Automatic Segmentation and Quantification of Nigrosome‐1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease

Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area c...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 60; no. 2; pp. 534 - 547
Main Authors Ariz, Mikel, Martínez, Martín, Alvarez, Ignacio, Fernández‐Seara, Maria A., Castellanos, Gabriel, Pastor, Pau, Pastor, Maria A., Ortiz de Solórzano, Carlos
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.29073

Cover

Loading…
Abstract Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. Purpose Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. Study Type Prospective. Subjects Seventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). Field Strength/Sequence 3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI). Assessment N1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. Statistical Tests Nonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05. Results N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. Data Conclusion This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. Evidence Level 1 Technical Efficacy Stage 1
AbstractList There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.BACKGROUNDThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.PURPOSEPresent an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.Prospective.STUDY TYPEProspective.Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).SUBJECTSSeventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI).FIELD STRENGTH/SEQUENCE3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI).N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.ASSESSMENTN1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05.STATISTICAL TESTSNonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05.N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.RESULTSN1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.DATA CONCLUSIONThis method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.1 TECHNICAL EFFICACY: Stage 1.EVIDENCE LEVEL1 TECHNICAL EFFICACY: Stage 1.
There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. Prospective. Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CR  = 22.55 ± 1.49; NM-CR  = 19.79 ± 1.92; NM-nVol  = 2.69 × 10  ± 1.02 × 10 ; NM-nVol  = 1.18 × 10  ± 0.96 × 10 ; Iron-CR  = 10.51 ± 2.64; Iron-CR  = 19.35 ± 7.88; Iron-nVol  = 0.72 × 10  ± 0.81 × 10 ; Iron-nVol  = 2.82 × 10  ± 2.04 × 10 ). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρ  = -0.31; ρ  = 0.43; ρ  = 0.46) and the motor status (ρ  = -0.27; ρ  = 0.33; ρ  = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. 1 TECHNICAL EFFICACY: Stage 1.
Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. Purpose Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. Study Type Prospective. Subjects Seventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). Field Strength/Sequence 3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI). Assessment N1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. Statistical Tests Nonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05. Results N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. Data Conclusion This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. Evidence Level 1 Technical Efficacy Stage 1
BackgroundThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.PurposePresent an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.Study TypeProspective.SubjectsSeventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).Field Strength/Sequence3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI).AssessmentN1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.Statistical TestsNonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05.ResultsN1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.Data ConclusionThis method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.Evidence Level1Technical EfficacyStage 1
Author Ariz, Mikel
Pastor, Pau
Martínez, Martín
Castellanos, Gabriel
Pastor, Maria A.
Ortiz de Solórzano, Carlos
Fernández‐Seara, Maria A.
Alvarez, Ignacio
Author_xml – sequence: 1
  givenname: Mikel
  orcidid: 0000-0002-7328-1582
  surname: Ariz
  fullname: Ariz, Mikel
  organization: Public University of Navarre
– sequence: 2
  givenname: Martín
  surname: Martínez
  fullname: Martínez, Martín
  organization: University of Navarra, School of Medicine
– sequence: 3
  givenname: Ignacio
  surname: Alvarez
  fullname: Alvarez, Ignacio
  organization: University Hospital Mútua de Terrassa
– sequence: 4
  givenname: Maria A.
  orcidid: 0000-0001-8536-6295
  surname: Fernández‐Seara
  fullname: Fernández‐Seara, Maria A.
  organization: IdiSNA, Instituto de Investigación Sanitaria de Navarra
– sequence: 5
  givenname: Gabriel
  surname: Castellanos
  fullname: Castellanos, Gabriel
  organization: Pontificia Universidad Javeriana
– sequence: 7
  givenname: Pau
  surname: Pastor
  fullname: Pastor, Pau
  organization: University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP)
– sequence: 8
  givenname: Maria A.
  surname: Pastor
  fullname: Pastor, Maria A.
  organization: University of Navarra
– sequence: 9
  givenname: Carlos
  surname: Ortiz de Solórzano
  fullname: Ortiz de Solórzano, Carlos
  email: codesolorzano@unav.es
  organization: IdiSNA, Instituto de Investigación Sanitaria de Navarra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37915245$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URNsLGx4AWWIBQkqxYzuJu7tc_i4q5X9t2c648iWxi50IdceKNc_Ik-CSdlMhVj4afWc8M-cQ7YUYAKH7lBxRQuqnuzH5o1qSlt1CB1TUdVWLrtkrmghW0Y60--gw5x0hREou7qB91srCcXGAfq7nKY568hZ_grMRwlR0DFiHHn-YdZi883YpRYdP_VmKOY7w-8cvik9hTkUPOvjFsE0FK_rtx-0xXuNNqfleT4Cf-fJH-goJu5jw-yJ9yDE8yvi5z6Az3EW3nR4y3Lt6V-jLyxefN6-rk3evtpv1SWWZZKyCxvVWg2a87xtiqOmA9pw0VOradNZaIo1xNSWNEb0gvROSa8O5lBaccYat0OOl73mK32bIkxp9tjCUHSDOWdVdJwTr2pYX9OENdBfnFMp0ipG261pOy0gr9OCKms0IvTpPvmx6oa4vXACyALZcLidwyvrlxlPSflCUqMsQ1WWI6m-IxfLkhuW66z9husDf_QAX_yHVmxLL4vkDhySvIw
CitedBy_id crossref_primary_10_1002_jmri_29076
crossref_primary_10_3390_jcm13154539
crossref_primary_10_1002_jmri_29260
Cites_doi 10.1038/s41531-018-0047-3
10.1259/bjr.20180037
10.1016/j.neuroimage.2022.119814
10.1109/TMI.2003.809072
10.1016/j.pneurobio.2015.09.012
10.1093/brain/122.8.1437
10.1002/mds.26883
10.1007/s11263-008-0168-y
10.1038/nrdp.2017.13
10.1007/s11548-021-02528-5
10.1002/hbm.23547
10.1002/mdc3.12590
10.1259/bjr.20180842
10.1002/jmri.28414
10.3389/fneur.2019.00100
10.1136/jnnp.55.3.181
10.1109/TMI.2009.2014372
10.1016/j.nicl.2019.102103
10.1016/j.parkreldis.2020.07.002
10.1093/brain/122.8.1421
10.1002/mds.28933
10.2463/mrms.7.205
10.1109/TMI.2009.2035616
10.3174/ajnr.A1400
10.1016/j.neuroimage.2021.117810
10.1007/s00234-019-02279-w
10.1016/j.parkreldis.2020.09.021
10.1016/j.parkreldis.2021.03.004
10.1002/mds.26932
10.3389/fneur.2022.1096966
10.1148/radiol.212696
10.1212/WNL.0000000000000641
10.1212/WNL.0000000000006737
10.1002/mds.26201
10.1212/WNL.0b013e31829e6fd2
10.1002/hbm.22928
10.1109/TMI.2018.2872852
10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.0.CO;2-5
10.1038/s41531-023-00503-2
ContentType Journal Article
Copyright 2023 Fundación para la Investigación Médica Aplicada. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 Fundación para la Investigación Médica Aplicada. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor The Catalonian Neuroimaging Parkinson's Disease Consortium
Catalonian Neuroimaging Parkinson's Disease Consortium
CorporateAuthor_xml – name: The Catalonian Neuroimaging Parkinson's Disease Consortium
– name: Catalonian Neuroimaging Parkinson's Disease Consortium
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.29073
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 547
ExternalDocumentID 37915245
10_1002_jmri_29073
JMRI29073
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033
  funderid: PDI2021‐122409OB‐C22; RTI2018‐094494‐B‐C22; SAF2016‐81016‐R; TED2021‐131300B‐I00
– fundername: European Union NextGenerationEU/PRTR and Instituto de Salud Carlos III
  funderid: PMP22/00100
– fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033
  grantid: RTI2018-094494-B-C22
– fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033
  grantid: SAF2016-81016-R
– fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033
  grantid: TED2021-131300B-I00
– fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033
  grantid: PDI2021-122409OB-C22
– fundername: European Union NextGenerationEU/PRTR and Instituto de Salud Carlos III
  grantid: PMP22/00100
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3933-e6fdcaea34dd60b1b8e1d40619a2b8ccc09bbf2106b5d50df594ab4499cefbfb3
IEDL.DBID 24P
ISSN 1053-1807
1522-2586
IngestDate Fri Sep 05 05:07:38 EDT 2025
Wed Aug 13 03:59:28 EDT 2025
Mon Jul 21 05:32:30 EDT 2025
Tue Jul 01 03:57:01 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Wed Jan 22 17:17:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nigrosome‐1
iron
Parkinson's disease
automatic segmentation
susceptibility weighted imaging
neuromelanin
Language English
License Attribution-NonCommercial-NoDerivs
2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3933-e6fdcaea34dd60b1b8e1d40619a2b8ccc09bbf2106b5d50df594ab4499cefbfb3
Notes Mikel Ariz, Martín Martínez, Pau Pastor, Maria A. Pastor, Carlos Ortiz de Solórzano contributed equally to this work.
Members of The Catalonian Neuroimaging Parkinson's Disease Consortium are listed in
Appendix 1
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7328-1582
0000-0001-8536-6295
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29073
PMID 37915245
PQID 3078874193
PQPubID 1006400
PageCount 14
ParticipantIDs proquest_miscellaneous_2885538774
proquest_journals_3078874193
pubmed_primary_37915245
crossref_citationtrail_10_1002_jmri_29073
crossref_primary_10_1002_jmri_29073
wiley_primary_10_1002_jmri_29073_JMRI29073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 36
2023; 13
2019; 92
2017; 3
2009; 81
2019; 10
2015; 30
2023; 9
2023; 266
2020; 80
2019; 38
2008; 7
2020; 78
1999; 122
2017; 155
2014; 83
1992; 55
2009; 28
2021; 16
2009; 30
2018; 5
2018; 4
2019; 61
2022
2010; 29
2017; 38
2017; 32
2000; 11
2018; 91
2022; 57
2020; 25
2013; 81
2022; 37
2021; 230
2021; 85
2022; 305
2003; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 13
  year: 2023
  article-title: Application value of multiparametric MRI for evaluating iron deposition in the substantia nigra in Parkinson's disease
  publication-title: Front Neurol
– volume: 36
  start-page: 4407
  year: 2015
  end-page: 4420
  article-title: Region‐specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping
  publication-title: Hum Brain Mapp
– volume: 38
  start-page: 813
  year: 2019
  end-page: 823
  article-title: Dynamic atlas‐based segmentation and quantification of neuromelanin‐rich brainstem structures in Parkinson disease
  publication-title: IEEE Trans Med Imaging
– volume: 57
  start-page: 337
  year: 2022
  end-page: 352
  article-title: Application of neuromelanin MR imaging in Parkinson disease
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 534
  year: 2013
  end-page: 540
  article-title: Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7T MRI
  publication-title: Neurology
– volume: 78
  start-page: 12
  year: 2020
  end-page: 20
  article-title: Diagnostic accuracy of the appearance of Nigrosome‐1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta‐analysis
  publication-title: Parkinsonism Relat Disord
– volume: 92
  start-page: E148
  year: 2019
  end-page: E160
  article-title: Age and time course of long‐term motor and nonmotor complications in Parkinson disease
  publication-title: Neurology
– volume: 11
  start-page: 71
  year: 2000
  end-page: 80
  article-title: Unifying maximum likelihood approaches in medical image registration
  publication-title: Int J Imaging Syst Technol
– volume: 230
  year: 2021
  article-title: Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome‐1 sign as complementary imaging biomarkers in early stage Parkinson's disease
  publication-title: Neuroimage
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  article-title: Combination strategies in multi‐atlas image segmentation: Application to brain MR data
  publication-title: IEEE Trans Med Imaging
– volume: 92
  year: 2019
  article-title: Nigrosome 1 imaging: Technical considerations and clinical applications
  publication-title: Br J Radiol
– volume: 7
  start-page: 205
  year: 2008
  end-page: 210
  article-title: Visualization of neuromelanin in the substantia nigra and locus coeruleus at 1.5T using a 3D‐gradient echo sequence with magnetization transfer contrast
  publication-title: Magn Reson Med Sci
– volume: 38
  start-page: 2627
  year: 2017
  end-page: 2634
  article-title: In vivo detection of lateral–ventral tier nigral degeneration in Parkinson's disease
  publication-title: Hum Brain Mapp
– volume: 55
  start-page: 181
  year: 1992
  end-page: 184
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: A clinico‐pathological study of 100 cases
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 91
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early‐stage Parkinson's disease
  publication-title: Br J Radiol
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  article-title: Elastix: A toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 305
  start-page: 674
  issue: 3
  year: 2022
  end-page: 677
  article-title: Swallow tail sign: Revisited
  publication-title: Radiology
– volume: 155
  start-page: 96
  year: 2017
  end-page: 119
  article-title: Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease
  publication-title: Prog Neurobiol
– volume: 83
  start-page: 406
  year: 2014
  end-page: 412
  article-title: Low clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinicopathologic study
  publication-title: Neurology
– volume: 30
  start-page: 945
  year: 2015
  end-page: 952
  article-title: Automated neuromelanin imaging as a diagnostic biomarker for Parkinson's disease
  publication-title: Mov Disord
– volume: 5
  start-page: 131
  year: 2018
  end-page: 140
  article-title: Nigrosome imaging and neuromelanin sensitive MRI in diagnostic evaluation of parkinsonism
  publication-title: Mov Disord Clin Pract
– volume: 61
  start-page: 1387
  year: 2019
  end-page: 1395
  article-title: Convolutional neural network‐based segmentation can help in assessing the substantia nigra in neuromelanin MRI
  publication-title: Neuroradiology
– volume: 30
  start-page: 19
  year: 2009
  end-page: 30
  article-title: Susceptibility‐weighted imaging: Technical aspects and clinical applications, part 1
  publication-title: Am J Neuroradiol
– volume: 122
  start-page: 1421
  year: 1999
  end-page: 1436
  article-title: The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry
  publication-title: Brain
– volume: 37
  start-page: 1064
  year: 2022
  end-page: 1069
  article-title: Deep learning‐based neuromelanin MRI changes of isolated REM sleep behavior disorder
  publication-title: Mov Disord
– volume: 22
  start-page: 120
  year: 2003
  end-page: 128
  article-title: PET‐CT image registration in the chest using free‐form deformations
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 441
  year: 2017
  end-page: 449
  article-title: Parkinson's disease–related increase of T2*‐weighted hypointensity in substantia nigra pars compacta
  publication-title: Mov Disord
– volume: 81
  start-page: 227
  year: 2009
  end-page: 239
  article-title: Adaptive stochastic gradient descent optimisation for image registration
  publication-title: Int J Comput Vis
– volume: 25
  start-page: 25
  year: 2020
  article-title: Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: An application to Parkinson's disease
  publication-title: Neuroimage Clin
– year: 2022
– volume: 85
  start-page: 84
  year: 2021
  end-page: 90
  article-title: Automated assessment of the substantia nigra on susceptibility map‐weighted imaging using deep convolutional neural networks for diagnosis of idiopathic Parkinson's disease
  publication-title: Park Relat Disord
– volume: 16
  start-page: 2129
  year: 2021
  end-page: 2135
  article-title: Fully automated deep learning‐based localization and segmentation of the locus coeruleus in aging and Parkinson's disease using neuromelanin‐sensitive MRI
  publication-title: Int J Comput Assist Radiol Surg
– volume: 4
  start-page: 4
  year: 2018
  article-title: Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease
  publication-title: NPJ Parkinsons Dis
– volume: 32
  start-page: 619
  year: 2017
  end-page: 623
  article-title: Meta‐analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease
  publication-title: Mov Disord
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Combined visualization of nigrosome‐1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson's disease
  publication-title: Front Neurol
– volume: 122
  start-page: 1437
  year: 1999
  end-page: 1448
  article-title: The substantia nigra of the human brain: II. Patterns of loss of dopamine‐containing neurons in Parkinson's disease
  publication-title: Brain
– volume: 9
  start-page: 9
  year: 2023
  article-title: Brainstem neuromelanin and iron MRI reveals precise signatures for GBA and LRRK2 Parkinson's disease
  publication-title: NPJ Parkinsons Dis
– volume: 80
  start-page: 102
  year: 2020
  end-page: 107
  article-title: Multimodal assessment of nigrosomal degeneration in Parkinson's disease
  publication-title: Parkinsonism Relat Disord
– volume: 3
  year: 2017
  article-title: Parkinson disease
  publication-title: Nat Rev Dis Primers
– volume: 266
  year: 2023
  article-title: Diagnosing Parkinson's disease by combining neuromelanin and iron imaging features using an automated midbrain template approach
  publication-title: Neuroimage
– ident: e_1_2_7_5_1
  doi: 10.1038/s41531-018-0047-3
– ident: e_1_2_7_9_1
  doi: 10.1259/bjr.20180037
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neuroimage.2022.119814
– ident: e_1_2_7_29_1
  doi: 10.1109/TMI.2003.809072
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pneurobio.2015.09.012
– ident: e_1_2_7_12_1
  doi: 10.1093/brain/122.8.1437
– ident: e_1_2_7_18_1
  doi: 10.1002/mds.26883
– ident: e_1_2_7_30_1
  doi: 10.1007/s11263-008-0168-y
– ident: e_1_2_7_2_1
  doi: 10.1038/nrdp.2017.13
– ident: e_1_2_7_36_1
  doi: 10.1007/s11548-021-02528-5
– ident: e_1_2_7_16_1
  doi: 10.1002/hbm.23547
– ident: e_1_2_7_22_1
  doi: 10.1002/mdc3.12590
– ident: e_1_2_7_14_1
  doi: 10.1259/bjr.20180842
– ident: e_1_2_7_33_1
– ident: e_1_2_7_19_1
  doi: 10.1002/jmri.28414
– ident: e_1_2_7_17_1
  doi: 10.3389/fneur.2019.00100
– ident: e_1_2_7_25_1
  doi: 10.1136/jnnp.55.3.181
– ident: e_1_2_7_35_1
  doi: 10.1109/TMI.2009.2014372
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nicl.2019.102103
– ident: e_1_2_7_20_1
  doi: 10.1016/j.parkreldis.2020.07.002
– ident: e_1_2_7_11_1
  doi: 10.1093/brain/122.8.1421
– ident: e_1_2_7_38_1
  doi: 10.1002/mds.28933
– ident: e_1_2_7_26_1
  doi: 10.2463/mrms.7.205
– ident: e_1_2_7_31_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_7_27_1
  doi: 10.3174/ajnr.A1400
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2021.117810
– ident: e_1_2_7_37_1
  doi: 10.1007/s00234-019-02279-w
– ident: e_1_2_7_8_1
  doi: 10.1016/j.parkreldis.2020.09.021
– ident: e_1_2_7_24_1
  doi: 10.1016/j.parkreldis.2021.03.004
– ident: e_1_2_7_21_1
  doi: 10.1002/mds.26932
– ident: e_1_2_7_39_1
  doi: 10.3389/fneur.2022.1096966
– ident: e_1_2_7_41_1
  doi: 10.1148/radiol.212696
– ident: e_1_2_7_3_1
  doi: 10.1212/WNL.0000000000000641
– ident: e_1_2_7_32_1
  doi: 10.1212/WNL.0000000000006737
– ident: e_1_2_7_6_1
  doi: 10.1002/mds.26201
– ident: e_1_2_7_15_1
  doi: 10.1212/WNL.0b013e31829e6fd2
– ident: e_1_2_7_40_1
  doi: 10.1002/hbm.22928
– ident: e_1_2_7_28_1
  doi: 10.1109/TMI.2018.2872852
– ident: e_1_2_7_34_1
  doi: 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.0.CO;2-5
– ident: e_1_2_7_10_1
  doi: 10.1038/s41531-023-00503-2
SSID ssj0009945
Score 2.4810693
Snippet Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools...
There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the...
BackgroundThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 534
SubjectTerms Accumulation
Aged
automatic segmentation
Automation
Biomarkers
Biomarkers - metabolism
Degeneration
Disease control
Female
Females
Field strength
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Iron
Iron - metabolism
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Males
Medical imaging
Melanins - metabolism
Middle Aged
Movement disorders
Neurodegenerative diseases
neuromelanin
nigrosome‐1
Parameters
Parkinson Disease - diagnostic imaging
Parkinson Disease - metabolism
Parkinson's disease
Prospective Studies
Regression analysis
Segmentation
Statistical analysis
Statistical tests
Substantia nigra
Substantia Nigra - diagnostic imaging
Substantia Nigra - metabolism
susceptibility weighted imaging
Title Automatic Segmentation and Quantification of Nigrosome‐1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29073
https://www.ncbi.nlm.nih.gov/pubmed/37915245
https://www.proquest.com/docview/3078874193
https://www.proquest.com/docview/2885538774
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH50KYxdxrZ2m7usaLRQNvBqW7ZjjV6ydqUNJGzdCr0Z_XLIltjFSe477dy_sX_JniTHoXQMejHClpDxZz19T0_vE8B-0QuZooz6jCepHyci8AWThY_UQdEeTlGBNsnJw1F6dhkPrpKrDTha5cI4fYh2wc2MDGuvzQDnYn64Fg39OasnHyP07egj2DS5teb8gij-upbcZfaIYiQQ1A-zoNeKk0aH67Z3p6N7HPMuZbVzzukzeNqQRdJ36D6HDV2-gMfDJhy-BX_6y0VlNVfJdz2eNWlEJeGlIt-W3O0DcreqgowmY3yHaqZvf9-ExKpyzPSUlxPX4LzGalgeXpx_In1ybPJdzHIA-TzBPupfuiZIcIlJk7YZYwdzcuKiO9twefrlx_GZ3xys4EuEhfo6LZTkmtNYqTQQoch0qMzMzngkMillwIQo0BlMRaKSQBUJi7mI0TmSuhCFoC-hU1alfg0EvRGaoovCVSYRaTQQaLZCE2w0qi9Z4MH71ffNZaM6bg6_mOZOLznKDRa5xcKDvbbutdPa-Get7gqmvBlv8xwtFVrLGNmoB-_axzhSTPiDl7pazvMoyxI078h3PXjl4G27oT2GRCZOPPhg8f5P__kAcbClnYdUfgNPIuRDbu9gFzqLeqnfIp9ZiF372-L15CL6C5oM8gw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYALKu9AASOQEEihSexk496WQrVbuiserdSb5VeqhW6Csrt3Tpz7G_tLGNtpVhUIiZuV2HKUzx5_4_F8BnhZDVJuKKcxl3kRs1wlseK6ipE6GDrAJSqxLjl5Mi1GR2z_OD_uzua4XJigD9FvuLmZ4e21m-BuQ3p7rRr6bd7O3mbo3NGrcI0hMXeDOmOf1pq73N9RjAyCxmmZDHp10mx73fbyevQHybzMWf2is7cJtzq2SIYB3ttwxdZ34Pqki4ffhV_D1bLxoqvkqz2Zd3lENZG1IZ9XMhwECo-aikxnJ_gNzdye_zxLiZflmNtTWc9Cg3GL1bA8-TLeIUOy6xJe3H4AeTfDPtrvtiXIcInLk_YpY68W5H0I79yDo70Ph7ujuLtZIdaIC41tURktraTMmCJRqSptatzSzmWmSq11wpWq0BssVG7yxFQ5Z1Ix9I60rVSl6H3YqJvaPgSC7ggt0EeRptQINVoItFupizY62ZcyieD1xf8VupMdd7dfnIogmJwJh4XwWETwoq_7I4ht_LXW1gVMoptwC4GmCs0lQzoawfP-NU4VF_-QtW1WC5GVZY72HQlvBA8CvH03dMCRybA8gjce73_0L_YRB1969D-Vn8GN0eHkQByMpx8fw80MyVE4SLgFG8t2ZZ8guVmqp34I_wYPIfSY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVcEOWZ0oIRSAiktEmcZGPEZWlZdQu7Ko9KvUV-Vlu6SZXdvXPqub-RX8LYzmZVgZC4RclYjvLF4288ns8Ar0wvZooyGjKe5WGaiSgUTJoQqYOiPZyiIm2Lk0fj_PAkPTrNTtfg_bIWxutDdAtudmQ4f20H-KUyeyvR0PNpM9lNMLajt-C2zfbZDX1JeryS3GXuiGIkEDSMi6jXiZMme6u2N6ejPzjmTcrq5pzBPbjbkkXS9-huwpqu7sPGqE2HP4Cr_mJeO81V8k2fTdsyoorwSpEvC-73AflbtSHjyRm-Qz3Vv35ex8Spckz1Ba8mvsGwQTO8Hn0dviN9sm_rXexyAPkwwT6aH7ohSHCJLZN2FWOvZ-TAZ3cewsng4_f9w7A9WCGUCAsNdW6U5JrTVKk8ErEodKzszM54IgopZcSEMBgM5iJTWaRMxlIuUgyOpDbCCPoI1qu60k-AYDRCcwxRuCokIo0OAt1WbJONVvWliAJ4s_y-pWxVx-3hFxel10tOSotF6bAI4GVne-m1Nv5qtb2EqWzH26xET4XeMkU2GsCL7jGOFJv-4JWuF7MyKYoM3Tvy3QAee3i7bmiPIZFJswDeOrz_0X95hDi4q63_MX4OG8cHg_LzcPzpKdxJkBr5bYTbsD5vFnoHqc1cPHN_8G-U6vPB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+and+Quantification+of+Nigrosome-1+Neuromelanin+and+Iron+in+MRI%3A+A+Candidate+Biomarker+for+Parkinson%27s+Disease&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Ariz%2C+Mikel&rft.au=Mart%C3%ADnez%2C+Mart%C3%ADn&rft.au=Alvarez%2C+Ignacio&rft.au=Fern%C3%A1ndez-Seara%2C+Maria+A&rft.date=2024-08-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=60&rft.issue=2&rft.spage=534&rft_id=info:doi/10.1002%2Fjmri.29073&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon