Identity-Preserving Face Recovery from Stylized Portraits

Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style R...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 127; no. 6-7; pp. 863 - 883
Main Authors Shiri, Fatemeh, Yu, Xin, Porikli, Fatih, Hartley, Richard, Koniusz, Piotr
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
DOI10.1007/s11263-019-01169-1

Cover

Loading…
Abstract Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style Removal network (SRN) and a Discriminative Network (DN). Our SRN, composed of an autoencoder with residual block-embedded skip connections, is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. Owing to the Spatial Transformer Network, SRN automatically compensates for misalignments of stylized portraits to output aligned realistic face images. To ensure the identity preservation, we promote the recovered and ground truth faces to share similar visual features via a distance measure which compares features of recovered and ground truth faces extracted from a pre-trained FaceNet network. DN has multiple convolutional and fully-connected layers, and its role is to enforce recovered faces to be similar to authentic faces. Thus, we can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face in an image. By conducting extensive evaluations on a large-scale synthesized dataset and a hand-drawn sketch dataset, we demonstrate that our method achieves superior face recovery and attains state-of-the-art results. In addition, our method can recover photorealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn sketches.
AbstractList Given an artistic portrait, recovering the latent photorealistic face that preserves the subject's identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style Removal network (SRN) and a Discriminative Network (DN). Our SRN, composed of an autoencoder with residual block-embedded skip connections, is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. Owing to the Spatial Transformer Network, SRN automatically compensates for misalignments of stylized portraits to output aligned realistic face images. To ensure the identity preservation, we promote the recovered and ground truth faces to share similar visual features via a distance measure which compares features of recovered and ground truth faces extracted from a pre-trained FaceNet network. DN has multiple convolutional and fully-connected layers, and its role is to enforce recovered faces to be similar to authentic faces. Thus, we can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face in an image. By conducting extensive evaluations on a large-scale synthesized dataset and a hand-drawn sketch dataset, we demonstrate that our method achieves superior face recovery and attains state-of-the-art results. In addition, our method can recover photorealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn sketches.
Audience Academic
Author Yu, Xin
Shiri, Fatemeh
Hartley, Richard
Koniusz, Piotr
Porikli, Fatih
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Shiri
  fullname: Shiri, Fatemeh
  organization: Australian National University
– sequence: 2
  givenname: Xin
  surname: Yu
  fullname: Yu, Xin
  organization: Australian National University
– sequence: 3
  givenname: Fatih
  surname: Porikli
  fullname: Porikli, Fatih
  organization: Australian National University
– sequence: 4
  givenname: Richard
  surname: Hartley
  fullname: Hartley, Richard
  organization: Australian National University, Data61/CSIRO
– sequence: 5
  givenname: Piotr
  surname: Koniusz
  fullname: Koniusz, Piotr
  email: piotr.koniusz@anu.edu.au, piotr.koniusz@data61.csiro.au
  organization: Australian National University, Data61/CSIRO
BookMark eNp9kU1LAzEQhoMoWD_-gKcFTx5WJ8lmNzmW4kdBUKqeQ8xOSqTd1SQV6683dQXRQwkhMDxPkpn3gOx2fYeEnFA4pwDNRaSU1bwEqvKmtSrpDhlR0fCSViB2yQgUg1LUiu6TgxhfAIBJxkdETVvskk_r8j5gxPDuu3lxZSwWM7T9O4Z14UK_LB7SeuE_sS3u-5CC8SkekT1nFhGPf85D8nR1-Ti5KW_vrqeT8W1puWKpdKptpKyEYU1lDa1ap8BxkKblrpXOqsbwqkLBn12DAkBIZjh3NbiWUSEVPySnw72voX9bYUz6pV-FLj-pGVUguZLNhjofqLlZoPad6_MvbV4tLr3Nw3I-18dC1lQwwTfC2R8hMwk_0tysYtTTh9lfVg6sDX2MAZ22Ppnks5JHsdAU9CYFPaSgcwr6OwVNs8r-qa_BL01Yb5f4IMUMd3MMvy1vsb4A_2WZvg
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128129
crossref_primary_10_1109_TPAMI_2021_3107160
crossref_primary_10_3390_info15030135
crossref_primary_10_1007_s11263_020_01301_6
crossref_primary_10_1109_ACCESS_2024_3435351
crossref_primary_10_1016_j_knosys_2020_106217
crossref_primary_10_1109_TPAMI_2021_3061312
crossref_primary_10_1109_TIP_2020_3046918
crossref_primary_10_1109_TVCG_2023_3241894
crossref_primary_10_1109_TPAMI_2022_3159831
crossref_primary_10_3390_app14146311
Cites_doi 10.1109/CVPR.2017.397
10.1109/DICTA.2017.8227432
10.1109/CVPR.2015.7298965
10.1007/978-3-030-01270-0_48
10.1109/WACV.2011.5711509
10.1609/aaai.v31i1.11206
10.1109/CVPR.2015.7298682
10.1109/CVPR.2018.00605
10.1016/S0262-8856(97)00070-X
10.1109/CVPR.2017.570
10.1007/978-3-319-10599-4_7
10.1109/CVPR.2013.17
10.1109/CVPR.2011.5995324
10.5244/C.29.41
10.1016/j.patrec.2017.06.012
10.1109/WACV.2018.00018
10.1109/CVPR.2016.278
10.1109/ICCV.2015.425
10.1109/FG.2018.00022
10.1109/WACVW.2018.00006
10.1109/TIP.2011.2109730
10.1109/TPAMI.2016.2545667
10.1109/CVPR.2016.265
10.1007/978-3-319-46475-6_43
10.1007/978-3-319-24574-4_28
10.1109/WACV.2019.00049
10.1109/CVPR.2011.5995350
10.1109/CVPR.2016.272
10.1007/978-3-319-46487-9_43
10.1007/978-3-319-46454-1_20
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-019-01169-1
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 883
ExternalDocumentID A586152539
10_1007_s11263_019_01169_1
GrantInformation_xml – fundername: Australian Research Council (Discovery)
  grantid: DP150104645
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
ICD
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
AEIIB
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c392t-f9d78845a274ca14df90f308ad3fd8fc97a344e53bf7e500582a33f60fd215893
IEDL.DBID 8FG
ISSN 0920-5691
IngestDate Fri Jul 25 06:16:48 EDT 2025
Tue Jun 10 20:30:48 EDT 2025
Fri Jun 27 03:33:13 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Tue Jul 01 04:30:56 EDT 2025
Fri Feb 21 02:26:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords Face recovery
Face synthesis
Image stylization
Generative models
Destylization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-f9d78845a274ca14df90f308ad3fd8fc97a344e53bf7e500582a33f60fd215893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2190839879
PQPubID 1456341
PageCount 21
ParticipantIDs proquest_journals_2190839879
gale_infotracacademiconefile_A586152539
gale_incontextgauss_ISR_A586152539
crossref_citationtrail_10_1007_s11263_019_01169_1
crossref_primary_10_1007_s11263_019_01169_1
springer_journals_10_1007_s11263_019_01169_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190601
2019-6-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 6
  year: 2019
  text: 20190601
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Wilmot, P., Risser, E., & Barnes, C. (2017). Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893.
Zhang, H., Sindagi, V., & Patel, V. M. (2017). Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A learned representation for artistic style. arXiv preprint arXiv:1610.07629.
Jayasumana, S., Hartley, R., Salzmann, M., Li, H., & Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR.
Ronneberger, O., & Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer.
Li, C., & Wand, M. (2016a). Combining markov random fields and convolutional neural networks for image synthesis. In CVPR.
Yu, X., & Porikli, F. (2016). Ultra-resolving face images by discriminative generative networks. In ECCV.
Yu, X., & Porikli, F. (2017a). Face hallucination with tiny unaligned images by transformative discriminative neural networks. In AAAI.
Archibald prize; art gallery of nsw. https://www.artgallery.nsw.gov.au/prizes/archibald/. https://www.artgallery.nsw.gov.au/prizes/archibald/ (2017).
Gupta, A., Johnson, J., Alahi, A., & Fei-Fei, L. (2017). Characterizing and improving stability in neural style transfer. arXiv preprint arXiv:1705.02092.
Karacan, L., Akata, Z., Erdem, A., & Erdem, E. (2016). Learning to generate images of outdoor scenes from attributes and semantic layouts. arXiv preprint arXiv:1612.00215.
KoniuszPYanFGosselinPMikolajczykKHigher-order occurrence pooling for bags-of-words: Visual concept detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201639231332610.1109/TPAMI.2016.2545667
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV.
Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016a). Texture networks: Feed-forward synthesis of textures and stylized images. In ICML.
Sharma, A., & Jacobs, D. W. (2011). Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch. In CVPR. IEEE.
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In CVPR.
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016b). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.
Koniusz, P., Zhang, H., & Porikli, F. (2018). A deeper look at power normalizations. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 5774–5783).
Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365.
Kazemi, H., Iranmanesh, M., Dabouei, A., Soleymani, S., & Nasrabadi, N.M. (2018). Facial attributes guided deep sketch-to-photo synthesis. In 2018 IEEE winter applications of computer vision workshops (WACVW) (pp. 1–8). IEEE.
Sangkloy, P., Lu, J., Fang, C., Yu, F., & Hays, J. (2016). Scribbler: Controlling deep image synthesis with sketch and color. arXiv preprint arXiv:1612.00835.
Denton, E. L., Chintala, S., & Fergus, R., et al. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS.
Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In ICML.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
SelimAElgharibMDoyleLPainting style transfer for head portraits using convolutional neural networksACM (TOG)2016354129
Wang, X., Oxholm, G., Zhang, D., & Wang, Y.F. (2016). Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer. arXiv preprint arXiv:1612.01895.
Zhang, H., & Dana, K. (2017). Multi-style generative network for real-time transfer. arXiv preprint arXiv:1703.06953.
Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. In NIPS.
Li, C., & Wand, M. (2016b). Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV (pp. 702–716). Springer.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC.
Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., & Shechtman, E. (2016) Controlling perceptual factors in neural style transfer. arXiv preprint arXiv:1611.07865.
Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.
Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2019). Recovering faces from portraits with auxiliary facial attributes. In WACV.
Zhang, W., Wang, X., & Tang, X. (2011b). Coupled information-theoretic encoding for face photo-sketch recognition. In CVPR. IEEE.
Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M.H. (2017). Diversified texture synthesis with feed-forward networks. arXiv preprint arXiv:1703.01664.
Shiri, F., Yu, X., Koniusz, P., & Porikli, F. (2017). Face destylization. In International conference on digital image computing: Techniques and applications (DICTA). https://doi.org/10.1109/DICTA.2017.8227432.
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE TIP2004134600612
Chen, T. Q., & Schmidt, M. (2016). Fast patch-based style transfer of arbitrary style. arXiv preprint arXiv:1612.04337.
WangNZhaWLiJGaoXBack projection: An effective postprocessing method for gan-based face sketch synthesisPattern Recognition Letters2018107596510.1016/j.patrec.2017.06.012
Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2018). Identity-preserving face recovery from portraits. In WACV (pp. 102–111). https://doi.org/10.1109/WACV.2018.00018.
Yu, X., & Porikli, F. (2017b). Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In CVPR.
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In CVPR.
Jaderberg, M., Simonyan, K., & Zisserman, A., et al. (2015). Spatial transformer networks. In NIPS (pp. 2017–2025).
Nejati, H., & Sim, T. (2011). A study on recognizing non-artistic face sketches. In WACV. IEEE.
PhillipsPJWechslerHHuangJRaussPJThe feret database and evaluation procedure for face-recognition algorithmsImage and Vision Computing199816529530610.1016/S0262-8856(97)00070-X
Hinton, G.: Neural Networks for Machine Learning Lecture 6a: Overview of mini-batch gradient descent Reminder: The error surface for a linear neuron
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV. Springer.
Gatys, L. A., Bethge, M., Hertzmann, A., & Shechtman, E. (2016). Preserving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897.
Yin, R. (2016). Content aware neural style transfer. arXiv preprint arXiv:1601.04568.
Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR.
Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. arXiv preprint arXiv:1703.06868.
Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086.
Chen, D., Yuan, L., Liao, J., & Yu, N., Hua, G. (2017). Stylebank: An explicit representation for neural image style transfer. arXiv preprint arXiv:1703.09210.
Wang, L., Sindagi, V., & Patel, V. (2018a). High-quality facial photo-sketch synthesis using multi-adversarial networks. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 83–90). IEEE.
Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., & Zhang, R. (2018). Museum exhibit identification challenge for the supervised domain adaptation and beyond. In ECCV (pp. 788–804).
ZhangLZhangLMouXZhangDFsim: A feature similarity index for image quality assessmentIEEE Transactions on Image Processing201120823782386286634210.1109/TIP.2011.21097301373.62333
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. arXiv preprint arXiv:1701.02096.
Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2014). Facial landmark detection by deep multi-task learning. In ECCV. Springer.
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z., et al. (2016). Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
Zhu, J. Y., Park, T., Isola, P., & Efros, A. A.(2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593.
1169_CR31
1169_CR30
1169_CR33
1169_CR32
1169_CR34
1169_CR37
1169_CR36
1169_CR39
1169_CR38
1169_CR60
1169_CR62
1169_CR20
1169_CR64
1169_CR63
1169_CR21
1169_CR24
P Koniusz (1169_CR22) 2016; 39
1169_CR23
1169_CR26
1169_CR25
1169_CR28
1169_CR27
1169_CR29
A Selim (1169_CR40) 2016; 35
L Zhang (1169_CR61) 2011; 20
1169_CR51
1169_CR53
1169_CR11
1169_CR55
1169_CR10
1169_CR54
1169_CR13
1169_CR57
1169_CR12
1169_CR56
1169_CR15
1169_CR59
1169_CR14
1169_CR58
1169_CR17
1169_CR16
1169_CR19
1169_CR18
Z Wang (1169_CR52) 2004; 13
1169_CR1
1169_CR2
1169_CR3
1169_CR42
1169_CR4
1169_CR41
1169_CR5
1169_CR44
1169_CR6
1169_CR43
1169_CR7
1169_CR46
1169_CR8
1169_CR45
N Wang (1169_CR50) 2018; 107
1169_CR9
1169_CR48
1169_CR47
1169_CR49
PJ Phillips (1169_CR35) 1998; 16
References_xml – reference: Yu, X., & Porikli, F. (2017b). Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In CVPR.
– reference: Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC.
– reference: Gatys, L. A., Bethge, M., Hertzmann, A., & Shechtman, E. (2016). Preserving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897.
– reference: Ronneberger, O., & Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer.
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– reference: Karacan, L., Akata, Z., Erdem, A., & Erdem, E. (2016). Learning to generate images of outdoor scenes from attributes and semantic layouts. arXiv preprint arXiv:1612.00215.
– reference: SelimAElgharibMDoyleLPainting style transfer for head portraits using convolutional neural networksACM (TOG)2016354129
– reference: Wilmot, P., Risser, E., & Barnes, C. (2017). Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893.
– reference: Shiri, F., Yu, X., Koniusz, P., & Porikli, F. (2017). Face destylization. In International conference on digital image computing: Techniques and applications (DICTA). https://doi.org/10.1109/DICTA.2017.8227432.
– reference: Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In ICML.
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE TIP2004134600612
– reference: Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.
– reference: Nejati, H., & Sim, T. (2011). A study on recognizing non-artistic face sketches. In WACV. IEEE.
– reference: Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., & Zhang, R. (2018). Museum exhibit identification challenge for the supervised domain adaptation and beyond. In ECCV (pp. 788–804).
– reference: Zhang, H., Sindagi, V., & Patel, V. M. (2017). Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957.
– reference: Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004.
– reference: Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016b). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.
– reference: Wang, L., Sindagi, V., & Patel, V. (2018a). High-quality facial photo-sketch synthesis using multi-adversarial networks. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 83–90). IEEE.
– reference: Jayasumana, S., Hartley, R., Salzmann, M., Li, H., & Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR.
– reference: Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A learned representation for artistic style. arXiv preprint arXiv:1610.07629.
– reference: Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV. Springer.
– reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
– reference: Archibald prize; art gallery of nsw. https://www.artgallery.nsw.gov.au/prizes/archibald/. https://www.artgallery.nsw.gov.au/prizes/archibald/ (2017).
– reference: Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z., et al. (2016). Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802.
– reference: Zhang, H., & Dana, K. (2017). Multi-style generative network for real-time transfer. arXiv preprint arXiv:1703.06953.
– reference: Yu, X., & Porikli, F. (2017a). Face hallucination with tiny unaligned images by transformative discriminative neural networks. In AAAI.
– reference: Kazemi, H., Iranmanesh, M., Dabouei, A., Soleymani, S., & Nasrabadi, N.M. (2018). Facial attributes guided deep sketch-to-photo synthesis. In 2018 IEEE winter applications of computer vision workshops (WACVW) (pp. 1–8). IEEE.
– reference: Chen, D., Yuan, L., Liao, J., & Yu, N., Hua, G. (2017). Stylebank: An explicit representation for neural image style transfer. arXiv preprint arXiv:1703.09210.
– reference: Jaderberg, M., Simonyan, K., & Zisserman, A., et al. (2015). Spatial transformer networks. In NIPS (pp. 2017–2025).
– reference: Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M.H. (2017). Diversified texture synthesis with feed-forward networks. arXiv preprint arXiv:1703.01664.
– reference: Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365.
– reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In CVPR.
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
– reference: Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2018). Identity-preserving face recovery from portraits. In WACV (pp. 102–111). https://doi.org/10.1109/WACV.2018.00018.
– reference: Zhu, J. Y., Park, T., Isola, P., & Efros, A. A.(2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593.
– reference: Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. arXiv preprint arXiv:1701.02096.
– reference: Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. In NIPS.
– reference: Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. arXiv preprint arXiv:1703.06868.
– reference: Koniusz, P., Zhang, H., & Porikli, F. (2018). A deeper look at power normalizations. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 5774–5783).
– reference: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV.
– reference: Yin, R. (2016). Content aware neural style transfer. arXiv preprint arXiv:1601.04568.
– reference: Denton, E. L., Chintala, S., & Fergus, R., et al. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS.
– reference: PhillipsPJWechslerHHuangJRaussPJThe feret database and evaluation procedure for face-recognition algorithmsImage and Vision Computing199816529530610.1016/S0262-8856(97)00070-X
– reference: Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016a). Texture networks: Feed-forward synthesis of textures and stylized images. In ICML.
– reference: Gupta, A., Johnson, J., Alahi, A., & Fei-Fei, L. (2017). Characterizing and improving stability in neural style transfer. arXiv preprint arXiv:1705.02092.
– reference: Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., & Shechtman, E. (2016) Controlling perceptual factors in neural style transfer. arXiv preprint arXiv:1611.07865.
– reference: Sharma, A., & Jacobs, D. W. (2011). Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch. In CVPR. IEEE.
– reference: Yu, X., & Porikli, F. (2016). Ultra-resolving face images by discriminative generative networks. In ECCV.
– reference: Li, C., & Wand, M. (2016a). Combining markov random fields and convolutional neural networks for image synthesis. In CVPR.
– reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In CVPR.
– reference: Wang, X., Oxholm, G., Zhang, D., & Wang, Y.F. (2016). Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer. arXiv preprint arXiv:1612.01895.
– reference: KoniuszPYanFGosselinPMikolajczykKHigher-order occurrence pooling for bags-of-words: Visual concept detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201639231332610.1109/TPAMI.2016.2545667
– reference: Sangkloy, P., Lu, J., Fang, C., Yu, F., & Hays, J. (2016). Scribbler: Controlling deep image synthesis with sketch and color. arXiv preprint arXiv:1612.00835.
– reference: Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2014). Facial landmark detection by deep multi-task learning. In ECCV. Springer.
– reference: Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086.
– reference: ZhangLZhangLMouXZhangDFsim: A feature similarity index for image quality assessmentIEEE Transactions on Image Processing201120823782386286634210.1109/TIP.2011.21097301373.62333
– reference: WangNZhaWLiJGaoXBack projection: An effective postprocessing method for gan-based face sketch synthesisPattern Recognition Letters2018107596510.1016/j.patrec.2017.06.012
– reference: Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2019). Recovering faces from portraits with auxiliary facial attributes. In WACV.
– reference: Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
– reference: Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR.
– reference: Li, C., & Wand, M. (2016b). Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV (pp. 702–716). Springer.
– reference: Chen, T. Q., & Schmidt, M. (2016). Fast patch-based style transfer of arbitrary style. arXiv preprint arXiv:1612.04337.
– reference: Hinton, G.: Neural Networks for Machine Learning Lecture 6a: Overview of mini-batch gradient descent Reminder: The error surface for a linear neuron
– reference: Zhang, W., Wang, X., & Tang, X. (2011b). Coupled information-theoretic encoding for face photo-sketch recognition. In CVPR. IEEE.
– ident: 1169_CR10
– ident: 1169_CR8
  doi: 10.1109/CVPR.2017.397
– ident: 1169_CR14
– ident: 1169_CR42
  doi: 10.1109/DICTA.2017.8227432
– ident: 1169_CR9
– ident: 1169_CR29
  doi: 10.1109/CVPR.2015.7298965
– ident: 1169_CR20
– ident: 1169_CR6
– ident: 1169_CR18
– ident: 1169_CR21
  doi: 10.1007/978-3-030-01270-0_48
– ident: 1169_CR24
– ident: 1169_CR2
– ident: 1169_CR31
  doi: 10.1109/WACV.2011.5711509
– ident: 1169_CR47
– ident: 1169_CR57
  doi: 10.1609/aaai.v31i1.11206
– ident: 1169_CR39
  doi: 10.1109/CVPR.2015.7298682
– ident: 1169_CR23
  doi: 10.1109/CVPR.2018.00605
– ident: 1169_CR55
– volume: 16
  start-page: 295
  issue: 5
  year: 1998
  ident: 1169_CR35
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(97)00070-X
– ident: 1169_CR13
– ident: 1169_CR30
– ident: 1169_CR38
– ident: 1169_CR51
– ident: 1169_CR58
  doi: 10.1109/CVPR.2017.570
– ident: 1169_CR63
  doi: 10.1007/978-3-319-10599-4_7
– ident: 1169_CR59
– ident: 1169_CR16
  doi: 10.1109/CVPR.2013.17
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1169_CR52
  publication-title: IEEE TIP
– ident: 1169_CR5
– ident: 1169_CR62
  doi: 10.1109/CVPR.2011.5995324
– ident: 1169_CR1
– ident: 1169_CR27
– ident: 1169_CR33
  doi: 10.5244/C.29.41
– ident: 1169_CR48
– volume: 107
  start-page: 59
  year: 2018
  ident: 1169_CR50
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.06.012
– ident: 1169_CR43
  doi: 10.1109/WACV.2018.00018
– ident: 1169_CR54
– ident: 1169_CR60
– ident: 1169_CR12
– ident: 1169_CR34
  doi: 10.1109/CVPR.2016.278
– ident: 1169_CR28
  doi: 10.1109/ICCV.2015.425
– ident: 1169_CR49
  doi: 10.1109/FG.2018.00022
– volume: 35
  start-page: 129
  issue: 4
  year: 2016
  ident: 1169_CR40
  publication-title: ACM (TOG)
– ident: 1169_CR19
  doi: 10.1109/WACVW.2018.00006
– ident: 1169_CR45
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 1169_CR61
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2109730
– ident: 1169_CR4
– volume: 39
  start-page: 313
  issue: 2
  year: 2016
  ident: 1169_CR22
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2545667
– ident: 1169_CR64
– ident: 1169_CR7
  doi: 10.1109/CVPR.2016.265
– ident: 1169_CR17
  doi: 10.1007/978-3-319-46475-6_43
– ident: 1169_CR32
– ident: 1169_CR37
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1169_CR44
  doi: 10.1109/WACV.2019.00049
– ident: 1169_CR11
– ident: 1169_CR41
  doi: 10.1109/CVPR.2011.5995350
– ident: 1169_CR36
– ident: 1169_CR53
– ident: 1169_CR25
  doi: 10.1109/CVPR.2016.272
– ident: 1169_CR46
– ident: 1169_CR3
– ident: 1169_CR26
  doi: 10.1007/978-3-319-46487-9_43
– ident: 1169_CR15
– ident: 1169_CR56
  doi: 10.1007/978-3-319-46454-1_20
SSID ssj0002823
Score 2.430707
Snippet Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often...
Given an artistic portrait, recovering the latent photorealistic face that preserves the subject's identity is challenging because the facial details are often...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 863
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Distance measurement
Feature extraction
Feature maps
Ground truth
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Portraits
Recovery
Sketches
Vision
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy--xfVFEcGDBjZN0zTHRVxU0IO64C2keYggVbb1sP56Z7qpi0_w0kM6TdOZZDLTzDdDyKEXrmTSF9RLKWjmJaNlyUvKhLSeKbCJHQKcr67z81F2eS_uIyis7qLduyPJVlPPwG4sxTNHBN0wlisKPs-CAN8d5_UoHXzoX3AipgXkwTESuWIRKvNzH5-2o69K-dvpaLvpDFfIUrQWk8FUvKtkzldrZDlajklclzU0dcUZurZ1oiIEd0IxygI1QvWQDI31CXqcMIEnCUJLkttm8vT4Br1hTOnYPDb1BhkNz-5Oz2msk0AtWDcNDcqBI5sJAx6mNSxzQfUD7xfG8eCKYJU0PMu84GWQXmAhwdRwHvJ-cLDhg8GySear58pvkcTmJpQBOkidyuBSSGt4XmYuFamzedojrGOXtjGJOI7tSc_SHyOLNbBYtyzWrEeOP555mabQ-JP6AKWgMTdFhcEvD-a1rvXF7Y0eiCLHck1c9chRJArP8HprIpYAPgLTWX2i3O2kqePqrDVoabA8VSHh9kkn4dnt3we3_T_yHbKYtnMNf9rskvlm_Or3wIZpyv12yr4D1UrlNw
  priority: 102
  providerName: Springer Nature
Title Identity-Preserving Face Recovery from Stylized Portraits
URI https://link.springer.com/article/10.1007/s11263-019-01169-1
https://www.proquest.com/docview/2190839879
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcEThwqUtfahLKYqqSj20Fus4TuJTtaBdoFVRBawEJ8vxAyGhLCXhsP36zmQdVoDgkkiO4zgz43nY8wD44qWreOFL5otCsswXnFWVqBiXhfVcoU7sKMD591F-MM1-nsmzuOHWRLfKnid2jNrNLO2R7-DKQm0BLWT14_ovo6pRdLoaS2i8gDWOkoYovJzs33FiNCcWpeTRRJK54jFoZhE6hy-QJxF5C_FcMX5PMD1kz4_OSTvxM3kNL6PemIwWiN6AFV-_gVdRh0ziCm2wqS_T0Le9BRWDceeM_C2IN9QXycRYn5DtiaQ8TyjIJDlp51eX_3A08i69MZdt8w6mk_Hp3gGLFROYRT2nZUE5NGkzadDWtIZnLqhhEMPSOBFcGawqjMgyL0UVCi-ppGBqhAj5MDgU_ai6vIfVelb7D5DY3IQq4ACpUxleysIakVeZS2XqbJ4OgPfg0jamE6e5XellImQCsUYQ6w7Emg_g290714tkGs_2_kxY0JSloiY3mAtz2zT68ORYj2SZU-EmoQbwNXYKM_y8NTGqAH-CElvd67nVY1PHddroJVUN4HuP4eXjpye3-fxoH2E97WiLtmu2YLW9ufWfUHtpq-2ORLdhbbR__muM993x0Z9jbJ2mo__tw-yH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALlJfYUiBCIA5gsX4l8QGhClh26eNAW6k34_hRVaqybZMKLT-K38hM4nRVEL31kkPiOM7MeDxjzzdDyKugfMWKUNJQFIrKUDBaVaKiTBUuMA02sUeA885uPj2Q3w7V4Qr5PWBhMKxy0ImdovZzh3vk72FmgbUAHrL-eHpGsWoUnq4OJTR6sdgKi5_gsjUfZp-Bv685n3zZ_zSlqaoAdWALtDRqD26fVBb8MWeZ9FGPoxiX1ovoy-h0YYWUQYkqFkFh2T1uhYj5OHpYHktMvgQq_5YUQmMIYTn5eqn5wX3pS9eDS6ZyzRJIp4fqMY4npggZYizXlF1ZCP9eDv45l-2Wu8kauZvs1GyzF6z7ZCXUD8i9ZLNmSSM0cGsoCzHce0h0Av8uKMZ3oC6qj7KJdSFDXxemziJDUEu21y5Ojn9BbxjNem6P2-YRObgRWj4mq_W8Dk9I5nIbqwgdcK8lXMrCWZFX0nPFvcv5iLCBXMal9OU4thOzTLyMJDZAYtOR2LAReXv5zmmfvOPa1i-RCwazYtQYdnNkL5rGzPa-m01V5lgoSugReZMaxTl83tmEYoCfwERaV1puDNw0SS80ZinFI_Ju4PDy8f8Ht359by_I7en-zrbZnu1uPSV3eCdnuFW0QVbb84vwDCyntnreiWtGftz0_PgDYVwk9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9UwNIwJ4ovf4tWpRRQfNOwmaZrmQWQ4667TIc7B3rI0H2MweufaIdef5q_znDbdZYp720sf2jRNz_dJzgchL4L0NVOhpEEpSfOgGK1rUVMmlQtMg03sMcH5y06xtZd_2pf7K-T3mAuDYZWjTOwFtZ873CNfB84CawE8ZL0eU1jE183q3ckPih2k8KR1bKcxkMh2WPwE9619O9sEXL_kvPrw_f0WTR0GqAO7oKNRe3ABc2nBN3OW5T7qaRTT0noRfRmdVlbkeZCijipIbMHHrRCxmEYPqrLEQkwg_q8pUU6xe0JZfTzXAuDKDG3swT2ThWYpYWdI22McT08xfYixQlN2QSn-rRr-OaPtVV91m9xMNmu2MRDZHbISmrvkVrJfsyQdWrg1togY790jOiUCLyjGeqBcag6zyrqQod8LbLTIMMEl2-0Wx0e_YDaMbD21R117n-xdCSwfkNVm3oSHJHOFjXWECbjXOVxK5awo6txzyb0r-ISwEVzGpVLmuLZjsyzCjCA2AGLTg9iwCXl9_s7JUMjj0tHPEQsGK2Q0SGuH9qxtzWz3m9mQZYFNo4SekFdpUJzD551NGQ3wE1hU68LItRGbJsmI1iwpekLejBhePv7_4h5dPtszch04w3ye7Ww_Jjd4T2a4a7RGVrvTs_AEjKiuftpTa0YOrpo9_gAbQSki
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity-Preserving+Face+Recovery+from+Stylized+Portraits&rft.jtitle=International+journal+of+computer+vision&rft.au=Shiri%2C+Fatemeh&rft.au=Yu%2C+Xin&rft.au=Porikli%2C+Fatih&rft.au=Hartley%2C+Richard&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=127&rft.issue=6-7&rft.spage=863&rft.epage=883&rft_id=info:doi/10.1007%2Fs11263-019-01169-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon