Metal chloride‐graphite intercalation compounds for rechargeable metal‐ion batteries

The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the...

Full description

Saved in:
Bibliographic Details
Published inCarbon energy Vol. 6; no. 10
Main Authors Lu, Anbang, Wang, Fei, Liu, Zhendong, Wang, Yuchen, Gu, Yue, Wang, Shuang, Ye, Chong, Liu, Quanbing, Zhang, Chengzhi, Tan, Jun
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.10.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. Metal chloride‐graphite intercalation compounds are recognized as promising alternative electrode materials of graphite. It presents unique electronic characteristics and allows more metal‐ion storage with several energy storage mechanisms. Based on the designing of the graphite host, intercalator, and electrode structure, metal chloride‐graphite intercalation compounds delivered high capacity, fast electrochemical kinetics, and superior cycling stability for rechargeable metal‐ion batteries.
AbstractList The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
Abstract The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward. Metal chloride‐graphite intercalation compounds are recognized as promising alternative electrode materials of graphite. It presents unique electronic characteristics and allows more metal‐ion storage with several energy storage mechanisms. Based on the designing of the graphite host, intercalator, and electrode structure, metal chloride‐graphite intercalation compounds delivered high capacity, fast electrochemical kinetics, and superior cycling stability for rechargeable metal‐ion batteries.
Author Tan, Jun
Wang, Fei
Lu, Anbang
Wang, Yuchen
Liu, Zhendong
Gu, Yue
Wang, Shuang
Zhang, Chengzhi
Ye, Chong
Liu, Quanbing
Author_xml – sequence: 1
  givenname: Anbang
  orcidid: 0009-0008-7078-7992
  surname: Lu
  fullname: Lu, Anbang
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Fei
  orcidid: 0000-0003-1696-9660
  surname: Wang
  fullname: Wang, Fei
  email: wangfei190@hnu.edu.cn
  organization: Hunan University
– sequence: 3
  givenname: Zhendong
  orcidid: 0009-0004-2811-113X
  surname: Liu
  fullname: Liu, Zhendong
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Yuchen
  surname: Wang
  fullname: Wang, Yuchen
  organization: Hunan University
– sequence: 5
  givenname: Yue
  surname: Gu
  fullname: Gu, Yue
  organization: Ji Hua Laboratory
– sequence: 6
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Ji Hua Laboratory
– sequence: 7
  givenname: Chong
  surname: Ye
  fullname: Ye, Chong
  organization: Hunan University
– sequence: 8
  givenname: Quanbing
  surname: Liu
  fullname: Liu, Quanbing
  organization: Guangdong University of Technology
– sequence: 9
  givenname: Chengzhi
  orcidid: 0000-0002-2235-7313
  surname: Zhang
  fullname: Zhang, Chengzhi
  email: zhangchz@jihualab.ac.cn
  organization: Ji Hua Laboratory
– sequence: 10
  givenname: Jun
  surname: Tan
  fullname: Tan, Jun
  email: tanjun@jihualab.ac.cn
  organization: Foshan University
BookMark eNp1kctqGzEUhkVJoWka6CMMdNPNOLrNRcti0jaQ0k0DyUqcOTqyZcYjVyNTvMsj9Bn7JJmxSyml2UhCfP93hP7X7GyIAzH2VvCF4FxeIR3koub8BTuXtWpKo-r27K_zK3Y5jhs-oaIRXJpzdv-FMvQFrvuYgqNfjz9XCXbrkKkIQ6aE0EMOcSgwbndxP7ix8DEViXANaUXQ9VRsZ8WUnLEO8pQKNL5hLz30I13-3i_Y3cfrb8vP5e3XTzfLD7clKqN4KZuaKuFc17W8mxbQAo0GQieNbypNLSB4x9E7UytC36jOSeGxk557U6kLdnPyuggbu0thC-lgIwR7vIhpZSHlgD1ZUxmqABtsZaMBurYWBLrWqDRVba0n17uTa5fi9z2N2W7iPg3T860SkmvR6uPE9ycKUxzHRP7PVMHtXIOda7BTDRO6-AfFkI__mROE_n-B8hT4EXo6PCu2y-sHOfNPIfWeDw
CitedBy_id crossref_primary_10_3390_c10040108
crossref_primary_10_1021_acs_chemrev_4c00805
Cites_doi 10.1021/acs.jpcc.9b06726
10.1002/adma.202105898
10.1039/D0CS00187B
10.1039/C6CS00639F
10.1002/admi.201800606
10.1002/cey2.221
10.1016/j.enconman.2008.02.027
10.1038/s41467-017-00431-9
10.1002/aenm.201300600
10.1557/JMR.1989.1560
10.1002/cey2.141
10.1016/j.electacta.2016.02.001
10.1016/j.ensm.2019.07.023
10.1016/j.synthmet.2015.11.033
10.1002/adma.202212186
10.1016/j.jpcs.2003.10.015
10.1016/j.ensm.2022.10.015
10.1002/zaac.19322070403
10.1021/acsenergylett.2c02295
10.1002/aenm.201600862
10.1002/aenm.202301456
10.1039/C6EE02326F
10.1039/C6CS00776G
10.1016/j.synthmet.2016.11.020
10.1039/C8TA06670A
10.2320/matertrans.E-M2009813
10.1016/0167-2738(93)90155-V
10.1016/j.ensm.2023.01.042
10.1021/j150579a011
10.1016/j.chempr.2022.05.002
10.1021/acs.nanolett.1c00037
10.1002/adma.202104763
10.1039/C5TA03087K
10.1002/aenm.201802565
10.1016/j.ensm.2021.06.038
10.1021/acsenergylett.2c02240
10.1515/znb-1989-0702
10.1039/C9TA12651A
10.1002/tcr.201700057
10.1002/aenm.201601519
10.1021/ja110939a
10.1021/acssuschemeng.3c04086
10.1038/s41586-019-1175-6
10.1016/j.pmatsci.2019.100631
10.1038/s41586-019-1481-z
10.1039/C7CP00453B
10.1016/j.jallcom.2020.157178
10.1016/j.ensm.2023.102820
10.1002/adma.202000505
10.1007/s12274-023-5483-7
10.1016/j.jpcs.2006.01.046
10.1016/0379-6779(89)90368-8
10.1016/j.synthmet.2014.09.037
10.1039/D0EE03916K
10.1039/D1NR01660A
10.1016/j.carbon.2009.03.011
10.1080/15421406.2011.537941
10.1039/C9CP03453F
10.1002/aenm.201500357
10.1002/cssc.201300874
10.1038/nature14340
10.1002/aenm.202301944
10.1002/adfm.201000641
10.1039/D1TA08378C
10.1149/1945-7111/ac7e77
10.1016/j.carbon.2011.01.005
10.1103/PhysRevB.101.121103
10.1016/0379-6779(83)90029-2
10.1002/aenm.201904152
10.1021/acsenergylett.0c00337
10.1016/S0168-9002(01)01063-4
10.1016/j.ensm.2020.10.028
10.1039/D3EE02213G
10.1016/j.apcatb.2017.10.024
10.1007/s12274-019-2444-2
10.1016/0379-6779(85)90130-4
10.1002/aenm.202102693
10.1002/aenm.201970081
10.1002/smll.202107667
10.1002/aenm.201701648
10.1016/j.ensm.2020.12.027
10.1016/0379-6779(89)90389-5
10.1016/j.carbon.2020.10.023
10.1002/cey2.120
10.1038/s41560-021-00829-2
10.1002/cey2.224
10.1002/adma.201704538
10.1080/00018730110113644
10.1002/adma.201800561
10.1039/C4NR05070C
10.1002/adfm.202009801
10.1002/ente.201801091
10.1002/cey2.425
10.1002/aenm.202101126
10.1002/cey2.209
10.1021/jacs.5b06809
10.1016/0379-6779(83)90041-3
10.1039/C9CS00162J
10.1016/j.enchem.2019.100012
10.7209/tanso.1997.128
10.1016/j.joule.2023.02.001
10.1080/00018738800101369
10.1002/adma.202210734
10.7209/tanso.2008.151
10.1021/acsnano.2c05172
ContentType Journal Article
Copyright 2024 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/cey2.600
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-9368
EndPage n/a
ExternalDocumentID oai_doaj_org_article_959e5ac7c8274aab861ea464c34e5864
10_1002_cey2_600
CEY2600
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22309062
– fundername: Jihua Laboratory
  funderid: X200191TL200; X220301XS220
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2022A1515110052
GroupedDBID -SB
-SC
-S~
0R~
1OC
24P
AAMMB
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
AEFGJ
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
ATCPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CAJEB
CAJEC
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
M7P
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PYCSY
Q--
U1G
U5L
U5M
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c3930-276e51ddbb80bbb8a41c94aecd29f754e8acafd0cfd963ecf73bd21fcb2f0f953
IEDL.DBID BENPR
ISSN 2637-9368
IngestDate Wed Aug 27 01:29:19 EDT 2025
Wed Aug 13 08:21:12 EDT 2025
Tue Jul 01 02:57:38 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Wed Aug 20 07:24:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3930-276e51ddbb80bbb8a41c94aecd29f754e8acafd0cfd963ecf73bd21fcb2f0f953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1696-9660
0000-0002-2235-7313
0009-0008-7078-7992
0009-0004-2811-113X
OpenAccessLink https://www.proquest.com/docview/3120418495?pq-origsite=%requestingapplication%
PQID 3120418495
PQPubID 5066174
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_959e5ac7c8274aab861ea464c34e5864
proquest_journals_3120418495
crossref_primary_10_1002_cey2_600
crossref_citationtrail_10_1002_cey2_600
wiley_primary_10_1002_cey2_600_CEY2600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Carbon energy
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2004; 65
1959; 63
2009; 47
2017; 7
2017; 8
2023; 35
1989; 44
2021; 21
2023; 5
2002; 51
2023; 7
2023; 8
1988; 37
2019; 12
2017; 46
1983; 5
2016; 222
1983; 8
1932; 207
2020; 10
2019; 569
2008; 2008
2019; 123
2021; 36
2020; 8
2018; 6
2021; 38
2010; 20
2020; 5
2018; 8
2021; 31
1989; 34
2014; 4
2018; 5
2021; 34
2021; 33
1993; 63‐65
2006; 67
2015; 137
2024; 6
2009; 50
2019; 22
2019; 21
2018; 30
1985; 12
2014; 7
2021; 41
2014; 6
1997; 1997
2022; 169
2021; 9
2019; 7
2021; 6
1989; 4
2019; 9
2023; 13
2015; 5
2023; 11
2011; 535
2015; 3
2023; 56
2023; 16
2020; 83
2019; 1
2015; 520
2018; 224
2016; 205
2020; 101
2020; 32
2014; 198
2021; 50
2023; 60
2020; 109
2011; 133
2021; 14
2021; 13
2018; 18
2016; 6
2001; 470
2021; 11
2022; 4
2022; 7
2021; 854
2017; 10
2022; 8
2019; 48
2008; 49
2016; 212
2021; 172
2017; 19
2022; 53
2011; 49
2022; 16
2022; 18
2019; 572
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
Cheng Z (e_1_2_11_3_1)
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
Liu X (e_1_2_11_86_1) 2021; 38
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_109_1
e_1_2_11_18_1
Matsumoto R (e_1_2_11_42_1) 2020; 83
e_1_2_11_37_1
References_xml – volume: 30
  issue: 33
  year: 2018
  article-title: 30 years of lithium‐ion batteries
  publication-title: Adv Mater
– volume: 535
  start-page: 64
  issue: 1
  year: 2011
  end-page: 73
  article-title: Abnormal electron transport in graphite intercalation compounds with iron
  publication-title: Mol Cryst Liq Cryst
– volume: 8
  start-page: 171
  issue: 1‐2
  year: 1983
  end-page: 176
  article-title: Cyclotron resonance in SbCl ‐GICs
  publication-title: Synth Met
– volume: 56
  start-page: 532
  year: 2023
  end-page: 541
  article-title: One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal‐based carbon anodes for sodium‐ion batteries
  publication-title: Energy Stor Mater
– volume: 222
  start-page: 351
  year: 2016
  end-page: 355
  article-title: Highly electrically conductive and air‐stable metal chloride ternary graphite intercalation compounds with AlCl ‐FeCl and AlCl ‐CuCl prepared from flexible graphite sheets
  publication-title: Synth Met
– volume: 50
  start-page: 1607
  issue: 7
  year: 2009
  end-page: 1611
  article-title: Thermoelectric properties and electrical transport of graphite intercalation compounds
  publication-title: Mater Trans
– volume: 8
  start-page: 2393
  issue: 9
  year: 2022
  end-page: 2409
  article-title: An angstrom‐level d‐spacing control of graphite oxide using organofillers for high‐rate lithium storage
  publication-title: Chem
– volume: 34
  start-page: 85
  issue: 1‐3
  year: 1989
  end-page: 89
  article-title: Investigations of the nucleation process of metal chloride‐graphite intercalation compounds
  publication-title: Synth Met
– volume: 21
  start-page: 19378
  issue: 35
  year: 2019
  end-page: 19390
  article-title: New insights into the origin of unstable sodium graphite intercalation compounds
  publication-title: Phys Chem Chem Phys
– volume: 51
  start-page: 1
  issue: 1
  year: 2002
  end-page: 186
  article-title: Intercalation compounds of graphite
  publication-title: Adv Phys
– volume: 6
  start-page: 14174
  issue: 23
  year: 2014
  end-page: 14179
  article-title: A FeCl ‐graphite sandwich composite with Cl doping in graphite layers: a new anode material for high‐performance Li‐ion batteries
  publication-title: Nanoscale
– volume: 5
  start-page: e224
  issue: 1
  year: 2023
  article-title: Localized‐domains staging structure and evolution in lithiated graphite
  publication-title: Carbon Energy
– volume: 63
  start-page: 1381
  issue: 9
  year: 1959
  end-page: 1387
  article-title: Phenomenological theory of ion solvation. Effective radii of hydrated ions
  publication-title: J Phys Chem
– volume: 13
  issue: 40
  year: 2023
  article-title: Carbon‐binder design for robust electrode‐electrolyte interfaces to enable high‐performance microsized‐silicon anode for batteries
  publication-title: Adv Energy Mater
– volume: 5
  issue: 15
  year: 2018
  article-title: Sandwich‐like FeCl @C as high‐performance anode materials for potassium‐ion batteries
  publication-title: Adv Mater Interfaces
– volume: 12
  start-page: 1836
  issue: 8
  year: 2019
  end-page: 1844
  article-title: Improving the cycle stability of FeCl ‐graphite intercalation compounds by polar Fe O trapping in lithium‐ion batteries
  publication-title: Nano Res
– volume: 3
  start-page: 15498
  issue: 30
  year: 2015
  end-page: 15504
  article-title: FeCl intercalated few‐layer graphene for high lithium‐ion storage performance
  publication-title: J Mater Chem A
– volume: 133
  start-page: 5941
  issue: 15
  year: 2011
  end-page: 5946
  article-title: Intercalation of few‐layer graphite flakes with FeCl : Raman determination of fermi level, layer by layer decoupling, and stability
  publication-title: J Am Chem Soc
– volume: 1997
  start-page: 128
  issue: 178
  year: 1997
  end-page: 132
  article-title: Reactions of metal chlorides in the interlayer of graphite
  publication-title: Tanso
– volume: 169
  issue: 7
  year: 2022
  article-title: Phase diagram of Li‐graphite intercalation compound formed by the charge/discharge reaction in Li‐ion battery
  publication-title: J Electrochem Soc
– volume: 205
  start-page: 266
  year: 2016
  end-page: 272
  article-title: Changes in structure, morphology and electrochemical properties of NiCl ‐FeCl ‐PdCl ‐graphite intercalation compound affected by gaseous hydrogen reduction process
  publication-title: Electrochim Acta
– volume: 50
  start-page: 2388
  issue: 4
  year: 2021
  end-page: 2443
  article-title: Carbon materials for ion‐intercalation involved rechargeable battery technologies
  publication-title: Chem Soc Rev
– volume: 8
  start-page: 2430
  issue: 5
  year: 2020
  end-page: 2438
  article-title: Towards high‐volumetric performance of Na/Li‐ion batteries: a better anode material with molybdenum pentachloride‐graphite intercalation compounds (MoCl ‐GICs)
  publication-title: J Mater Chem A
– volume: 109
  year: 2020
  article-title: Layered intercalation compounds: mechanisms, new methodologies, and advanced applications
  publication-title: Prog Mater Sci
– volume: 7
  issue: 2
  year: 2017
  article-title: Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host
  publication-title: Adv Energy Mater
– volume: 20
  start-page: 3504
  issue: 20
  year: 2010
  end-page: 3509
  article-title: FeCl ‐based few‐layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping
  publication-title: Adv Funct Mater
– volume: 31
  issue: 15
  year: 2021
  article-title: Energy accumulation enabling fast synthesis of intercalated graphite and operando decoupling for lithium storage
  publication-title: Adv Funct Mater
– volume: 101
  issue: 12
  year: 2020
  article-title: Van der Waals metamaterials
  publication-title: Phys Rev B
– article-title: Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation
  publication-title: Carbon Energy
– volume: 572
  start-page: 511
  issue: 7770
  year: 2019
  end-page: 515
  article-title: Quantifying inactive lithium in lithium metal batteries
  publication-title: Nature
– volume: 9
  start-page: 27459
  issue: 48
  year: 2021
  end-page: 27467
  article-title: AlCl ‐graphite intercalation compounds as negative electrode materials for lithium‐ion capacitors
  publication-title: J Mater Chem A
– volume: 18
  start-page: 459
  issue: 4
  year: 2018
  end-page: 479
  article-title: Towards K‐ion and Na‐ion batteries as “beyond Li‐ion”
  publication-title: Chem Rec
– volume: 44
  start-page: 721
  issue: 7
  year: 1989
  end-page: 728
  article-title: Synthesis and structure of the graphite intercalation compounds of mercuric chloride
  publication-title: Z Naturforsch B Chem Sci
– volume: 10
  issue: 18
  year: 2020
  article-title: Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60°C
  publication-title: Adv Energy Mater
– volume: 63‐65
  start-page: 523
  issue: 9
  year: 1993
  end-page: 527
  article-title: Formation and stability of new FeCl ‐graphite intercalation compounds
  publication-title: Solid State Ionics
– volume: 38
  start-page: 3818
  issue: 11
  year: 2021
  end-page: 3826
  article-title: Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl ‐intercalated graphite intercalation compound
  publication-title: Acta Mater Compos Sin
– volume: 11
  issue: 48
  year: 2021
  article-title: Strategies for the analysis of graphite electrode function
  publication-title: Adv Energy Mater
– volume: 19
  start-page: 7980
  issue: 11
  year: 2017
  end-page: 7989
  article-title: The staging mechanism of AlCl intercalation in a graphite electrode for an aluminium‐ion battery
  publication-title: Phys Chem Chem Phys
– volume: 10
  start-page: 435
  issue: 2
  year: 2017
  end-page: 459
  article-title: Conversion cathodes for rechargeable lithium and lithium‐ion batteries
  publication-title: Energy Environ Sci
– volume: 11
  start-page: 14572
  issue: 39
  year: 2023
  end-page: 14581
  article-title: Hard carbon anode synthesized by an in situ porous strategy for advanced potassium‐ion batteries
  publication-title: ACS Sustainable Chem Eng
– volume: 4
  start-page: 1182
  issue: 6
  year: 2022
  end-page: 1213
  article-title: Research progress on carbon materials as negative electrodes in sodium‐ and potassium‐ion batteries
  publication-title: Carbon Energy
– volume: 2008
  start-page: 151
  issue: 233
  year: 2008
  end-page: 156
  article-title: Techniques for controlling stage structure of metal chloride‐GIC
  publication-title: Tanso
– volume: 16
  start-page: 4834
  issue: 11
  year: 2023
  end-page: 4871
  article-title: Recent status, key strategies and challenging perspectives of fast‐charging graphite anodes for lithium‐ion batteries
  publication-title: Energy Environ Sci
– volume: 7
  issue: 4
  year: 2019
  article-title: FeCl intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium‐ion batteries
  publication-title: Energy Technol
– volume: 46
  start-page: 7176
  issue: 23
  year: 2017
  end-page: 7190
  article-title: Biomass‐derived nanostructured carbons and their composites as anode materials for lithium ion batteries
  publication-title: Chem Soc Rev
– volume: 33
  issue: 52
  year: 2021
  article-title: Polymorphic phases of metal chlorides in the confined 2D space of bilayer graphene
  publication-title: Adv Mater
– volume: 32
  issue: 17
  year: 2020
  article-title: Pitch‐derived soft carbon as stable anode material for potassium ion batteries
  publication-title: Adv Mater
– volume: 14
  start-page: 2244
  issue: 4
  year: 2021
  end-page: 2262
  article-title: Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization
  publication-title: Energy Environ Sci
– volume: 8
  start-page: 339
  issue: 1
  year: 2017
  article-title: Fast kinetics of magnesium monochloride cations in interlayer‐expanded titanium disulfide for magnesium rechargeable batteries
  publication-title: Nat Commun
– volume: 6
  start-page: e425
  issue: 3
  year: 2024
  article-title: Charting the course to solid‐state dual‐ion batteries
  publication-title: Carbon Energy
– volume: 198
  start-page: 107
  year: 2014
  end-page: 112
  article-title: Investigation of the high, stable electrical conductivity in graphite intercalation compounds prepared from flexible graphite sheets
  publication-title: Synth Met
– volume: 30
  issue: 3
  year: 2018
  article-title: Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation
  publication-title: Adv Mater
– volume: 6
  issue: 20
  year: 2016
  article-title: High performance Na‐CuCl rechargeable battery toward room temperature ZEBRA‐type battery
  publication-title: Adv Energy Mater
– volume: 854
  year: 2021
  article-title: Cobalt chloride‐ferric chloride‐graphite bi‐intercalation compounds as anode materials for high‐performance lithium‐ion batteries
  publication-title: J Alloys Compd
– volume: 569
  start-page: 245
  issue: 7755
  year: 2019
  end-page: 250
  article-title: Aqueous Li‐ion battery enabled by halogen conversion‐intercalation chemistry in graphite
  publication-title: Nature
– volume: 224
  start-page: 53
  year: 2018
  end-page: 59
  article-title: Influence of chemical exfoliation process on the activity of NiCl ‐FeCl ‐PdCl ‐graphite intercalation compound towards methanol electrooxidation
  publication-title: Appl Catal B
– volume: 18
  issue: 13
  year: 2022
  article-title: Manipulating the electronic structure of graphite intercalation compounds for boosting the bifunctional oxygen catalytic performance
  publication-title: Small
– volume: 9
  issue: 22
  year: 2019
  article-title: Staging: unraveling the potassium storage mechanism in graphite foam
  publication-title: Adv Energy Mater
– volume: 207
  start-page: 340
  issue: 4
  year: 1932
  end-page: 352
  article-title: Die Vorgänge bei dem Aufblähen von Graphit
  publication-title: Z Anorg Allg Chem
– volume: 8
  issue: 36
  year: 2018
  article-title: High‐rate and ultralong cycle‐life potassium ion batteries enabled by in situ engineering of yolk‐shell FeS @C structure on graphene matrix
  publication-title: Adv Energy Mater
– volume: 34
  start-page: 223
  issue: 1‐3
  year: 1989
  end-page: 230
  article-title: Structural characteristics of the graphite intercalation compounds of metal chlorides
  publication-title: Synth Met
– volume: 470
  start-page: 373
  issue: 1‐2
  year: 2001
  end-page: 375
  article-title: EXAFS study of the reaction of graphite‐MeCl (Me = Ni, Co) intercalation compounds with bromine fluorides
  publication-title: Nucl Instrum Methods Phys Res Sect A
– volume: 8
  start-page: 436
  issue: 1
  year: 2023
  end-page: 446
  article-title: Towards commercialization of graphite as an anode for Na‐ion batteries: evolution, virtues, and snags of solvent cointercalation
  publication-title: ACS Energy Lett
– volume: 520
  start-page: 324
  issue: 7547
  year: 2015
  end-page: 328
  article-title: An ultrafast rechargeable aluminium‐ion battery
  publication-title: Nature
– volume: 37
  start-page: 87
  issue: 2
  year: 1988
  end-page: 254
  article-title: The physics of ternary graphite intercalation compounds
  publication-title: Adv Phys
– volume: 33
  issue: 43
  year: 2021
  article-title: Abnormally high‐lithium storage in pure crystalline C nanoparticles
  publication-title: Adv Mater
– volume: 4
  start-page: 1560
  issue: 6
  year: 1989
  end-page: 1568
  article-title: Applications of graphite intercalation compounds
  publication-title: J Mater Res
– volume: 16
  start-page: 13704
  issue: 9
  year: 2022
  end-page: 13714
  article-title: Li‐compound anodes: a classification for high‐performance Li‐Ion battery anodes
  publication-title: ACS Nano
– volume: 7
  start-page: 87
  issue: 1
  year: 2014
  end-page: 91
  article-title: Ferric chloride‐graphite intercalation compounds as anode materials for Li‐ion batteries
  publication-title: ChemSusChem
– volume: 49
  start-page: 2440
  issue: 9
  year: 2008
  end-page: 2446
  article-title: Electrochemical behavior of exfoliated NiCl ‐graphite intercalation compound affected by hydrogen sorption
  publication-title: Energy Convers Manage
– volume: 13
  start-page: 10468
  issue: 23
  year: 2021
  end-page: 10477
  article-title: An AlCl coordinating interlayer spacing in microcrystalline graphite facilitates ultra‐stable and high‐performance sodium storage
  publication-title: Nanoscale
– volume: 53
  start-page: 927
  year: 2022
  end-page: 936
  article-title: Operando formation of multi‐channel positive electrode achieved via tellurium alloying in liquid metal battery
  publication-title: Energy Storage Mater
– volume: 123
  start-page: 19246
  issue: 31
  year: 2019
  end-page: 19253
  article-title: Stage transitions in graphite intercalation compounds: role of the graphite structure
  publication-title: J Phys Chem C
– volume: 83
  start-page: 128
  issue: 2
  year: 2020
  end-page: 129
  article-title: Preparation of color samples of graphite intercalation compounds: analysis and use of colors
  publication-title: J Soc Photogr Sci Technol Jpn
– volume: 5
  issue: 12
  year: 2015
  article-title: An advanced Na‐FeCl ZEBRA battery for stationary energy storage application
  publication-title: Adv Energy Mater
– volume: 4
  issue: 2
  year: 2014
  article-title: Graphite intercalation compounds (GICs): a new type of promising anode material for lithium‐ion batteries
  publication-title: Adv Energy Mater
– volume: 34
  start-page: 708
  year: 2021
  end-page: 715
  article-title: A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition
  publication-title: Energy Storage Mater
– volume: 46
  start-page: 3529
  issue: 12
  year: 2017
  end-page: 3614
  article-title: Sodium‐ion batteries: present and future
  publication-title: Chem Soc Rev
– volume: 36
  start-page: 147
  year: 2021
  end-page: 170
  article-title: Graphite as anode materials: fundamental mechanism, recent progress and advances
  publication-title: Energy Stor Mater
– volume: 172
  start-page: 200
  year: 2021
  end-page: 206
  article-title: Mildly‐expanded graphite with adjustable interlayer distance as high‐performance anode for potassium‐ion batteries
  publication-title: Carbon
– volume: 4
  start-page: 1151
  issue: 6
  year: 2022
  end-page: 1168
  article-title: K C phase induced expanded interlayer in ultra‐thin carbon toward full potassium‐ion capacitors
  publication-title: Carbon Energy
– volume: 13
  issue: 38
  year: 2023
  article-title: In situ pore formation in graphite through solvent co‐intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 17982
  issue: 37
  year: 2018
  end-page: 17993
  article-title: Strong anchoring effect of ferric chloride‐graphite intercalation compounds (FeCl ‐GICs) with tailored epoxy groups for high‐capacity and stable lithium storage
  publication-title: J Mater Chem A
– volume: 67
  start-page: 1193
  issue: 5‐6
  year: 2006
  end-page: 1197
  article-title: Synthesis and properties of ternary GIC with iron or copper chlorides
  publication-title: J Phys Chem Solids
– volume: 7
  start-page: 503
  issue: 3
  year: 2023
  end-page: 514
  article-title: Structural changes in the silver‐carbon composite anode interlayer of solid‐state batteries
  publication-title: Joule
– volume: 1
  issue: 2
  year: 2019
  article-title: Sodium‐ion battery anodes: status and future trends
  publication-title: EnergyChem
– volume: 12
  start-page: 327
  issue: 1‐2
  year: 1985
  end-page: 333
  article-title: Superlattice effects in acceptor GICs
  publication-title: Synth Met
– volume: 49
  start-page: 1834
  issue: 6
  year: 2011
  end-page: 1841
  article-title: Versatile behavior upon intercalation by chemical vapor transport of lanthanide trichlorides into graphite
  publication-title: Carbon
– volume: 21
  start-page: 2572
  issue: 6
  year: 2021
  end-page: 2579
  article-title: Graphite‐embedded lithium iron phosphate for high‐power‐energy cathodes
  publication-title: Nano Lett
– volume: 41
  start-page: 606
  issue: 10
  year: 2021
  end-page: 613
  article-title: An intercalation compound for high‐safe K metal batteries
  publication-title: Energy Storage Mater
– volume: 65
  start-page: 195
  issue: 2‐3
  year: 2004
  end-page: 197
  article-title: New point of view on anisotropy of electrical properties in graphite and some graphite intercalation compounds
  publication-title: J Phys Chem Solids
– volume: 60
  year: 2023
  article-title: Recent advances in rocking chair batteries and beyond
  publication-title: Energy Stor Mater
– volume: 212
  start-page: 62
  year: 2016
  end-page: 68
  article-title: Electrical conductivity and air stability of FeCl , CuCl , MoCl , and SbCl graphite intercalation compounds prepared from flexible graphite sheets
  publication-title: Synth Met
– volume: 6
  start-page: 683
  issue: 6
  year: 2021
  article-title: Li Ti O spinel anodes
  publication-title: Nat Energy
– volume: 5
  start-page: 1156
  issue: 4
  year: 2020
  end-page: 1158
  article-title: Ultralow‐concentration electrolyte for Na‐ion batteries
  publication-title: ACS Energy Lett
– volume: 47
  start-page: 2143
  issue: 8
  year: 2009
  end-page: 2144
  article-title: Synthesis of a metal chloride‐graphite intercalation compound by a molten salt method
  publication-title: Carbon
– volume: 5
  start-page: 301
  issue: 3‐4
  year: 1983
  end-page: 313
  article-title: Theory of superconductivity in graphite intercalation compounds
  publication-title: Synth Met
– volume: 4
  start-page: 458
  issue: 3
  year: 2022
  end-page: 479
  article-title: Progress in electrolyte and interface of hard carbon and graphite anode for sodium‐ion battery
  publication-title: Carbon Energy
– volume: 48
  start-page: 4655
  issue: 17
  year: 2019
  end-page: 4687
  article-title: Intercalation chemistry of graphite: alkali metal ions and beyond
  publication-title: Chem Soc Rev
– volume: 137
  start-page: 11566
  issue: 36
  year: 2015
  end-page: 11569
  article-title: Carbon electrodes for K‐ion batteries
  publication-title: J Am Chem Soc
– volume: 16
  start-page: 6369
  issue: 5
  year: 2023
  end-page: 6379
  article-title: Multi‐componential metal intercalated graphite hybrids synthesized by co‐intercalation polymerization towards high‐efficient microwave absorptions
  publication-title: Nano Res
– volume: 4
  start-page: 129
  issue: 2
  year: 2022
  end-page: 141
  article-title: Boosting the cell performance of the SiO @C anode material via rational design of a Si‐valence gradient
  publication-title: Carbon Energy
– volume: 35
  issue: 16
  year: 2023
  article-title: On the road to the frontiers of lithium‐ion batteries: a review and outlook of graphene anodes
  publication-title: Adv Mater
– volume: 22
  start-page: 235
  year: 2019
  end-page: 255
  article-title: Design and synthesis of electrode materials with both battery‐type and capacitive charge storage
  publication-title: Energy Storage Mater
– volume: 35
  issue: 31
  year: 2023
  article-title: Reconfiguring hard carbons with emerging sodium‐ion batteries: a perspective
  publication-title: Adv Mater
– volume: 8
  issue: 5
  year: 2018
  article-title: Short‐range order in mesoporous carbon boosts potassium‐ion battery performance
  publication-title: Adv Energy Mater
– volume: 11
  issue: 33
  year: 2021
  article-title: Fast charging of lithium‐ion batteries: a review of materials aspects
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 3947
  issue: 11
  year: 2022
  end-page: 3957
  article-title: Solvent‐assisted hopping mechanism enables ultrafast charging of lithium‐ion batteries
  publication-title: ACS Energy Lett
– ident: e_1_2_11_72_1
  doi: 10.1021/acs.jpcc.9b06726
– ident: e_1_2_11_59_1
  doi: 10.1002/adma.202105898
– ident: e_1_2_11_61_1
  doi: 10.1039/D0CS00187B
– ident: e_1_2_11_16_1
  doi: 10.1039/C6CS00639F
– ident: e_1_2_11_48_1
  doi: 10.1002/admi.201800606
– ident: e_1_2_11_93_1
  doi: 10.1002/cey2.221
– ident: e_1_2_11_80_1
  doi: 10.1016/j.enconman.2008.02.027
– ident: e_1_2_11_106_1
  doi: 10.1038/s41467-017-00431-9
– ident: e_1_2_11_45_1
  doi: 10.1002/aenm.201300600
– ident: e_1_2_11_41_1
  doi: 10.1557/JMR.1989.1560
– ident: e_1_2_11_11_1
  doi: 10.1002/cey2.141
– ident: e_1_2_11_51_1
  doi: 10.1016/j.electacta.2016.02.001
– ident: e_1_2_11_77_1
  doi: 10.1016/j.ensm.2019.07.023
– ident: e_1_2_11_18_1
  doi: 10.1016/j.synthmet.2015.11.033
– ident: e_1_2_11_95_1
  doi: 10.1002/adma.202212186
– ident: e_1_2_11_69_1
  doi: 10.1016/j.jpcs.2003.10.015
– ident: e_1_2_11_78_1
  doi: 10.1016/j.ensm.2022.10.015
– ident: e_1_2_11_26_1
  doi: 10.1002/zaac.19322070403
– ident: e_1_2_11_97_1
  doi: 10.1021/acsenergylett.2c02295
– ident: e_1_2_11_105_1
  doi: 10.1002/aenm.201600862
– ident: e_1_2_11_10_1
  doi: 10.1002/aenm.202301456
– ident: e_1_2_11_84_1
  doi: 10.1039/C6EE02326F
– ident: e_1_2_11_91_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_11_17_1
  doi: 10.1016/j.synthmet.2016.11.020
– ident: e_1_2_11_46_1
  doi: 10.1039/C8TA06670A
– ident: e_1_2_11_70_1
  doi: 10.2320/matertrans.E-M2009813
– ident: e_1_2_11_39_1
  doi: 10.1016/0167-2738(93)90155-V
– ident: e_1_2_11_57_1
  doi: 10.1016/j.ensm.2023.01.042
– ident: e_1_2_11_25_1
  doi: 10.1021/j150579a011
– ident: e_1_2_11_87_1
  doi: 10.1016/j.chempr.2022.05.002
– ident: e_1_2_11_3_1
  article-title: Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation
  publication-title: Carbon Energy
– ident: e_1_2_11_108_1
  doi: 10.1021/acs.nanolett.1c00037
– ident: e_1_2_11_13_1
  doi: 10.1002/adma.202104763
– ident: e_1_2_11_49_1
  doi: 10.1039/C5TA03087K
– ident: e_1_2_11_102_1
  doi: 10.1002/aenm.201802565
– ident: e_1_2_11_104_1
  doi: 10.1016/j.ensm.2021.06.038
– ident: e_1_2_11_54_1
  doi: 10.1021/acsenergylett.2c02240
– ident: e_1_2_11_35_1
  doi: 10.1515/znb-1989-0702
– ident: e_1_2_11_64_1
  doi: 10.1039/C9TA12651A
– ident: e_1_2_11_24_1
  doi: 10.1002/tcr.201700057
– ident: e_1_2_11_74_1
  doi: 10.1002/aenm.201601519
– ident: e_1_2_11_82_1
  doi: 10.1021/ja110939a
– ident: e_1_2_11_103_1
  doi: 10.1021/acssuschemeng.3c04086
– ident: e_1_2_11_66_1
  doi: 10.1038/s41586-019-1175-6
– ident: e_1_2_11_52_1
  doi: 10.1016/j.pmatsci.2019.100631
– ident: e_1_2_11_9_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_11_55_1
  doi: 10.1039/C7CP00453B
– ident: e_1_2_11_65_1
  doi: 10.1016/j.jallcom.2020.157178
– ident: e_1_2_11_60_1
  doi: 10.1016/j.ensm.2023.102820
– ident: e_1_2_11_15_1
  doi: 10.1002/adma.202000505
– ident: e_1_2_11_43_1
  doi: 10.1007/s12274-023-5483-7
– ident: e_1_2_11_32_1
  doi: 10.1016/j.jpcs.2006.01.046
– ident: e_1_2_11_36_1
  doi: 10.1016/0379-6779(89)90368-8
– volume: 38
  start-page: 3818
  issue: 11
  year: 2021
  ident: e_1_2_11_86_1
  article-title: Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3‐intercalated graphite intercalation compound
  publication-title: Acta Mater Compos Sin
– ident: e_1_2_11_50_1
  doi: 10.1016/j.synthmet.2014.09.037
– ident: e_1_2_11_94_1
  doi: 10.1039/D0EE03916K
– ident: e_1_2_11_47_1
  doi: 10.1039/D1NR01660A
– ident: e_1_2_11_33_1
  doi: 10.1016/j.carbon.2009.03.011
– ident: e_1_2_11_31_1
  doi: 10.1080/15421406.2011.537941
– ident: e_1_2_11_96_1
  doi: 10.1039/C9CP03453F
– ident: e_1_2_11_56_1
  doi: 10.1002/aenm.201500357
– ident: e_1_2_11_62_1
  doi: 10.1002/cssc.201300874
– ident: e_1_2_11_107_1
  doi: 10.1038/nature14340
– volume: 83
  start-page: 128
  issue: 2
  year: 2020
  ident: e_1_2_11_42_1
  article-title: Preparation of color samples of graphite intercalation compounds: analysis and use of colors
  publication-title: J Soc Photogr Sci Technol Jpn
– ident: e_1_2_11_75_1
  doi: 10.1002/aenm.202301944
– ident: e_1_2_11_81_1
  doi: 10.1002/adfm.201000641
– ident: e_1_2_11_85_1
  doi: 10.1039/D1TA08378C
– ident: e_1_2_11_83_1
  doi: 10.1149/1945-7111/ac7e77
– ident: e_1_2_11_38_1
  doi: 10.1016/j.carbon.2011.01.005
– ident: e_1_2_11_21_1
  doi: 10.1103/PhysRevB.101.121103
– ident: e_1_2_11_27_1
  doi: 10.1016/0379-6779(83)90029-2
– ident: e_1_2_11_5_1
  doi: 10.1002/aenm.201904152
– ident: e_1_2_11_98_1
  doi: 10.1021/acsenergylett.0c00337
– ident: e_1_2_11_37_1
  doi: 10.1016/S0168-9002(01)01063-4
– ident: e_1_2_11_76_1
  doi: 10.1016/j.ensm.2020.10.028
– ident: e_1_2_11_7_1
  doi: 10.1039/D3EE02213G
– ident: e_1_2_11_34_1
  doi: 10.1016/j.apcatb.2017.10.024
– ident: e_1_2_11_90_1
  doi: 10.1007/s12274-019-2444-2
– ident: e_1_2_11_22_1
  doi: 10.1016/0379-6779(85)90130-4
– ident: e_1_2_11_68_1
  doi: 10.1002/aenm.202102693
– ident: e_1_2_11_58_1
  doi: 10.1002/aenm.201970081
– ident: e_1_2_11_44_1
  doi: 10.1002/smll.202107667
– ident: e_1_2_11_101_1
  doi: 10.1002/aenm.201701648
– ident: e_1_2_11_4_1
  doi: 10.1016/j.ensm.2020.12.027
– ident: e_1_2_11_30_1
  doi: 10.1016/0379-6779(89)90389-5
– ident: e_1_2_11_88_1
  doi: 10.1016/j.carbon.2020.10.023
– ident: e_1_2_11_14_1
  doi: 10.1002/cey2.120
– ident: e_1_2_11_8_1
  doi: 10.1038/s41560-021-00829-2
– ident: e_1_2_11_73_1
  doi: 10.1002/cey2.224
– ident: e_1_2_11_89_1
  doi: 10.1002/adma.201704538
– ident: e_1_2_11_29_1
  doi: 10.1080/00018730110113644
– ident: e_1_2_11_2_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_11_53_1
  doi: 10.1039/C4NR05070C
– ident: e_1_2_11_19_1
  doi: 10.1002/adfm.202009801
– ident: e_1_2_11_63_1
  doi: 10.1002/ente.201801091
– ident: e_1_2_11_109_1
  doi: 10.1002/cey2.425
– ident: e_1_2_11_6_1
  doi: 10.1002/aenm.202101126
– ident: e_1_2_11_99_1
  doi: 10.1002/cey2.209
– ident: e_1_2_11_100_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_11_28_1
  doi: 10.1016/0379-6779(83)90041-3
– ident: e_1_2_11_67_1
  doi: 10.1039/C9CS00162J
– ident: e_1_2_11_92_1
  doi: 10.1016/j.enchem.2019.100012
– ident: e_1_2_11_20_1
  doi: 10.7209/tanso.1997.128
– ident: e_1_2_11_79_1
  doi: 10.1016/j.joule.2023.02.001
– ident: e_1_2_11_40_1
  doi: 10.1080/00018738800101369
– ident: e_1_2_11_12_1
  doi: 10.1002/adma.202210734
– ident: e_1_2_11_71_1
  doi: 10.7209/tanso.2008.151
– ident: e_1_2_11_23_1
  doi: 10.1021/acsnano.2c05172
SSID ssj0002171029
Score 2.2838154
SecondaryResourceType review_article
Snippet The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from...
Abstract The typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms additional capacity
Alternative energy sources
Anodes
Batteries
Carbon
Chloride
Chlorides
Conductivity
Decoupling
Design
Design optimization
Electrodes
Energy storage
Graphite
graphite intercalation compounds
high conductivity
Intercalation
Intercalation compounds
Interlayers
Introduced species
Lithium
metal chloride
Metal chlorides
Metals
metal‐ion batteries
Phase transitions
Silicon
Tap density
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27Tt1AEIZXERUpELeIAwQZKYLKYb03e8uAQCgSVCAdqtVeZkUBh-gARbo8Qp4xT8LM2gcZiShNGhf22lrNeD3_WLPfMPalIcSe4apugf5WWS5rzFVSDSZJ62UHogBMLy7N-bX6PtXTUasvqgnr8cC94Y6stqB9bGOH-ZP3oTMNeGVUlAp0ZwoJFGPeKJmibzAKbYycdkGb5eIowk_x1dBGtlH8KZj-N9pyrFBLiDlbZSuDNqy-9XNaYx9gts4-joiBG2x6AaiWq3hLhXMJ_vz6XYjTqBsrAj_M0eLF1BWVilPHpMcKVWmFnzUiIgHtk6ru6RF4Jw0LBa-J2fImuz47vTo5r4fmCHWUVvJatAZ0k1IIHQ948KqJVnmISdjcagWdjz4nHnPCNQYxtzIk0eQYRObZavmJLc0eZrDFqtgkDyg9AqBls-TWK0hdBB1QH0mTJ-xwYTIXB3I4NbC4cz3zWDgyrkPjTtj-68gfPS3jnTHHZPXX68S3LifQ627wuvuX1ydsd-EzNyy6RycbwRVmrFZP2EHx418n4U5ObwjNv_0_JrPDlgVKnb7Eb5ctPc2f4TNKlaewV97KF66G6mg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEMetQi_lgOhLbKEolVB7SnH8SnwEBEJIVD2AtD1ZfozbAyxolx648RH4jHwSZpzsFiQqcckhGUfROOP52xr_zNh2Q4g9w1XdAq1WWS5rnKukGkyS1ssORAGYnvwwR2fqeKzHQ1Ul7YXp-RCLBTeKjDJeU4D7MNv5Bw2NcCO-Y7peYq9pZy1x84X6uVhfQamNuZPUrzCyra003Zw9y8XOvPGTbFSg_U-U5mO9WhLO4RpbHZRitdt37Vv2Cibv2MojfuB7Nj4B1M5V_ENldAnub-8KfxpVZEUYiCn6vzi-osJxOj9pVqFGrXCQIz4S0K6p6oJegS3JLBTYJs6dP7Czw4PT_aN6OCqhjtJKXovWgG5SCqHjAS9eNdEqDzEJm1utoPPR58RjThhxEHMrQxJNjkFknq2WH9ny5HIC66yKTfKAQiQAeJUlt15B6iLogGpJmjxi3-Yuc3HgiNNxFueuJyALR8516NwR-7KwvOrZGc_Y7JHXF8-Jdl1uXE5_uyF4nNUWtI9t7HAO7X3oTIPfZlSUCnRn1IhtzvvMDSE4c7IRXOH81eoR-1r68b8f4fYPfhGo_9NLDTfYG4Hipi_q22TL19O_8BnFyXXYKn_hA0CZ41k
  priority: 102
  providerName: Wiley-Blackwell
Title Metal chloride‐graphite intercalation compounds for rechargeable metal‐ion batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.600
https://www.proquest.com/docview/3120418495
https://doaj.org/article/959e5ac7c8274aab861ea464c34e5864
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoe4FDxVOklGiREJyW7vqxa58QrRIqpFQVolI4WX6MywGSkpQDF8RP4DfyS5hxnBAk4OLD7qxlje3xN7Pjbxh72hLFXtfIugeKVplG1OirxBq6KIwTGngmMJ2cdacX8s1UTUvAbVnSKtc2MRvqOA8UIz8SLW8kuiNGvbz6XFPVKPq7Wkpo7LA9NMEana-949HZ-dtNlAUBN56gZs062_CjAF_5i44utG2dQ5mu_w-MuY1U81Ezvs32C0asXq0m9Q67AbO77NYWc-A9Np0AouYqfKAEugg_v__IzNM41ooIIBao-azyilLGqXLSskJ0WqF5I2YkoPtS1SfqAr8kMZ9pNtFrvs8uxqN3J6d1KZJQB2FEU_O-A9XG6L1uPDZOtsFIByFyk3olQbvgUmxCirjXIKRe-MjbFDxPTTJKPGC7s_kMHrIqtNEBQhAP4GQSjXESog6gPOIk0aUBe75WmQ2FQZwKWXy0K-5jbkm5FpU7YE82klcr1oy_yByT1jfviec6P5gvLm3ZNtYoA8qFPmj0np3zumtxbJ0MQoLSnRyww_Wc2bL5lvb3UhmwZ3ke_zkIezJ6TxT9B__v5xG7yRHMrJL4Dtnu9eILPEYwcu2HbIfLc2z1-PWwrL5hduyxnXwb_QKPZudQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYWiBIPE6hju08fEAISpct7fbUSsvJ-DEuB7pbdotQb_wEfgk_il_CjJMsiwTceskhcaxoZmx_44y_j7HHBVHsVVzlNdBuleYyx1wl5FAFqa1sQCQC0_FBNTpS7yblZI396M_CUFllPyemiTrMPO2Rb8lCcIXpiC5fnn7OSTWK_q72EhptWOzB-VdM2RYvdt-gf58IMdw53B7lnapA7qWWPBd1BWURgnMNd3ixqvBaWfBB6FiXChrrbQzcx4DBCT7W0gVRRO9E5FGTSgRO-ZeUlJpGVDN8u9zTQXiP67XuOW652PJwLp5XdHxuZdVL4gB_INpVXJwWtuF1dq1DpNmrNoRusDWY3mRXV3gKb7HJGBCjZ_4jlesF-Pnte-K5RstkRDcxRz8nB2dUoE46TYsMsXCGkynxMAGdzspOqAt8k5q5ROqJOfptdnQhxrvD1qezKdxlmS-CBQQ8DsCqKLm2CkLjoXSIymQVB-xZbzLjO75yks34ZFqmZWHIuAaNO2CPli1PW46Ov7R5TVZfPidW7XRjNj823SA1utRQWl_7BnN1a11TFfhtlfJSQdlUasA2e5-ZbqgvzO_AHLCnyY___AizvfOeBAHu_b-fh-zy6HC8b_Z3D_Y22BWBMKotH9xk62fzL3AfYdCZe5BiL2MfLjrYfwGPlCH8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQC0PEShlkXiclnht78MHhGibqKU0qhCVwsn4MYYDJG1ShHrjJ_B7-Dn8Emb2EYIE3HrZw67XWs2M7W-84-9j7FFGFHsFV2kJtFuluUwxVwkpFEFqKysQNYHp0bjYP1GvJvlkjf3ozsJQWWU3J9YTdZh52iMfyExwhemIzgexLYs43hu9OD1LSUGK_rR2chpNiBzCxVdM3xbPD_bQ14-FGA3f7u6nrcJA6qWWPBVlAXkWgnMVd3ixKvNaWfBB6FjmCirrbQzcx4CBCj6W0gWRRe9E5FGTYgRO_-slZkW8x9Z3huPjN8sdHgT7uHrrjvGWi4GHC_GsoMN0K2tgLRXwB75dRcn1MjfaYNdbfJq8bAJqk63B9Aa7tsJaeJNNjgARe-I_UvFegJ_fvtes12ibhMgn5uj12t0JlauTatMiQWSc4NRKrExAZ7WSz9QFvknNXE3xiRn7LXZyKea7zXrT2RTusMRnwQLCHwdgVZRcWwWh8pA7xGiyiH32tDOZ8S17OYlofDIN77IwZFyDxu2zh8uWpw1jx1_a7JDVl8-JY7u-MZt_MO2QNTrXkFtf-gozd2tdVWT4bYXyUkFeFarPtjqfmXbgL8zvMO2zJ7Uf__kRZnf4juQB7v6_nwfsCga6eX0wPrzHrgrEVE0t4Rbrnc-_wH3EROduuw2-hL2_7Hj_BUTxJ44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+chloride%E2%80%90graphite+intercalation+compounds+for+rechargeable+metal%E2%80%90ion+batteries&rft.jtitle=Carbon+energy&rft.au=Lu%2C+Anbang&rft.au=Wang%2C+Fei&rft.au=Liu%2C+Zhendong&rft.au=Wang%2C+Yuchen&rft.date=2024-10-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=6&rft.issue=10&rft_id=info:doi/10.1002%2Fcey2.600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cey2_600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon