Has Water Quality Improved or Been Maintained? A Quantitative Assessment Procedure

Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter of the sampled population over a given period. Failure to achieve “statistical significance” is often falsely interpreted as evidence that t...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 48; no. 2; pp. 412 - 420
Main Author McBride, Graham B.
Format Journal Article
LanguageEnglish
Published United States The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter of the sampled population over a given period. Failure to achieve “statistical significance” is often falsely interpreted as evidence that there was no trend of concern—the P‐value of these tests can become ever smaller as the sample size increases and so also can the detectable trend. To avoid this problem, a new trend direction assessment (TDA) procedure is proposed, based on a formulation in psychological literature that considers error risks when inferring the direction of differences between two population means. The TDA procedure abandons testing altogether and instead calculates probabilities that water quality variables have been increasing or decreasing. Nominated probability breakpoints then give rise to a graduated scale in which phrases such as “extremely likely” or “unlikely” can be used to summarize results, avoiding casting many into a “not statistically significant” box. This trend assessment procedure requires no more information than a traditional test, for which the significance level is reinterpreted as a misclassification error rate (inferring an increase when in fact there was a decrease, or vice versa). Example applications of this procedure to small and large datasets are given. This procedure also possesses a possible framework that addresses the more complex question of whether water quality has been “maintained,” in which a trend magnitude of environmental significance must be defined. The TDA procedure may be applied to any environment, not just water quality. Core Ideas Abandon reporting of “statistical significance” for trend analysis. Assess trend direction rather than using hypothesis/significance tests. Calculate the probability that the trend direction has been correctly identified. Use a graduated descriptive probability scale to present results. Use results to inform an assessment of whether water quality has been maintained.
AbstractList Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter of the sampled population over a given period. Failure to achieve “statistical significance” is often falsely interpreted as evidence that there was no trend of concern—the P‐value of these tests can become ever smaller as the sample size increases and so also can the detectable trend. To avoid this problem, a new trend direction assessment (TDA) procedure is proposed, based on a formulation in psychological literature that considers error risks when inferring the direction of differences between two population means. The TDA procedure abandons testing altogether and instead calculates probabilities that water quality variables have been increasing or decreasing. Nominated probability breakpoints then give rise to a graduated scale in which phrases such as “extremely likely” or “unlikely” can be used to summarize results, avoiding casting many into a “not statistically significant” box. This trend assessment procedure requires no more information than a traditional test, for which the significance level is reinterpreted as a misclassification error rate (inferring an increase when in fact there was a decrease, or vice versa). Example applications of this procedure to small and large datasets are given. This procedure also possesses a possible framework that addresses the more complex question of whether water quality has been “maintained,” in which a trend magnitude of environmental significance must be defined. The TDA procedure may be applied to any environment, not just water quality. Core Ideas Abandon reporting of “statistical significance” for trend analysis. Assess trend direction rather than using hypothesis/significance tests. Calculate the probability that the trend direction has been correctly identified. Use a graduated descriptive probability scale to present results. Use results to inform an assessment of whether water quality has been maintained.
Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter of the sampled population over a given period. Failure to achieve "statistical significance" is often falsely interpreted as evidence that there was no trend of concern-the -value of these tests can become ever smaller as the sample size increases and so also can the detectable trend. To avoid this problem, a new trend direction assessment (TDA) procedure is proposed, based on a formulation in psychological literature that considers error risks when inferring the direction of differences between two population means. The TDA procedure abandons testing altogether and instead calculates probabilities that water quality variables have been increasing or decreasing. Nominated probability breakpoints then give rise to a graduated scale in which phrases such as "extremely likely" or "unlikely" can be used to summarize results, avoiding casting many into a "not statistically significant" box. This trend assessment procedure requires no more information than a traditional test, for which the significance level is reinterpreted as a misclassification error rate (inferring an increase when in fact there was a decrease, or vice versa). Example applications of this procedure to small and large datasets are given. This procedure also possesses a possible framework that addresses the more complex question of whether water quality has been "maintained," in which a trend magnitude of environmental significance must be defined. The TDA procedure may be applied to any environment, not just water quality.
Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter of the sampled population over a given period. Failure to achieve “statistical significance” is often falsely interpreted as evidence that there was no trend of concern—the P ‐value of these tests can become ever smaller as the sample size increases and so also can the detectable trend. To avoid this problem, a new trend direction assessment (TDA) procedure is proposed, based on a formulation in psychological literature that considers error risks when inferring the direction of differences between two population means. The TDA procedure abandons testing altogether and instead calculates probabilities that water quality variables have been increasing or decreasing. Nominated probability breakpoints then give rise to a graduated scale in which phrases such as “extremely likely” or “unlikely” can be used to summarize results, avoiding casting many into a “not statistically significant” box. This trend assessment procedure requires no more information than a traditional test, for which the significance level is reinterpreted as a misclassification error rate (inferring an increase when in fact there was a decrease, or vice versa). Example applications of this procedure to small and large datasets are given. This procedure also possesses a possible framework that addresses the more complex question of whether water quality has been “maintained,” in which a trend magnitude of environmental significance must be defined. The TDA procedure may be applied to any environment, not just water quality. Core Ideas Abandon reporting of “statistical significance” for trend analysis. Assess trend direction rather than using hypothesis/significance tests. Calculate the probability that the trend direction has been correctly identified. Use a graduated descriptive probability scale to present results. Use results to inform an assessment of whether water quality has been maintained.
Author McBride, Graham B.
Author_xml – sequence: 1
  givenname: Graham B.
  surname: McBride
  fullname: McBride, Graham B.
  email: Graham.McBride@niwa.co.nz
  organization: National Institute of Water and Atmospheric Research (NIWA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30951139$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtLAzEQxoMo2lbP3iRHL60zSfZ1UWqpVqn4QPAYstsprOyjTXYr_e_N2urVwzwYfvPN8PXZYVVXxNg5wkigVFeftBaA8QjkCBDwgPUwkNFQ-HTIegDK90oEJ6zv3CcACojCY3YiIQkQZdJjbzPj-IdpyPLX1hR5s-UP5crWG1rw2vJbooo_mbxqfNDiho87rGryxjT5hvjYOXKupKrhL7bOaNFaOmVHS1M4OtvXAXu_m75PZsP58_3DZDwfZjKRODRxHIZxRMZggBGEwoSQSCGlgjgMjKJMegDFEpcKKEoBUqUoRZEEKsgyOWCXO1n_7bol1-gydxkVhamobp0WAlSYYBDHHr3aoZmtnbO01Cubl8ZuNYLufNR7HzVI3fnoNy724m1a0uKP_zXOA9c74CsvaPufnn6cvoou_Azkz4VvRO2AGA
CitedBy_id crossref_primary_10_1016_j_jenvman_2022_114858
crossref_primary_10_1080_00288330_2020_1868539
crossref_primary_10_1007_s12237_022_01099_1
crossref_primary_10_1080_00288330_2022_2113410
crossref_primary_10_1016_j_ecolind_2024_112185
crossref_primary_10_1016_j_envc_2022_100601
crossref_primary_10_1080_13241583_2022_2065723
crossref_primary_10_1038_s41598_024_52512_7
crossref_primary_10_1016_j_scitotenv_2020_143292
Cites_doi 10.1037/h0047595
10.1080/00288330.2016.1150309
10.1016/j.cacc.2007.03.011
10.1007/s001800000040
10.2307/2685077
10.1080/01621459.1942.10501760
10.1177/1745691614551642
10.2307/2289131
10.1897/07-373.1
10.1016/j.envsci.2008.01.001
10.1016/j.envsoft.2015.07.017
10.1037/1082-989X.5.4.411
10.1002/0471733199
10.1029/2007WR006191
10.1214/ss/1032280304
10.1007/s002679910002
10.1016/j.swaqe.2015.02.004
10.1002/9781118033197
10.1007/s10661-013-3278-0
10.1016/j.trac.2006.05.009
10.2307/2684616
10.1021/acs.est.5b00656
10.1016/j.landusepol.2014.06.003
10.1007/s10661-013-3574-8
10.1139/f95-020
10.1007/s00267-018-1037-2
10.1016/j.envpol.2004.12.023
10.1080/07438140509354413
ContentType Journal Article
Copyright 2019 The Authors.
Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Copyright_xml – notice: 2019 The Authors.
– notice: Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.2134/jeq2018.03.0101
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1537-2537
EndPage 420
ExternalDocumentID 10_2134_jeq2018_03_0101
30951139
JEQ2JEQ2018030101
Genre article
Journal Article
GroupedDBID ---
.4S
.DC
.~0
0R~
186
18M
1OB
1OC
24P
29K
2WC
33P
3V.
42X
53G
5GY
6KN
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
8WZ
A6W
AAHBH
AAHHS
AAJWC
AANLZ
ABCQX
ABCUV
ABDNZ
ABJCF
ABJNI
ABTAH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACPRK
ACXQS
ACYGS
ADBBV
ADFRT
ADKYN
ADYHW
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFFPM
AFKRA
AFRAH
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DCZOG
DDYGU
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FA8
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HGLYW
HMCUK
H~9
L6V
L7B
LATKE
LEEKS
M0K
M1P
M2O
M2P
M2Q
M7S
MEWTI
MV1
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QF4
QM1
QM4
QN7
RAK
ROL
RWL
RXW
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
TR2
TWZ
UKHRP
UKR
VH1
VJK
WH7
WIN
WOQ
WXSBR
XJT
Y6R
ZCA
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3931-a886687eaa1517062a609323340865a4ec386612f1f40e7b00b44eb129545cc3
IEDL.DBID 24P
ISSN 0047-2425
IngestDate Fri Aug 16 09:12:23 EDT 2024
Fri Aug 23 03:19:46 EDT 2024
Thu May 23 23:52:25 EDT 2024
Sat Aug 24 01:09:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3931-a886687eaa1517062a609323340865a4ec386612f1f40e7b00b44eb129545cc3
Notes Assigned to Associate Editor Diederik Jacques.
All rights reserved.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2018.03.0101
PMID 30951139
PQID 2204691588
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2204691588
crossref_primary_10_2134_jeq2018_03_0101
pubmed_primary_30951139
wiley_primary_10_2134_jeq2018_03_0101_JEQ2JEQ2018030101
PublicationCentury 2000
PublicationDate March-April 2019
2019-Mar
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March-April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of environmental quality
PublicationTitleAlternate J Environ Qual
PublicationYear 2019
Publisher The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc
Publisher_xml – name: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc
References 1995; 52
2015; 6
2000; 25
2012
2000; 5
2015; 73
2010
2008; 19
2005; 137
1996; 50
1997
1996
2005; 21
1973
2013; 185
1994; 49
2016; 50
2005
2008; 11
1994; 48
2018; 62
1992
1970
2002
2014; 41
1996; 11
2015; 49
1986; 40
1987; 82
2000; 15
1960; 67
2006; 25
2008; 27
1987
1963
2017
1984
1983
2008; 44
1980
2014; 9
2007; 22
1942; 37
2014; 186
e_1_2_10_46_1
e_1_2_10_24_1
Morrison D.E. (e_1_2_10_34_1) 1970
e_1_2_10_44_1
e_1_2_10_20_1
e_1_2_10_41_1
USGS (e_1_2_10_45_1) 2017
Arnold C.A. (e_1_2_10_4_1) 2007; 22
Schervish M.J. (e_1_2_10_43_1) 1996; 50
Mood A.M. (e_1_2_10_33_1) 1963
Helsel D.R. (e_1_2_10_22_1) 2012
Helsel D.R. (e_1_2_10_23_1) 2002
e_1_2_10_2_1
Kaiser H.F. (e_1_2_10_28_1) 1960; 67
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_5_1
Casella G. (e_1_2_10_11_1) 2002
e_1_2_10_17_1
e_1_2_10_38_1
Zar J.H. (e_1_2_10_47_1) 1984
e_1_2_10_8_1
e_1_2_10_14_1
New Zealand Government (e_1_2_10_37_1) 2017
e_1_2_10_7_1
e_1_2_10_15_1
Gilbert R.O. (e_1_2_10_21_1) 1987
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Reckhow K.H. (e_1_2_10_40_1) 1983
Freund J.E. (e_1_2_10_18_1) 1992
Royall R.M. (e_1_2_10_42_1) 1997
Conover W.J. (e_1_2_10_16_1) 1980
Cohen J. (e_1_2_10_13_1) 1994; 49
Caruso B.S. (e_1_2_10_10_1) 2000; 25
Zar J.H. (e_1_2_10_48_1) 1996
e_1_2_10_29_1
e_1_2_10_27_1
Morton R. (e_1_2_10_35_1) 2008; 44
Hollander M. (e_1_2_10_25_1) 1973
e_1_2_10_26_1
References_xml – volume: 73
  start-page: 148
  year: 2015
  end-page: 166
  article-title: A bootstrap method for estimating uncertainty of water quality trends
  publication-title: Environ. Model. Softw.
– start-page: 253
  year: 1963
– volume: 50
  start-page: 389
  year: 2016
  end-page: 417
  article-title: Water quality state and trends in New Zealand rivers, 2004–2013
  publication-title: N. Z. J. Mar. Freshwater Res.
– volume: 40
  start-page: 313
  year: 1986
  end-page: 315
  article-title: The effect of sample size on the meaning of significance tests
  publication-title: Am. Stat.
– volume: 19
  start-page: 12
  year: 2008
  end-page: 14
  article-title: Power analysis and sample size calculations
  publication-title: Curr. Anaesth. Crit. Care
– volume: 11
  start-page: 97
  year: 2008
  end-page: 101
  article-title: Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience
  publication-title: Environ. Sci. Policy
– year: 2005
– volume: 11
  start-page: 283
  issue: 4
  year: 1996
  end-page: 319
  article-title: Bioequivalence trials, intersection‐union tests and equivalence confidence sets
  publication-title: Stat. Sci.
– volume: 49
  start-page: 997
  issue: 12
  year: 1994
  end-page: 1003
  article-title: The earth is round (p < 0.05)
  publication-title: Am. Stat.
– volume: 185
  start-page: 9619
  issue: 11
  year: 2013
  end-page: 9637
  article-title: Drainage discharge impacts on hydrology and water quality of receiving streams in the wheatbelt of Western Australia
  publication-title: Environ. Monit. Assess.
– volume: 21
  start-page: 61
  year: 2005
  end-page: 72
  article-title: Strategies for managing the lakes of the Rotorua District, New Zealand
  publication-title: Lake Reservoir Manage.
– year: 1987
– volume: 41
  start-page: 378
  year: 2014
  end-page: 387
  article-title: Regulating agricultural land use to manage water quality: The challenges for science and policy in enforcing limits on non‐point source pollution in New Zealand
  publication-title: Land Use Policy
– year: 1973
– year: 1996
– volume: 50
  start-page: 203
  issue: 3
  year: 1996
  end-page: 206
  article-title: values: What they are and what they are not
  publication-title: Am. Stat.
– volume: 82
  start-page: 112
  year: 1987
  end-page: 122
  article-title: Testing a point null hypothesis: The irreconcilability of ‐values and evidence
  publication-title: J. Am. Stat. Assoc.
– year: 1992
– volume: 27
  start-page: 1013
  issue: 5
  year: 2008
  end-page: 1019
  article-title: “What exactly are you inferring?” A closer look at hypothesis testing
  publication-title: Environ. Toxicol. Chem.
– volume: 52
  start-page: 197
  issue: 1
  year: 1995
  end-page: 212
  article-title: Regional precipitation and surface water chemistry trends in southeastern Canada (1983–1991)
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 48
  start-page: 2
  issue: 1
  year: 1994
  end-page: 11
  article-title: Karl Pearson and R.A. Fisher on statistical tests: A 1935 exchange from Nature
  publication-title: Am. Stat.
– volume: 5
  start-page: 411
  issue: 4
  year: 2000
  end-page: 414
  article-title: A sensible formulation of the significance test
  publication-title: Psych. Meth.
– year: 2010
– year: 2012
– start-page: 76
  year: 1983
– year: 1984
– volume: 186
  start-page: 2729
  issue: 5
  year: 2014
  end-page: 2740
  article-title: Assessing environmentally significant effects: A better strength‐of‐evidence than a single P value?
  publication-title: Environ. Monit. Assess.
– volume: 25
  start-page: 9
  year: 2000
  end-page: 22
  article-title: Comparative analysis of New Zealand and US approaches for agricultural nonpoint source pollution management
  publication-title: Environ. Manage.
– year: 1980
– volume: 44
  issue: 7
  year: 2008
  article-title: Estimation of nonlinear trends in water quality: An improved approach using generalized additive models
  publication-title: Water Resour. Res.
– year: 2002
– volume: 67
  start-page: 160
  issue: 3
  year: 1960
  end-page: 167
  article-title: Directional statistical decisions
  publication-title: Psychol. Rev.
– volume: 137
  start-page: 165
  issue: 1
  year: 2005
  end-page: 176
  article-title: Regional scale evidence for improvements in surface water chemistry 1990–2001
  publication-title: Environ. Pollut.
– volume: 37
  start-page: 325
  year: 1942
  end-page: 335
  article-title: Tests of significance considered as evidence
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 373
  year: 2000
  end-page: 390
  article-title: Type S error rates for classical and Bayesian single and multiple comparison procedures
  publication-title: Comput. Stat.
– volume: 62
  start-page: 183
  year: 2018
  end-page: 189
  article-title: On abandoning hypothesis testing in environmental standard compliance assessment
  publication-title: Environ. Manage.
– year: 1997
– year: 1970
– volume: 6
  start-page: 40
  year: 2015
  end-page: 47
  article-title: Evaluation of water framework directive metrics to analyse trends in water quality in the Netherlands
  publication-title: Sustainability Water Qual. Ecol.
– volume: 49
  start-page: 5913
  year: 2015
  end-page: 5920
  article-title: Implications of Stein's paradox for environmental standard compliance assessment
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 441
  year: 2007
  end-page: 523
  article-title: The structure of the land use regulatory system in the United States
  publication-title: J. Land Use Environ. Law
– year: 2017
– volume: 25
  start-page: 704
  year: 2006
  end-page: 715
  article-title: Strategic monitoring for the European water framework directive
  publication-title: Trends Analyt. Chem.
– volume: 9
  start-page: 641
  year: 2014
  end-page: 651
  article-title: Beyond power calculations: Assessing Type S (sign) and Type M (magnitude) errors
  publication-title: Perspect. Psychol. Sci.
– volume: 67
  start-page: 160
  issue: 3
  year: 1960
  ident: e_1_2_10_28_1
  article-title: Directional statistical decisions
  publication-title: Psychol. Rev.
  doi: 10.1037/h0047595
  contributor:
    fullname: Kaiser H.F.
– ident: e_1_2_10_29_1
  doi: 10.1080/00288330.2016.1150309
– ident: e_1_2_10_15_1
  doi: 10.1016/j.cacc.2007.03.011
– ident: e_1_2_10_30_1
– start-page: 76
  volume-title: Engineering approaches for lake management. Vol. 1. Data analysis and empirical modelling
  year: 1983
  ident: e_1_2_10_40_1
  contributor:
    fullname: Reckhow K.H.
– ident: e_1_2_10_20_1
  doi: 10.1007/s001800000040
– ident: e_1_2_10_26_1
  doi: 10.2307/2685077
– volume: 50
  start-page: 203
  issue: 3
  year: 1996
  ident: e_1_2_10_43_1
  article-title: P values: What they are and what they are not
  publication-title: Am. Stat.
  contributor:
    fullname: Schervish M.J.
– volume-title: Practical nonparametric statistics
  year: 1980
  ident: e_1_2_10_16_1
  contributor:
    fullname: Conover W.J.
– volume-title: Nonparametric statistical methods
  year: 1973
  ident: e_1_2_10_25_1
  contributor:
    fullname: Hollander M.
– volume-title: Statistical evidence: A likelihood paradigm
  year: 1997
  ident: e_1_2_10_42_1
  contributor:
    fullname: Royall R.M.
– ident: e_1_2_10_7_1
  doi: 10.1080/01621459.1942.10501760
– volume-title: The significance test controversy
  year: 1970
  ident: e_1_2_10_34_1
  contributor:
    fullname: Morrison D.E.
– volume-title: Statistical methods for environmental pollution monitoring
  year: 1987
  ident: e_1_2_10_21_1
  contributor:
    fullname: Gilbert R.O.
– ident: e_1_2_10_19_1
  doi: 10.1177/1745691614551642
– ident: e_1_2_10_6_1
  doi: 10.2307/2289131
– volume-title: Biostatistical analysis
  year: 1984
  ident: e_1_2_10_47_1
  contributor:
    fullname: Zar J.H.
– volume-title: Mathematical statistics
  year: 1992
  ident: e_1_2_10_18_1
  contributor:
    fullname: Freund J.E.
– ident: e_1_2_10_36_1
  doi: 10.1897/07-373.1
– volume-title: Statistics for censored environmental data using Minitab® and R
  year: 2012
  ident: e_1_2_10_22_1
  contributor:
    fullname: Helsel D.R.
– ident: e_1_2_10_14_1
  doi: 10.1016/j.envsci.2008.01.001
– ident: e_1_2_10_24_1
  doi: 10.1016/j.envsoft.2015.07.017
– ident: e_1_2_10_27_1
  doi: 10.1037/1082-989X.5.4.411
– ident: e_1_2_10_31_1
  doi: 10.1002/0471733199
– volume-title: First‐of‐its‐kind interactive map brings together 40 years of water‐quality data.
  year: 2017
  ident: e_1_2_10_45_1
  contributor:
    fullname: USGS
– volume: 49
  start-page: 997
  issue: 12
  year: 1994
  ident: e_1_2_10_13_1
  article-title: The earth is round (p < 0.05)
  publication-title: Am. Stat.
  contributor:
    fullname: Cohen J.
– volume-title: Statistical inference
  year: 2002
  ident: e_1_2_10_11_1
  contributor:
    fullname: Casella G.
– volume: 44
  issue: 7
  year: 2008
  ident: e_1_2_10_35_1
  article-title: Estimation of nonlinear trends in water quality: An improved approach using generalized additive models
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006191
  contributor:
    fullname: Morton R.
– ident: e_1_2_10_5_1
  doi: 10.1214/ss/1032280304
– volume: 25
  start-page: 9
  year: 2000
  ident: e_1_2_10_10_1
  article-title: Comparative analysis of New Zealand and US approaches for agricultural nonpoint source pollution management
  publication-title: Environ. Manage.
  doi: 10.1007/s002679910002
  contributor:
    fullname: Caruso B.S.
– ident: e_1_2_10_46_1
  doi: 10.1016/j.swaqe.2015.02.004
– ident: e_1_2_10_8_1
  doi: 10.1002/9781118033197
– volume-title: Techniques of Water Investigations Book 4, Chapter A3
  year: 2002
  ident: e_1_2_10_23_1
  contributor:
    fullname: Helsel D.R.
– volume-title: National policy statement for freshwater management 2017
  year: 2017
  ident: e_1_2_10_37_1
  contributor:
    fullname: New Zealand Government
– ident: e_1_2_10_2_1
  doi: 10.1007/s10661-013-3278-0
– volume: 22
  start-page: 441
  year: 2007
  ident: e_1_2_10_4_1
  article-title: The structure of the land use regulatory system in the United States
  publication-title: J. Land Use Environ. Law
  contributor:
    fullname: Arnold C.A.
– ident: e_1_2_10_3_1
  doi: 10.1016/j.trac.2006.05.009
– ident: e_1_2_10_41_1
  doi: 10.2307/2684616
– start-page: 253
  volume-title: Introduction to the theory of statistics
  year: 1963
  ident: e_1_2_10_33_1
  contributor:
    fullname: Mood A.M.
– ident: e_1_2_10_39_1
  doi: 10.1021/acs.est.5b00656
– ident: e_1_2_10_17_1
  doi: 10.1016/j.landusepol.2014.06.003
– ident: e_1_2_10_32_1
  doi: 10.1007/s10661-013-3574-8
– ident: e_1_2_10_12_1
  doi: 10.1139/f95-020
– ident: e_1_2_10_38_1
  doi: 10.1007/s00267-018-1037-2
– ident: e_1_2_10_44_1
  doi: 10.1016/j.envpol.2004.12.023
– ident: e_1_2_10_9_1
  doi: 10.1080/07438140509354413
– volume-title: Biostatistical analysis
  year: 1996
  ident: e_1_2_10_48_1
  contributor:
    fullname: Zar J.H.
SSID ssj0012076
Score 2.3703434
Snippet Many policies require reporting on water quality trends. This is usually addressed by testing a hypothesis positing that there was zero slope in some parameter...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 412
SubjectTerms Environmental Monitoring - methods
Water Pollution - analysis
Water Pollution - statistics & numerical data
Water Quality - standards
Title Has Water Quality Improved or Been Maintained? A Quantitative Assessment Procedure
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2018.03.0101
https://www.ncbi.nlm.nih.gov/pubmed/30951139
https://search.proquest.com/docview/2204691588
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQrVbrixU8eAlmH0m2J6nSWgoVlYq9hU0yES-ppu3Bf-_MJq1UD4KHBBI2uzA7s_PNbuYbxi6MzDItLXhtSEIPEbjxbCASLwmNFTYPIXMZ3sP7sP-sB-Ng8Tch5cJU_BDLDTeyDLdek4HbxFUhIQ4yMnL4QOdlHEWpoAyuDQQ3hhRb6oflQYL0XX053xESoH5W7D7UxdWPDlYd0y-0uQpenffp7bDtGjbyTjXPu2wNigbb6ryWNXUGNFiz-52zhk1ro53usae-nfIXxJQlrxgzPnm1lQAZn5T8BiNZPrRvBW0SQHbNO9SscMlnuBTyzpK7k7usggxH22ejXnd02_fqUgpeqtpKeNaYMDQRWIsePvJDaUMfkZtSGkOawGpIFTYQMhe59iFCW0y0xmWcTgGDNFVNtl5MCjhkPKAS1ZFSkOZtjeafWEQoUQ55ogQIq1rsciHG-L0izIgx0CCJx7XEY1_FJPEWO1-IOUalppMKW8BkPo2lpLAdp9O02EEl_2VnikAh4tYWi9yE_DVKPOg-SrqIqkzRm6N_f3nMNvGhXf2DdsLWZ-UcThGUzJIzp3Z4vxuLLyCr1hc
link.rule.ids 315,786,790,11589,27957,27958,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7YFyqEofsOVRV-LAJSJ-JHFOaEFbbR9bFbSIvVlOMkG9ZNt9HPrvmXHSQOGAxCGXxLGlscfzzdjzDcA7q6rKKI9RjkUaEQK3kU9kERWp9dLXKVYhw3t6lU6-mfN5Mv8tF6blh-gDbqwZYb9mBeeAdLi7LLVhLcc7sl42cJRKTuHa4rrerJzKXPcnCSoOBebiwEhAC7Sl9-EuPvzRwWPL9BfcfIxeg_k53YWdDjeKUTvRz-EJNnvwbPRj2XFn4B4cjn8lrVHTTmtX-_B14lfiO4HKpWgpM-5FG0vASiyW4hO5smLqbxqOEmD1UYy4WROyz2gvFKOevFOEtIKKRjuA2el49nkSdbUUolLnWkbe2jS1GXpPJj6LU-XTmKCb1oZ8msQbLDU1kKqWtYkxI2UsjKF9nI8Bk7LUhzBoFg2-BJFwjepMayzr3JD-F54gSlZjXWiJ0ushvH8Qo7ttGTMceRoscddJ3MXascSHcPIgZkermo8qfIOLzcopxX67TKwdwotW_n1nmlEhAdchZGFC_jWKOx9_UfwwV5nmN0f__ecxPJ3Mppfu8uzq4hVs04e8vZD2Ggbr5QbfEEJZF2_DEvwJm1TYhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKqH2ULVQ2oW2GIkDl6jxRxzvqVrorpaFRVCB2pvlJJOqlyzswqH_nhknuxX0UIlDLpZjS2PPzBvb8wbgwKmqMipg0sfCJoTAXRIyWSSFdUGG2mIVM7yn53Z8bSY_s-VrQs6FafkhVgdurBnRXrOC31R1fLostWElx1tyXi5SlErO4HphbOo4_lLmYnWRoNJYXy6NhAS0P1t2Hx7iy5MBHjumf9DmY_Aavc_oDbzuYKMYtOv8Ftaw2YRXg1_zjjoDN2F7-Ddnjbp2SrvYgu_jsBA_CFPORcuY8Ue0RwlYidlcHFEkK6bhd8OHBFh9FQPu1sTkMzKFYrDi7hQxq6Ci2d7B1Wh4dTxOulIKSan7WibBOWtdjiGQh89Tq4JNCblpbSikyYLBUlMHqWpZmxRz0sXCGDLjfAuYlaXehvVm1uAHEBmXqM61xrLuG1L_IhBCyWusCy1RBt2Dw6UY_U1LmOEp0GCJ-07iPtWeJd6D_aWYPW1qvqkIDc7uF14pDttl5lwP3rfyXw2mGRQSbu1BHhfkf7P4yfBS8cdUZZpbdp795x5sXHwb-bOT89NdeEnt_fY52kdYv5vf4yfCJ3fF57gDHwBvpNe5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Has+Water+Quality+Improved+or+Been+Maintained%3F+A+Quantitative+Assessment+Procedure&rft.jtitle=Journal+of+environmental+quality&rft.au=McBride%2C+Graham+B.&rft.date=2019-03-01&rft.pub=The+American+Society+of+Agronomy%2C+Crop+Science+Society+of+America%2C+and+Soil+Science+Society+of+America%2C+Inc&rft.issn=0047-2425&rft.eissn=1537-2537&rft.volume=48&rft.issue=2&rft.spage=412&rft.epage=420&rft_id=info:doi/10.2134%2Fjeq2018.03.0101&rft.externalDBID=10.2134%252Fjeq2018.03.0101&rft.externalDocID=JEQ2JEQ2018030101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2425&client=summon