Metal chloride‐graphite intercalation compounds for rechargeable metal‐ion batteries
The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the...
Saved in:
Published in | Carbon energy Vol. 6; no. 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.10.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
Metal chloride‐graphite intercalation compounds are recognized as promising alternative electrode materials of graphite. It presents unique electronic characteristics and allows more metal‐ion storage with several energy storage mechanisms. Based on the designing of the graphite host, intercalator, and electrode structure, metal chloride‐graphite intercalation compounds delivered high capacity, fast electrochemical kinetics, and superior cycling stability for rechargeable metal‐ion batteries. |
---|---|
AbstractList | The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. Abstract The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. Metal chloride‐graphite intercalation compounds are recognized as promising alternative electrode materials of graphite. It presents unique electronic characteristics and allows more metal‐ion storage with several energy storage mechanisms. Based on the designing of the graphite host, intercalator, and electrode structure, metal chloride‐graphite intercalation compounds delivered high capacity, fast electrochemical kinetics, and superior cycling stability for rechargeable metal‐ion batteries. |
Author | Tan, Jun Wang, Fei Lu, Anbang Wang, Yuchen Liu, Zhendong Gu, Yue Wang, Shuang Zhang, Chengzhi Ye, Chong Liu, Quanbing |
Author_xml | – sequence: 1 givenname: Anbang orcidid: 0009-0008-7078-7992 surname: Lu fullname: Lu, Anbang organization: Guangdong University of Technology – sequence: 2 givenname: Fei orcidid: 0000-0003-1696-9660 surname: Wang fullname: Wang, Fei email: wangfei190@hnu.edu.cn organization: Hunan University – sequence: 3 givenname: Zhendong orcidid: 0009-0004-2811-113X surname: Liu fullname: Liu, Zhendong organization: Guangdong University of Technology – sequence: 4 givenname: Yuchen surname: Wang fullname: Wang, Yuchen organization: Hunan University – sequence: 5 givenname: Yue surname: Gu fullname: Gu, Yue organization: Ji Hua Laboratory – sequence: 6 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: Ji Hua Laboratory – sequence: 7 givenname: Chong surname: Ye fullname: Ye, Chong organization: Hunan University – sequence: 8 givenname: Quanbing surname: Liu fullname: Liu, Quanbing organization: Guangdong University of Technology – sequence: 9 givenname: Chengzhi orcidid: 0000-0002-2235-7313 surname: Zhang fullname: Zhang, Chengzhi email: zhangchz@jihualab.ac.cn organization: Ji Hua Laboratory – sequence: 10 givenname: Jun surname: Tan fullname: Tan, Jun email: tanjun@jihualab.ac.cn organization: Foshan University |
BookMark | eNp1kctqGzEUhkVJoWka6CMMdNPNOLrNRcti0jaQ0k0DyUqcOTqyZcYjVyNTvMsj9Bn7JJmxSyml2UhCfP93hP7X7GyIAzH2VvCF4FxeIR3koub8BTuXtWpKo-r27K_zK3Y5jhs-oaIRXJpzdv-FMvQFrvuYgqNfjz9XCXbrkKkIQ6aE0EMOcSgwbndxP7ix8DEViXANaUXQ9VRsZ8WUnLEO8pQKNL5hLz30I13-3i_Y3cfrb8vP5e3XTzfLD7clKqN4KZuaKuFc17W8mxbQAo0GQieNbypNLSB4x9E7UytC36jOSeGxk557U6kLdnPyuggbu0thC-lgIwR7vIhpZSHlgD1ZUxmqABtsZaMBurYWBLrWqDRVba0n17uTa5fi9z2N2W7iPg3T860SkmvR6uPE9ycKUxzHRP7PVMHtXIOda7BTDRO6-AfFkI__mROE_n-B8hT4EXo6PCu2y-sHOfNPIfWeDw |
CitedBy_id | crossref_primary_10_3390_c10040108 crossref_primary_10_1021_acs_chemrev_4c00805 |
Cites_doi | 10.1021/acs.jpcc.9b06726 10.1002/adma.202105898 10.1039/D0CS00187B 10.1039/C6CS00639F 10.1002/admi.201800606 10.1002/cey2.221 10.1016/j.enconman.2008.02.027 10.1038/s41467-017-00431-9 10.1002/aenm.201300600 10.1557/JMR.1989.1560 10.1002/cey2.141 10.1016/j.electacta.2016.02.001 10.1016/j.ensm.2019.07.023 10.1016/j.synthmet.2015.11.033 10.1002/adma.202212186 10.1016/j.jpcs.2003.10.015 10.1016/j.ensm.2022.10.015 10.1002/zaac.19322070403 10.1021/acsenergylett.2c02295 10.1002/aenm.201600862 10.1002/aenm.202301456 10.1039/C6EE02326F 10.1039/C6CS00776G 10.1016/j.synthmet.2016.11.020 10.1039/C8TA06670A 10.2320/matertrans.E-M2009813 10.1016/0167-2738(93)90155-V 10.1016/j.ensm.2023.01.042 10.1021/j150579a011 10.1016/j.chempr.2022.05.002 10.1021/acs.nanolett.1c00037 10.1002/adma.202104763 10.1039/C5TA03087K 10.1002/aenm.201802565 10.1016/j.ensm.2021.06.038 10.1021/acsenergylett.2c02240 10.1515/znb-1989-0702 10.1039/C9TA12651A 10.1002/tcr.201700057 10.1002/aenm.201601519 10.1021/ja110939a 10.1021/acssuschemeng.3c04086 10.1038/s41586-019-1175-6 10.1016/j.pmatsci.2019.100631 10.1038/s41586-019-1481-z 10.1039/C7CP00453B 10.1016/j.jallcom.2020.157178 10.1016/j.ensm.2023.102820 10.1002/adma.202000505 10.1007/s12274-023-5483-7 10.1016/j.jpcs.2006.01.046 10.1016/0379-6779(89)90368-8 10.1016/j.synthmet.2014.09.037 10.1039/D0EE03916K 10.1039/D1NR01660A 10.1016/j.carbon.2009.03.011 10.1080/15421406.2011.537941 10.1039/C9CP03453F 10.1002/aenm.201500357 10.1002/cssc.201300874 10.1038/nature14340 10.1002/aenm.202301944 10.1002/adfm.201000641 10.1039/D1TA08378C 10.1149/1945-7111/ac7e77 10.1016/j.carbon.2011.01.005 10.1103/PhysRevB.101.121103 10.1016/0379-6779(83)90029-2 10.1002/aenm.201904152 10.1021/acsenergylett.0c00337 10.1016/S0168-9002(01)01063-4 10.1016/j.ensm.2020.10.028 10.1039/D3EE02213G 10.1016/j.apcatb.2017.10.024 10.1007/s12274-019-2444-2 10.1016/0379-6779(85)90130-4 10.1002/aenm.202102693 10.1002/aenm.201970081 10.1002/smll.202107667 10.1002/aenm.201701648 10.1016/j.ensm.2020.12.027 10.1016/0379-6779(89)90389-5 10.1016/j.carbon.2020.10.023 10.1002/cey2.120 10.1038/s41560-021-00829-2 10.1002/cey2.224 10.1002/adma.201704538 10.1080/00018730110113644 10.1002/adma.201800561 10.1039/C4NR05070C 10.1002/adfm.202009801 10.1002/ente.201801091 10.1002/cey2.425 10.1002/aenm.202101126 10.1002/cey2.209 10.1021/jacs.5b06809 10.1016/0379-6779(83)90041-3 10.1039/C9CS00162J 10.1016/j.enchem.2019.100012 10.7209/tanso.1997.128 10.1016/j.joule.2023.02.001 10.1080/00018738800101369 10.1002/adma.202210734 10.7209/tanso.2008.151 10.1021/acsnano.2c05172 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG 8FH ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/cey2.600 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2637-9368 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_959e5ac7c8274aab861ea464c34e5864 10_1002_cey2_600 CEY2600 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22309062 – fundername: Jihua Laboratory funderid: X200191TL200; X220301XS220 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2022A1515110052 |
GroupedDBID | -SB -SC -S~ 0R~ 1OC 24P AAMMB ACCMX ACXQS ADKYN ADMLS ADZMN AEFGJ AEUYN AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS ATCPS AVUZU BBNVY BENPR BGLVJ BHPHI CAJEB CAJEC CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IEP ITC M7P M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PYCSY Q-- U1G U5L U5M WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ LK8 P62 PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c3930-276e51ddbb80bbb8a41c94aecd29f754e8acafd0cfd963ecf73bd21fcb2f0f953 |
IEDL.DBID | BENPR |
ISSN | 2637-9368 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Wed Aug 13 08:21:12 EDT 2025 Tue Jul 01 02:57:38 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Wed Aug 20 07:24:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3930-276e51ddbb80bbb8a41c94aecd29f754e8acafd0cfd963ecf73bd21fcb2f0f953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1696-9660 0000-0002-2235-7313 0009-0008-7078-7992 0009-0004-2811-113X |
OpenAccessLink | https://www.proquest.com/docview/3120418495?pq-origsite=%requestingapplication% |
PQID | 3120418495 |
PQPubID | 5066174 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_959e5ac7c8274aab861ea464c34e5864 proquest_journals_3120418495 crossref_primary_10_1002_cey2_600 crossref_citationtrail_10_1002_cey2_600 wiley_primary_10_1002_cey2_600_CEY2600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 20241001 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Carbon energy |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2004; 65 1959; 63 2009; 47 2017; 7 2017; 8 2023; 35 1989; 44 2021; 21 2023; 5 2002; 51 2023; 7 2023; 8 1988; 37 2019; 12 2017; 46 1983; 5 2016; 222 1983; 8 1932; 207 2020; 10 2019; 569 2008; 2008 2019; 123 2021; 36 2020; 8 2018; 6 2021; 38 2010; 20 2020; 5 2018; 8 2021; 31 1989; 34 2014; 4 2018; 5 2021; 34 2021; 33 1993; 63‐65 2006; 67 2015; 137 2024; 6 2009; 50 2019; 22 2019; 21 2018; 30 1985; 12 2014; 7 2021; 41 2014; 6 1997; 1997 2022; 169 2021; 9 2019; 7 2021; 6 1989; 4 2019; 9 2023; 13 2015; 5 2023; 11 2011; 535 2015; 3 2023; 56 2023; 16 2020; 83 2019; 1 2015; 520 2018; 224 2016; 205 2020; 101 2020; 32 2014; 198 2021; 50 2023; 60 2020; 109 2011; 133 2021; 14 2021; 13 2018; 18 2016; 6 2001; 470 2021; 11 2022; 4 2022; 7 2021; 854 2017; 10 2022; 8 2019; 48 2008; 49 2016; 212 2021; 172 2017; 19 2022; 53 2011; 49 2022; 16 2022; 18 2019; 572 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 Cheng Z (e_1_2_11_3_1) e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 Liu X (e_1_2_11_86_1) 2021; 38 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_109_1 e_1_2_11_18_1 Matsumoto R (e_1_2_11_42_1) 2020; 83 e_1_2_11_37_1 |
References_xml | – volume: 30 issue: 33 year: 2018 article-title: 30 years of lithium‐ion batteries publication-title: Adv Mater – volume: 535 start-page: 64 issue: 1 year: 2011 end-page: 73 article-title: Abnormal electron transport in graphite intercalation compounds with iron publication-title: Mol Cryst Liq Cryst – volume: 8 start-page: 171 issue: 1‐2 year: 1983 end-page: 176 article-title: Cyclotron resonance in SbCl ‐GICs publication-title: Synth Met – volume: 56 start-page: 532 year: 2023 end-page: 541 article-title: One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal‐based carbon anodes for sodium‐ion batteries publication-title: Energy Stor Mater – volume: 222 start-page: 351 year: 2016 end-page: 355 article-title: Highly electrically conductive and air‐stable metal chloride ternary graphite intercalation compounds with AlCl ‐FeCl and AlCl ‐CuCl prepared from flexible graphite sheets publication-title: Synth Met – volume: 50 start-page: 1607 issue: 7 year: 2009 end-page: 1611 article-title: Thermoelectric properties and electrical transport of graphite intercalation compounds publication-title: Mater Trans – volume: 8 start-page: 2393 issue: 9 year: 2022 end-page: 2409 article-title: An angstrom‐level d‐spacing control of graphite oxide using organofillers for high‐rate lithium storage publication-title: Chem – volume: 34 start-page: 85 issue: 1‐3 year: 1989 end-page: 89 article-title: Investigations of the nucleation process of metal chloride‐graphite intercalation compounds publication-title: Synth Met – volume: 21 start-page: 19378 issue: 35 year: 2019 end-page: 19390 article-title: New insights into the origin of unstable sodium graphite intercalation compounds publication-title: Phys Chem Chem Phys – volume: 51 start-page: 1 issue: 1 year: 2002 end-page: 186 article-title: Intercalation compounds of graphite publication-title: Adv Phys – volume: 6 start-page: 14174 issue: 23 year: 2014 end-page: 14179 article-title: A FeCl ‐graphite sandwich composite with Cl doping in graphite layers: a new anode material for high‐performance Li‐ion batteries publication-title: Nanoscale – volume: 5 start-page: e224 issue: 1 year: 2023 article-title: Localized‐domains staging structure and evolution in lithiated graphite publication-title: Carbon Energy – volume: 63 start-page: 1381 issue: 9 year: 1959 end-page: 1387 article-title: Phenomenological theory of ion solvation. Effective radii of hydrated ions publication-title: J Phys Chem – volume: 13 issue: 40 year: 2023 article-title: Carbon‐binder design for robust electrode‐electrolyte interfaces to enable high‐performance microsized‐silicon anode for batteries publication-title: Adv Energy Mater – volume: 5 issue: 15 year: 2018 article-title: Sandwich‐like FeCl @C as high‐performance anode materials for potassium‐ion batteries publication-title: Adv Mater Interfaces – volume: 12 start-page: 1836 issue: 8 year: 2019 end-page: 1844 article-title: Improving the cycle stability of FeCl ‐graphite intercalation compounds by polar Fe O trapping in lithium‐ion batteries publication-title: Nano Res – volume: 3 start-page: 15498 issue: 30 year: 2015 end-page: 15504 article-title: FeCl intercalated few‐layer graphene for high lithium‐ion storage performance publication-title: J Mater Chem A – volume: 133 start-page: 5941 issue: 15 year: 2011 end-page: 5946 article-title: Intercalation of few‐layer graphite flakes with FeCl : Raman determination of fermi level, layer by layer decoupling, and stability publication-title: J Am Chem Soc – volume: 1997 start-page: 128 issue: 178 year: 1997 end-page: 132 article-title: Reactions of metal chlorides in the interlayer of graphite publication-title: Tanso – volume: 169 issue: 7 year: 2022 article-title: Phase diagram of Li‐graphite intercalation compound formed by the charge/discharge reaction in Li‐ion battery publication-title: J Electrochem Soc – volume: 205 start-page: 266 year: 2016 end-page: 272 article-title: Changes in structure, morphology and electrochemical properties of NiCl ‐FeCl ‐PdCl ‐graphite intercalation compound affected by gaseous hydrogen reduction process publication-title: Electrochim Acta – volume: 50 start-page: 2388 issue: 4 year: 2021 end-page: 2443 article-title: Carbon materials for ion‐intercalation involved rechargeable battery technologies publication-title: Chem Soc Rev – volume: 8 start-page: 2430 issue: 5 year: 2020 end-page: 2438 article-title: Towards high‐volumetric performance of Na/Li‐ion batteries: a better anode material with molybdenum pentachloride‐graphite intercalation compounds (MoCl ‐GICs) publication-title: J Mater Chem A – volume: 109 year: 2020 article-title: Layered intercalation compounds: mechanisms, new methodologies, and advanced applications publication-title: Prog Mater Sci – volume: 7 issue: 2 year: 2017 article-title: Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host publication-title: Adv Energy Mater – volume: 20 start-page: 3504 issue: 20 year: 2010 end-page: 3509 article-title: FeCl ‐based few‐layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping publication-title: Adv Funct Mater – volume: 31 issue: 15 year: 2021 article-title: Energy accumulation enabling fast synthesis of intercalated graphite and operando decoupling for lithium storage publication-title: Adv Funct Mater – volume: 101 issue: 12 year: 2020 article-title: Van der Waals metamaterials publication-title: Phys Rev B – article-title: Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation publication-title: Carbon Energy – volume: 572 start-page: 511 issue: 7770 year: 2019 end-page: 515 article-title: Quantifying inactive lithium in lithium metal batteries publication-title: Nature – volume: 9 start-page: 27459 issue: 48 year: 2021 end-page: 27467 article-title: AlCl ‐graphite intercalation compounds as negative electrode materials for lithium‐ion capacitors publication-title: J Mater Chem A – volume: 18 start-page: 459 issue: 4 year: 2018 end-page: 479 article-title: Towards K‐ion and Na‐ion batteries as “beyond Li‐ion” publication-title: Chem Rec – volume: 44 start-page: 721 issue: 7 year: 1989 end-page: 728 article-title: Synthesis and structure of the graphite intercalation compounds of mercuric chloride publication-title: Z Naturforsch B Chem Sci – volume: 10 issue: 18 year: 2020 article-title: Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60°C publication-title: Adv Energy Mater – volume: 63‐65 start-page: 523 issue: 9 year: 1993 end-page: 527 article-title: Formation and stability of new FeCl ‐graphite intercalation compounds publication-title: Solid State Ionics – volume: 38 start-page: 3818 issue: 11 year: 2021 end-page: 3826 article-title: Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl ‐intercalated graphite intercalation compound publication-title: Acta Mater Compos Sin – volume: 11 issue: 48 year: 2021 article-title: Strategies for the analysis of graphite electrode function publication-title: Adv Energy Mater – volume: 19 start-page: 7980 issue: 11 year: 2017 end-page: 7989 article-title: The staging mechanism of AlCl intercalation in a graphite electrode for an aluminium‐ion battery publication-title: Phys Chem Chem Phys – volume: 10 start-page: 435 issue: 2 year: 2017 end-page: 459 article-title: Conversion cathodes for rechargeable lithium and lithium‐ion batteries publication-title: Energy Environ Sci – volume: 11 start-page: 14572 issue: 39 year: 2023 end-page: 14581 article-title: Hard carbon anode synthesized by an in situ porous strategy for advanced potassium‐ion batteries publication-title: ACS Sustainable Chem Eng – volume: 4 start-page: 1182 issue: 6 year: 2022 end-page: 1213 article-title: Research progress on carbon materials as negative electrodes in sodium‐ and potassium‐ion batteries publication-title: Carbon Energy – volume: 2008 start-page: 151 issue: 233 year: 2008 end-page: 156 article-title: Techniques for controlling stage structure of metal chloride‐GIC publication-title: Tanso – volume: 16 start-page: 4834 issue: 11 year: 2023 end-page: 4871 article-title: Recent status, key strategies and challenging perspectives of fast‐charging graphite anodes for lithium‐ion batteries publication-title: Energy Environ Sci – volume: 7 issue: 4 year: 2019 article-title: FeCl intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium‐ion batteries publication-title: Energy Technol – volume: 46 start-page: 7176 issue: 23 year: 2017 end-page: 7190 article-title: Biomass‐derived nanostructured carbons and their composites as anode materials for lithium ion batteries publication-title: Chem Soc Rev – volume: 33 issue: 52 year: 2021 article-title: Polymorphic phases of metal chlorides in the confined 2D space of bilayer graphene publication-title: Adv Mater – volume: 32 issue: 17 year: 2020 article-title: Pitch‐derived soft carbon as stable anode material for potassium ion batteries publication-title: Adv Mater – volume: 14 start-page: 2244 issue: 4 year: 2021 end-page: 2262 article-title: Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization publication-title: Energy Environ Sci – volume: 8 start-page: 339 issue: 1 year: 2017 article-title: Fast kinetics of magnesium monochloride cations in interlayer‐expanded titanium disulfide for magnesium rechargeable batteries publication-title: Nat Commun – volume: 6 start-page: e425 issue: 3 year: 2024 article-title: Charting the course to solid‐state dual‐ion batteries publication-title: Carbon Energy – volume: 198 start-page: 107 year: 2014 end-page: 112 article-title: Investigation of the high, stable electrical conductivity in graphite intercalation compounds prepared from flexible graphite sheets publication-title: Synth Met – volume: 30 issue: 3 year: 2018 article-title: Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation publication-title: Adv Mater – volume: 6 issue: 20 year: 2016 article-title: High performance Na‐CuCl rechargeable battery toward room temperature ZEBRA‐type battery publication-title: Adv Energy Mater – volume: 854 year: 2021 article-title: Cobalt chloride‐ferric chloride‐graphite bi‐intercalation compounds as anode materials for high‐performance lithium‐ion batteries publication-title: J Alloys Compd – volume: 569 start-page: 245 issue: 7755 year: 2019 end-page: 250 article-title: Aqueous Li‐ion battery enabled by halogen conversion‐intercalation chemistry in graphite publication-title: Nature – volume: 224 start-page: 53 year: 2018 end-page: 59 article-title: Influence of chemical exfoliation process on the activity of NiCl ‐FeCl ‐PdCl ‐graphite intercalation compound towards methanol electrooxidation publication-title: Appl Catal B – volume: 18 issue: 13 year: 2022 article-title: Manipulating the electronic structure of graphite intercalation compounds for boosting the bifunctional oxygen catalytic performance publication-title: Small – volume: 9 issue: 22 year: 2019 article-title: Staging: unraveling the potassium storage mechanism in graphite foam publication-title: Adv Energy Mater – volume: 207 start-page: 340 issue: 4 year: 1932 end-page: 352 article-title: Die Vorgänge bei dem Aufblähen von Graphit publication-title: Z Anorg Allg Chem – volume: 8 issue: 36 year: 2018 article-title: High‐rate and ultralong cycle‐life potassium ion batteries enabled by in situ engineering of yolk‐shell FeS @C structure on graphene matrix publication-title: Adv Energy Mater – volume: 34 start-page: 223 issue: 1‐3 year: 1989 end-page: 230 article-title: Structural characteristics of the graphite intercalation compounds of metal chlorides publication-title: Synth Met – volume: 470 start-page: 373 issue: 1‐2 year: 2001 end-page: 375 article-title: EXAFS study of the reaction of graphite‐MeCl (Me = Ni, Co) intercalation compounds with bromine fluorides publication-title: Nucl Instrum Methods Phys Res Sect A – volume: 8 start-page: 436 issue: 1 year: 2023 end-page: 446 article-title: Towards commercialization of graphite as an anode for Na‐ion batteries: evolution, virtues, and snags of solvent cointercalation publication-title: ACS Energy Lett – volume: 520 start-page: 324 issue: 7547 year: 2015 end-page: 328 article-title: An ultrafast rechargeable aluminium‐ion battery publication-title: Nature – volume: 37 start-page: 87 issue: 2 year: 1988 end-page: 254 article-title: The physics of ternary graphite intercalation compounds publication-title: Adv Phys – volume: 33 issue: 43 year: 2021 article-title: Abnormally high‐lithium storage in pure crystalline C nanoparticles publication-title: Adv Mater – volume: 4 start-page: 1560 issue: 6 year: 1989 end-page: 1568 article-title: Applications of graphite intercalation compounds publication-title: J Mater Res – volume: 16 start-page: 13704 issue: 9 year: 2022 end-page: 13714 article-title: Li‐compound anodes: a classification for high‐performance Li‐Ion battery anodes publication-title: ACS Nano – volume: 7 start-page: 87 issue: 1 year: 2014 end-page: 91 article-title: Ferric chloride‐graphite intercalation compounds as anode materials for Li‐ion batteries publication-title: ChemSusChem – volume: 49 start-page: 2440 issue: 9 year: 2008 end-page: 2446 article-title: Electrochemical behavior of exfoliated NiCl ‐graphite intercalation compound affected by hydrogen sorption publication-title: Energy Convers Manage – volume: 13 start-page: 10468 issue: 23 year: 2021 end-page: 10477 article-title: An AlCl coordinating interlayer spacing in microcrystalline graphite facilitates ultra‐stable and high‐performance sodium storage publication-title: Nanoscale – volume: 53 start-page: 927 year: 2022 end-page: 936 article-title: Operando formation of multi‐channel positive electrode achieved via tellurium alloying in liquid metal battery publication-title: Energy Storage Mater – volume: 123 start-page: 19246 issue: 31 year: 2019 end-page: 19253 article-title: Stage transitions in graphite intercalation compounds: role of the graphite structure publication-title: J Phys Chem C – volume: 83 start-page: 128 issue: 2 year: 2020 end-page: 129 article-title: Preparation of color samples of graphite intercalation compounds: analysis and use of colors publication-title: J Soc Photogr Sci Technol Jpn – volume: 5 issue: 12 year: 2015 article-title: An advanced Na‐FeCl ZEBRA battery for stationary energy storage application publication-title: Adv Energy Mater – volume: 4 issue: 2 year: 2014 article-title: Graphite intercalation compounds (GICs): a new type of promising anode material for lithium‐ion batteries publication-title: Adv Energy Mater – volume: 34 start-page: 708 year: 2021 end-page: 715 article-title: A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition publication-title: Energy Storage Mater – volume: 46 start-page: 3529 issue: 12 year: 2017 end-page: 3614 article-title: Sodium‐ion batteries: present and future publication-title: Chem Soc Rev – volume: 36 start-page: 147 year: 2021 end-page: 170 article-title: Graphite as anode materials: fundamental mechanism, recent progress and advances publication-title: Energy Stor Mater – volume: 172 start-page: 200 year: 2021 end-page: 206 article-title: Mildly‐expanded graphite with adjustable interlayer distance as high‐performance anode for potassium‐ion batteries publication-title: Carbon – volume: 4 start-page: 1151 issue: 6 year: 2022 end-page: 1168 article-title: K C phase induced expanded interlayer in ultra‐thin carbon toward full potassium‐ion capacitors publication-title: Carbon Energy – volume: 13 issue: 38 year: 2023 article-title: In situ pore formation in graphite through solvent co‐intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors publication-title: Adv Energy Mater – volume: 6 start-page: 17982 issue: 37 year: 2018 end-page: 17993 article-title: Strong anchoring effect of ferric chloride‐graphite intercalation compounds (FeCl ‐GICs) with tailored epoxy groups for high‐capacity and stable lithium storage publication-title: J Mater Chem A – volume: 67 start-page: 1193 issue: 5‐6 year: 2006 end-page: 1197 article-title: Synthesis and properties of ternary GIC with iron or copper chlorides publication-title: J Phys Chem Solids – volume: 7 start-page: 503 issue: 3 year: 2023 end-page: 514 article-title: Structural changes in the silver‐carbon composite anode interlayer of solid‐state batteries publication-title: Joule – volume: 1 issue: 2 year: 2019 article-title: Sodium‐ion battery anodes: status and future trends publication-title: EnergyChem – volume: 12 start-page: 327 issue: 1‐2 year: 1985 end-page: 333 article-title: Superlattice effects in acceptor GICs publication-title: Synth Met – volume: 49 start-page: 1834 issue: 6 year: 2011 end-page: 1841 article-title: Versatile behavior upon intercalation by chemical vapor transport of lanthanide trichlorides into graphite publication-title: Carbon – volume: 21 start-page: 2572 issue: 6 year: 2021 end-page: 2579 article-title: Graphite‐embedded lithium iron phosphate for high‐power‐energy cathodes publication-title: Nano Lett – volume: 41 start-page: 606 issue: 10 year: 2021 end-page: 613 article-title: An intercalation compound for high‐safe K metal batteries publication-title: Energy Storage Mater – volume: 65 start-page: 195 issue: 2‐3 year: 2004 end-page: 197 article-title: New point of view on anisotropy of electrical properties in graphite and some graphite intercalation compounds publication-title: J Phys Chem Solids – volume: 60 year: 2023 article-title: Recent advances in rocking chair batteries and beyond publication-title: Energy Stor Mater – volume: 212 start-page: 62 year: 2016 end-page: 68 article-title: Electrical conductivity and air stability of FeCl , CuCl , MoCl , and SbCl graphite intercalation compounds prepared from flexible graphite sheets publication-title: Synth Met – volume: 6 start-page: 683 issue: 6 year: 2021 article-title: Li Ti O spinel anodes publication-title: Nat Energy – volume: 5 start-page: 1156 issue: 4 year: 2020 end-page: 1158 article-title: Ultralow‐concentration electrolyte for Na‐ion batteries publication-title: ACS Energy Lett – volume: 47 start-page: 2143 issue: 8 year: 2009 end-page: 2144 article-title: Synthesis of a metal chloride‐graphite intercalation compound by a molten salt method publication-title: Carbon – volume: 5 start-page: 301 issue: 3‐4 year: 1983 end-page: 313 article-title: Theory of superconductivity in graphite intercalation compounds publication-title: Synth Met – volume: 4 start-page: 458 issue: 3 year: 2022 end-page: 479 article-title: Progress in electrolyte and interface of hard carbon and graphite anode for sodium‐ion battery publication-title: Carbon Energy – volume: 48 start-page: 4655 issue: 17 year: 2019 end-page: 4687 article-title: Intercalation chemistry of graphite: alkali metal ions and beyond publication-title: Chem Soc Rev – volume: 137 start-page: 11566 issue: 36 year: 2015 end-page: 11569 article-title: Carbon electrodes for K‐ion batteries publication-title: J Am Chem Soc – volume: 16 start-page: 6369 issue: 5 year: 2023 end-page: 6379 article-title: Multi‐componential metal intercalated graphite hybrids synthesized by co‐intercalation polymerization towards high‐efficient microwave absorptions publication-title: Nano Res – volume: 4 start-page: 129 issue: 2 year: 2022 end-page: 141 article-title: Boosting the cell performance of the SiO @C anode material via rational design of a Si‐valence gradient publication-title: Carbon Energy – volume: 35 issue: 16 year: 2023 article-title: On the road to the frontiers of lithium‐ion batteries: a review and outlook of graphene anodes publication-title: Adv Mater – volume: 22 start-page: 235 year: 2019 end-page: 255 article-title: Design and synthesis of electrode materials with both battery‐type and capacitive charge storage publication-title: Energy Storage Mater – volume: 35 issue: 31 year: 2023 article-title: Reconfiguring hard carbons with emerging sodium‐ion batteries: a perspective publication-title: Adv Mater – volume: 8 issue: 5 year: 2018 article-title: Short‐range order in mesoporous carbon boosts potassium‐ion battery performance publication-title: Adv Energy Mater – volume: 11 issue: 33 year: 2021 article-title: Fast charging of lithium‐ion batteries: a review of materials aspects publication-title: Adv Energy Mater – volume: 7 start-page: 3947 issue: 11 year: 2022 end-page: 3957 article-title: Solvent‐assisted hopping mechanism enables ultrafast charging of lithium‐ion batteries publication-title: ACS Energy Lett – ident: e_1_2_11_72_1 doi: 10.1021/acs.jpcc.9b06726 – ident: e_1_2_11_59_1 doi: 10.1002/adma.202105898 – ident: e_1_2_11_61_1 doi: 10.1039/D0CS00187B – ident: e_1_2_11_16_1 doi: 10.1039/C6CS00639F – ident: e_1_2_11_48_1 doi: 10.1002/admi.201800606 – ident: e_1_2_11_93_1 doi: 10.1002/cey2.221 – ident: e_1_2_11_80_1 doi: 10.1016/j.enconman.2008.02.027 – ident: e_1_2_11_106_1 doi: 10.1038/s41467-017-00431-9 – ident: e_1_2_11_45_1 doi: 10.1002/aenm.201300600 – ident: e_1_2_11_41_1 doi: 10.1557/JMR.1989.1560 – ident: e_1_2_11_11_1 doi: 10.1002/cey2.141 – ident: e_1_2_11_51_1 doi: 10.1016/j.electacta.2016.02.001 – ident: e_1_2_11_77_1 doi: 10.1016/j.ensm.2019.07.023 – ident: e_1_2_11_18_1 doi: 10.1016/j.synthmet.2015.11.033 – ident: e_1_2_11_95_1 doi: 10.1002/adma.202212186 – ident: e_1_2_11_69_1 doi: 10.1016/j.jpcs.2003.10.015 – ident: e_1_2_11_78_1 doi: 10.1016/j.ensm.2022.10.015 – ident: e_1_2_11_26_1 doi: 10.1002/zaac.19322070403 – ident: e_1_2_11_97_1 doi: 10.1021/acsenergylett.2c02295 – ident: e_1_2_11_105_1 doi: 10.1002/aenm.201600862 – ident: e_1_2_11_10_1 doi: 10.1002/aenm.202301456 – ident: e_1_2_11_84_1 doi: 10.1039/C6EE02326F – ident: e_1_2_11_91_1 doi: 10.1039/C6CS00776G – ident: e_1_2_11_17_1 doi: 10.1016/j.synthmet.2016.11.020 – ident: e_1_2_11_46_1 doi: 10.1039/C8TA06670A – ident: e_1_2_11_70_1 doi: 10.2320/matertrans.E-M2009813 – ident: e_1_2_11_39_1 doi: 10.1016/0167-2738(93)90155-V – ident: e_1_2_11_57_1 doi: 10.1016/j.ensm.2023.01.042 – ident: e_1_2_11_25_1 doi: 10.1021/j150579a011 – ident: e_1_2_11_87_1 doi: 10.1016/j.chempr.2022.05.002 – ident: e_1_2_11_3_1 article-title: Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation publication-title: Carbon Energy – ident: e_1_2_11_108_1 doi: 10.1021/acs.nanolett.1c00037 – ident: e_1_2_11_13_1 doi: 10.1002/adma.202104763 – ident: e_1_2_11_49_1 doi: 10.1039/C5TA03087K – ident: e_1_2_11_102_1 doi: 10.1002/aenm.201802565 – ident: e_1_2_11_104_1 doi: 10.1016/j.ensm.2021.06.038 – ident: e_1_2_11_54_1 doi: 10.1021/acsenergylett.2c02240 – ident: e_1_2_11_35_1 doi: 10.1515/znb-1989-0702 – ident: e_1_2_11_64_1 doi: 10.1039/C9TA12651A – ident: e_1_2_11_24_1 doi: 10.1002/tcr.201700057 – ident: e_1_2_11_74_1 doi: 10.1002/aenm.201601519 – ident: e_1_2_11_82_1 doi: 10.1021/ja110939a – ident: e_1_2_11_103_1 doi: 10.1021/acssuschemeng.3c04086 – ident: e_1_2_11_66_1 doi: 10.1038/s41586-019-1175-6 – ident: e_1_2_11_52_1 doi: 10.1016/j.pmatsci.2019.100631 – ident: e_1_2_11_9_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_11_55_1 doi: 10.1039/C7CP00453B – ident: e_1_2_11_65_1 doi: 10.1016/j.jallcom.2020.157178 – ident: e_1_2_11_60_1 doi: 10.1016/j.ensm.2023.102820 – ident: e_1_2_11_15_1 doi: 10.1002/adma.202000505 – ident: e_1_2_11_43_1 doi: 10.1007/s12274-023-5483-7 – ident: e_1_2_11_32_1 doi: 10.1016/j.jpcs.2006.01.046 – ident: e_1_2_11_36_1 doi: 10.1016/0379-6779(89)90368-8 – volume: 38 start-page: 3818 issue: 11 year: 2021 ident: e_1_2_11_86_1 article-title: Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3‐intercalated graphite intercalation compound publication-title: Acta Mater Compos Sin – ident: e_1_2_11_50_1 doi: 10.1016/j.synthmet.2014.09.037 – ident: e_1_2_11_94_1 doi: 10.1039/D0EE03916K – ident: e_1_2_11_47_1 doi: 10.1039/D1NR01660A – ident: e_1_2_11_33_1 doi: 10.1016/j.carbon.2009.03.011 – ident: e_1_2_11_31_1 doi: 10.1080/15421406.2011.537941 – ident: e_1_2_11_96_1 doi: 10.1039/C9CP03453F – ident: e_1_2_11_56_1 doi: 10.1002/aenm.201500357 – ident: e_1_2_11_62_1 doi: 10.1002/cssc.201300874 – ident: e_1_2_11_107_1 doi: 10.1038/nature14340 – volume: 83 start-page: 128 issue: 2 year: 2020 ident: e_1_2_11_42_1 article-title: Preparation of color samples of graphite intercalation compounds: analysis and use of colors publication-title: J Soc Photogr Sci Technol Jpn – ident: e_1_2_11_75_1 doi: 10.1002/aenm.202301944 – ident: e_1_2_11_81_1 doi: 10.1002/adfm.201000641 – ident: e_1_2_11_85_1 doi: 10.1039/D1TA08378C – ident: e_1_2_11_83_1 doi: 10.1149/1945-7111/ac7e77 – ident: e_1_2_11_38_1 doi: 10.1016/j.carbon.2011.01.005 – ident: e_1_2_11_21_1 doi: 10.1103/PhysRevB.101.121103 – ident: e_1_2_11_27_1 doi: 10.1016/0379-6779(83)90029-2 – ident: e_1_2_11_5_1 doi: 10.1002/aenm.201904152 – ident: e_1_2_11_98_1 doi: 10.1021/acsenergylett.0c00337 – ident: e_1_2_11_37_1 doi: 10.1016/S0168-9002(01)01063-4 – ident: e_1_2_11_76_1 doi: 10.1016/j.ensm.2020.10.028 – ident: e_1_2_11_7_1 doi: 10.1039/D3EE02213G – ident: e_1_2_11_34_1 doi: 10.1016/j.apcatb.2017.10.024 – ident: e_1_2_11_90_1 doi: 10.1007/s12274-019-2444-2 – ident: e_1_2_11_22_1 doi: 10.1016/0379-6779(85)90130-4 – ident: e_1_2_11_68_1 doi: 10.1002/aenm.202102693 – ident: e_1_2_11_58_1 doi: 10.1002/aenm.201970081 – ident: e_1_2_11_44_1 doi: 10.1002/smll.202107667 – ident: e_1_2_11_101_1 doi: 10.1002/aenm.201701648 – ident: e_1_2_11_4_1 doi: 10.1016/j.ensm.2020.12.027 – ident: e_1_2_11_30_1 doi: 10.1016/0379-6779(89)90389-5 – ident: e_1_2_11_88_1 doi: 10.1016/j.carbon.2020.10.023 – ident: e_1_2_11_14_1 doi: 10.1002/cey2.120 – ident: e_1_2_11_8_1 doi: 10.1038/s41560-021-00829-2 – ident: e_1_2_11_73_1 doi: 10.1002/cey2.224 – ident: e_1_2_11_89_1 doi: 10.1002/adma.201704538 – ident: e_1_2_11_29_1 doi: 10.1080/00018730110113644 – ident: e_1_2_11_2_1 doi: 10.1002/adma.201800561 – ident: e_1_2_11_53_1 doi: 10.1039/C4NR05070C – ident: e_1_2_11_19_1 doi: 10.1002/adfm.202009801 – ident: e_1_2_11_63_1 doi: 10.1002/ente.201801091 – ident: e_1_2_11_109_1 doi: 10.1002/cey2.425 – ident: e_1_2_11_6_1 doi: 10.1002/aenm.202101126 – ident: e_1_2_11_99_1 doi: 10.1002/cey2.209 – ident: e_1_2_11_100_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_11_28_1 doi: 10.1016/0379-6779(83)90041-3 – ident: e_1_2_11_67_1 doi: 10.1039/C9CS00162J – ident: e_1_2_11_92_1 doi: 10.1016/j.enchem.2019.100012 – ident: e_1_2_11_20_1 doi: 10.7209/tanso.1997.128 – ident: e_1_2_11_79_1 doi: 10.1016/j.joule.2023.02.001 – ident: e_1_2_11_40_1 doi: 10.1080/00018738800101369 – ident: e_1_2_11_12_1 doi: 10.1002/adma.202210734 – ident: e_1_2_11_71_1 doi: 10.7209/tanso.2008.151 – ident: e_1_2_11_23_1 doi: 10.1021/acsnano.2c05172 |
SSID | ssj0002171029 |
Score | 2.2838154 |
SecondaryResourceType | review_article |
Snippet | The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from... Abstract The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | additional capacity Alternative energy sources Anodes Batteries Carbon Chloride Chlorides Conductivity Decoupling Design Design optimization Electrodes Energy storage Graphite graphite intercalation compounds high conductivity Intercalation Intercalation compounds Interlayers Introduced species Lithium metal chloride Metal chlorides Metals metal‐ion batteries Phase transitions Silicon Tap density |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27Tt1AEIZXERUpELeIAwQZKYLKYb03e8uAQCgSVCAdqtVeZkUBh-gARbo8Qp4xT8LM2gcZiShNGhf22lrNeD3_WLPfMPalIcSe4apugf5WWS5rzFVSDSZJ62UHogBMLy7N-bX6PtXTUasvqgnr8cC94Y6stqB9bGOH-ZP3oTMNeGVUlAp0ZwoJFGPeKJmibzAKbYycdkGb5eIowk_x1dBGtlH8KZj-N9pyrFBLiDlbZSuDNqy-9XNaYx9gts4-joiBG2x6AaiWq3hLhXMJ_vz6XYjTqBsrAj_M0eLF1BWVilPHpMcKVWmFnzUiIgHtk6ru6RF4Jw0LBa-J2fImuz47vTo5r4fmCHWUVvJatAZ0k1IIHQ948KqJVnmISdjcagWdjz4nHnPCNQYxtzIk0eQYRObZavmJLc0eZrDFqtgkDyg9AqBls-TWK0hdBB1QH0mTJ-xwYTIXB3I4NbC4cz3zWDgyrkPjTtj-68gfPS3jnTHHZPXX68S3LifQ627wuvuX1ydsd-EzNyy6RycbwRVmrFZP2EHx418n4U5ObwjNv_0_JrPDlgVKnb7Eb5ctPc2f4TNKlaewV97KF66G6mg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEMetQi_lgOhLbKEolVB7SnH8SnwEBEJIVD2AtD1ZfozbAyxolx648RH4jHwSZpzsFiQqcckhGUfROOP52xr_zNh2Q4g9w1XdAq1WWS5rnKukGkyS1ssORAGYnvwwR2fqeKzHQ1Ul7YXp-RCLBTeKjDJeU4D7MNv5Bw2NcCO-Y7peYq9pZy1x84X6uVhfQamNuZPUrzCyra003Zw9y8XOvPGTbFSg_U-U5mO9WhLO4RpbHZRitdt37Vv2Cibv2MojfuB7Nj4B1M5V_ENldAnub-8KfxpVZEUYiCn6vzi-osJxOj9pVqFGrXCQIz4S0K6p6oJegS3JLBTYJs6dP7Czw4PT_aN6OCqhjtJKXovWgG5SCqHjAS9eNdEqDzEJm1utoPPR58RjThhxEHMrQxJNjkFknq2WH9ny5HIC66yKTfKAQiQAeJUlt15B6iLogGpJmjxi3-Yuc3HgiNNxFueuJyALR8516NwR-7KwvOrZGc_Y7JHXF8-Jdl1uXE5_uyF4nNUWtI9t7HAO7X3oTIPfZlSUCnRn1IhtzvvMDSE4c7IRXOH81eoR-1r68b8f4fYPfhGo_9NLDTfYG4Hipi_q22TL19O_8BnFyXXYKn_hA0CZ41k priority: 102 providerName: Wiley-Blackwell |
Title | Metal chloride‐graphite intercalation compounds for rechargeable metal‐ion batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.600 https://www.proquest.com/docview/3120418495 https://doaj.org/article/959e5ac7c8274aab861ea464c34e5864 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoe4FDxVOklGiREJyW7vqxa58QrRIqpFQVolI4WX6MywGSkpQDF8RP4DfyS5hxnBAk4OLD7qxlje3xN7Pjbxh72hLFXtfIugeKVplG1OirxBq6KIwTGngmMJ2cdacX8s1UTUvAbVnSKtc2MRvqOA8UIz8SLW8kuiNGvbz6XFPVKPq7Wkpo7LA9NMEana-949HZ-dtNlAUBN56gZs062_CjAF_5i44utG2dQ5mu_w-MuY1U81Ezvs32C0asXq0m9Q67AbO77NYWc-A9Np0AouYqfKAEugg_v__IzNM41ooIIBao-azyilLGqXLSskJ0WqF5I2YkoPtS1SfqAr8kMZ9pNtFrvs8uxqN3J6d1KZJQB2FEU_O-A9XG6L1uPDZOtsFIByFyk3olQbvgUmxCirjXIKRe-MjbFDxPTTJKPGC7s_kMHrIqtNEBQhAP4GQSjXESog6gPOIk0aUBe75WmQ2FQZwKWXy0K-5jbkm5FpU7YE82klcr1oy_yByT1jfviec6P5gvLm3ZNtYoA8qFPmj0np3zumtxbJ0MQoLSnRyww_Wc2bL5lvb3UhmwZ3ke_zkIezJ6TxT9B__v5xG7yRHMrJL4Dtnu9eILPEYwcu2HbIfLc2z1-PWwrL5hduyxnXwb_QKPZudQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYWiBIPE6hju08fEAISpct7fbUSsvJ-DEuB7pbdotQb_wEfgk_il_CjJMsiwTceskhcaxoZmx_44y_j7HHBVHsVVzlNdBuleYyx1wl5FAFqa1sQCQC0_FBNTpS7yblZI396M_CUFllPyemiTrMPO2Rb8lCcIXpiC5fnn7OSTWK_q72EhptWOzB-VdM2RYvdt-gf58IMdw53B7lnapA7qWWPBd1BWURgnMNd3ixqvBaWfBB6FiXChrrbQzcx4DBCT7W0gVRRO9E5FGTSgRO-ZeUlJpGVDN8u9zTQXiP67XuOW652PJwLp5XdHxuZdVL4gB_INpVXJwWtuF1dq1DpNmrNoRusDWY3mRXV3gKb7HJGBCjZ_4jlesF-Pnte-K5RstkRDcxRz8nB2dUoE46TYsMsXCGkynxMAGdzspOqAt8k5q5ROqJOfptdnQhxrvD1qezKdxlmS-CBQQ8DsCqKLm2CkLjoXSIymQVB-xZbzLjO75yks34ZFqmZWHIuAaNO2CPli1PW46Ov7R5TVZfPidW7XRjNj823SA1utRQWl_7BnN1a11TFfhtlfJSQdlUasA2e5-ZbqgvzO_AHLCnyY___AizvfOeBAHu_b-fh-zy6HC8b_Z3D_Y22BWBMKotH9xk62fzL3AfYdCZe5BiL2MfLjrYfwGPlCH8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQC0PEShlkXiclnht78MHhGibqKU0qhCVwsn4MYYDJG1ShHrjJ_B7-Dn8Emb2EYIE3HrZw67XWs2M7W-84-9j7FFGFHsFV2kJtFuluUwxVwkpFEFqKysQNYHp0bjYP1GvJvlkjf3ozsJQWWU3J9YTdZh52iMfyExwhemIzgexLYs43hu9OD1LSUGK_rR2chpNiBzCxVdM3xbPD_bQ14-FGA3f7u6nrcJA6qWWPBVlAXkWgnMVd3ixKvNaWfBB6FjmCirrbQzcx4CBCj6W0gWRRe9E5FGTYgRO_-slZkW8x9Z3huPjN8sdHgT7uHrrjvGWi4GHC_GsoMN0K2tgLRXwB75dRcn1MjfaYNdbfJq8bAJqk63B9Aa7tsJaeJNNjgARe-I_UvFegJ_fvtes12ibhMgn5uj12t0JlauTatMiQWSc4NRKrExAZ7WSz9QFvknNXE3xiRn7LXZyKea7zXrT2RTusMRnwQLCHwdgVZRcWwWh8pA7xGiyiH32tDOZ8S17OYlofDIN77IwZFyDxu2zh8uWpw1jx1_a7JDVl8-JY7u-MZt_MO2QNTrXkFtf-gozd2tdVWT4bYXyUkFeFarPtjqfmXbgL8zvMO2zJ7Uf__kRZnf4juQB7v6_nwfsCga6eX0wPrzHrgrEVE0t4Rbrnc-_wH3EROduuw2-hL2_7Hj_BUTxJ44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+chloride%E2%80%90graphite+intercalation+compounds+for+rechargeable+metal%E2%80%90ion+batteries&rft.jtitle=Carbon+energy&rft.au=Lu%2C+Anbang&rft.au=Wang%2C+Fei&rft.au=Liu%2C+Zhendong&rft.au=Wang%2C+Yuchen&rft.date=2024-10-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=6&rft.issue=10&rft_id=info:doi/10.1002%2Fcey2.600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cey2_600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon |