Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase‐5 in human monocytes
Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recen...
Saved in:
Published in | Immunology and cell biology Vol. 96; no. 10; pp. 1120 - 1130 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Science Ltd
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host–pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMVs as novel vaccines.
Pseudomonas aeruginosa outer membrane vesicles (OMVs) induce inflammasome formation in mouse macrophages via the noncanonical caspase‐11 pathway. In human monocytes, P. aeruginosa OMVs selectively induce inflammasome activation via the caspase‐11 homolog, caspase‐5. In contrast, caspase‐4 is required for inflammasome activation in response to P. aeruginosa lipopolysaccharide transfected into cells. |
---|---|
AbstractList | Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1β and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase-11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5,we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines. Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host–pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMVs as novel vaccines. Pseudomonas aeruginosa outer membrane vesicles (OMVs) induce inflammasome formation in mouse macrophages via the noncanonical caspase‐11 pathway. In human monocytes, P. aeruginosa OMVs selectively induce inflammasome activation via the caspase‐11 homolog, caspase‐5. In contrast, caspase‐4 is required for inflammasome activation in response to P. aeruginosa lipopolysaccharide transfected into cells. Outer membrane vesicles ( OMV s) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro . These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMV s in host–pathogen interactions. In this study, we investigated the ability of OMV s from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori , to activate canonical and noncanonical inflammasomes. P. aeruginosa OMV s induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM 2 and NLRC 4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMV s alone were able to activate the inflammasome in a TLR ‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMV s were not able to induce inflammasome activation in macrophages. Using CRISPR /Cas9 knockout THP ‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMV s in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide ( LPS ) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMV s as novel vaccines. Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1ß and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase-11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5, we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines. |
Author | Dowling, Jennifer K Leung, Pak Ling Baker, Paul J De Paoli, Amanda Stacey, Katryn J Wray‐McCann, Georgie Bitto, Natalie J Masters, Seth L Mansell, Ashley Tran, Le Son Ferrero, Richard L |
Author_xml | – sequence: 1 givenname: Natalie J surname: Bitto fullname: Bitto, Natalie J organization: Hudson Institute of Medical Research – sequence: 2 givenname: Paul J surname: Baker fullname: Baker, Paul J organization: University of Melbourne – sequence: 3 givenname: Jennifer K surname: Dowling fullname: Dowling, Jennifer K organization: Hudson Institute of Medical Research – sequence: 4 givenname: Georgie surname: Wray‐McCann fullname: Wray‐McCann, Georgie organization: Hudson Institute of Medical Research – sequence: 5 givenname: Amanda surname: De Paoli fullname: De Paoli, Amanda organization: Hudson Institute of Medical Research – sequence: 6 givenname: Le Son surname: Tran fullname: Tran, Le Son organization: Hudson Institute of Medical Research – sequence: 7 givenname: Pak Ling surname: Leung fullname: Leung, Pak Ling organization: University of Queensland – sequence: 8 givenname: Katryn J surname: Stacey fullname: Stacey, Katryn J organization: University of Queensland – sequence: 9 givenname: Ashley surname: Mansell fullname: Mansell, Ashley organization: Hudson Institute of Medical Research – sequence: 10 givenname: Seth L surname: Masters fullname: Masters, Seth L organization: University of Melbourne – sequence: 11 givenname: Richard L orcidid: 0000-0001-6817-6211 surname: Ferrero fullname: Ferrero, Richard L email: richard.ferrero@hudson.org.au organization: Monash University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30003588$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1u1DAUBWALFdFpYcMDIEtsEFKKbxIn9pKO-KnUChawtq6dm06qOB7spGjEpo_QZ-RJ8DCFBQu8sC3509G1zgk7msJEjD0HcQZ5vRm8s2dQghaP2ArqWhTQAhyxlVCgCt3UcMxOUroRQrSlqp6w4ypfK6nUiv24Im8jTsRvKQ1upMT7GDz_nGjpgg8TJo4Ul-thCgk5unm4xZn4vCGex3CYt8HhyIepH9F7TMHvX2NYrjfcYdpiop939zIDvlk8TjyHBrebKT1lj3scEz17OE_Z1_fvvqw_FpefPlys314WrtKVKCxYi62GGrXGBiRJK2pFnbV9peq2gV721Gjb6KbCppcdZS6hUR1pKbq2OmWvDrnbGL4tlGbjh-RoHPO3w5JMKVpR1iXIOtOX_9CbsMQpT2fKEpQqZVs1Wb0-KBdDSpF6s42Dx7gzIMy-ErOvxPyuJOMXD5GL9dT9pX86yAAO4Psw0u4_Uebian1-CP0Fy76a_g |
CitedBy_id | crossref_primary_10_3389_fmicb_2022_853440 crossref_primary_10_1111_apm_13444 crossref_primary_10_1080_21645515_2020_1799667 crossref_primary_10_15789_1563_0625_IOB_2079 crossref_primary_10_1042_BST20200986 crossref_primary_10_1093_femsre_fuz004 crossref_primary_10_1002_JLB_MR0318_124R crossref_primary_10_1126_sciimmunol_abo4767 crossref_primary_10_1155_2022_2944156 crossref_primary_10_1128_Spectrum_00434_21 crossref_primary_10_3389_fcimb_2019_00324 crossref_primary_10_4049_jimmunol_2000373 crossref_primary_10_1038_s41590_018_0303_z crossref_primary_10_1016_j_tim_2021_04_003 crossref_primary_10_1038_s41564_020_0773_2 crossref_primary_10_1016_j_tips_2019_01_001 crossref_primary_10_1111_imm_13134 crossref_primary_10_1038_s41388_020_01509_3 crossref_primary_10_1016_j_nantod_2024_102210 crossref_primary_10_3390_cells11071163 crossref_primary_10_1002_jev2_12303 crossref_primary_10_1016_j_jhep_2024_06_019 crossref_primary_10_1097_SHK_0000000000002252 crossref_primary_10_1038_s41590_019_0368_3 crossref_primary_10_1016_j_molimm_2021_02_027 crossref_primary_10_3389_fmicb_2023_1258860 crossref_primary_10_1016_j_it_2021_09_006 crossref_primary_10_1186_s13000_018_0768_y crossref_primary_10_1016_j_jgr_2019_12_006 crossref_primary_10_3389_fphar_2022_919567 crossref_primary_10_1038_s41467_024_45961_1 crossref_primary_10_3389_fimmu_2022_930510 crossref_primary_10_1002_pmic_202300087 crossref_primary_10_3389_fimmu_2024_1296061 crossref_primary_10_3389_fimmu_2023_1274295 crossref_primary_10_1080_22221751_2022_2110524 crossref_primary_10_1128_msphere_00351_23 crossref_primary_10_15252_embj_2021110128 crossref_primary_10_3390_ijms21218087 crossref_primary_10_3390_ijms22083858 crossref_primary_10_1007_s10753_024_02025_2 crossref_primary_10_1016_j_lfs_2024_122749 crossref_primary_10_1128_IAI_00920_19 crossref_primary_10_1016_j_addr_2022_114321 crossref_primary_10_3390_cells9122617 crossref_primary_10_1128_jb_00109_24 crossref_primary_10_1002_advs_202301357 crossref_primary_10_15252_embj_2021108174 crossref_primary_10_56484_iamr_1211422 crossref_primary_10_3390_ijms22031005 crossref_primary_10_20411_pai_v9i1_657 crossref_primary_10_1080_08820139_2024_2312896 crossref_primary_10_3389_fmicb_2021_785856 crossref_primary_10_1186_s13027_023_00480_4 crossref_primary_10_1038_s41467_022_28967_5 crossref_primary_10_1371_journal_ppat_1009927 crossref_primary_10_3389_fcimb_2024_1411196 crossref_primary_10_1111_1348_0421_13156 crossref_primary_10_1016_j_smim_2023_101844 crossref_primary_10_1016_j_mam_2020_100924 crossref_primary_10_3390_biom14050520 crossref_primary_10_3389_fimmu_2022_931027 crossref_primary_10_3389_fimmu_2023_1157813 |
Cites_doi | 10.1038/cdd.2013.37 10.1038/cti.2016.22 10.1038/nature10558 10.1371/journal.pone.0151967 10.1002/eji.201545655 10.1002/eji.201545523 10.1161/JAHA.113.000629 10.1111/j.1365-2958.2005.04479.x 10.1016/j.chom.2014.04.001 10.1038/ni.1636 10.1126/science.1240248 10.1126/science.1087262 10.1128/IAI.00945-15 10.1038/ni.1631 10.1038/ncomms9761 10.1016/j.cell.2016.04.015 10.1038/s41598-017-07288-4 10.1074/jbc.M116.756379 10.1038/ni1299 10.1084/jem.20071239 10.1038/nature13683 10.1038/nature10510 10.1038/nchembio.1236 10.3390/ijms18061287 10.1111/hel.12196 10.1101/gad.1299905 10.1038/26239 10.1038/nature07725 10.1074/jbc.M109.014886 10.1016/j.mib.2013.04.004 10.1371/journal.ppat.1000724 10.1111/j.1462-5822.2009.01404.x 10.1038/nature07830 10.1007/978-1-62703-523-1_8 10.1007/978-4-431-55936-8_3 10.1177/1753425917695446 10.1038/nri3452 10.1038/nri3837 10.1002/eji.201545772 |
ContentType | Journal Article |
Copyright | 2018 Australasian Society for Immunology Inc. Copyright Blackwell Science Ltd. Nov/Dec 2018 |
Copyright_xml | – notice: 2018 Australasian Society for Immunology Inc. – notice: Copyright Blackwell Science Ltd. Nov/Dec 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1111/imcb.12190 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1440-1711 |
EndPage | 1130 |
ExternalDocumentID | 10_1111_imcb_12190 30003588 IMCB12190 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP120104911 – fundername: Australian Department of Education and Training funderid: Australian Postgraduate Award – fundername: National Health and Medical Research Council funderid: APP1030243; APP1059729; APP1079904 – fundername: State Government of Victoria funderid: Operational Infrastructure Support Program |
GroupedDBID | --- -Q- -~X .GJ 0R~ 1OB 1OC 29I 2WC 31~ 33P 36B 39C 3O- 3V. 4.4 53G 5RE 5VS 70F 7X7 88E 8FE 8FH 8FI 8FJ AAHHS AANLZ AASGY AAXRX AAZKR ABAWZ ABCUV ABJNI ABLJU ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACXBN ACXQS ADBBV ADBTR ADEOM ADFRT ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEXYK AFEBI AFFPM AFGKR AFKRA AFPWT AFZJQ AGAYW AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AOETA BBNVY BENPR BFHJK BHPHI BPHCQ BVXVI CAG CCPQU COF DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAS EBS EE. EHN EJD EMOBN ESX F5P FDQFY FUBAC FYUFA HCIFZ HGLYW HMCUK HZ~ IHE J5H JSO KBYEO KQ8 KTM LATKE LEEKS LH4 LK8 LUTES LW6 LYRES M1P M7P MEWTI MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM NAO O9- OBC OBS OK1 OVD P2P P2W PQQKQ PROAC PSQYO QN7 RJQFR RNS RNTTT ROL SAMSI SNX SUPJJ TEORI TR2 UKHRP W2D WH7 WOHZO WOQ WXSBR YFH ZGI ZXP ZZTAW ~02 ~KM CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c3930-b1bba7914a99a615e5b048edbbf384761f5fe69b6963a6f5deba75168de950d73 |
IEDL.DBID | 7X7 |
ISSN | 0818-9641 |
IngestDate | Wed Dec 04 08:57:06 EST 2024 Tue Nov 19 06:43:31 EST 2024 Fri Dec 06 02:49:45 EST 2024 Wed Oct 16 00:50:11 EDT 2024 Sat Aug 24 00:57:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Bacterial membrane vesicles NOD-like receptors caspases-11/-4/-5 inflammasome |
Language | English |
License | 2018 Australasian Society for Immunology Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3930-b1bba7914a99a615e5b048edbbf384761f5fe69b6963a6f5deba75168de950d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6817-6211 |
OpenAccessLink | http://minerva-access.unimelb.edu.au/bitstreams/e8d949ef-6368-5218-9f8d-b143805c22d8/download |
PMID | 30003588 |
PQID | 2218825736 |
PQPubID | 2041954 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2070242154 proquest_journals_2218825736 crossref_primary_10_1111_imcb_12190 pubmed_primary_30003588 wiley_primary_10_1111_imcb_12190_IMCB12190 |
PublicationCentury | 2000 |
PublicationDate | November/December 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November/December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | Immunology and cell biology |
PublicationTitleAlternate | Immunol Cell Biol |
PublicationYear | 2018 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 2010; 12 2014; 514 2011; 479 2015; 15 2011; 477 2017; 7 2015; 6 2007; 204 2013; 20 2017; 23 2006; 7 2008; 9 2017; 292 2016; 165 2013; 341 2013; 9 1998; 395 2016; 11 2009; 458 2016; 5 2015; 45 2005; 19 2014; 3 2013; 16 2013; 13 2015; 84 2013; 1040 2015; 20 2014; 15 2016 2017; 18 2009; 284 2003; 301 2005; 55 2010; 6 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 3 start-page: e000629 year: 2014 article-title: The TLR9 ligand, CpG‐ODN, induces protection against cerebral ischemia/reperfusion injury via activation of PI3K/Akt signaling publication-title: J Am Heart Assoc – volume: 284 start-page: 25742 year: 2009 end-page: 25748 article-title: A TIR domain variant of MyD88 adapter‐like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling publication-title: J Biol Chem – volume: 9 start-page: 847 year: 2008 end-page: 856 article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization publication-title: Nat Immunol – volume: 15 start-page: 623 year: 2014 end-page: 635 article-title: The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling publication-title: Cell Host Microbe – volume: 45 start-page: 2927 year: 2015 end-page: 2936 article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux publication-title: Eur J Immunol – volume: 12 start-page: 372 year: 2010 end-page: 385 article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells publication-title: Cell Microbiol – volume: 458 start-page: 1191 year: 2009 end-page: 1195 article-title: The structural basis of lipopolysaccharide recognition by the TLR4‐MD‐2 complex publication-title: Nature – volume: 204 start-page: 3235 year: 2007 end-page: 3245 article-title: Immune recognition of mediated by the IPAF/NLRC4 inflammasome publication-title: J Exp Med – volume: 11 start-page: e0151967 year: 2016 article-title: Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens publication-title: PLoS ONE – volume: 23 start-page: 336 year: 2017 end-page: 344 article-title: High‐affinity caspase‐4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles publication-title: Innate Immun – volume: 6 start-page: e1000724 year: 2010 article-title: B cell activation by outer membrane vesicles ‐ a novel virulence mechanism publication-title: PLoS Pathog – volume: 13 start-page: 397 year: 2013 end-page: 411 article-title: Activation and regulation of the inflammasomes publication-title: Nat Rev Immunol – start-page: 57 year: 2016 end-page: 87 – volume: 45 start-page: 2911 year: 2015 end-page: 2917 article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells publication-title: Eur J Immunol – volume: 45 start-page: 2918 year: 2015 end-page: 2926 article-title: NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase‐4 and caspase‐5 publication-title: Eur J Immunol – volume: 477 start-page: 596 year: 2011 end-page: 600 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature – volume: 341 start-page: 1246 year: 2013 end-page: 1249 article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4 publication-title: Science – volume: 15 start-page: 375 year: 2015 end-page: 387 article-title: Immune modulation by bacterial outer membrane vesicles publication-title: Nat Rev Immunol – volume: 55 start-page: 1357 year: 2005 end-page: 1378 article-title: regulates multiple virulence functions by intersecting with Vfr‐modulated pathways publication-title: Mol Microbiol – volume: 292 start-page: 826 year: 2017 end-page: 836 article-title: PB1‐F2 peptide derived from avian influenza A virus H7N9 induces inflammation via activation of the NLRP3 inflammasome publication-title: J Biol Chem – volume: 6 start-page: 8761 year: 2015 article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes publication-title: Nat Commun – volume: 1040 start-page: 91 year: 2013 end-page: 101 article-title: ASC speck formation as a readout for inflammasome activation publication-title: Methods Mol Biol – volume: 479 start-page: 117 year: 2011 end-page: 121 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 20 start-page: 1149 year: 2013 end-page: 1160 article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC publication-title: Cell Death Differ – volume: 165 start-page: 1106 year: 2016 end-page: 1119 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation publication-title: Cell – volume: 301 start-page: 640 year: 2003 end-page: 643 article-title: Role of adaptor TRIF in the MyD88‐independent toll‐like receptor signaling pathway publication-title: Science – volume: 84 start-page: 56 year: 2015 end-page: 66 article-title: triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome publication-title: Infect Immun – volume: 9 start-page: 857 year: 2008 end-page: 865 article-title: The NALP3 inflammasome is involved in the innate immune response to amyloid‐beta publication-title: Nat Immunol – volume: 16 start-page: 319 year: 2013 end-page: 326 article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection publication-title: Curr Opin Microbiol – volume: 5 start-page: e85 year: 2016 article-title: Toll‐like receptors: the Swiss army knife of immunity and vaccine development publication-title: Clin Transl Immunol – volume: 514 start-page: 187 year: 2014 end-page: 192 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature – volume: 18 start-page: E1287 year: 2017 article-title: The therapeutic benefit of bacterial membrane vesicles publication-title: Int J Mol Sci – volume: 395 start-page: 284 year: 1998 end-page: 288 article-title: Toll‐like receptor‐2 mediates lipopolysaccharide‐induced cellular signalling publication-title: Nature – volume: 9 start-page: 398 year: 2013 end-page: 405 article-title: Chemical genetics reveals a kinase‐independent role for protein kinase R in pyroptosis publication-title: Nat Chem Biol – volume: 7 start-page: 148 year: 2006 end-page: 155 article-title: Suppressor of cytokine signaling 1 negatively regulates Toll‐like receptor signaling by mediating Mal degradation publication-title: Nat Immunol – volume: 19 start-page: 2645 year: 2005 end-page: 2655 article-title: Bacterial outer membrane vesicles and the host‐pathogen interaction publication-title: Genes Dev – volume: 7 start-page: 7072 year: 2017 article-title: Bacterial membrane vesicles transport their DNA cargo into host cells publication-title: Sci Rep – volume: 458 start-page: 514 year: 2009 end-page: 518 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC publication-title: Nature – volume: 20 start-page: 269 year: 2015 end-page: 283 article-title: Increased outer membrane vesicle formation in a mutant publication-title: Helicobacter – ident: e_1_2_7_13_1 doi: 10.1038/cdd.2013.37 – ident: e_1_2_7_10_1 doi: 10.1038/cti.2016.22 – ident: e_1_2_7_35_1 doi: 10.1038/nature10558 – ident: e_1_2_7_6_1 doi: 10.1371/journal.pone.0151967 – ident: e_1_2_7_15_1 doi: 10.1002/eji.201545655 – ident: e_1_2_7_16_1 doi: 10.1002/eji.201545523 – ident: e_1_2_7_27_1 doi: 10.1161/JAHA.113.000629 – ident: e_1_2_7_36_1 doi: 10.1111/j.1365-2958.2005.04479.x – ident: e_1_2_7_3_1 doi: 10.1016/j.chom.2014.04.001 – ident: e_1_2_7_38_1 doi: 10.1038/ni.1636 – ident: e_1_2_7_28_1 doi: 10.1126/science.1240248 – ident: e_1_2_7_23_1 doi: 10.1126/science.1087262 – ident: e_1_2_7_30_1 doi: 10.1128/IAI.00945-15 – ident: e_1_2_7_40_1 doi: 10.1038/ni.1631 – ident: e_1_2_7_14_1 doi: 10.1038/ncomms9761 – ident: e_1_2_7_4_1 doi: 10.1016/j.cell.2016.04.015 – ident: e_1_2_7_21_1 doi: 10.1038/s41598-017-07288-4 – ident: e_1_2_7_19_1 doi: 10.1074/jbc.M116.756379 – ident: e_1_2_7_24_1 doi: 10.1038/ni1299 – ident: e_1_2_7_29_1 doi: 10.1084/jem.20071239 – ident: e_1_2_7_17_1 doi: 10.1038/nature13683 – ident: e_1_2_7_12_1 doi: 10.1038/nature10510 – ident: e_1_2_7_18_1 doi: 10.1038/nchembio.1236 – ident: e_1_2_7_34_1 doi: 10.3390/ijms18061287 – ident: e_1_2_7_37_1 doi: 10.1111/hel.12196 – ident: e_1_2_7_5_1 doi: 10.1101/gad.1299905 – ident: e_1_2_7_26_1 doi: 10.1038/26239 – ident: e_1_2_7_31_1 doi: 10.1038/nature07725 – ident: e_1_2_7_39_1 doi: 10.1074/jbc.M109.014886 – ident: e_1_2_7_9_1 doi: 10.1016/j.mib.2013.04.004 – ident: e_1_2_7_7_1 doi: 10.1371/journal.ppat.1000724 – ident: e_1_2_7_8_1 doi: 10.1111/j.1462-5822.2009.01404.x – ident: e_1_2_7_25_1 doi: 10.1038/nature07830 – ident: e_1_2_7_20_1 doi: 10.1007/978-1-62703-523-1_8 – ident: e_1_2_7_22_1 doi: 10.1007/978-4-431-55936-8_3 – ident: e_1_2_7_33_1 doi: 10.1177/1753425917695446 – ident: e_1_2_7_11_1 doi: 10.1038/nri3452 – ident: e_1_2_7_2_1 doi: 10.1038/nri3837 – ident: e_1_2_7_32_1 doi: 10.1002/eji.201545772 |
SSID | ssj0007283 |
Score | 2.521315 |
Snippet | Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of... Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of... Outer membrane vesicles ( OMV s) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro . These lipid‐bound structures carry a range... Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1120 |
SubjectTerms | Bacterial membrane vesicles Caspase Caspase 1 - metabolism Caspase-1 Caspase-11 Caspase-4 Caspase-5 Caspases - metabolism caspases‐11/‐4/‐5 Cell activation Cell Line CRISPR Extracellular Vesicles - metabolism Gram-negative bacteria Helicobacter pylori Host-pathogen interactions Humans Immune system Immunogenicity inflammasome Inflammasomes Inflammasomes - metabolism Inflammation Innate immunity Interleukin-1beta - metabolism Lipopolysaccharides Macrophages Macrophages - immunology Macrophages - metabolism Membrane vesicles Monocytes Monocytes - immunology Monocytes - metabolism NOD‐like receptors Pathogens Pseudomonas aeruginosa Pseudomonas aeruginosa - physiology Pseudomonas Infections - immunology Pseudomonas Infections - metabolism Pseudomonas Infections - microbiology Signal Transduction |
Title | Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase‐5 in human monocytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fimcb.12190 https://www.ncbi.nlm.nih.gov/pubmed/30003588 https://www.proquest.com/docview/2218825736 https://search.proquest.com/docview/2070242154 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy8ZeRtt9ZeuKx_Y0MIsTx4mfxlpausGVMla4t-APefThkq7pFe6_n-zkbiuDvgVsYiPJ0k-WJQF8NLpB1TjPNXrJpfPIGysEL4oQTKhzW6qY7zw7V2eX8vu8mk8XbsP0rHKtE5Oi9r2Ld-SfC7JF5M3Upfpy_ZvHrlExujq10HgEO6IgU07yXM83DldeF2MZTjJKXCsppvKk8SXP1cLZWFkh6uJ_DdJ_KPM-aE1W53QXnk1wkX0d-bsHW9jtw-OxgeRqH57MptD4c1jNcEGeb4fsDof01o3F1BF2MeDS97R7MzCDN8tfV10_GBbzGe4IZzICgKzrO6Jwn1IkGYkcScnCDP0ijqY2PswZ0jwD8oqGWerrx-iXvVsRUn0Bl6cnP4_P-NRXgbtSlzm3wlpTayGN1oYQDVaWzjF6a0NJxkqJUAVU2io6nEaFyiNNr4RqPOoq93X5ErZpT_g6ZnyL4F0dCtlYWevCCqdLrIkXeeGkCBl8WBO3vR7LZ7RrtyOyoE0syOBgTfd2OkJD-5fhGbzfDJPwx4gGUbNf0hxSWDGmXckMXo382ixTpihp02TwKTHwgfXbb7Pjo_T15uGdvIWnBJiaMRfxALZvb5b4jkDJrT1MkncIO0cn5xc__gBDk-KU |
link.rule.ids | 314,780,784,12056,21388,27924,27925,31719,31720,33744,33745,43310,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVlAuFRQogQJGcEKyiJPYiU-orVptoVlVqJV6i_ysetikbbqV9t8zdrILCKm3SLZia2Y889nzAviiZOVEZSyVzha0MNbRSjNGs8x75ctU5yLkO9czMT0vflzwi_HBrR_DKlc6MSpq25nwRv4tQ1uEt5kyF9-vb2joGhW8q2MLjcewESqn8wls7B_OTn-tdXGZDYU40SxRKQo2FigNsTxXc6NDbYWgjf82Sf_hzH9ha7Q7R89hawSMZG_g8At45NpteDK0kFxuw9N6dI6_hGXt5nj3bR25d32MdiMheYSc9m5hO9y_6olyt4vLq7brFQkZDfeINAlCQNJ2LdK4i0mSBIUO5WSu-m4eRmMjH2IU6p7eUY7DJHb2I_jLziwRq76C86PDs4MpHTsrUJPLPKWaaa1KyQolpUJM47jGk-ys1j5HcyWY594JqQUeTyU8tw6ncyYq6yRPbZm_hgnuyb0JOd_MW1P6rKh0UcpMMyNzV2YpTzNTMJ_A5xVxm-uhgEazungEFjSRBQnsrujejIeob_6wPIFP62EU_-DTQGp2C5yDKit4tXmRwM7Ar_UyefSTVlUCXyMDH1i_Oa4P9uPX24d38hE2p2f1SXNyPPv5Dp4hfKqGzMRdmNzdLtx7hCh3-sMoh78BzmDlUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+vesicles+from+Pseudomonas+aeruginosa+activate+the+noncanonical+inflammasome+through+caspase%E2%80%905+in+human+monocytes&rft.jtitle=Immunology+and+cell+biology&rft.au=Bitto%2C+Natalie+J&rft.au=Baker%2C+Paul+J&rft.au=Dowling%2C+Jennifer+K&rft.au=Wray%E2%80%90McCann%2C+Georgie&rft.date=2018-11-01&rft.issn=0818-9641&rft.eissn=1440-1711&rft.volume=96&rft.issue=10&rft.spage=1120&rft.epage=1130&rft_id=info:doi/10.1111%2Fimcb.12190&rft.externalDBID=10.1111%252Fimcb.12190&rft.externalDocID=IMCB12190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0818-9641&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0818-9641&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0818-9641&client=summon |