Automatic Segmentation and Quantification of Nigrosome‐1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease
Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area c...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 60; no. 2; pp. 534 - 547 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.29073 |
Cover
Loading…
Abstract | Background
There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.
Purpose
Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.
Study Type
Prospective.
Subjects
Seventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).
Field Strength/Sequence
3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI).
Assessment
N1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.
Statistical Tests
Nonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05.
Results
N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.
Data Conclusion
This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.
Evidence Level
1
Technical Efficacy
Stage 1 |
---|---|
AbstractList | There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.BACKGROUNDThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.PURPOSEPresent an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.Prospective.STUDY TYPEProspective.Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).SUBJECTSSeventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI).FIELD STRENGTH/SEQUENCE3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI).N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.ASSESSMENTN1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05.STATISTICAL TESTSNonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05.N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.RESULTSN1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.DATA CONCLUSIONThis method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.1 TECHNICAL EFFICACY: Stage 1.EVIDENCE LEVEL1 TECHNICAL EFFICACY: Stage 1. There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. Prospective. Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CR = 22.55 ± 1.49; NM-CR = 19.79 ± 1.92; NM-nVol = 2.69 × 10 ± 1.02 × 10 ; NM-nVol = 1.18 × 10 ± 0.96 × 10 ; Iron-CR = 10.51 ± 2.64; Iron-CR = 19.35 ± 7.88; Iron-nVol = 0.72 × 10 ± 0.81 × 10 ; Iron-nVol = 2.82 × 10 ± 2.04 × 10 ). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρ = -0.31; ρ = 0.43; ρ = 0.46) and the motor status (ρ = -0.27; ρ = 0.33; ρ = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. 1 TECHNICAL EFFICACY: Stage 1. Background There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. Purpose Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. Study Type Prospective. Subjects Seventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). Field Strength/Sequence 3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI). Assessment N1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. Statistical Tests Nonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05. Results N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. Data Conclusion This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. Evidence Level 1 Technical Efficacy Stage 1 BackgroundThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the “swallow‐tail” in iron‐sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation.PurposePresent an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease.Study TypeProspective.SubjectsSeventy‐one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male).Field Strength/Sequence3 T Anatomical T1‐weighted MPRAGE, NM‐MRI T1‐weighted gradient with magnetization transfer, susceptibility‐weighted imaging (SWI).AssessmentN1 was automatically segmented in SWI images using a multi‐image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied.Statistical TestsNonparametric tests were used (Mann–Whitney's U, chi‐square, and Friedman tests) at P = 0.05.ResultsN1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM‐CRHC = 22.55 ± 1.49; NM‐CRPD = 19.79 ± 1.92; NM‐nVolHC = 2.69 × 10−5 ± 1.02 × 10−5; NM‐nVolPD = 1.18 × 10−5 ± 0.96 × 10−5; Iron‐CRHC = 10.51 ± 2.64; Iron‐CRPD = 19.35 ± 7.88; Iron‐nVolHC = 0.72 × 10−5 ± 0.81 × 10−5; Iron‐nVolPD = 2.82 × 10−5 ± 2.04 × 10−5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM‐CR = −0.31; ρiron‐CR = 0.43; ρiron‐nVol = 0.46) and the motor status (ρNM‐nVol = −0.27; ρiron‐CR = 0.33; ρiron‐nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses.Data ConclusionThis method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses.Evidence Level1Technical EfficacyStage 1 |
Author | Ariz, Mikel Pastor, Pau Martínez, Martín Castellanos, Gabriel Pastor, Maria A. Ortiz de Solórzano, Carlos Fernández‐Seara, Maria A. Alvarez, Ignacio |
Author_xml | – sequence: 1 givenname: Mikel orcidid: 0000-0002-7328-1582 surname: Ariz fullname: Ariz, Mikel organization: Public University of Navarre – sequence: 2 givenname: Martín surname: Martínez fullname: Martínez, Martín organization: University of Navarra, School of Medicine – sequence: 3 givenname: Ignacio surname: Alvarez fullname: Alvarez, Ignacio organization: University Hospital Mútua de Terrassa – sequence: 4 givenname: Maria A. orcidid: 0000-0001-8536-6295 surname: Fernández‐Seara fullname: Fernández‐Seara, Maria A. organization: IdiSNA, Instituto de Investigación Sanitaria de Navarra – sequence: 5 givenname: Gabriel surname: Castellanos fullname: Castellanos, Gabriel organization: Pontificia Universidad Javeriana – sequence: 7 givenname: Pau surname: Pastor fullname: Pastor, Pau organization: University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP) – sequence: 8 givenname: Maria A. surname: Pastor fullname: Pastor, Maria A. organization: University of Navarra – sequence: 9 givenname: Carlos surname: Ortiz de Solórzano fullname: Ortiz de Solórzano, Carlos email: codesolorzano@unav.es organization: IdiSNA, Instituto de Investigación Sanitaria de Navarra |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37915245$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URNsLGx4AWWIBQkqxYzuJu7tc_i4q5X9t2c648iWxi50IdceKNc_Ik-CSdlMhVj4afWc8M-cQ7YUYAKH7lBxRQuqnuzH5o1qSlt1CB1TUdVWLrtkrmghW0Y60--gw5x0hREou7qB91srCcXGAfq7nKY568hZ_grMRwlR0DFiHHn-YdZi883YpRYdP_VmKOY7w-8cvik9hTkUPOvjFsE0FK_rtx-0xXuNNqfleT4Cf-fJH-goJu5jw-yJ9yDE8yvi5z6Az3EW3nR4y3Lt6V-jLyxefN6-rk3evtpv1SWWZZKyCxvVWg2a87xtiqOmA9pw0VOradNZaIo1xNSWNEb0gvROSa8O5lBaccYat0OOl73mK32bIkxp9tjCUHSDOWdVdJwTr2pYX9OENdBfnFMp0ipG261pOy0gr9OCKms0IvTpPvmx6oa4vXACyALZcLidwyvrlxlPSflCUqMsQ1WWI6m-IxfLkhuW66z9husDf_QAX_yHVmxLL4vkDhySvIw |
CitedBy_id | crossref_primary_10_1002_jmri_29076 crossref_primary_10_3390_jcm13154539 crossref_primary_10_1002_jmri_29260 |
Cites_doi | 10.1038/s41531-018-0047-3 10.1259/bjr.20180037 10.1016/j.neuroimage.2022.119814 10.1109/TMI.2003.809072 10.1016/j.pneurobio.2015.09.012 10.1093/brain/122.8.1437 10.1002/mds.26883 10.1007/s11263-008-0168-y 10.1038/nrdp.2017.13 10.1007/s11548-021-02528-5 10.1002/hbm.23547 10.1002/mdc3.12590 10.1259/bjr.20180842 10.1002/jmri.28414 10.3389/fneur.2019.00100 10.1136/jnnp.55.3.181 10.1109/TMI.2009.2014372 10.1016/j.nicl.2019.102103 10.1016/j.parkreldis.2020.07.002 10.1093/brain/122.8.1421 10.1002/mds.28933 10.2463/mrms.7.205 10.1109/TMI.2009.2035616 10.3174/ajnr.A1400 10.1016/j.neuroimage.2021.117810 10.1007/s00234-019-02279-w 10.1016/j.parkreldis.2020.09.021 10.1016/j.parkreldis.2021.03.004 10.1002/mds.26932 10.3389/fneur.2022.1096966 10.1148/radiol.212696 10.1212/WNL.0000000000000641 10.1212/WNL.0000000000006737 10.1002/mds.26201 10.1212/WNL.0b013e31829e6fd2 10.1002/hbm.22928 10.1109/TMI.2018.2872852 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.0.CO;2-5 10.1038/s41531-023-00503-2 |
ContentType | Journal Article |
Copyright | 2023 Fundación para la Investigación Médica Aplicada. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 Fundación para la Investigación Médica Aplicada. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | The Catalonian Neuroimaging Parkinson's Disease Consortium Catalonian Neuroimaging Parkinson's Disease Consortium |
CorporateAuthor_xml | – name: The Catalonian Neuroimaging Parkinson's Disease Consortium – name: Catalonian Neuroimaging Parkinson's Disease Consortium |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.29073 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 547 |
ExternalDocumentID | 37915245 10_1002_jmri_29073 JMRI29073 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033 funderid: PDI2021‐122409OB‐C22; RTI2018‐094494‐B‐C22; SAF2016‐81016‐R; TED2021‐131300B‐I00 – fundername: European Union NextGenerationEU/PRTR and Instituto de Salud Carlos III funderid: PMP22/00100 – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033 grantid: RTI2018-094494-B-C22 – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033 grantid: SAF2016-81016-R – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033 grantid: TED2021-131300B-I00 – fundername: European Union FEDER Funds, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigacion MCIN/AEI /10.13039/501100011033 grantid: PDI2021-122409OB-C22 – fundername: European Union NextGenerationEU/PRTR and Instituto de Salud Carlos III grantid: PMP22/00100 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3933-e6fdcaea34dd60b1b8e1d40619a2b8ccc09bbf2106b5d50df594ab4499cefbfb3 |
IEDL.DBID | 24P |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Sep 05 05:07:38 EDT 2025 Wed Aug 13 03:59:28 EDT 2025 Mon Jul 21 05:32:30 EDT 2025 Tue Jul 01 03:57:01 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Wed Jan 22 17:17:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nigrosome‐1 iron Parkinson's disease automatic segmentation susceptibility weighted imaging neuromelanin |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 Fundación para la Investigación Médica Aplicada. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3933-e6fdcaea34dd60b1b8e1d40619a2b8ccc09bbf2106b5d50df594ab4499cefbfb3 |
Notes | Mikel Ariz, Martín Martínez, Pau Pastor, Maria A. Pastor, Carlos Ortiz de Solórzano contributed equally to this work. Members of The Catalonian Neuroimaging Parkinson's Disease Consortium are listed in Appendix 1 . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7328-1582 0000-0001-8536-6295 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29073 |
PMID | 37915245 |
PQID | 3078874193 |
PQPubID | 1006400 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2885538774 proquest_journals_3078874193 pubmed_primary_37915245 crossref_citationtrail_10_1002_jmri_29073 crossref_primary_10_1002_jmri_29073 wiley_primary_10_1002_jmri_29073_JMRI29073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-Aug 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 36 2023; 13 2019; 92 2017; 3 2009; 81 2019; 10 2015; 30 2023; 9 2023; 266 2020; 80 2019; 38 2008; 7 2020; 78 1999; 122 2017; 155 2014; 83 1992; 55 2009; 28 2021; 16 2009; 30 2018; 5 2018; 4 2019; 61 2022 2010; 29 2017; 38 2017; 32 2000; 11 2018; 91 2022; 57 2020; 25 2013; 81 2022; 37 2021; 230 2021; 85 2022; 305 2003; 22 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 13 year: 2023 article-title: Application value of multiparametric MRI for evaluating iron deposition in the substantia nigra in Parkinson's disease publication-title: Front Neurol – volume: 36 start-page: 4407 year: 2015 end-page: 4420 article-title: Region‐specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping publication-title: Hum Brain Mapp – volume: 38 start-page: 813 year: 2019 end-page: 823 article-title: Dynamic atlas‐based segmentation and quantification of neuromelanin‐rich brainstem structures in Parkinson disease publication-title: IEEE Trans Med Imaging – volume: 57 start-page: 337 year: 2022 end-page: 352 article-title: Application of neuromelanin MR imaging in Parkinson disease publication-title: J Magn Reson Imaging – volume: 81 start-page: 534 year: 2013 end-page: 540 article-title: Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7T MRI publication-title: Neurology – volume: 78 start-page: 12 year: 2020 end-page: 20 article-title: Diagnostic accuracy of the appearance of Nigrosome‐1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta‐analysis publication-title: Parkinsonism Relat Disord – volume: 92 start-page: E148 year: 2019 end-page: E160 article-title: Age and time course of long‐term motor and nonmotor complications in Parkinson disease publication-title: Neurology – volume: 11 start-page: 71 year: 2000 end-page: 80 article-title: Unifying maximum likelihood approaches in medical image registration publication-title: Int J Imaging Syst Technol – volume: 230 year: 2021 article-title: Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome‐1 sign as complementary imaging biomarkers in early stage Parkinson's disease publication-title: Neuroimage – volume: 28 start-page: 1266 year: 2009 end-page: 1277 article-title: Combination strategies in multi‐atlas image segmentation: Application to brain MR data publication-title: IEEE Trans Med Imaging – volume: 92 year: 2019 article-title: Nigrosome 1 imaging: Technical considerations and clinical applications publication-title: Br J Radiol – volume: 7 start-page: 205 year: 2008 end-page: 210 article-title: Visualization of neuromelanin in the substantia nigra and locus coeruleus at 1.5T using a 3D‐gradient echo sequence with magnetization transfer contrast publication-title: Magn Reson Med Sci – volume: 38 start-page: 2627 year: 2017 end-page: 2634 article-title: In vivo detection of lateral–ventral tier nigral degeneration in Parkinson's disease publication-title: Hum Brain Mapp – volume: 55 start-page: 181 year: 1992 end-page: 184 article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: A clinico‐pathological study of 100 cases publication-title: J Neurol Neurosurg Psychiatry – volume: 91 start-page: 1 year: 2018 end-page: 7 article-title: Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early‐stage Parkinson's disease publication-title: Br J Radiol – volume: 29 start-page: 196 year: 2010 end-page: 205 article-title: Elastix: A toolbox for intensity‐based medical image registration publication-title: IEEE Trans Med Imaging – volume: 305 start-page: 674 issue: 3 year: 2022 end-page: 677 article-title: Swallow tail sign: Revisited publication-title: Radiology – volume: 155 start-page: 96 year: 2017 end-page: 119 article-title: Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease publication-title: Prog Neurobiol – volume: 83 start-page: 406 year: 2014 end-page: 412 article-title: Low clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinicopathologic study publication-title: Neurology – volume: 30 start-page: 945 year: 2015 end-page: 952 article-title: Automated neuromelanin imaging as a diagnostic biomarker for Parkinson's disease publication-title: Mov Disord – volume: 5 start-page: 131 year: 2018 end-page: 140 article-title: Nigrosome imaging and neuromelanin sensitive MRI in diagnostic evaluation of parkinsonism publication-title: Mov Disord Clin Pract – volume: 61 start-page: 1387 year: 2019 end-page: 1395 article-title: Convolutional neural network‐based segmentation can help in assessing the substantia nigra in neuromelanin MRI publication-title: Neuroradiology – volume: 30 start-page: 19 year: 2009 end-page: 30 article-title: Susceptibility‐weighted imaging: Technical aspects and clinical applications, part 1 publication-title: Am J Neuroradiol – volume: 122 start-page: 1421 year: 1999 end-page: 1436 article-title: The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry publication-title: Brain – volume: 37 start-page: 1064 year: 2022 end-page: 1069 article-title: Deep learning‐based neuromelanin MRI changes of isolated REM sleep behavior disorder publication-title: Mov Disord – volume: 22 start-page: 120 year: 2003 end-page: 128 article-title: PET‐CT image registration in the chest using free‐form deformations publication-title: IEEE Trans Med Imaging – volume: 32 start-page: 441 year: 2017 end-page: 449 article-title: Parkinson's disease–related increase of T2*‐weighted hypointensity in substantia nigra pars compacta publication-title: Mov Disord – volume: 81 start-page: 227 year: 2009 end-page: 239 article-title: Adaptive stochastic gradient descent optimisation for image registration publication-title: Int J Comput Vis – volume: 25 start-page: 25 year: 2020 article-title: Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: An application to Parkinson's disease publication-title: Neuroimage Clin – year: 2022 – volume: 85 start-page: 84 year: 2021 end-page: 90 article-title: Automated assessment of the substantia nigra on susceptibility map‐weighted imaging using deep convolutional neural networks for diagnosis of idiopathic Parkinson's disease publication-title: Park Relat Disord – volume: 16 start-page: 2129 year: 2021 end-page: 2135 article-title: Fully automated deep learning‐based localization and segmentation of the locus coeruleus in aging and Parkinson's disease using neuromelanin‐sensitive MRI publication-title: Int J Comput Assist Radiol Surg – volume: 4 start-page: 4 year: 2018 article-title: Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease publication-title: NPJ Parkinsons Dis – volume: 32 start-page: 619 year: 2017 end-page: 623 article-title: Meta‐analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease publication-title: Mov Disord – volume: 10 start-page: 1 year: 2019 end-page: 8 article-title: Combined visualization of nigrosome‐1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson's disease publication-title: Front Neurol – volume: 122 start-page: 1437 year: 1999 end-page: 1448 article-title: The substantia nigra of the human brain: II. Patterns of loss of dopamine‐containing neurons in Parkinson's disease publication-title: Brain – volume: 9 start-page: 9 year: 2023 article-title: Brainstem neuromelanin and iron MRI reveals precise signatures for GBA and LRRK2 Parkinson's disease publication-title: NPJ Parkinsons Dis – volume: 80 start-page: 102 year: 2020 end-page: 107 article-title: Multimodal assessment of nigrosomal degeneration in Parkinson's disease publication-title: Parkinsonism Relat Disord – volume: 3 year: 2017 article-title: Parkinson disease publication-title: Nat Rev Dis Primers – volume: 266 year: 2023 article-title: Diagnosing Parkinson's disease by combining neuromelanin and iron imaging features using an automated midbrain template approach publication-title: Neuroimage – ident: e_1_2_7_5_1 doi: 10.1038/s41531-018-0047-3 – ident: e_1_2_7_9_1 doi: 10.1259/bjr.20180037 – ident: e_1_2_7_23_1 doi: 10.1016/j.neuroimage.2022.119814 – ident: e_1_2_7_29_1 doi: 10.1109/TMI.2003.809072 – ident: e_1_2_7_4_1 doi: 10.1016/j.pneurobio.2015.09.012 – ident: e_1_2_7_12_1 doi: 10.1093/brain/122.8.1437 – ident: e_1_2_7_18_1 doi: 10.1002/mds.26883 – ident: e_1_2_7_30_1 doi: 10.1007/s11263-008-0168-y – ident: e_1_2_7_2_1 doi: 10.1038/nrdp.2017.13 – ident: e_1_2_7_36_1 doi: 10.1007/s11548-021-02528-5 – ident: e_1_2_7_16_1 doi: 10.1002/hbm.23547 – ident: e_1_2_7_22_1 doi: 10.1002/mdc3.12590 – ident: e_1_2_7_14_1 doi: 10.1259/bjr.20180842 – ident: e_1_2_7_33_1 – ident: e_1_2_7_19_1 doi: 10.1002/jmri.28414 – ident: e_1_2_7_17_1 doi: 10.3389/fneur.2019.00100 – ident: e_1_2_7_25_1 doi: 10.1136/jnnp.55.3.181 – ident: e_1_2_7_35_1 doi: 10.1109/TMI.2009.2014372 – ident: e_1_2_7_13_1 doi: 10.1016/j.nicl.2019.102103 – ident: e_1_2_7_20_1 doi: 10.1016/j.parkreldis.2020.07.002 – ident: e_1_2_7_11_1 doi: 10.1093/brain/122.8.1421 – ident: e_1_2_7_38_1 doi: 10.1002/mds.28933 – ident: e_1_2_7_26_1 doi: 10.2463/mrms.7.205 – ident: e_1_2_7_31_1 doi: 10.1109/TMI.2009.2035616 – ident: e_1_2_7_27_1 doi: 10.3174/ajnr.A1400 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroimage.2021.117810 – ident: e_1_2_7_37_1 doi: 10.1007/s00234-019-02279-w – ident: e_1_2_7_8_1 doi: 10.1016/j.parkreldis.2020.09.021 – ident: e_1_2_7_24_1 doi: 10.1016/j.parkreldis.2021.03.004 – ident: e_1_2_7_21_1 doi: 10.1002/mds.26932 – ident: e_1_2_7_39_1 doi: 10.3389/fneur.2022.1096966 – ident: e_1_2_7_41_1 doi: 10.1148/radiol.212696 – ident: e_1_2_7_3_1 doi: 10.1212/WNL.0000000000000641 – ident: e_1_2_7_32_1 doi: 10.1212/WNL.0000000000006737 – ident: e_1_2_7_6_1 doi: 10.1002/mds.26201 – ident: e_1_2_7_15_1 doi: 10.1212/WNL.0b013e31829e6fd2 – ident: e_1_2_7_40_1 doi: 10.1002/hbm.22928 – ident: e_1_2_7_28_1 doi: 10.1109/TMI.2018.2872852 – ident: e_1_2_7_34_1 doi: 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.0.CO;2-5 – ident: e_1_2_7_10_1 doi: 10.1038/s41531-023-00503-2 |
SSID | ssj0009945 |
Score | 2.4810693 |
Snippet | Background
There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools... There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the... BackgroundThere is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome‐1 (N1). Existing tools... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 534 |
SubjectTerms | Accumulation Aged automatic segmentation Automation Biomarkers Biomarkers - metabolism Degeneration Disease control Female Females Field strength Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Iron Iron - metabolism Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Males Medical imaging Melanins - metabolism Middle Aged Movement disorders Neurodegenerative diseases neuromelanin nigrosome‐1 Parameters Parkinson Disease - diagnostic imaging Parkinson Disease - metabolism Parkinson's disease Prospective Studies Regression analysis Segmentation Statistical analysis Statistical tests Substantia nigra Substantia Nigra - diagnostic imaging Substantia Nigra - metabolism susceptibility weighted imaging |
Title | Automatic Segmentation and Quantification of Nigrosome‐1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29073 https://www.ncbi.nlm.nih.gov/pubmed/37915245 https://www.proquest.com/docview/3078874193 https://www.proquest.com/docview/2885538774 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH50KYxdxrZ2m7usaLRQNvBqW7ZjjV6ydqUNJGzdCr0Z_XLIltjFSe477dy_sX_JniTHoXQMejHClpDxZz19T0_vE8B-0QuZooz6jCepHyci8AWThY_UQdEeTlGBNsnJw1F6dhkPrpKrDTha5cI4fYh2wc2MDGuvzQDnYn64Fg39OasnHyP07egj2DS5teb8gij-upbcZfaIYiQQ1A-zoNeKk0aH67Z3p6N7HPMuZbVzzukzeNqQRdJ36D6HDV2-gMfDJhy-BX_6y0VlNVfJdz2eNWlEJeGlIt-W3O0DcreqgowmY3yHaqZvf9-ExKpyzPSUlxPX4LzGalgeXpx_In1ybPJdzHIA-TzBPupfuiZIcIlJk7YZYwdzcuKiO9twefrlx_GZ3xys4EuEhfo6LZTkmtNYqTQQoch0qMzMzngkMillwIQo0BlMRaKSQBUJi7mI0TmSuhCFoC-hU1alfg0EvRGaoovCVSYRaTQQaLZCE2w0qi9Z4MH71ffNZaM6bg6_mOZOLznKDRa5xcKDvbbutdPa-Get7gqmvBlv8xwtFVrLGNmoB-_axzhSTPiDl7pazvMoyxI078h3PXjl4G27oT2GRCZOPPhg8f5P__kAcbClnYdUfgNPIuRDbu9gFzqLeqnfIp9ZiF372-L15CL6C5oM8gw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYALKu9AASOQEEihSexk496WQrVbuiserdSb5VeqhW6Csrt3Tpz7G_tLGNtpVhUIiZuV2HKUzx5_4_F8BnhZDVJuKKcxl3kRs1wlseK6ipE6GDrAJSqxLjl5Mi1GR2z_OD_uzua4XJigD9FvuLmZ4e21m-BuQ3p7rRr6bd7O3mbo3NGrcI0hMXeDOmOf1pq73N9RjAyCxmmZDHp10mx73fbyevQHybzMWf2is7cJtzq2SIYB3ttwxdZ34Pqki4ffhV_D1bLxoqvkqz2Zd3lENZG1IZ9XMhwECo-aikxnJ_gNzdye_zxLiZflmNtTWc9Cg3GL1bA8-TLeIUOy6xJe3H4AeTfDPtrvtiXIcInLk_YpY68W5H0I79yDo70Ph7ujuLtZIdaIC41tURktraTMmCJRqSptatzSzmWmSq11wpWq0BssVG7yxFQ5Z1Ix9I60rVSl6H3YqJvaPgSC7ggt0EeRptQINVoItFupizY62ZcyieD1xf8VupMdd7dfnIogmJwJh4XwWETwoq_7I4ht_LXW1gVMoptwC4GmCs0lQzoawfP-NU4VF_-QtW1WC5GVZY72HQlvBA8CvH03dMCRybA8gjce73_0L_YRB1969D-Vn8GN0eHkQByMpx8fw80MyVE4SLgFG8t2ZZ8guVmqp34I_wYPIfSY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVcEOWZ0oIRSAiktEmcZGPEZWlZdQu7Ko9KvUV-Vlu6SZXdvXPqub-RX8LYzmZVgZC4RclYjvLF4288ns8Ar0wvZooyGjKe5WGaiSgUTJoQqYOiPZyiIm2Lk0fj_PAkPTrNTtfg_bIWxutDdAtudmQ4f20H-KUyeyvR0PNpM9lNMLajt-C2zfbZDX1JeryS3GXuiGIkEDSMi6jXiZMme6u2N6ejPzjmTcrq5pzBPbjbkkXS9-huwpqu7sPGqE2HP4Cr_mJeO81V8k2fTdsyoorwSpEvC-73AflbtSHjyRm-Qz3Vv35ex8Spckz1Ba8mvsGwQTO8Hn0dviN9sm_rXexyAPkwwT6aH7ohSHCJLZN2FWOvZ-TAZ3cewsng4_f9w7A9WCGUCAsNdW6U5JrTVKk8ErEodKzszM54IgopZcSEMBgM5iJTWaRMxlIuUgyOpDbCCPoI1qu60k-AYDRCcwxRuCokIo0OAt1WbJONVvWliAJ4s_y-pWxVx-3hFxel10tOSotF6bAI4GVne-m1Nv5qtb2EqWzH26xET4XeMkU2GsCL7jGOFJv-4JWuF7MyKYoM3Tvy3QAee3i7bmiPIZFJswDeOrz_0X95hDi4q63_MX4OG8cHg_LzcPzpKdxJkBr5bYTbsD5vFnoHqc1cPHN_8G-U6vPB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+and+Quantification+of+Nigrosome-1+Neuromelanin+and+Iron+in+MRI%3A+A+Candidate+Biomarker+for+Parkinson%27s+Disease&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Ariz%2C+Mikel&rft.au=Mart%C3%ADnez%2C+Mart%C3%ADn&rft.au=Alvarez%2C+Ignacio&rft.au=Fern%C3%A1ndez-Seara%2C+Maria+A&rft.date=2024-08-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=60&rft.issue=2&rft.spage=534&rft_id=info:doi/10.1002%2Fjmri.29073&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |