Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X‐ray, and MRI: Data from the osteoarthritis initiative

Background Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 47; no. 6; pp. 1517 - 1526
Main Authors Joseph, Gabby B., McCulloch, Charles E., Nevitt, Michael C., Neumann, Jan, Gersing, Alexandra S., Kretzschmar, Martin, Schwaiger, Benedikt J., Lynch, John A., Heilmeier, Ursula, Lane, Nancy E., Link, Thomas M.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.25892

Cover

Loading…
Abstract Background Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development. Purpose To develop a risk prediction tool for moderate‐severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI). Study Type Retrospective. Subjects 641 subjects with no/mild radiographic OA (Kellgren–Lawrence [KL] 0–2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0–1) were selected from the OAI. Field Strength/Sequence MR images were obtained using 3.0T. Assessment Compartment‐specific cartilage and meniscus morphology and cartilage T2 were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T2 were used to predict the development of moderate/severe OA (KL = 3–4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years. Statistical Tests Best subsets variable selection followed by cross‐validation were used to assess which combinations of variables best predict moderate/severe OA. Results Model 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T2 in the medial tibia and medial femur. Compared to Model 1 (cross‐validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08). Data Conclusion We established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI‐based morphological abnormalities and cartilage T2 significantly improved model performance. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1517–1526.
AbstractList Background Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development. Purpose To develop a risk prediction tool for moderate‐severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI). Study Type Retrospective. Subjects 641 subjects with no/mild radiographic OA (Kellgren–Lawrence [KL] 0–2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0–1) were selected from the OAI. Field Strength/Sequence MR images were obtained using 3.0T. Assessment Compartment‐specific cartilage and meniscus morphology and cartilage T2 were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T2 were used to predict the development of moderate/severe OA (KL = 3–4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years. Statistical Tests Best subsets variable selection followed by cross‐validation were used to assess which combinations of variables best predict moderate/severe OA. Results Model 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T2 in the medial tibia and medial femur. Compared to Model 1 (cross‐validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08). Data Conclusion We established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI‐based morphological abnormalities and cartilage T2 significantly improved model performance. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1517–1526.
Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development.BACKGROUNDOsteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development.To develop a risk prediction tool for moderate-severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI).PURPOSETo develop a risk prediction tool for moderate-severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI).Retrospective.STUDY TYPERetrospective.641 subjects with no/mild radiographic OA (Kellgren-Lawrence [KL] 0-2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0-1) were selected from the OAI.SUBJECTS641 subjects with no/mild radiographic OA (Kellgren-Lawrence [KL] 0-2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0-1) were selected from the OAI.MR images were obtained using 3.0T.FIELD STRENGTH/SEQUENCEMR images were obtained using 3.0T.Compartment-specific cartilage and meniscus morphology and cartilage T2 were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T2 were used to predict the development of moderate/severe OA (KL = 3-4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years.ASSESSMENTCompartment-specific cartilage and meniscus morphology and cartilage T2 were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T2 were used to predict the development of moderate/severe OA (KL = 3-4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years.Best subsets variable selection followed by cross-validation were used to assess which combinations of variables best predict moderate/severe OA.STATISTICAL TESTSBest subsets variable selection followed by cross-validation were used to assess which combinations of variables best predict moderate/severe OA.Model 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T2 in the medial tibia and medial femur. Compared to Model 1 (cross-validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08).RESULTSModel 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T2 in the medial tibia and medial femur. Compared to Model 1 (cross-validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08).We established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI-based morphological abnormalities and cartilage T2 significantly improved model performance.DATA CONCLUSIONWe established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI-based morphological abnormalities and cartilage T2 significantly improved model performance.2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1517-1526.LEVEL OF EVIDENCE2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1517-1526.
BackgroundOsteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development.PurposeTo develop a risk prediction tool for moderate‐severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI).Study TypeRetrospective.Subjects641 subjects with no/mild radiographic OA (Kellgren–Lawrence [KL] 0–2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0–1) were selected from the OAI.Field Strength/SequenceMR images were obtained using 3.0T.AssessmentCompartment‐specific cartilage and meniscus morphology and cartilage T2 were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T2 were used to predict the development of moderate/severe OA (KL = 3–4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years.Statistical TestsBest subsets variable selection followed by cross‐validation were used to assess which combinations of variables best predict moderate/severe OA.ResultsModel 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T2 in the medial tibia and medial femur. Compared to Model 1 (cross‐validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08).Data ConclusionWe established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI‐based morphological abnormalities and cartilage T2 significantly improved model performance.Level of Evidence: 2Technical Efficacy: Stage 3J. Magn. Reson. Imaging 2018;47:1517–1526.
Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need for implementing preventative measures at early stages of the disease, which would especially benefit subjects at high risk for OA development. To develop a risk prediction tool for moderate-severe OA (TOARP) over 8 years based on subject characteristics, knee radiographs, and MRI data at baseline using data from the Osteoarthritis Initiative (OAI). Retrospective. 641 subjects with no/mild radiographic OA (Kellgren-Lawrence [KL] 0-2) and no clinically significant symptoms (Western Ontario and McMaster Universities Arthritis Index [WOMAC] 0-1) were selected from the OAI. MR images were obtained using 3.0T. Compartment-specific cartilage and meniscus morphology and cartilage T were assessed. Baseline subject demographics, risk factors, KL score, cartilage WORMS score, presence of meniscus tear, and cartilage T were used to predict the development of moderate/severe OA (KL = 3-4 or WOMAC pain ≥5 or total knee replacement [TKR]) over 8 years. Best subsets variable selection followed by cross-validation were used to assess which combinations of variables best predict moderate/severe OA. Model 1 included KL score, previous knee injury in the last 12 months, age, gender, and BMI. Model 2 included all variables in Model 1 plus presence of cartilage defects in the lateral femur and patella, and presence of a meniscal tear. Model 3 included all variables in Models 1 and 2, plus cartilage T in the medial tibia and medial femur. Compared to Model 1 (cross-validated AUC = 0.67), Model 3 performed significantly better (AUC = 0.72, P = 0.04), while Model 2 showed a statistical trend (AUC = 0.71, P = 0.08). We established a risk calculator for the development of moderate/severe knee OA over 8 years that includes radiographic and MRI data. The inclusion of MRI-based morphological abnormalities and cartilage T significantly improved model performance. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1517-1526.
Author Heilmeier, Ursula
Schwaiger, Benedikt J.
Gersing, Alexandra S.
Joseph, Gabby B.
Lynch, John A.
McCulloch, Charles E.
Kretzschmar, Martin
Nevitt, Michael C.
Lane, Nancy E.
Link, Thomas M.
Neumann, Jan
Author_xml – sequence: 1
  givenname: Gabby B.
  surname: Joseph
  fullname: Joseph, Gabby B.
  email: gabby.joseph@ucsf.edu
  organization: University of California
– sequence: 2
  givenname: Charles E.
  surname: McCulloch
  fullname: McCulloch, Charles E.
  organization: University of California
– sequence: 3
  givenname: Michael C.
  surname: Nevitt
  fullname: Nevitt, Michael C.
  organization: University of California
– sequence: 4
  givenname: Jan
  surname: Neumann
  fullname: Neumann, Jan
  organization: University of California
– sequence: 5
  givenname: Alexandra S.
  surname: Gersing
  fullname: Gersing, Alexandra S.
  organization: University of California
– sequence: 6
  givenname: Martin
  surname: Kretzschmar
  fullname: Kretzschmar, Martin
  organization: University of California
– sequence: 7
  givenname: Benedikt J.
  surname: Schwaiger
  fullname: Schwaiger, Benedikt J.
  organization: University of California
– sequence: 8
  givenname: John A.
  surname: Lynch
  fullname: Lynch, John A.
  organization: University of California
– sequence: 9
  givenname: Ursula
  surname: Heilmeier
  fullname: Heilmeier, Ursula
  organization: University of California
– sequence: 10
  givenname: Nancy E.
  surname: Lane
  fullname: Lane, Nancy E.
  organization: University of California
– sequence: 11
  givenname: Thomas M.
  surname: Link
  fullname: Link, Thomas M.
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29143404$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URP_AhQdAlrgU1BRnEicbblUpUFRUVC0SN2tiT6iXJF5sp9XeeAQOPCFPgpdtLyvExePx_L7xaL59tjO6kRh7movjXAh4tRi8PQY5a-AB28slQJaSaifdhSyyfCbqXbYfwkII0TSlfMR2ocnLohTlHvs1d67nnfPchUgOfbz2NtrAvQ3f-NKTsTpaN_LD-eXJ1acX3N2Q5zO-IvSBT8GOX3mLgXo7EtfptBp7bjDiEf_y-8dPj6sjjqPhH6_OX_M36Z133g08XtP2j0kbLUZ7Q4_Zww77QE_u4gH7_PZsfvo-u7h8d356cpHpoikgkzMJWOgaOwAjQSC0VEGNRSmBcmrbKgejO60lilYiGEPCmKrVqaKJRHHADjd9l959nyhENdigqe9xJDcFlTeVhKqEskjo8y104SY_pukUiLIuoU4jJerZHTW1Axm19HZAv1L3-06A2ADauxA8dUrbiOsFR4-2V7lQa0vV2lL119Ikebklue_6TzjfwLe2p9V_SPUhGbLR_AF3DLPe
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e15461
crossref_primary_10_1002_acr_24557
crossref_primary_10_1016_j_berh_2023_101866
crossref_primary_10_1002_jor_25982
crossref_primary_10_1016_j_annepidem_2024_12_016
crossref_primary_10_1016_j_joca_2020_01_010
crossref_primary_10_1371_journal_pone_0270652
crossref_primary_10_1136_annrheumdis_2020_217259
crossref_primary_10_1177_1759720X221091359
crossref_primary_10_1002_art_42915
crossref_primary_10_1007_s00256_018_3088_0
crossref_primary_10_1177_19476035211042406
crossref_primary_10_1007_s00256_021_03909_2
crossref_primary_10_1371_journal_pone_0268198
crossref_primary_10_1177_0363546520965987
crossref_primary_10_1016_j_otsm_2019_150709
crossref_primary_10_1016_j_ejrad_2024_111731
crossref_primary_10_1007_s00256_020_03642_2
crossref_primary_10_1007_s10334_024_01174_7
crossref_primary_10_1002_jmri_29431
crossref_primary_10_1186_s13643_021_01683_9
crossref_primary_10_1016_j_ejrad_2024_111854
crossref_primary_10_1177_19476035221147677
crossref_primary_10_1016_j_joca_2021_11_007
crossref_primary_10_1148_radiol_2021204587
crossref_primary_10_1016_j_ijmedinf_2020_104160
crossref_primary_10_1016_j_joca_2019_11_009
crossref_primary_10_1007_s00167_021_06768_5
crossref_primary_10_3390_life13010237
crossref_primary_10_1007_s00330_018_5924_y
crossref_primary_10_1038_s41598_023_33934_1
crossref_primary_10_1016_j_berh_2023_101851
crossref_primary_10_1016_j_endmts_2024_100181
crossref_primary_10_1038_s41598_019_53298_9
crossref_primary_10_1016_j_mri_2021_06_008
crossref_primary_10_1016_j_joca_2022_10_001
crossref_primary_10_1038_s41598_023_48016_5
crossref_primary_10_1177_14761270211001546
crossref_primary_10_1186_s12880_023_01001_w
crossref_primary_10_1016_j_joca_2024_01_001
crossref_primary_10_1097_BOR_0000000000000673
crossref_primary_10_1148_radiol_2020192091
Cites_doi 10.1136/ard.2008.089904
10.1002/sim.4085
10.1016/j.bone.2011.11.019
10.1002/acr.22586
10.1007/978-0-387-39940-9_565
10.1186/ar3469
10.1016/j.joca.2012.04.003
10.1136/ard.2010.129742
10.1371/journal.pone.0148724
10.1016/j.joca.2013.06.022
10.1001/archpediatrics.2011.168
10.1002/mrm.22178
10.1007/s00330-016-4608-8
10.1016/j.joca.2014.06.011
10.1136/annrheumdis-2015-208129
10.1136/annrheumdis-2013-204157
10.1002/jmri.22834
10.1097/BRS.0b013e3181ac5fec
10.1016/j.joca.2011.04.002
10.2307/2531595
10.1016/j.jand.2014.07.005
10.1016/j.joca.2008.06.016
10.1016/S0140-6736(11)60752-6
10.1136/ard.2011.149807
10.1136/annrheumdis-2013-204488
10.1002/acr.22854
10.1136/ard.16.4.494
10.1177/1536867X1501500406
10.1002/art.21415
10.1177/03635465990270060301
10.1016/j.joca.2010.02.008
10.1136/ard.2010.144725
10.1001/jama.286.2.188
10.1016/j.joca.2016.01.984
10.1136/bmj.b2844
10.1002/jmri.25065
10.1109/TMI.2009.2024743
10.1016/j.joca.2003.11.003
10.1016/S1063-4584(11)60436-6
10.1016/j.joca.2014.10.013
10.1136/annrheumdis-2013-203620
10.1002/acr.22897
10.1016/j.joca.2015.02.006
10.1016/j.cger.2010.03.001
10.1186/s12891-015-0771-3
10.1097/00004424-200010000-00007
10.1016/0730-725X(93)90225-3
10.1080/00401706.1974.10489231
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.25892
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1526
ExternalDocumentID 29143404
10_1002_jmri_25892
JMRI25892
Genre article
Multicenter Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  funderid: NIH P50‐AR060752 ; NIH R01‐AR064771
– fundername: NIAMS NIH HHS
  grantid: P50 AR060752
– fundername: NIAMS NIH HHS
  grantid: R01 AR064771
– fundername: NIAMS NIH HHS
  grantid: P30 AR066262
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
24P
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3932-5852a3c7af22d520a2be627a3452e1ebb612dcfcc5a0b5a2dde0dd6bcbb6cee03
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Jul 10 22:34:25 EDT 2025
Fri Jul 25 12:13:37 EDT 2025
Wed Feb 19 02:30:10 EST 2025
Tue Jul 01 03:56:38 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Wed Aug 20 07:26:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords MRI
osteoarthritis
risk model
cartilage T2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3932-5852a3c7af22d520a2be627a3452e1ebb612dcfcc5a0b5a2dde0dd6bcbb6cee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://escholarship.org/uc/item/54r1h966
PMID 29143404
PQID 2047427393
PQPubID 1006400
PageCount 10
ParticipantIDs proquest_miscellaneous_1965264243
proquest_journals_2047427393
pubmed_primary_29143404
crossref_citationtrail_10_1002_jmri_25892
crossref_primary_10_1002_jmri_25892
wiley_primary_10_1002_jmri_25892_JMRI25892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1974; 16
2013; 21
2010; 18
2015; 74
2016; 75
2011; 13
2011; 19
1957; 16
2010; 63
2014; 22
2012; 51
2012; 71
2010; 26
2010; 69
2010; 29
2011; 70
2016; 43
1988; 44
2012; 379
2003; 86
2012; 20
2011; 165
2001; 286
2015; 14
2009; 68
2015; 16
2000; 27
2012
2017; 27
1999; 27
2008; 16
2009
2008
2011; 30
1994
2003
2009; 339
2012; 35
2014; 114
2016; 11
2009; 34
2015; 67
2015; 23
2000; 35
1993; 11
2004; 12
2005; 52
2016
2014; 73
2016; 68
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Lindsey C (e_1_2_7_28_1) 2015; 14
Ehrich EW (e_1_2_7_13_1) 2000; 27
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
Center ME‐bP (e_1_2_7_4_1) 2003
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Group KobotWHOS (e_1_2_7_11_1) 2008
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 27
  start-page: 2635
  year: 2000
  end-page: 2641
  article-title: Minimal perceptible clinical improvement with the Western Ontario and McMaster Universities osteoarthritis index questionnaire and global assessments in patients with osteoarthritis
  publication-title: J Rheumatol
– volume: 67
  start-page: 1272
  year: 2015
  end-page: 1280
  article-title: Association of physical activity measured by accelerometer, knee joint abnormalities, and cartilage T2 measurements obtained from 3T magnetic resonance imaging: Data from the Osteoarthritis Initiative
  publication-title: Arthritis Care Res
– volume: 16
  start-page: 1433
  year: 2008
  article-title: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee
  publication-title: Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society
– volume: 14
  start-page: 1046
  year: 2015
  end-page: 1059
  article-title: Best subsets variable selection in nonnormal regression models
  publication-title: Stata J
– volume: 68
  start-page: 1743
  year: 2016
  end-page: 1750
  article-title: Number of persons with symptomatic knee osteoarthritis in the US: Impact of race and ethnicity, age, sex, and obesity
  publication-title: Arthritis Care Res
– volume: 114
  start-page: 1557
  year: 2014
  end-page: 1568
  article-title: Behavioural Weight Management Review G. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta‐analysis of direct comparisons
  publication-title: J Acad Nutr Dietet
– volume: 74
  start-page: 1024
  year: 2015
  end-page: 1029
  article-title: Weight change and change in tibial cartilage volume and symptoms in obese adults
  publication-title: Ann Rheum Dis
– volume: 43
  start-page: 970
  year: 2016
  end-page: 980
  article-title: Fully automatic analysis of the knee articular cartilage T1rho relaxation time using voxel‐based relaxometry
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: R153
  year: 2011
  article-title: Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls—data from the osteoarthritis initiative
  publication-title: Arthritis Res Ther
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 18
  start-page: 776
  year: 2010
  end-page: 786
  article-title: Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non‐symptomatic cohort of the osteoarthritis initiative
  publication-title: Osteoarthritis Cartilage
– volume: 286
  start-page: 188
  year: 2001
  end-page: 195
  article-title: The role of knee alignment in disease progression and functional decline in knee osteoarthritis
  publication-title: JAMA
– year: 1994
– volume: 74
  start-page: 1353
  year: 2015
  end-page: 1359
  article-title: Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative
  publication-title: Ann Rheum Dis
– volume: 22
  start-page: 1668
  year: 2014
  end-page: 1674
  article-title: A new method to measure anatomic knee alignment for large studies of OA: data from the osteoarthritis initiative
  publication-title: Osteoarthritis Cartilage
– volume: 75
  start-page: 1630
  year: 2016
  end-page: 1636
  article-title: Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis
  publication-title: Ann Rheum Dis
– volume: 165
  start-page: 1033
  year: 2011
  end-page: 1040
  article-title: Effect of neuromuscular warm‐up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial
  publication-title: Arch Pediatr Adolesc Med
– volume: 16
  start-page: 499
  year: 1974
  end-page: 511
  article-title: Regressions by leaps and bounds
  publication-title: Technometrics
– volume: 27
  start-page: 2497
  year: 2017
  end-page: 2506
  article-title: Evaluation of chondrocalcinosis and associated knee joint degeneration using MR imaging: Data from the Osteoarthritis Initiative
  publication-title: Eur Radiol
– volume: 34
  start-page: 1716
  year: 2009
  end-page: 1721
  article-title: Prevalence of degenerative imaging findings in lumbar magnetic resonance imaging among young adults
  publication-title: Spine (Phila Pa 1976)
– volume: 16
  start-page: 312
  year: 2015
  article-title: Development and feasibility of a personalized, interactive risk calculator for knee osteoarthritis
  publication-title: BMC Musculoskelet Disord
– volume: 21
  start-page: 1558
  year: 2013
  end-page: 1566
  article-title: Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– year: 2008
– volume: 12
  start-page: 177
  year: 2004
  end-page: 190
  article-title: Whole‐Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 69
  start-page: 1940
  year: 2010
  end-page: 1945
  article-title: Varus and valgus alignment and incident and progressive knee osteoarthritis
  publication-title: Annals of the rheumatic diseases
– volume: 86
  year: 2003
– volume: 11
  start-page: 1051
  year: 1993
  end-page: 1056
  article-title: The use of power images to perform quantitative analysis on low SNR MR images
  publication-title: Magn Reson Imaging
– volume: 73
  start-page: 2116
  year: 2014
  end-page: 2121
  article-title: Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors
  publication-title: Ann Rheum Dis
– volume: 35
  start-page: 370
  year: 2012
  end-page: 378
  article-title: Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative
  publication-title: J Magn Reson Imaging
– volume: 16
  start-page: 1433
  year: 2008
  end-page: 1441
  article-title: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee
  publication-title: Osteoarthritis Cartilage
– volume: 51
  start-page: 278
  year: 2012
  end-page: 288
  article-title: Diagnosis of osteoarthritis: imaging
  publication-title: Bone
– volume: 23
  start-page: 525
  year: 2015
  end-page: 531
  article-title: Association of cartilage degeneration with four year weight gain—3T MRI data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– year: 2003
– year: 2016
  article-title: Moderate weight loss prevents incident knee osteoarthritis in overweight and obese females
  publication-title: Arthritis Care Res
– volume: 52
  start-page: 3507
  year: 2005
  end-page: 3514
  article-title: Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four‐month, randomized, controlled trial in patients at risk of osteoarthritis
  publication-title: Arthritis Rheum
– volume: 27
  start-page: 699
  year: 1999
  end-page: 706
  article-title: The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study
  publication-title: Am J Sports Med
– volume: 35
  start-page: 602
  year: 2000
  end-page: 621
  article-title: Magic‐angle effect in magnetic resonance imaging of articular cartilage: a review
  publication-title: Invest Radiol
– volume: 68
  start-page: 674
  year: 2009
  end-page: 679
  article-title: One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status
  publication-title: Ann Rheum Dis
– volume: 379
  start-page: 1331
  year: 2012
  end-page: 1340
  article-title: Knee replacement
  publication-title: Lancet
– year: 2016
  article-title: Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48‐month data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– volume: 11
  start-page: e0148724
  year: 2016
  article-title: Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross‐sectional study
  publication-title: PLoS One
– start-page: 532
  year: 2009
  end-page: 538
– volume: 16
  start-page: 494
  year: 1957
  end-page: 502
  article-title: Radiologic assessment of osteoarthritis
  publication-title: Ann Rheum Dis
– year: 2012
– volume: 71
  start-page: 26
  year: 2012
  end-page: 32
  article-title: Weight loss in obese people has structure‐modifying effects on medial but not on lateral knee articular cartilage
  publication-title: Ann Rheum Dis
– volume: 19
  start-page: 984
  year: 2011
  end-page: 989
  article-title: A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging—data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– volume: 30
  start-page: 11
  year: 2011
  end-page: 21
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat Med
– volume: 63
  start-page: 181
  year: 2010
  end-page: 193
  article-title: T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1599
  year: 2011
  end-page: 1604
  article-title: Nottingham knee osteoarthritis risk prediction models
  publication-title: Ann Rheum Dis
– volume: 339
  start-page: b2844
  year: 2009
  article-title: Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies
  publication-title: BMJ
– volume: 26
  start-page: 355
  year: 2010
  end-page: 369
  article-title: Epidemiology of osteoarthritis
  publication-title: Clin Geriatr Med
– volume: 20
  start-page: 727
  year: 2012
  end-page: 735
  article-title: Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– volume: 23
  start-page: 897
  year: 2015
  end-page: 905
  article-title: A reference database of cartilage 3 T MRI T2 values in knees without diagnostic evidence of cartilage degeneration: data from the osteoarthritis initiative
  publication-title: Osteoarthritis Cartilage
– volume: 29
  start-page: 55
  year: 2010
  end-page: 64
  article-title: Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_7_43_1
  doi: 10.1136/ard.2008.089904
– ident: e_1_2_7_31_1
  doi: 10.1002/sim.4085
– ident: e_1_2_7_27_1
  doi: 10.1016/j.bone.2011.11.019
– ident: e_1_2_7_17_1
  doi: 10.1002/acr.22586
– ident: e_1_2_7_32_1
  doi: 10.1007/978-0-387-39940-9_565
– ident: e_1_2_7_15_1
  doi: 10.1186/ar3469
– ident: e_1_2_7_40_1
  doi: 10.1016/j.joca.2012.04.003
– ident: e_1_2_7_41_1
  doi: 10.1136/ard.2010.129742
– ident: e_1_2_7_38_1
  doi: 10.1371/journal.pone.0148724
– ident: e_1_2_7_45_1
  doi: 10.1016/j.joca.2013.06.022
– ident: e_1_2_7_51_1
  doi: 10.1001/archpediatrics.2011.168
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.22178
– ident: e_1_2_7_56_1
  doi: 10.1007/s00330-016-4608-8
– ident: e_1_2_7_21_1
  doi: 10.1016/j.joca.2014.06.011
– ident: e_1_2_7_30_1
– ident: e_1_2_7_8_1
  doi: 10.1136/annrheumdis-2015-208129
– ident: e_1_2_7_10_1
  doi: 10.1136/annrheumdis-2013-204157
– ident: e_1_2_7_14_1
  doi: 10.1002/jmri.22834
– ident: e_1_2_7_42_1
  doi: 10.1097/BRS.0b013e3181ac5fec
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joca.2011.04.002
– ident: e_1_2_7_33_1
  doi: 10.2307/2531595
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jand.2014.07.005
– ident: e_1_2_7_19_1
  doi: 10.1016/j.joca.2008.06.016
– ident: e_1_2_7_3_1
  doi: 10.1016/S0140-6736(11)60752-6
– ident: e_1_2_7_37_1
  doi: 10.1136/ard.2011.149807
– ident: e_1_2_7_49_1
  doi: 10.1136/annrheumdis-2013-204488
– volume-title: Evidence Report/Technology Assessment
  year: 2003
  ident: e_1_2_7_4_1
– ident: e_1_2_7_46_1
  doi: 10.1002/acr.22854
– ident: e_1_2_7_20_1
  doi: 10.1136/ard.16.4.494
– volume: 14
  start-page: 1046
  year: 2015
  ident: e_1_2_7_28_1
  article-title: Best subsets variable selection in nonnormal regression models
  publication-title: Stata J
  doi: 10.1177/1536867X1501500406
– ident: e_1_2_7_47_1
  doi: 10.1002/art.21415
– ident: e_1_2_7_52_1
  doi: 10.1177/03635465990270060301
– ident: e_1_2_7_16_1
  doi: 10.1016/j.joca.2010.02.008
– ident: e_1_2_7_50_1
  doi: 10.1136/ard.2010.144725
– ident: e_1_2_7_7_1
  doi: 10.1001/jama.286.2.188
– ident: e_1_2_7_18_1
  doi: 10.1016/j.joca.2016.01.984
– ident: e_1_2_7_6_1
  doi: 10.1136/bmj.b2844
– ident: e_1_2_7_55_1
  doi: 10.1002/jmri.25065
– ident: e_1_2_7_54_1
  doi: 10.1109/TMI.2009.2024743
– ident: e_1_2_7_22_1
  doi: 10.1016/j.joca.2003.11.003
– ident: e_1_2_7_39_1
  doi: 10.1016/S1063-4584(11)60436-6
– ident: e_1_2_7_44_1
  doi: 10.1016/j.joca.2014.10.013
– ident: e_1_2_7_36_1
  doi: 10.1136/annrheumdis-2013-203620
– ident: e_1_2_7_2_1
  doi: 10.1002/acr.22897
– ident: e_1_2_7_34_1
  doi: 10.1016/j.joca.2015.02.006
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cger.2010.03.001
– ident: e_1_2_7_35_1
  doi: 10.1186/s12891-015-0771-3
– volume-title: Technical Report: University of Sheffield, UK
  year: 2008
  ident: e_1_2_7_11_1
– volume: 27
  start-page: 2635
  year: 2000
  ident: e_1_2_7_13_1
  article-title: Minimal perceptible clinical improvement with the Western Ontario and McMaster Universities osteoarthritis index questionnaire and global assessments in patients with osteoarthritis
  publication-title: J Rheumatol
– ident: e_1_2_7_9_1
  doi: 10.1097/00004424-200010000-00007
– ident: e_1_2_7_25_1
  doi: 10.1016/0730-725X(93)90225-3
– ident: e_1_2_7_29_1
  doi: 10.1080/00401706.1974.10489231
– ident: e_1_2_7_24_1
  doi: 10.1016/j.joca.2012.04.003
– ident: e_1_2_7_53_1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.joca.2008.06.016
SSID ssj0009945
Score 2.4542606
Snippet Background Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight...
Osteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight the need...
BackgroundOsteoarthritis (OA), a multifactorial disease causing joint degeneration, often leads to severe disability. The rising rates of disability highlight...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1517
SubjectTerms Abnormalities
Aged
Algorithms
Area Under Curve
Arthritis
Arthroplasty, Replacement, Knee
Background radiation
Biocompatibility
Biomarkers
Body mass
Cartilage
Cartilage - diagnostic imaging
Cartilage diseases
cartilage T2
Degeneration
Demographics
Demography
Diagnosis, Computer-Assisted - methods
Disabled Persons
Female
Femur
Field strength
Humans
Knee
Knee - diagnostic imaging
Knee Joint - diagnostic imaging
Longitudinal Studies
Magnetic Resonance Imaging
Male
Mathematical models
Meniscus
Meniscus - injuries
Middle Aged
MRI
Osteoarthritis
Osteoarthritis, Knee - diagnostic imaging
Pain
Radiographs
Radiography
Reproducibility of Results
Retrospective Studies
Risk analysis
Risk Assessment
Risk factors
risk model
ROC Curve
Sensitivity and Specificity
Statistical analysis
Statistical tests
Surgical implants
Tearing
Tibia
Variables
X-Rays
Title Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X‐ray, and MRI: Data from the osteoarthritis initiative
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25892
https://www.ncbi.nlm.nih.gov/pubmed/29143404
https://www.proquest.com/docview/2047427393
https://www.proquest.com/docview/1965264243
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXoDyXFjQIDhQ1W8ePbIK4VEBVKi2g1VbaC4psxymlbVLt49Ce-hM48Av5JczktWpBSHCL4ons2DOeL_HMN4y94EZJo3gcxE5nAXq8LLDS60BzpXIXUqUHShQefoz2DtT-RE9W2Js2F6bmh-h-uJFlVPs1Gbixs-0laei30-lRX-g4oQ2YgrUIEY2W3FFJUlUoRvwggzDmg46bVGwvH73qjX6DmFcRa-Vydm-zL-1g60iT4_5ibvvu4hqP4_--zR12q8GisFMrzxpb8cVddmPYnLbfYz_GZXkCiGqBMkFKVLKvFQUSUDw6nE1JkNYVXo4_7Yw-bwKFg0IM52g9M6CI-kMgL0mjgzYFEygmdQsmPy-_T835Fpgig-How2t4h_eBsl0AMen1Ho8oxqniKL_PDnbfj9_uBU0Vh8BJBIcBfo8II93A5EJkWnAjrI_EwEilhQ-9tYixMpc7pw232gjcb3mWRdZhC3pwLh-w1aIs_CMGoQ9t7BMTGytUlKOACb2MnNQqV7nJe2yzXc3UNRTnVGnjJK3JmUVK05xW09xjzzvZs5rY449SG61SpI1xz1LB1UAJohLssWddM5olnbWYwpeLWUpEjYg1hUKZh7Uydd2IBEGq4qrHXlUq8Zf-031cgerq8b8Ir7ObCOziOqRtg63Opwv_BMHT3D6tjOQXIM8YnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkYALb8pCgUFwoKjZOo6dTbhVlGpbugWtttLeIttxoA-Sah-HcuIncOAX8kuYcbJZtSAkuEXxRE7sGc8Xe-Ybxl5yLSMteRIkVuUBerw8MJFTgeJSFjakSg-UKDw4iPuHcm-sxk1sDuXC1PwQ7YYbWYZfr8nAaUN6c8kaevxlctQVKklxBb5KJb3JLreHS_aoNPU1ihFBREGY8F7LTio2l89e9Ee_gcyLmNU7nZ1bdWXVqecqpFiTk-58Zrr26yUmx__-ntvsZgNHYavWnzvsiivvsmuD5sD9HvsxqqpTQGALlAxSoZ599ixIQCHpcDYhQZpaeDX6sDX8uA4UEQoJnKMBTYGC6j8BOUp6PVhkYQKFpW7A-Oe37xN9vgG6zGEw3H0D23gfKOEFEJZe7vGIwpw8Tfl9drjzbvS2HzSFHAIbIT4M8JdE6Mj2dCFErgTXwrhY9HQklXChMwZhVm4La5XmRmmBSy7P89hYbEEnzqMHbKWsSveQQehCk7hUJ9oIGRcooEMXxTZSspCFLjpsfTGdmW1YzqnYxmlW8zOLjIY588PcYS9a2bOa2-OPUmsLrcga-55mgsueFMQm2GHP22a0TDpu0aWr5tOMuBoRbgqJMqu1NrXdiBRxquSyw157nfhL_9kezoC_evQvws_Y9f5osJ_t7x68f8xuIM5L6gi3NbYym8zdE8RSM_PUW8wvgQoctg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlVceD8WCgyCA0XN1nHsbIK4VCyrtrClWm2lvaDIdhwolGS1j0M58RM48Av5JczktWpBSHCLkons2DOez_HMN4w95VoGWvLIi6xKPfR4qWcCpzzFpcysT5UeKFF4eBjuHcuDiZqssZdNLkzFD9H-cCPLKNdrMvBpmu2sSEM_fZmddIWKYlyAL8mQR7T16o9W5FFxXJYoRgAReH7Eey05qdhZvXveHf2GMc9D1tLnDK6y901vq1CTz93lwnTt1wtEjv_7OdfYlRqMwm6lPdfZmstvsI1hfdx-k_0YF8UpIKwFSgUpUMs-lhxIQAHpMJ2RIE0sPBu_2x0dbQHFg0IEZ2g-c6CQ-g9AbpJ6B00OJlBQ6jZMfn77PtNn26DzFIaj_RfQx_tA6S6AoPRiiycU5FSSlN9ix4PX41d7Xl3GwbMBokMPNyRCB7anMyFSJbgWxoWipwOphPOdMQiyUptZqzQ3SgtccHmahsbiE3ThPLjN1vMid3cZ-M43kYt1pI2QYYYC2ndBaAMlM5nprMO2mtlMbM1xTqU2TpOKnVkkNMxJOcwd9qSVnVbMHn-U2myUIqmte54ILntSEJdghz1uH6Nd0mGLzl2xnCfE1IhgU0iUuVMpU9uMiBGlSi477HmpEn9pPznAGSiv7v2L8CO2cdQfJG_3D9_cZ5cR5EVVeNsmW1_Mlu4BAqmFeVjayy8_Sxtu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+for+osteoarthritis+risk+prediction+%28TOARP%29+over+8+years+using+baseline+clinical+data%2C+X-ray%2C+and+MRI%3A+Data+from+the+osteoarthritis+initiative&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Joseph%2C+Gabby+B&rft.au=McCulloch%2C+Charles+E&rft.au=Nevitt%2C+Michael+C&rft.au=Neumann%2C+Jan&rft.date=2018-06-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=47&rft.issue=6&rft.spage=1517&rft_id=info:doi/10.1002%2Fjmri.25892&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon