppression after the initiation of correct motor response was replaced by a rise in β‐power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post‐decision β‐power predicted trial‐by‐trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post‐decision β‐band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post‐decision β‐band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network. We showed that early and advanced stages of auditory‐motor learning are accompanied by dramatically different states of β‐band neural oscillations: suppression in the beginning and strong synchronization later at learning. Notably, at the advanced stage of learning, the β‐synchronization is weaker after faster (more confident) motor responses, which suggests that maximal beta activity is pertinent to a stage of learning when newly learned associations are being strengthened in a memory network.
AbstractList Large-scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement-related β-oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial-temporal characteristics of β-oscillations accompanying cue-triggered movements underwent a major transition. Early in learning, widespread suppression of β-power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β-suppression after the initiation of correct motor response was replaced by a rise in β-power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post-decision β-power predicted trial-by-trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post-decision β-band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post-decision β-band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network.Large-scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement-related β-oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial-temporal characteristics of β-oscillations accompanying cue-triggered movements underwent a major transition. Early in learning, widespread suppression of β-power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β-suppression after the initiation of correct motor response was replaced by a rise in β-power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post-decision β-power predicted trial-by-trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post-decision β-band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post-decision β-band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network.
Large‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement‐related β‐oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial–temporal characteristics of β‐oscillations accompanying cue‐triggered movements underwent a major transition. Early in learning, widespread suppression of β‐power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β‐suppression after the initiation of correct motor response was replaced by a rise in β‐power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post‐decision β‐power predicted trial‐by‐trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post‐decision β‐band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post‐decision β‐band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network.
Large‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement‐related β‐oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial–temporal characteristics of β‐oscillations accompanying cue‐triggered movements underwent a major transition. Early in learning, widespread suppression of β‐power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β‐suppression after the initiation of correct motor response was replaced by a rise in β‐power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post‐decision β‐power predicted trial‐by‐trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post‐decision β‐band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post‐decision β‐band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network. We showed that early and advanced stages of auditory‐motor learning are accompanied by dramatically different states of β‐band neural oscillations: suppression in the beginning and strong synchronization later at learning. Notably, at the advanced stage of learning, the β‐synchronization is weaker after faster (more confident) motor responses, which suggests that maximal beta activity is pertinent to a stage of learning when newly learned associations are being strengthened in a memory network.
Author Tretyakova, Vera
Prokofyev, Andrey
Skavronskaya, Valeriya
Nikolaeva, Anastasia
Tyulenev, Nikita
Pavlova, Anna
Stroganova, Tatiana
Chernyshev, Boris
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0003-4072-3169
  surname: Pavlova
  fullname: Pavlova, Anna
  email: anne.al.pavlova@gmail.com
  organization: HSE University
– sequence: 2
  givenname: Nikita
  surname: Tyulenev
  fullname: Tyulenev, Nikita
  organization: Moscow State University of Psychology and Education
– sequence: 3
  givenname: Vera
  surname: Tretyakova
  fullname: Tretyakova, Vera
  organization: Moscow State University of Psychology and Education
– sequence: 4
  givenname: Valeriya
  surname: Skavronskaya
  fullname: Skavronskaya, Valeriya
  organization: Moscow State University of Psychology and Education
– sequence: 5
  givenname: Anastasia
  surname: Nikolaeva
  fullname: Nikolaeva, Anastasia
  organization: Moscow State University of Psychology and Education
– sequence: 6
  givenname: Andrey
  surname: Prokofyev
  fullname: Prokofyev, Andrey
  organization: Moscow State University of Psychology and Education
– sequence: 7
  givenname: Tatiana
  surname: Stroganova
  fullname: Stroganova, Tatiana
  organization: Moscow State University of Psychology and Education
– sequence: 8
  givenname: Boris
  orcidid: 0000-0002-8267-3916
  surname: Chernyshev
  fullname: Chernyshev, Boris
  organization: Lomonosov Moscow State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36906906$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaCZpN_0BRdBNKTiV_JDkZQl9wUACaRddiWv5KtHUllzJTph_X01mmkUoERcEl-8cLueckiMfPBLyhrNznt_HKW2nc16Xqn5BVrwWbaFaJY7IirFaFY2U5Qk5TWnDGGt5Wb4kJ5Vo2W5WZFojRO_8DQ2WerynkFIwDmYXfKLO34XfmCjQETYhUnML_gbzmo6hX4YDlZUmxNkZGGiHM9CQjBuGRw96u4zgKWTFnF6RYwtDwteH_4z8_PL5x8W3Yn359fvFp3Vhqraqi4b1ooW-ktY2Km96JaBRTaMMorAdr7sepTWVEpZLy8qOQ4PAJShZArNtdUbe732nGP4smGY9umQwn-UxLEmXUgnOmGIyo--eoJuwRJ-v06WqWCN2WWXq7YFauhF7PUU3Qtzqf1lm4MMeMDGkFNE-IpzpXVF6V5R-KCrD7Als3PyQ2BzBDf-X8L3k3g24fcZcX13_utpr_gI6Kqbi
CitedBy_id crossref_primary_10_17816_gc623326
Cites_doi 10.1016/j.expneurol.2012.09.014
10.1523/JNEUROSCI.3204‐15.2016
10.1016/j.neuron.2011.11.032
10.3758/BF03196324
10.1016/S0079-6123(06)59014-4
10.1002/hbm.24624
10.3389/fnhum.2017.00006
10.1002/hbm.22845
10.1016/j.neuroimage.2018.09.013
10.1111/1469‐8986.3710013
10.1016/0028‐3932(71)90067‐4
10.1523/JNEUROSCI.1090‐15.2015
10.1002/hipo.20435
10.1073/pnas.0404965101
10.1152/physrev.00035.2008
10.1016/0304‐3940(94)90556‐8
10.1038/s41598‐020‐72128‐x
10.1016/j.neuron.2008.09.010
10.1523/ENEURO.0170‐17.2017
10.1523/JNEUROSCI.2485‐17.2018
10.1177/2398212817723443
10.1016/j.neuroimage.2013.10.027
10.1038/srep13021
10.1162/jocn_a_00801
10.1093/cercor/bhv182
10.7554/eLife.17822
10.1523/JNEUROSCI.0771‐20.2020
10.1016/j.neubiorev.2014.11.014
10.1038/nn.3954
10.3389/fnins.2020.00895
10.1016/j.cortex.2011.07.003
10.1016/j.neuroimage.2009.11.020
10.1016/S0896‐6273(00)81138‐1
10.1111/psyp.13735
10.1007/s00221‐006‐0407‐9
10.1016/j.neuroimage.2010.10.074
10.1371/journal.pone.0060060
10.1152/jn.00347.2012
10.1016/j.cub.2012.01.022
10.1016/j.clinph.2007.07.025
10.1523/JNEUROSCI.6026‐09.2010
10.1016/j.neuroimage.2019.116288
10.1016/j.expneurol.2012.08.030
10.1016/j.neuroimage.2008.08.006
10.1016/j.tins.2018.04.004
10.1523/JNEUROSCI.1007‐16.2016
10.1038/nature18933
10.1016/j.bandl.2018.01.004
10.1523/JNEUROSCI.1163‐19.2019
10.1523/JNEUROSCI.5171‐07.2008
10.3389/fnhum.2017.00104
10.1016/j.neuroimage.2013.05.121
10.1016/S1388‐2457(03)00067‐1
10.1016/j.neuroimage.2010.06.010
10.1073/pnas.1019676108
10.1016/j.conb.2010.02.015
10.1109/TSP.2005.853302
10.1016/j.neuroimage.2013.06.051
10.3389/fnhum.2012.00074
10.3389/fnins.2013.00267
10.7554/eLife.50654
10.1007/s00221‐002‐1255‐x
10.1089/brain.2017.0525
10.1016/j.neuron.2012.09.029
10.1038/nature13162
10.1016/S1388‐2457(99)00141‐8
10.1038/s41598‐017‐14452‐3
10.1016/j.biopsycho.2020.107880
10.1093/cercor/bht121
10.1523/JNEUROSCI.0274‐16.2016
10.1002/brb3.374
10.1002/hbm.21410
10.1016/j.neuroscience.2017.07.037
10.1073/pnas.0308538101
10.1162/jocn.2007.19.1.158
10.1016/j.neuroimage.2004.03.032
10.1523/JNEUROSCI.4739‐13.2014
10.1523/JNEUROSCI.5592‐10.2011
10.1016/j.neuroimage.2009.09.035
10.1016/j.neuroimage.2014.12.077
10.1371/journal.pone.0108059
10.1016/j.neuron.2018.09.023
10.1016/j.neuroimage.2018.09.022
10.1016/j.clinph.2005.03.017
10.1016/S0896‐6273(02)00569‐X
10.1016/j.neuroimage.2006.06.005
10.1016/j.bandl.2014.03.001
10.1016/j.neuroimage.2013.10.052
10.1093/cercor/bht084
10.1016/j.mri.2004.10.010
10.1016/j.neuron.2016.02.028
10.3389/fpsyg.2012.00201
10.1016/j.tins.2015.11.004
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
– notice: 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/psyp.14284
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage n/a
ExternalDocumentID 36906906
10_1111_psyp_14284
PSYP14284
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the Ministry of Education of the Russian Federation
  funderid: 073‐00038‐23‐02
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABVKB
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACUHS
ACWUS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
ID FETCH-LOGICAL-c3934-50d69ad37ff58393d86a58558cee6fb14bde7fc386f17f02b1a5ea17a872a0f93
IEDL.DBID DR2
ISSN 0048-5772
1469-8986
IngestDate Thu Sep 04 17:16:04 EDT 2025
Fri Jul 25 10:38:59 EDT 2025
Mon Jul 21 05:54:50 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Jul 01 01:48:36 EDT 2025
Wed Jan 22 16:20:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords time-frequency analyses
action words
post-movement β synchronization
associative learning
rule acquisition
magnetoencephalography
Language English
License Attribution-NonCommercial
2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3934-50d69ad37ff58393d86a58558cee6fb14bde7fc386f17f02b1a5ea17a872a0f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4072-3169
0000-0002-8267-3916
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14284
PMID 36906906
PQID 2830560690
PQPubID 41359
PageCount 26
ParticipantIDs proquest_miscellaneous_2786100807
proquest_journals_2830560690
pubmed_primary_36906906
crossref_primary_10_1111_psyp_14284
crossref_citationtrail_10_1111_psyp_14284
wiley_primary_10_1111_psyp_14284_PSYP14284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
2004; 22
2017; 7
2010; 53
2015; 36
2017; 1
2017; 4
2006; 32
2006; 173
2011; 55
2020; 206
2013; 245
2014; 24
2020; 14
2018; 41
2015; 109
2020; 10
2013; 7
2014; 132
2016; 39
2003; 114
2013; 8
2016; 36
1971; 9
2010; 20
2015; 49
2016; 90
1994; 181
2000
2020; 9
2008; 28
2017; 360
2018; 177–178
2014; 9
2012; 22
2008; 60
2018; 38
2010; 30
2004; 101
2007; 19
2018; 100
2015; 5
2015; 18
2002; 9
2000; 26
2010
2020; 40
2008; 18
2013; 83
2005; 116
2002; 33
2011; 31
2019; 39
2008; 10
2019; 184
2014; 85
2006; 159
2012; 33
2012; 76
2014; 510
2012; 108
2014; 87
2014; 86
2012; 73
2016; 5
2007; 118
2010; 49
2015; 27
2011; 108
2012; 3
2019; 40
2000; 37
2020; 153
2016; 536
2017; 11
1999; 110
2019
2005; 53
2022; 59
2008; 43
2012; 48
2003; 148
2012; 6
2010; 90
2016; 26
2014; 34
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Kosinski R. J. (e_1_2_10_48_1) 2008; 10
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
Thomson D. J. (e_1_2_10_88_1) 2000
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
Piai V. (e_1_2_10_71_1) 2019
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 36
  start-page: 9739
  issue: 37
  year: 2016
  end-page: 9754
  article-title: Prefrontal cortex networks shift from external to internal modes during learning
  publication-title: The Journal of Neuroscience
– volume: 40
  start-page: 3669
  issue: 12
  year: 2019
  end-page: 3681
  article-title: Effortful verb retrieval from semantic memory drives beta suppression in mesial frontal regions involved in action initiation
  publication-title: Human Brain Mapping
– volume: 5
  issue: 1
  year: 2015
  article-title: Reward feedback stimuli elicit high‐beta EEG oscillations in human dorsolateral prefrontal cortex
  publication-title: Scientific Reports
– volume: 7
  start-page: 541
  issue: 9
  year: 2017
  end-page: 557
  article-title: Effect of field spread on resting‐state magneto encephalography functional network analysis: A computational modeling study
  publication-title: Brain Connectivity
– volume: 26
  start-page: 55
  issue: 1
  year: 2000
  end-page: 67
  article-title: Dynamic statistical parametric mapping: Combining fMRI and MEG for high‐resolution imaging of cortical activity
  publication-title: Neuron
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  end-page: 1857
  article-title: Event‐related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clinical Neurophysiology
– volume: 108
  start-page: 2352
  issue: 9
  year: 2012
  end-page: 2362
  article-title: Beyond establishing involvement: Quantifying the contribution of anticipatory α‐ and β‐band suppression to perceptual improvement with attention
  publication-title: Journal of Neurophysiology
– volume: 153
  year: 2020
  article-title: Feedback‐related negativity (FRN) and theta oscillations: Different feedback signals for non‐conform and conform decisions
  publication-title: Biological Psychology
– volume: 27
  start-page: 1286
  issue: 7
  year: 2015
  end-page: 1297
  article-title: Changes in theta and Beta oscillations as signatures of novel word consolidation
  publication-title: Journal of Cognitive Neuroscience
– volume: 181
  start-page: 43
  issue: 1
  year: 1994
  end-page: 46
  article-title: Visualization of sensorimotor areas involved in preparation for hand movement based on classification of μ and central β rhythms in single EEG trials in man
  publication-title: Neuroscience Letters
– volume: 59
  issue: 5
  year: 2022
  article-title: Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review
  publication-title: Psychophysiology
– volume: 7
  start-page: 267
  year: 2013
  article-title: MEG and EEG data analysis with MNE‐python
  publication-title: Frontiers in Neuroscience
– volume: 22
  start-page: 397
  issue: 5
  year: 2012
  end-page: 402
  article-title: Cholinergic enhancement of visual attention and neural oscillations in the human brain
  publication-title: Current Biology
– volume: 9
  year: 2020
  article-title: Alterations in the amplitude and burst rate of beta oscillations impair reward‐dependent motor learning in anxiety
  publication-title: eLife
– volume: 49
  start-page: 3426
  issue: 4
  year: 2010
  end-page: 3435
  article-title: Imaging brain fatigue from sustained mental workload: An ASL perfusion study of the time‐on‐task effect
  publication-title: NeuroImage
– volume: 1
  year: 2017
  article-title: Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide
  publication-title: Brain and Neuroscience Advances
– volume: 101
  start-page: 13124
  issue: 36
  year: 2004
  end-page: 13131
  article-title: The learning curve: Implications of a quantitative analysis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 519
  issue: 5
  year: 2008
  end-page: 529
  article-title: Transient 23–30 Hz oscillations in mouse hippocampus during exploration of novel environments
  publication-title: Hippocampus
– volume: 87
  start-page: 356
  year: 2014
  end-page: 362
  article-title: Region‐specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities
  publication-title: NeuroImage
– volume: 36
  start-page: 1516
  issue: 5
  year: 2016
  end-page: 1528
  article-title: Post‐movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models
  publication-title: The Journal of Neuroscience
– volume: 116
  start-page: 1879
  issue: 8
  year: 2005
  end-page: 1888
  article-title: Lateralization of event‐related beta desynchronization in the EEG during pre‐cued reaction time tasks
  publication-title: Clinical Neurophysiology
– year: 2019
– volume: 24
  start-page: 2669
  issue: 10
  year: 2014
  end-page: 2678
  article-title: Neuromagnetic evidence of abnormal movement‐related Beta desynchronization in Parkinson's disease
  publication-title: Cerebral Cortex
– volume: 37
  start-page: 13
  issue: 1
  year: 2000
  end-page: 20
  article-title: Mixed‐effects models in psychophysiology
  publication-title: Psychophysiology
– volume: 159
  start-page: 211
  year: 2006
  end-page: 222
– volume: 33
  start-page: 2898
  issue: 12
  year: 2012
  end-page: 2912
  article-title: Beta oscillations relate to the N400m during language comprehension
  publication-title: Human Brain Mapping
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 132
  start-page: 28
  year: 2014
  end-page: 42
  article-title: Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories
  publication-title: Brain and Language
– volume: 10
  issue: 1
  year: 2020
  article-title: Beta oscillations following performance feedback predict subsequent recall of task‐relevant information
  publication-title: Scientific Reports
– volume: 206
  year: 2020
  article-title: Post‐stimulus beta responses are modulated by task duration
  publication-title: NeuroImage
– volume: 114
  start-page: 1226
  issue: 7
  year: 2003
  end-page: 1236
  article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self‐paced movement
  publication-title: Clinical Neurophysiology
– volume: 36
  start-page: 3246
  issue: 8
  year: 2015
  end-page: 3259
  article-title: Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices
  publication-title: Human Brain Mapping
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  end-page: 178
  article-title: A multi‐modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 184
  start-page: 10
  year: 2019
  end-page: 24
  article-title: Error‐related modulations of the sensorimotor post‐movement and foreperiod beta‐band activities arise from distinct neural substrates and do not reflect efferent signal processing
  publication-title: NeuroImage
– volume: 38
  start-page: 7013
  issue: 32
  year: 2018
  end-page: 7019
  article-title: Working memory: Delay activity, yes! Persistent activity? Maybe not
  publication-title: The Journal of Neuroscience
– volume: 32
  start-page: 1281
  issue: 3
  year: 2006
  end-page: 1289
  article-title: Post‐movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings
  publication-title: NeuroImage
– year: 2010
– volume: 6
  start-page: 74
  year: 2012
  article-title: Oscillatory power decreases and long‐term memory: The information via desynchronization hypothesis
  publication-title: Frontiers in Human Neuroscience
– volume: 19
  start-page: 158
  issue: 1
  year: 2007
  end-page: 172
  article-title: Distinction between perceptual and attentional processing in working memory tasks: A study of phase‐locked and induced oscillatory brain dynamics
  publication-title: Journal of Cognitive Neuroscience
– volume: 24
  start-page: 2229
  issue: 8
  year: 2014
  end-page: 2236
  article-title: Working memory coding of analog stimulus properties in the human prefrontal cortex
  publication-title: Cerebral Cortex
– volume: 48
  start-page: 888
  issue: 7
  year: 2012
  end-page: 899
  article-title: Learning to associate novel words with motor actions: Language‐induced motor activity following short training
  publication-title: Cortex
– volume: 34
  start-page: 5678
  issue: 16
  year: 2014
  end-page: 5688
  article-title: Dynamic neural correlates of motor error monitoring and adaptation during trial‐to‐trial learning
  publication-title: The Journal of Neuroscience
– volume: 360
  start-page: 146
  year: 2017
  end-page: 154
  article-title: State‐dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications
  publication-title: Neuroscience
– volume: 173
  start-page: 637
  issue: 4
  year: 2006
  end-page: 649
  article-title: Intracerebral recording of cortical activity related to self‐paced voluntary movements: A Bereitschaftspotential and event‐related desynchronization/synchronization. SEEG study
  publication-title: Experimental Brain Research
– volume: 9
  start-page: 97
  issue: 1
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 7
  issue: 1
  year: 2017
  article-title: Non‐invasive detection of language‐related prefrontal high gamma band activity with beamforming MEG
  publication-title: Scientific Reports
– volume: 26
  start-page: 3772
  issue: 9
  year: 2016
  end-page: 3784
  article-title: Stimulus load and oscillatory activity in higher cortex
  publication-title: Cerebral Cortex
– volume: 9
  issue: 9
  year: 2014
  article-title: Grasping hand verbs: Oscillatory beta and alpha correlates of action‐word processing
  publication-title: PLoS One
– volume: 11
  start-page: 104
  year: 2017
  article-title: Beta oscillatory changes and retention of motor skills during practice in healthy subjects and in patients with Parkinson's disease
  publication-title: Frontiers in Human Neuroscience
– volume: 35
  start-page: 12753
  issue: 37
  year: 2015
  end-page: 12765
  article-title: Distinct modulations in sensorimotor postmovement and foreperiod β‐band activities related to error salience processing and sensorimotor adaptation
  publication-title: The Journal of Neuroscience
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage
– volume: 109
  start-page: 438
  year: 2015
  end-page: 448
  article-title: Language–motor interference reflected in MEG beta oscillations
  publication-title: NeuroImage
– volume: 53
  start-page: 1
  issue: 1
  year: 2010
  end-page: 15
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: NeuroImage
– volume: 9
  start-page: 672
  issue: 4
  year: 2002
  end-page: 705
  article-title: Operant variability: Evidence, functions, and theory
  publication-title: Psychonomic Bulletin & Review
– volume: 53
  start-page: 3359
  year: 2005
  end-page: 3372
  article-title: Applications of the signal space separation method
  publication-title: IEEE Transactions on Signal Processing
– volume: 31
  start-page: 5013
  issue: 13
  year: 2011
  end-page: 5025
  article-title: Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention
  publication-title: The Journal of Neuroscience
– volume: 148
  start-page: 17
  issue: 1
  year: 2003
  end-page: 25
  article-title: Movement‐related changes in cortical oscillatory activity in ballistic, sustained and negative movements
  publication-title: Experimental Brain Research
– volume: 36
  start-page: 6365
  issue: 24
  year: 2016
  end-page: 6367
  article-title: Beta rebound in Visuomotor adaptation: Still the status quo?
  publication-title: The Journal of Neuroscience
– volume: 510
  start-page: 143
  issue: 7503
  year: 2014
  end-page: 147
  article-title: Coordination of entorhinal–hippocampal ensemble activity during associative learning
  publication-title: Nature
– volume: 49
  start-page: 1777
  issue: 2
  year: 2010
  end-page: 1785
  article-title: Cortical dynamics of selective attention to somatosensory events
  publication-title: NeuroImage
– volume: 11
  start-page: 6
  year: 2017
  article-title: Comparison of the working memory load in N‐Back and working memory span tasks by means of EEG frequency band power and P300 amplitude
  publication-title: Frontiers in Human Neuroscience
– volume: 28
  start-page: 1000
  issue: 4
  year: 2008
  end-page: 1008
  article-title: Hand movement direction decoded from MEG and EEG
  publication-title: The Journal of Neuroscience
– volume: 14
  start-page: 895
  year: 2020
  article-title: Rapid cortical plasticity induced by active associative learning of novel words in human adults
  publication-title: Frontiers in Neuroscience
– volume: 43
  start-page: 634
  issue: 3
  year: 2008
  end-page: 644
  article-title: Action word meaning representations in cytoarchitectonically defined primary and premotor cortices
  publication-title: NeuroImage
– volume: 39
  start-page: 16
  issue: 1
  year: 2016
  end-page: 25
  article-title: Oscillations and episodic memory: Addressing the synchronization/desynchronization conundrum
  publication-title: Trends in Neurosciences
– volume: 4
  issue: 4
  year: 2017
  article-title: Beyond the status quo: A role for Beta oscillations in endogenous content (Re)activation
  publication-title: ENeuro
– volume: 40
  start-page: 7523
  issue: 39
  year: 2020
  end-page: 7530
  article-title: Beta‐band activity is a signature of statistical learning
  publication-title: The Journal of Neuroscience
– volume: 41
  start-page: 415
  issue: 7
  year: 2018
  end-page: 417
  article-title: Neural oscillations: Sustained rhythms or transient burst‐events?
  publication-title: Trends in Neurosciences
– volume: 90
  start-page: 1195
  year: 2010
  end-page: 1268
  article-title: Neurophysiological and computational principles of cortical rhythms in
  publication-title: Cognition
– volume: 245
  start-page: 27
  year: 2013
  end-page: 39
  article-title: MEG studies of sensorimotor rhythms: A review
  publication-title: Experimental Neurology
– start-page: 317
  year: 2000
  end-page: 394)
– volume: 184
  start-page: 256
  year: 2019
  end-page: 265
  article-title: Load modulates the alpha and beta oscillatory dynamics serving verbal working memory
  publication-title: NeuroImage
– volume: 118
  start-page: 2625
  issue: 12
  year: 2007
  end-page: 2636
  article-title: Executive functions processed in the frontal and lateral temporal cortices: Intracerebral study
  publication-title: Clinical Neurophysiology
– volume: 73
  start-page: 523
  issue: 3
  year: 2012
  end-page: 536
  article-title: Basal ganglia Beta oscillations accompany cue utilization
  publication-title: Neuron
– volume: 100
  start-page: 463
  issue: 2
  year: 2018
  end-page: 475
  article-title: Working memory 2.0
  publication-title: Neuron
– volume: 18
  start-page: 576
  issue: 4
  year: 2015
  end-page: 581
  article-title: Frequency‐specific hippocampal‐prefrontal interactions during associative learning
  publication-title: Nature Neuroscience
– volume: 76
  start-page: 838
  issue: 4
  year: 2012
  end-page: 846
  article-title: Synchronous oscillatory neural ensembles for rules in the prefrontal cortex
  publication-title: Neuron
– volume: 22
  start-page: 1060
  issue: 3
  year: 2004
  end-page: 1075
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: NeuroImage
– volume: 85
  start-page: 648
  year: 2014
  end-page: 655
  article-title: How brain oscillations form memories — A processing based perspective on oscillatory subsequent memory effects
  publication-title: NeuroImage
– volume: 177–178
  start-page: 44
  year: 2018
  end-page: 55
  article-title: Event‐related desynchronization of mu and beta oscillations during the processing of novel tool names
  publication-title: Brain and Language
– volume: 3
  start-page: 201
  year: 2012
  article-title: “Too many betas do not spoil the broth”: The role of Beta brain oscillations in language processing
  publication-title: Frontiers in Psychology
– volume: 90
  start-page: 152
  issue: 1
  year: 2016
  end-page: 164
  article-title: Gamma and beta bursts underlie working memory
  publication-title: Neuron
– volume: 8
  issue: 3
  year: 2013
  article-title: Modulations of EEG beta power during planning and execution of grasping movements
  publication-title: PLoS One
– volume: 5
  year: 2016
  article-title: Synchronous beta rhythms of frontoparietal networks support only behaviorally relevant representations
  publication-title: eLife
– volume: 30
  start-page: 11270
  issue: 34
  year: 2010
  end-page: 11277
  article-title: Beta‐band activity during motor planning reflects response uncertainty
  publication-title: The Journal of Neuroscience
– volume: 39
  start-page: 8231
  issue: 42
  year: 2019
  end-page: 8238
  article-title: Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function
  publication-title: The Journal of Neuroscience
– volume: 5
  issue: 10
  year: 2015
  article-title: Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson's disease
  publication-title: Brain and Behavior
– volume: 83
  start-page: 27
  year: 2013
  end-page: 34
  article-title: Oscillatory dynamics of response competition in human sensorimotor cortex
  publication-title: NeuroImage
– volume: 22
  start-page: 1533
  issue: 10
  year: 2004
  end-page: 1538
  article-title: Functional localization of brain sources using EEG and/or MEG data: Volume conductor and source models
  publication-title: Magnetic Resonance Imaging
– volume: 101
  start-page: 9849
  issue: 26
  year: 2004
  end-page: 9854
  article-title: Beta oscillations in a large‐scale sensorimotor cortical network: Directional influences revealed by granger causality
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 709
  issue: 4
  year: 2008
  end-page: 719
  article-title: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention
  publication-title: Neuron
– volume: 55
  start-page: 1804
  issue: 4
  year: 2011
  end-page: 1815
  article-title: Changes in brain network activity during working memory tasks: A magnetoencephalography study
  publication-title: NeuroImage
– volume: 10
  start-page: 337
  issue: 1
  year: 2008
  end-page: 344
  article-title: A literature review on reaction time
  publication-title: Clemson University
– volume: 20
  start-page: 156
  issue: 2
  year: 2010
  end-page: 165
  article-title: Beta‐band oscillations—Signalling the status quo?
  publication-title: Current Opinion in Neurobiology
– volume: 108
  start-page: 3779
  issue: 9
  year: 2011
  end-page: 3784
  article-title: Neuronal assembly dynamics in the beta1 frequency range permits short‐term memory
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 49
  start-page: 1
  year: 2015
  end-page: 7
  article-title: The role of high‐frequency oscillatory activity in reward processing and learning
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 245
  start-page: 15
  year: 2013
  end-page: 26
  article-title: The ups and downs of beta oscillations in sensorimotor cortex
  publication-title: Experimental Neurology
– ident: e_1_2_10_44_1
  doi: 10.1016/j.expneurol.2012.09.014
– ident: e_1_2_10_86_1
  doi: 10.1523/JNEUROSCI.3204‐15.2016
– ident: e_1_2_10_49_1
  doi: 10.1016/j.neuron.2011.11.032
– ident: e_1_2_10_61_1
  doi: 10.3758/BF03196324
– ident: e_1_2_10_60_1
  doi: 10.1016/S0079-6123(06)59014-4
– ident: e_1_2_10_67_1
  doi: 10.1002/hbm.24624
– ident: e_1_2_10_76_1
  doi: 10.3389/fnhum.2017.00006
– ident: e_1_2_10_72_1
  doi: 10.1002/hbm.22845
– ident: e_1_2_10_2_1
  doi: 10.1016/j.neuroimage.2018.09.013
– ident: e_1_2_10_5_1
  doi: 10.1111/1469‐8986.3710013
– ident: e_1_2_10_63_1
  doi: 10.1016/0028‐3932(71)90067‐4
– ident: e_1_2_10_89_1
  doi: 10.1523/JNEUROSCI.1090‐15.2015
– ident: e_1_2_10_10_1
  doi: 10.1002/hipo.20435
– ident: e_1_2_10_30_1
  doi: 10.1073/pnas.0404965101
– ident: e_1_2_10_95_1
  doi: 10.1152/physrev.00035.2008
– ident: e_1_2_10_70_1
  doi: 10.1016/0304‐3940(94)90556‐8
– ident: e_1_2_10_36_1
  doi: 10.1038/s41598‐020‐72128‐x
– ident: e_1_2_10_79_1
  doi: 10.1016/j.neuron.2008.09.010
– ident: e_1_2_10_83_1
  doi: 10.1523/ENEURO.0170‐17.2017
– ident: e_1_2_10_51_1
  doi: 10.1523/JNEUROSCI.2485‐17.2018
– ident: e_1_2_10_17_1
  doi: 10.1177/2398212817723443
– ident: e_1_2_10_33_1
  doi: 10.1016/j.neuroimage.2013.10.027
– ident: e_1_2_10_7_1
– ident: e_1_2_10_35_1
  doi: 10.1038/srep13021
– ident: e_1_2_10_6_1
  doi: 10.1162/jocn_a_00801
– ident: e_1_2_10_47_1
  doi: 10.1093/cercor/bhv182
– ident: e_1_2_10_4_1
  doi: 10.7554/eLife.17822
– ident: e_1_2_10_12_1
  doi: 10.1523/JNEUROSCI.0771‐20.2020
– ident: e_1_2_10_53_1
  doi: 10.1016/j.neubiorev.2014.11.014
– ident: e_1_2_10_13_1
  doi: 10.1038/nn.3954
– ident: e_1_2_10_75_1
  doi: 10.3389/fnins.2020.00895
– ident: e_1_2_10_28_1
  doi: 10.1016/j.cortex.2011.07.003
– ident: e_1_2_10_50_1
  doi: 10.1016/j.neuroimage.2009.11.020
– volume-title: Psychology of Learning and Motivation
  year: 2019
  ident: e_1_2_10_71_1
– ident: e_1_2_10_22_1
  doi: 10.1016/S0896‐6273(00)81138‐1
– ident: e_1_2_10_66_1
  doi: 10.1111/psyp.13735
– ident: e_1_2_10_81_1
  doi: 10.1007/s00221‐006‐0407‐9
– start-page: 317
  volume-title: Nonlinear and Nonstationary Signal Processing
  year: 2000
  ident: e_1_2_10_88_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neuroimage.2010.10.074
– ident: e_1_2_10_98_1
  doi: 10.1371/journal.pone.0060060
– ident: e_1_2_10_91_1
  doi: 10.1152/jn.00347.2012
– ident: e_1_2_10_8_1
  doi: 10.1016/j.cub.2012.01.022
– ident: e_1_2_10_11_1
  doi: 10.1016/j.clinph.2007.07.025
– ident: e_1_2_10_90_1
  doi: 10.1523/JNEUROSCI.6026‐09.2010
– ident: e_1_2_10_64_1
  doi: 10.1016/j.neuroimage.2019.116288
– ident: e_1_2_10_20_1
  doi: 10.1016/j.expneurol.2012.08.030
– ident: e_1_2_10_73_1
  doi: 10.1016/j.neuroimage.2008.08.006
– ident: e_1_2_10_92_1
  doi: 10.1016/j.tins.2018.04.004
– ident: e_1_2_10_19_1
  doi: 10.1523/JNEUROSCI.1007‐16.2016
– ident: e_1_2_10_31_1
  doi: 10.1038/nature18933
– ident: e_1_2_10_9_1
  doi: 10.1016/j.bandl.2018.01.004
– ident: e_1_2_10_77_1
  doi: 10.1523/JNEUROSCI.1163‐19.2019
– ident: e_1_2_10_93_1
  doi: 10.1523/JNEUROSCI.5171‐07.2008
– ident: e_1_2_10_59_1
  doi: 10.3389/fnhum.2017.00104
– ident: e_1_2_10_38_1
  doi: 10.1016/j.neuroimage.2013.05.121
– ident: e_1_2_10_68_1
  doi: 10.1016/S1388‐2457(03)00067‐1
– ident: e_1_2_10_24_1
  doi: 10.1016/j.neuroimage.2010.06.010
– ident: e_1_2_10_46_1
  doi: 10.1073/pnas.1019676108
– ident: e_1_2_10_27_1
  doi: 10.1016/j.conb.2010.02.015
– ident: e_1_2_10_87_1
  doi: 10.1109/TSP.2005.853302
– ident: e_1_2_10_34_1
  doi: 10.1016/j.neuroimage.2013.06.051
– ident: e_1_2_10_39_1
  doi: 10.3389/fnhum.2012.00074
– ident: e_1_2_10_32_1
  doi: 10.3389/fnins.2013.00267
– ident: e_1_2_10_84_1
  doi: 10.7554/eLife.50654
– ident: e_1_2_10_3_1
  doi: 10.1007/s00221‐002‐1255‐x
– ident: e_1_2_10_80_1
  doi: 10.1089/brain.2017.0525
– ident: e_1_2_10_18_1
  doi: 10.1016/j.neuron.2012.09.029
– ident: e_1_2_10_42_1
  doi: 10.1038/nature13162
– ident: e_1_2_10_69_1
  doi: 10.1016/S1388‐2457(99)00141‐8
– ident: e_1_2_10_40_1
  doi: 10.1038/s41598‐017‐14452‐3
– ident: e_1_2_10_96_1
  doi: 10.1016/j.biopsycho.2020.107880
– volume: 10
  start-page: 337
  issue: 1
  year: 2008
  ident: e_1_2_10_48_1
  article-title: A literature review on reaction time
  publication-title: Clemson University
– ident: e_1_2_10_41_1
  doi: 10.1093/cercor/bht121
– ident: e_1_2_10_14_1
  doi: 10.1523/JNEUROSCI.0274‐16.2016
– ident: e_1_2_10_57_1
  doi: 10.1002/brb3.374
– ident: e_1_2_10_94_1
  doi: 10.1002/hbm.21410
– ident: e_1_2_10_55_1
  doi: 10.1016/j.neuroscience.2017.07.037
– ident: e_1_2_10_16_1
  doi: 10.1073/pnas.0308538101
– ident: e_1_2_10_23_1
  doi: 10.1162/jocn.2007.19.1.158
– ident: e_1_2_10_78_1
  doi: 10.1016/j.neuroimage.2004.03.032
– ident: e_1_2_10_85_1
  doi: 10.1523/JNEUROSCI.4739‐13.2014
– ident: e_1_2_10_65_1
  doi: 10.1523/JNEUROSCI.5592‐10.2011
– ident: e_1_2_10_25_1
  doi: 10.1016/j.neuroimage.2009.09.035
– ident: e_1_2_10_45_1
  doi: 10.1016/j.neuroimage.2014.12.077
– ident: e_1_2_10_62_1
  doi: 10.1371/journal.pone.0108059
– ident: e_1_2_10_56_1
  doi: 10.1016/j.neuron.2018.09.023
– ident: e_1_2_10_74_1
  doi: 10.1016/j.neuroimage.2018.09.022
– ident: e_1_2_10_26_1
  doi: 10.1016/j.clinph.2005.03.017
– ident: e_1_2_10_29_1
  doi: 10.1016/S0896‐6273(02)00569‐X
– ident: e_1_2_10_43_1
  doi: 10.1016/j.neuroimage.2006.06.005
– ident: e_1_2_10_58_1
  doi: 10.1016/j.bandl.2014.03.001
– ident: e_1_2_10_54_1
  doi: 10.1016/j.neuroimage.2013.10.052
– ident: e_1_2_10_82_1
  doi: 10.1093/cercor/bht084
– ident: e_1_2_10_21_1
  doi: 10.1016/j.mri.2004.10.010
– ident: e_1_2_10_52_1
  doi: 10.1016/j.neuron.2016.02.028
– ident: e_1_2_10_97_1
  doi: 10.3389/fpsyg.2012.00201
– ident: e_1_2_10_37_1
  doi: 10.1016/j.tins.2015.11.004
SSID ssj0009122
Score 2.4213727
Snippet Large‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of...
Large-scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e14284
SubjectTerms action words
Adult
associative learning
Beta Rhythm - physiology
Cognition
Hemispheric laterality
Humans
Learning - physiology
Magnetoencephalography
Movement - physiology
Oscillations
post‐movement β synchronization
Reaction Time - physiology
rule acquisition
Spatial discrimination learning
Synchronization
Temporal Lobe
time‐frequency analyses
Title Learning of new associations invokes a major change in modulations of cortical beta oscillations in human adults
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14284
https://www.ncbi.nlm.nih.gov/pubmed/36906906
https://www.proquest.com/docview/2830560690
https://www.proquest.com/docview/2786100807
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UPvnirVVja5miFBSyJDu3DPhS1FIEZWkt1AcJcy1td5Ol2S3UX-_M5LJWi6CQhyE5ySRz5mS-M3PmOwCvtbTMEYpT46hIiRQ4LUJJGWXCqpPvZGGj8Ocv7PCEfDqlp2vwrt8L0_JDDBNuwTLi_zoYuFTNL0Y-b27mo8AXFshAc8wCcf6HoxV3lMg7qnBSpNRjyI6bNITxrG69PRr9ATFvI9Y45Bw8hO_9y7aRJpej5UKN9I_feBz_92sewYMOi6L9tvM8hjVbPYGN_cr74bMbtIdidGicdt-AeUfEeoZqhzwUR3Kl1wadV9f1pW2QRDN5UV-hdjuxP41mtekShDXhTu_rxslzpOxCokCkOZ0Oz0AxYSCKlCDNJpwcfPz6_jDtsjWkGgtMUpoZJqTB3DnqURc2BZPeF6GFH4aZUzlRxnKnccFczl02VrmkVuZcFnwsMyfwU1iv6so-B2SFNoZrrGVhCbFGOqU0V4o6Dxa1sAm86bVW6o7KPGTUmJa9SxOas4zNmcCrQXbeEnjcKbXdK7_sjLgpAzeaB4RMZAnsDpe9-YU1FVnZeulleMECP1LGE3jWdpqhGhxIoP2RwNuo-r_UX06Ov01i6cW_CG_B_bEHXW1A4jasL66W9qUHSQu1A_fGZLITTeIn418Scg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5a-9C-iK1tjVq7xVJoIXK53c0mj1KUa6tyoIJ9CvtTWu-Sw5yC_313Nnu5ikUo5GFJJlnY2cl-Mzv7DcBHLW3uGKepcbxMmSxpWmBLGWVw18lPMjwofHySj87Z9wt-EXNz8CxMxw_RB9zQMsL_Gg0cA9J_WfmsvZvtIWEYewrPmAfmmNE3ZOMl524WycJZkXKPIiM7KSbyLN-9vx49AJn3MWtYdA7XYDWiRbLfqfclPLH1K1jfr72nPL0jn0jI3wyB8XWYRarUS9I44sEykcuRb8mv-ra5si2RZCp_N9ekO_Drb5NpY2IJrxbf9N5oCG8TZeeSINXlZNJ_g4SSfiSQdrSv4fzw4OzrKI31FFJNS8pSPjB5KQ0VznGPi6gpcum9BV74hTJ3KmPKWOE0LXKXCTcYqkxyKzMhCzGUA1fSN7BSN7XdAGJLbYzQVMvCMmaNdEppoRR3Hs7p0ibweTGqlY5k41jzYlItnA7UQBU0kMBuLzvrKDb-KbW9UE4VzaytkL3MQzbv4SfwoX_sDQR3PWRtmxsvI4ocGYwGIoG3nVL7bijSNPsrgS9By4_0X41Pf45Da_N_hN_D89HZ8VF19O3kxxa8wGL1XfrgNqzMr2_sOw9p5monTNw_Ynn0Zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UCuKLVeslteqIIihkSXZuCfSlqEu9lUUt1IcS5iptd5PQ7Ar113dmclmrIijkYUhOMsmcOZnvzJz5DsAzJQyzhOJYW5rHROQ4znxJaqn9qpPrZH6j8Md9tndA3h3SwzXY6ffCtPwQw4Sbt4zwv_YGXmv7k5HXzXk98nxh5ApcJcxBCQ-JPq3Io_K04wonWUwdiOzISX0cz-rey8PRbxjzMmQNY85kA476t21DTU5Hy4UcqR-_EDn-7-fchBsdGEW7be-5BWumvA2bu6VzxOfn6DkK4aFh3n0T6o6J9RuqLHJYHImVYht0XH6vTk2DBJqLk-oMtfuJ3Wk0r3SXIazxdzpnN8yeI2kWAnkmzdlseAYKGQNR4ARp7sDB5M2XV3txl64hVjjHJKaJZrnQmFtLHezCOmPCOSM0c-MwszIlUhtuFc6YTblNxjIV1IiUi4yPRWJzfBfWy6o09wGZXGnNFVYiM4QYLayUiktJrUOLKjcRvOi1VqiOy9yn1JgVvU_jm7MIzRnB00G2bhk8_ii13Su_6Ky4KTw5mkOELE8ieDJcdvbnF1VEaaqlk-EZ8wRJCY_gXttphmqwZ4F2RwQvg-r_Un8x_fx1Gkpb_yL8GK5NX0-KD2_33z-A62MHwNrgxG1YX5wtzUMHmBbyUbCLCzqmFGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+of+new+associations+invokes+a+major+change+in+modulations+of+cortical+beta+oscillations+in+human+adults&rft.jtitle=Psychophysiology&rft.au=Pavlova%2C+Anna&rft.au=Tyulenev%2C+Nikita&rft.au=Tretyakova%2C+Vera&rft.au=Skavronskaya%2C+Valeriya&rft.date=2023-08-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=60&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fpsyp.14284&rft.externalDBID=10.1111%252Fpsyp.14284&rft.externalDocID=PSYP14284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon