Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase‐5 in human monocytes

Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recen...

Full description

Saved in:
Bibliographic Details
Published inImmunology and cell biology Vol. 96; no. 10; pp. 1120 - 1130
Main Authors Bitto, Natalie J, Baker, Paul J, Dowling, Jennifer K, Wray‐McCann, Georgie, De Paoli, Amanda, Tran, Le Son, Leung, Pak Ling, Stacey, Katryn J, Mansell, Ashley, Masters, Seth L, Ferrero, Richard L
Format Journal Article
LanguageEnglish
Published United States Blackwell Science Ltd 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host–pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMVs as novel vaccines. Pseudomonas aeruginosa outer membrane vesicles (OMVs) induce inflammasome formation in mouse macrophages via the noncanonical caspase‐11 pathway. In human monocytes, P. aeruginosa OMVs selectively induce inflammasome activation via the caspase‐11 homolog, caspase‐5. In contrast, caspase‐4 is required for inflammasome activation in response to P. aeruginosa lipopolysaccharide transfected into cells.
AbstractList Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1β and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase-11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5,we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines.
Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host–pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMVs as novel vaccines. Pseudomonas aeruginosa outer membrane vesicles (OMVs) induce inflammasome formation in mouse macrophages via the noncanonical caspase‐11 pathway. In human monocytes, P. aeruginosa OMVs selectively induce inflammasome activation via the caspase‐11 homolog, caspase‐5. In contrast, caspase‐4 is required for inflammasome activation in response to P. aeruginosa lipopolysaccharide transfected into cells.
Outer membrane vesicles ( OMV s) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro . These lipid‐bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMV s in host–pathogen interactions. In this study, we investigated the ability of OMV s from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori , to activate canonical and noncanonical inflammasomes. P. aeruginosa OMV s induced inflammasome activation in mouse macrophages, as evidenced by “speck” formation, as well as the cleavage and secretion of interleukin‐1β and caspase‐1. These responses were independent of AIM 2 and NLRC 4 canonical inflammasomes, but dependent on the noncanonical caspase‐11 pathway. Moreover, P. aeruginosa OMV s alone were able to activate the inflammasome in a TLR ‐dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMV s were not able to induce inflammasome activation in macrophages. Using CRISPR /Cas9 knockout THP ‐1 cells lacking the human caspase‐11 homologs, caspase‐4 and ‐5,we demonstrated that caspase‐5 but not caspase‐4 is required for inflammasome activation by P. aeruginosa OMV s in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide ( LPS ) transfected into cells induced inflammasome responses via caspase‐4. This suggests that caspase‐4 and caspase‐5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram‐negative infections in humans and the use of OMV s as novel vaccines.
Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and noncanonical inflammasomes. P. aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1ß and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the noncanonical caspase-11 pathway. Moreover, P. aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H. pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5, we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P. aeruginosa lipopolysaccharide (LPS) transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines.
Author Dowling, Jennifer K
Leung, Pak Ling
Baker, Paul J
De Paoli, Amanda
Stacey, Katryn J
Wray‐McCann, Georgie
Bitto, Natalie J
Masters, Seth L
Mansell, Ashley
Tran, Le Son
Ferrero, Richard L
Author_xml – sequence: 1
  givenname: Natalie J
  surname: Bitto
  fullname: Bitto, Natalie J
  organization: Hudson Institute of Medical Research
– sequence: 2
  givenname: Paul J
  surname: Baker
  fullname: Baker, Paul J
  organization: University of Melbourne
– sequence: 3
  givenname: Jennifer K
  surname: Dowling
  fullname: Dowling, Jennifer K
  organization: Hudson Institute of Medical Research
– sequence: 4
  givenname: Georgie
  surname: Wray‐McCann
  fullname: Wray‐McCann, Georgie
  organization: Hudson Institute of Medical Research
– sequence: 5
  givenname: Amanda
  surname: De Paoli
  fullname: De Paoli, Amanda
  organization: Hudson Institute of Medical Research
– sequence: 6
  givenname: Le Son
  surname: Tran
  fullname: Tran, Le Son
  organization: Hudson Institute of Medical Research
– sequence: 7
  givenname: Pak Ling
  surname: Leung
  fullname: Leung, Pak Ling
  organization: University of Queensland
– sequence: 8
  givenname: Katryn J
  surname: Stacey
  fullname: Stacey, Katryn J
  organization: University of Queensland
– sequence: 9
  givenname: Ashley
  surname: Mansell
  fullname: Mansell, Ashley
  organization: Hudson Institute of Medical Research
– sequence: 10
  givenname: Seth L
  surname: Masters
  fullname: Masters, Seth L
  organization: University of Melbourne
– sequence: 11
  givenname: Richard L
  orcidid: 0000-0001-6817-6211
  surname: Ferrero
  fullname: Ferrero, Richard L
  email: richard.ferrero@hudson.org.au
  organization: Monash University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30003588$$D View this record in MEDLINE/PubMed
BookMark eNp90c1u1DAUBWALFdFpYcMDIEtsEFKKbxIn9pKO-KnUChawtq6dm06qOB7spGjEpo_QZ-RJ8DCFBQu8sC3509G1zgk7msJEjD0HcQZ5vRm8s2dQghaP2ArqWhTQAhyxlVCgCt3UcMxOUroRQrSlqp6w4ypfK6nUiv24Im8jTsRvKQ1upMT7GDz_nGjpgg8TJo4Ul-thCgk5unm4xZn4vCGex3CYt8HhyIepH9F7TMHvX2NYrjfcYdpiop939zIDvlk8TjyHBrebKT1lj3scEz17OE_Z1_fvvqw_FpefPlys314WrtKVKCxYi62GGrXGBiRJK2pFnbV9peq2gV721Gjb6KbCppcdZS6hUR1pKbq2OmWvDrnbGL4tlGbjh-RoHPO3w5JMKVpR1iXIOtOX_9CbsMQpT2fKEpQqZVs1Wb0-KBdDSpF6s42Dx7gzIMy-ErOvxPyuJOMXD5GL9dT9pX86yAAO4Psw0u4_Uebian1-CP0Fy76a_g
CitedBy_id crossref_primary_10_3389_fmicb_2022_853440
crossref_primary_10_1111_apm_13444
crossref_primary_10_1080_21645515_2020_1799667
crossref_primary_10_15789_1563_0625_IOB_2079
crossref_primary_10_1042_BST20200986
crossref_primary_10_1093_femsre_fuz004
crossref_primary_10_1002_JLB_MR0318_124R
crossref_primary_10_1126_sciimmunol_abo4767
crossref_primary_10_1155_2022_2944156
crossref_primary_10_1128_Spectrum_00434_21
crossref_primary_10_3389_fcimb_2019_00324
crossref_primary_10_4049_jimmunol_2000373
crossref_primary_10_1038_s41590_018_0303_z
crossref_primary_10_1016_j_tim_2021_04_003
crossref_primary_10_1038_s41564_020_0773_2
crossref_primary_10_1016_j_tips_2019_01_001
crossref_primary_10_1111_imm_13134
crossref_primary_10_1038_s41388_020_01509_3
crossref_primary_10_1016_j_nantod_2024_102210
crossref_primary_10_3390_cells11071163
crossref_primary_10_1002_jev2_12303
crossref_primary_10_1016_j_jhep_2024_06_019
crossref_primary_10_1097_SHK_0000000000002252
crossref_primary_10_1038_s41590_019_0368_3
crossref_primary_10_1016_j_molimm_2021_02_027
crossref_primary_10_3389_fmicb_2023_1258860
crossref_primary_10_1016_j_it_2021_09_006
crossref_primary_10_1186_s13000_018_0768_y
crossref_primary_10_1016_j_jgr_2019_12_006
crossref_primary_10_3389_fphar_2022_919567
crossref_primary_10_1038_s41467_024_45961_1
crossref_primary_10_3389_fimmu_2022_930510
crossref_primary_10_1002_pmic_202300087
crossref_primary_10_3389_fimmu_2024_1296061
crossref_primary_10_3389_fimmu_2023_1274295
crossref_primary_10_1080_22221751_2022_2110524
crossref_primary_10_1128_msphere_00351_23
crossref_primary_10_15252_embj_2021110128
crossref_primary_10_3390_ijms21218087
crossref_primary_10_3390_ijms22083858
crossref_primary_10_1007_s10753_024_02025_2
crossref_primary_10_1016_j_lfs_2024_122749
crossref_primary_10_1128_IAI_00920_19
crossref_primary_10_1016_j_addr_2022_114321
crossref_primary_10_3390_cells9122617
crossref_primary_10_1128_jb_00109_24
crossref_primary_10_1002_advs_202301357
crossref_primary_10_15252_embj_2021108174
crossref_primary_10_56484_iamr_1211422
crossref_primary_10_3390_ijms22031005
crossref_primary_10_20411_pai_v9i1_657
crossref_primary_10_1080_08820139_2024_2312896
crossref_primary_10_3389_fmicb_2021_785856
crossref_primary_10_1186_s13027_023_00480_4
crossref_primary_10_1038_s41467_022_28967_5
crossref_primary_10_1371_journal_ppat_1009927
crossref_primary_10_3389_fcimb_2024_1411196
crossref_primary_10_1111_1348_0421_13156
crossref_primary_10_1016_j_smim_2023_101844
crossref_primary_10_1016_j_mam_2020_100924
crossref_primary_10_3390_biom14050520
crossref_primary_10_3389_fimmu_2022_931027
crossref_primary_10_3389_fimmu_2023_1157813
Cites_doi 10.1038/cdd.2013.37
10.1038/cti.2016.22
10.1038/nature10558
10.1371/journal.pone.0151967
10.1002/eji.201545655
10.1002/eji.201545523
10.1161/JAHA.113.000629
10.1111/j.1365-2958.2005.04479.x
10.1016/j.chom.2014.04.001
10.1038/ni.1636
10.1126/science.1240248
10.1126/science.1087262
10.1128/IAI.00945-15
10.1038/ni.1631
10.1038/ncomms9761
10.1016/j.cell.2016.04.015
10.1038/s41598-017-07288-4
10.1074/jbc.M116.756379
10.1038/ni1299
10.1084/jem.20071239
10.1038/nature13683
10.1038/nature10510
10.1038/nchembio.1236
10.3390/ijms18061287
10.1111/hel.12196
10.1101/gad.1299905
10.1038/26239
10.1038/nature07725
10.1074/jbc.M109.014886
10.1016/j.mib.2013.04.004
10.1371/journal.ppat.1000724
10.1111/j.1462-5822.2009.01404.x
10.1038/nature07830
10.1007/978-1-62703-523-1_8
10.1007/978-4-431-55936-8_3
10.1177/1753425917695446
10.1038/nri3452
10.1038/nri3837
10.1002/eji.201545772
ContentType Journal Article
Copyright 2018 Australasian Society for Immunology Inc.
Copyright Blackwell Science Ltd. Nov/Dec 2018
Copyright_xml – notice: 2018 Australasian Society for Immunology Inc.
– notice: Copyright Blackwell Science Ltd. Nov/Dec 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1111/imcb.12190
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1440-1711
EndPage 1130
ExternalDocumentID 10_1111_imcb_12190
30003588
IMCB12190
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP120104911
– fundername: Australian Department of Education and Training
  funderid: Australian Postgraduate Award
– fundername: National Health and Medical Research Council
  funderid: APP1030243; APP1059729; APP1079904
– fundername: State Government of Victoria
  funderid: Operational Infrastructure Support Program
GroupedDBID ---
-Q-
-~X
.GJ
0R~
1OB
1OC
29I
2WC
31~
33P
36B
39C
3O-
3V.
4.4
53G
5RE
5VS
70F
7X7
88E
8FE
8FH
8FI
8FJ
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABAWZ
ABCUV
ABJNI
ABLJU
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADFRT
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEXYK
AFEBI
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AGAYW
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
AJRNO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AOETA
BBNVY
BENPR
BFHJK
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAS
EBS
EE.
EHN
EJD
EMOBN
ESX
F5P
FDQFY
FUBAC
FYUFA
HCIFZ
HGLYW
HMCUK
HZ~
IHE
J5H
JSO
KBYEO
KQ8
KTM
LATKE
LEEKS
LH4
LK8
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
NAO
O9-
OBC
OBS
OK1
OVD
P2P
P2W
PQQKQ
PROAC
PSQYO
QN7
RJQFR
RNS
RNTTT
ROL
SAMSI
SNX
SUPJJ
TEORI
TR2
UKHRP
W2D
WH7
WOHZO
WOQ
WXSBR
YFH
ZGI
ZXP
ZZTAW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c3930-b1bba7914a99a615e5b048edbbf384761f5fe69b6963a6f5deba75168de950d73
IEDL.DBID 7X7
ISSN 0818-9641
IngestDate Wed Dec 04 08:57:06 EST 2024
Tue Nov 19 06:43:31 EST 2024
Fri Dec 06 02:49:45 EST 2024
Wed Oct 16 00:50:11 EDT 2024
Sat Aug 24 00:57:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Bacterial membrane vesicles
NOD-like receptors
caspases-11/-4/-5
inflammasome
Language English
License 2018 Australasian Society for Immunology Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3930-b1bba7914a99a615e5b048edbbf384761f5fe69b6963a6f5deba75168de950d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6817-6211
OpenAccessLink http://minerva-access.unimelb.edu.au/bitstreams/e8d949ef-6368-5218-9f8d-b143805c22d8/download
PMID 30003588
PQID 2218825736
PQPubID 2041954
PageCount 11
ParticipantIDs proquest_miscellaneous_2070242154
proquest_journals_2218825736
crossref_primary_10_1111_imcb_12190
pubmed_primary_30003588
wiley_primary_10_1111_imcb_12190_IMCB12190
PublicationCentury 2000
PublicationDate November/December 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November/December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: London
PublicationTitle Immunology and cell biology
PublicationTitleAlternate Immunol Cell Biol
PublicationYear 2018
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References 2010; 12
2014; 514
2011; 479
2015; 15
2011; 477
2017; 7
2015; 6
2007; 204
2013; 20
2017; 23
2006; 7
2008; 9
2017; 292
2016; 165
2013; 341
2013; 9
1998; 395
2016; 11
2009; 458
2016; 5
2015; 45
2005; 19
2014; 3
2013; 16
2013; 13
2015; 84
2013; 1040
2015; 20
2014; 15
2016
2017; 18
2009; 284
2003; 301
2005; 55
2010; 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 3
  start-page: e000629
  year: 2014
  article-title: The TLR9 ligand, CpG‐ODN, induces protection against cerebral ischemia/reperfusion injury via activation of PI3K/Akt signaling
  publication-title: J Am Heart Assoc
– volume: 284
  start-page: 25742
  year: 2009
  end-page: 25748
  article-title: A TIR domain variant of MyD88 adapter‐like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling
  publication-title: J Biol Chem
– volume: 9
  start-page: 847
  year: 2008
  end-page: 856
  article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
  publication-title: Nat Immunol
– volume: 15
  start-page: 623
  year: 2014
  end-page: 635
  article-title: The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling
  publication-title: Cell Host Microbe
– volume: 45
  start-page: 2927
  year: 2015
  end-page: 2936
  article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux
  publication-title: Eur J Immunol
– volume: 12
  start-page: 372
  year: 2010
  end-page: 385
  article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
  publication-title: Cell Microbiol
– volume: 458
  start-page: 1191
  year: 2009
  end-page: 1195
  article-title: The structural basis of lipopolysaccharide recognition by the TLR4‐MD‐2 complex
  publication-title: Nature
– volume: 204
  start-page: 3235
  year: 2007
  end-page: 3245
  article-title: Immune recognition of mediated by the IPAF/NLRC4 inflammasome
  publication-title: J Exp Med
– volume: 11
  start-page: e0151967
  year: 2016
  article-title: Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens
  publication-title: PLoS ONE
– volume: 23
  start-page: 336
  year: 2017
  end-page: 344
  article-title: High‐affinity caspase‐4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles
  publication-title: Innate Immun
– volume: 6
  start-page: e1000724
  year: 2010
  article-title: B cell activation by outer membrane vesicles ‐ a novel virulence mechanism
  publication-title: PLoS Pathog
– volume: 13
  start-page: 397
  year: 2013
  end-page: 411
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat Rev Immunol
– start-page: 57
  year: 2016
  end-page: 87
– volume: 45
  start-page: 2911
  year: 2015
  end-page: 2917
  article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells
  publication-title: Eur J Immunol
– volume: 45
  start-page: 2918
  year: 2015
  end-page: 2926
  article-title: NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase‐4 and caspase‐5
  publication-title: Eur J Immunol
– volume: 477
  start-page: 596
  year: 2011
  end-page: 600
  article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
  publication-title: Nature
– volume: 341
  start-page: 1246
  year: 2013
  end-page: 1249
  article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4
  publication-title: Science
– volume: 15
  start-page: 375
  year: 2015
  end-page: 387
  article-title: Immune modulation by bacterial outer membrane vesicles
  publication-title: Nat Rev Immunol
– volume: 55
  start-page: 1357
  year: 2005
  end-page: 1378
  article-title: regulates multiple virulence functions by intersecting with Vfr‐modulated pathways
  publication-title: Mol Microbiol
– volume: 292
  start-page: 826
  year: 2017
  end-page: 836
  article-title: PB1‐F2 peptide derived from avian influenza A virus H7N9 induces inflammation via activation of the NLRP3 inflammasome
  publication-title: J Biol Chem
– volume: 6
  start-page: 8761
  year: 2015
  article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes
  publication-title: Nat Commun
– volume: 1040
  start-page: 91
  year: 2013
  end-page: 101
  article-title: ASC speck formation as a readout for inflammasome activation
  publication-title: Methods Mol Biol
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 20
  start-page: 1149
  year: 2013
  end-page: 1160
  article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
  publication-title: Cell Death Differ
– volume: 165
  start-page: 1106
  year: 2016
  end-page: 1119
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation
  publication-title: Cell
– volume: 301
  start-page: 640
  year: 2003
  end-page: 643
  article-title: Role of adaptor TRIF in the MyD88‐independent toll‐like receptor signaling pathway
  publication-title: Science
– volume: 84
  start-page: 56
  year: 2015
  end-page: 66
  article-title: triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome
  publication-title: Infect Immun
– volume: 9
  start-page: 857
  year: 2008
  end-page: 865
  article-title: The NALP3 inflammasome is involved in the innate immune response to amyloid‐beta
  publication-title: Nat Immunol
– volume: 16
  start-page: 319
  year: 2013
  end-page: 326
  article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection
  publication-title: Curr Opin Microbiol
– volume: 5
  start-page: e85
  year: 2016
  article-title: Toll‐like receptors: the Swiss army knife of immunity and vaccine development
  publication-title: Clin Transl Immunol
– volume: 514
  start-page: 187
  year: 2014
  end-page: 192
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
– volume: 18
  start-page: E1287
  year: 2017
  article-title: The therapeutic benefit of bacterial membrane vesicles
  publication-title: Int J Mol Sci
– volume: 395
  start-page: 284
  year: 1998
  end-page: 288
  article-title: Toll‐like receptor‐2 mediates lipopolysaccharide‐induced cellular signalling
  publication-title: Nature
– volume: 9
  start-page: 398
  year: 2013
  end-page: 405
  article-title: Chemical genetics reveals a kinase‐independent role for protein kinase R in pyroptosis
  publication-title: Nat Chem Biol
– volume: 7
  start-page: 148
  year: 2006
  end-page: 155
  article-title: Suppressor of cytokine signaling 1 negatively regulates Toll‐like receptor signaling by mediating Mal degradation
  publication-title: Nat Immunol
– volume: 19
  start-page: 2645
  year: 2005
  end-page: 2655
  article-title: Bacterial outer membrane vesicles and the host‐pathogen interaction
  publication-title: Genes Dev
– volume: 7
  start-page: 7072
  year: 2017
  article-title: Bacterial membrane vesicles transport their DNA cargo into host cells
  publication-title: Sci Rep
– volume: 458
  start-page: 514
  year: 2009
  end-page: 518
  article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC
  publication-title: Nature
– volume: 20
  start-page: 269
  year: 2015
  end-page: 283
  article-title: Increased outer membrane vesicle formation in a mutant
  publication-title: Helicobacter
– ident: e_1_2_7_13_1
  doi: 10.1038/cdd.2013.37
– ident: e_1_2_7_10_1
  doi: 10.1038/cti.2016.22
– ident: e_1_2_7_35_1
  doi: 10.1038/nature10558
– ident: e_1_2_7_6_1
  doi: 10.1371/journal.pone.0151967
– ident: e_1_2_7_15_1
  doi: 10.1002/eji.201545655
– ident: e_1_2_7_16_1
  doi: 10.1002/eji.201545523
– ident: e_1_2_7_27_1
  doi: 10.1161/JAHA.113.000629
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1365-2958.2005.04479.x
– ident: e_1_2_7_3_1
  doi: 10.1016/j.chom.2014.04.001
– ident: e_1_2_7_38_1
  doi: 10.1038/ni.1636
– ident: e_1_2_7_28_1
  doi: 10.1126/science.1240248
– ident: e_1_2_7_23_1
  doi: 10.1126/science.1087262
– ident: e_1_2_7_30_1
  doi: 10.1128/IAI.00945-15
– ident: e_1_2_7_40_1
  doi: 10.1038/ni.1631
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms9761
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cell.2016.04.015
– ident: e_1_2_7_21_1
  doi: 10.1038/s41598-017-07288-4
– ident: e_1_2_7_19_1
  doi: 10.1074/jbc.M116.756379
– ident: e_1_2_7_24_1
  doi: 10.1038/ni1299
– ident: e_1_2_7_29_1
  doi: 10.1084/jem.20071239
– ident: e_1_2_7_17_1
  doi: 10.1038/nature13683
– ident: e_1_2_7_12_1
  doi: 10.1038/nature10510
– ident: e_1_2_7_18_1
  doi: 10.1038/nchembio.1236
– ident: e_1_2_7_34_1
  doi: 10.3390/ijms18061287
– ident: e_1_2_7_37_1
  doi: 10.1111/hel.12196
– ident: e_1_2_7_5_1
  doi: 10.1101/gad.1299905
– ident: e_1_2_7_26_1
  doi: 10.1038/26239
– ident: e_1_2_7_31_1
  doi: 10.1038/nature07725
– ident: e_1_2_7_39_1
  doi: 10.1074/jbc.M109.014886
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mib.2013.04.004
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.ppat.1000724
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1462-5822.2009.01404.x
– ident: e_1_2_7_25_1
  doi: 10.1038/nature07830
– ident: e_1_2_7_20_1
  doi: 10.1007/978-1-62703-523-1_8
– ident: e_1_2_7_22_1
  doi: 10.1007/978-4-431-55936-8_3
– ident: e_1_2_7_33_1
  doi: 10.1177/1753425917695446
– ident: e_1_2_7_11_1
  doi: 10.1038/nri3452
– ident: e_1_2_7_2_1
  doi: 10.1038/nri3837
– ident: e_1_2_7_32_1
  doi: 10.1002/eji.201545772
SSID ssj0007283
Score 2.521315
Snippet Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro. These lipid‐bound structures carry a range of...
Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of...
Outer membrane vesicles ( OMV s) are constitutively produced by Gram‐negative bacteria both in vivo and in vitro . These lipid‐bound structures carry a range...
Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1120
SubjectTerms Bacterial membrane vesicles
Caspase
Caspase 1 - metabolism
Caspase-1
Caspase-11
Caspase-4
Caspase-5
Caspases - metabolism
caspases‐11/‐4/‐5
Cell activation
Cell Line
CRISPR
Extracellular Vesicles - metabolism
Gram-negative bacteria
Helicobacter pylori
Host-pathogen interactions
Humans
Immune system
Immunogenicity
inflammasome
Inflammasomes
Inflammasomes - metabolism
Inflammation
Innate immunity
Interleukin-1beta - metabolism
Lipopolysaccharides
Macrophages
Macrophages - immunology
Macrophages - metabolism
Membrane vesicles
Monocytes
Monocytes - immunology
Monocytes - metabolism
NOD‐like receptors
Pathogens
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Pseudomonas Infections - immunology
Pseudomonas Infections - metabolism
Pseudomonas Infections - microbiology
Signal Transduction
Title Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase‐5 in human monocytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fimcb.12190
https://www.ncbi.nlm.nih.gov/pubmed/30003588
https://www.proquest.com/docview/2218825736
https://search.proquest.com/docview/2070242154
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy8ZeRtt9ZeuKx_Y0MIsTx4mfxlpausGVMla4t-APefThkq7pFe6_n-zkbiuDvgVsYiPJ0k-WJQF8NLpB1TjPNXrJpfPIGysEL4oQTKhzW6qY7zw7V2eX8vu8mk8XbsP0rHKtE5Oi9r2Ld-SfC7JF5M3Upfpy_ZvHrlExujq10HgEO6IgU07yXM83DldeF2MZTjJKXCsppvKk8SXP1cLZWFkh6uJ_DdJ_KPM-aE1W53QXnk1wkX0d-bsHW9jtw-OxgeRqH57MptD4c1jNcEGeb4fsDof01o3F1BF2MeDS97R7MzCDN8tfV10_GBbzGe4IZzICgKzrO6Jwn1IkGYkcScnCDP0ijqY2PswZ0jwD8oqGWerrx-iXvVsRUn0Bl6cnP4_P-NRXgbtSlzm3wlpTayGN1oYQDVaWzjF6a0NJxkqJUAVU2io6nEaFyiNNr4RqPOoq93X5ErZpT_g6ZnyL4F0dCtlYWevCCqdLrIkXeeGkCBl8WBO3vR7LZ7RrtyOyoE0syOBgTfd2OkJD-5fhGbzfDJPwx4gGUbNf0hxSWDGmXckMXo382ixTpihp02TwKTHwgfXbb7Pjo_T15uGdvIWnBJiaMRfxALZvb5b4jkDJrT1MkncIO0cn5xc__gBDk-KU
link.rule.ids 314,780,784,12056,21388,27924,27925,31719,31720,33744,33745,43310,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVlAuFRQogQJGcEKyiJPYiU-orVptoVlVqJV6i_ysetikbbqV9t8zdrILCKm3SLZia2Y889nzAviiZOVEZSyVzha0MNbRSjNGs8x75ctU5yLkO9czMT0vflzwi_HBrR_DKlc6MSpq25nwRv4tQ1uEt5kyF9-vb2joGhW8q2MLjcewESqn8wls7B_OTn-tdXGZDYU40SxRKQo2FigNsTxXc6NDbYWgjf82Sf_hzH9ha7Q7R89hawSMZG_g8At45NpteDK0kFxuw9N6dI6_hGXt5nj3bR25d32MdiMheYSc9m5hO9y_6olyt4vLq7brFQkZDfeINAlCQNJ2LdK4i0mSBIUO5WSu-m4eRmMjH2IU6p7eUY7DJHb2I_jLziwRq76C86PDs4MpHTsrUJPLPKWaaa1KyQolpUJM47jGk-ys1j5HcyWY594JqQUeTyU8tw6ncyYq6yRPbZm_hgnuyb0JOd_MW1P6rKh0UcpMMyNzV2YpTzNTMJ_A5xVxm-uhgEazungEFjSRBQnsrujejIeob_6wPIFP62EU_-DTQGp2C5yDKit4tXmRwM7Ar_UyefSTVlUCXyMDH1i_Oa4P9uPX24d38hE2p2f1SXNyPPv5Dp4hfKqGzMRdmNzdLtx7hCh3-sMoh78BzmDlUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+vesicles+from+Pseudomonas+aeruginosa+activate+the+noncanonical+inflammasome+through+caspase%E2%80%905+in+human+monocytes&rft.jtitle=Immunology+and+cell+biology&rft.au=Bitto%2C+Natalie+J&rft.au=Baker%2C+Paul+J&rft.au=Dowling%2C+Jennifer+K&rft.au=Wray%E2%80%90McCann%2C+Georgie&rft.date=2018-11-01&rft.issn=0818-9641&rft.eissn=1440-1711&rft.volume=96&rft.issue=10&rft.spage=1120&rft.epage=1130&rft_id=info:doi/10.1111%2Fimcb.12190&rft.externalDBID=10.1111%252Fimcb.12190&rft.externalDocID=IMCB12190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0818-9641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0818-9641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0818-9641&client=summon