Identity-Preserving Face Recovery from Stylized Portraits
Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style R...
Saved in:
Published in | International journal of computer vision Vol. 127; no. 6-7; pp. 863 - 883 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-5691 1573-1405 |
DOI | 10.1007/s11263-019-01169-1 |
Cover
Loading…
Abstract | Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style Removal network (SRN) and a Discriminative Network (DN). Our SRN, composed of an autoencoder with residual block-embedded skip connections, is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. Owing to the Spatial Transformer Network, SRN automatically compensates for misalignments of stylized portraits to output aligned realistic face images. To ensure the identity preservation, we promote the recovered and ground truth faces to share similar visual features via a distance measure which compares features of recovered and ground truth faces extracted from a pre-trained FaceNet network. DN has multiple convolutional and fully-connected layers, and its role is to enforce recovered faces to be similar to authentic faces. Thus, we can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face in an image. By conducting extensive evaluations on a large-scale synthesized dataset and a hand-drawn sketch dataset, we demonstrate that our method achieves superior face recovery and attains state-of-the-art results. In addition, our method can recover photorealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn sketches. |
---|---|
AbstractList | Given an artistic portrait, recovering the latent photorealistic face that preserves the subject's identity is challenging because the facial details are often distorted or fully lost in artistic portraits. We develop an Identity-preserving Face Recovery from Portraits method that utilizes a Style Removal network (SRN) and a Discriminative Network (DN). Our SRN, composed of an autoencoder with residual block-embedded skip connections, is designed to transfer feature maps of stylized images to the feature maps of the corresponding photorealistic faces. Owing to the Spatial Transformer Network, SRN automatically compensates for misalignments of stylized portraits to output aligned realistic face images. To ensure the identity preservation, we promote the recovered and ground truth faces to share similar visual features via a distance measure which compares features of recovered and ground truth faces extracted from a pre-trained FaceNet network. DN has multiple convolutional and fully-connected layers, and its role is to enforce recovered faces to be similar to authentic faces. Thus, we can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face in an image. By conducting extensive evaluations on a large-scale synthesized dataset and a hand-drawn sketch dataset, we demonstrate that our method achieves superior face recovery and attains state-of-the-art results. In addition, our method can recover photorealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn sketches. |
Audience | Academic |
Author | Yu, Xin Shiri, Fatemeh Hartley, Richard Koniusz, Piotr Porikli, Fatih |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Shiri fullname: Shiri, Fatemeh organization: Australian National University – sequence: 2 givenname: Xin surname: Yu fullname: Yu, Xin organization: Australian National University – sequence: 3 givenname: Fatih surname: Porikli fullname: Porikli, Fatih organization: Australian National University – sequence: 4 givenname: Richard surname: Hartley fullname: Hartley, Richard organization: Australian National University, Data61/CSIRO – sequence: 5 givenname: Piotr surname: Koniusz fullname: Koniusz, Piotr email: piotr.koniusz@anu.edu.au, piotr.koniusz@data61.csiro.au organization: Australian National University, Data61/CSIRO |
BookMark | eNp9kU1LAzEQhoMoWD_-gKcFTx5WJ8lmNzmW4kdBUKqeQ8xOSqTd1SQV6683dQXRQwkhMDxPkpn3gOx2fYeEnFA4pwDNRaSU1bwEqvKmtSrpDhlR0fCSViB2yQgUg1LUiu6TgxhfAIBJxkdETVvskk_r8j5gxPDuu3lxZSwWM7T9O4Z14UK_LB7SeuE_sS3u-5CC8SkekT1nFhGPf85D8nR1-Ti5KW_vrqeT8W1puWKpdKptpKyEYU1lDa1ap8BxkKblrpXOqsbwqkLBn12DAkBIZjh3NbiWUSEVPySnw72voX9bYUz6pV-FLj-pGVUguZLNhjofqLlZoPad6_MvbV4tLr3Nw3I-18dC1lQwwTfC2R8hMwk_0tysYtTTh9lfVg6sDX2MAZ22Ppnks5JHsdAU9CYFPaSgcwr6OwVNs8r-qa_BL01Yb5f4IMUMd3MMvy1vsb4A_2WZvg |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_128129 crossref_primary_10_1109_TPAMI_2021_3107160 crossref_primary_10_3390_info15030135 crossref_primary_10_1007_s11263_020_01301_6 crossref_primary_10_1109_ACCESS_2024_3435351 crossref_primary_10_1016_j_knosys_2020_106217 crossref_primary_10_1109_TPAMI_2021_3061312 crossref_primary_10_1109_TIP_2020_3046918 crossref_primary_10_1109_TVCG_2023_3241894 crossref_primary_10_1109_TPAMI_2022_3159831 crossref_primary_10_3390_app14146311 |
Cites_doi | 10.1109/CVPR.2017.397 10.1109/DICTA.2017.8227432 10.1109/CVPR.2015.7298965 10.1007/978-3-030-01270-0_48 10.1109/WACV.2011.5711509 10.1609/aaai.v31i1.11206 10.1109/CVPR.2015.7298682 10.1109/CVPR.2018.00605 10.1016/S0262-8856(97)00070-X 10.1109/CVPR.2017.570 10.1007/978-3-319-10599-4_7 10.1109/CVPR.2013.17 10.1109/CVPR.2011.5995324 10.5244/C.29.41 10.1016/j.patrec.2017.06.012 10.1109/WACV.2018.00018 10.1109/CVPR.2016.278 10.1109/ICCV.2015.425 10.1109/FG.2018.00022 10.1109/WACVW.2018.00006 10.1109/TIP.2011.2109730 10.1109/TPAMI.2016.2545667 10.1109/CVPR.2016.265 10.1007/978-3-319-46475-6_43 10.1007/978-3-319-24574-4_28 10.1109/WACV.2019.00049 10.1109/CVPR.2011.5995350 10.1109/CVPR.2016.272 10.1007/978-3-319-46487-9_43 10.1007/978-3-319-46454-1_20 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
DOI | 10.1007/s11263-019-01169-1 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 883 |
ExternalDocumentID | A586152539 10_1007_s11263_019_01169_1 |
GrantInformation_xml | – fundername: Australian Research Council (Discovery) grantid: DP150104645 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 ICD KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI AEIIB PMFND 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c392t-f9d78845a274ca14df90f308ad3fd8fc97a344e53bf7e500582a33f60fd215893 |
IEDL.DBID | 8FG |
ISSN | 0920-5691 |
IngestDate | Fri Jul 25 06:16:48 EDT 2025 Tue Jun 10 20:30:48 EDT 2025 Fri Jun 27 03:33:13 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Tue Jul 01 04:30:56 EDT 2025 Fri Feb 21 02:26:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | Face recovery Face synthesis Image stylization Generative models Destylization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-f9d78845a274ca14df90f308ad3fd8fc97a344e53bf7e500582a33f60fd215893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2190839879 |
PQPubID | 1456341 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2190839879 gale_infotracacademiconefile_A586152539 gale_incontextgauss_ISR_A586152539 crossref_citationtrail_10_1007_s11263_019_01169_1 crossref_primary_10_1007_s11263_019_01169_1 springer_journals_10_1007_s11263_019_01169_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190601 2019-6-00 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190601 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Wilmot, P., Risser, E., & Barnes, C. (2017). Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893. Zhang, H., Sindagi, V., & Patel, V. M. (2017). Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A learned representation for artistic style. arXiv preprint arXiv:1610.07629. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., & Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR. Ronneberger, O., & Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer. Li, C., & Wand, M. (2016a). Combining markov random fields and convolutional neural networks for image synthesis. In CVPR. Yu, X., & Porikli, F. (2016). Ultra-resolving face images by discriminative generative networks. In ECCV. Yu, X., & Porikli, F. (2017a). Face hallucination with tiny unaligned images by transformative discriminative neural networks. In AAAI. Archibald prize; art gallery of nsw. https://www.artgallery.nsw.gov.au/prizes/archibald/. https://www.artgallery.nsw.gov.au/prizes/archibald/ (2017). Gupta, A., Johnson, J., Alahi, A., & Fei-Fei, L. (2017). Characterizing and improving stability in neural style transfer. arXiv preprint arXiv:1705.02092. Karacan, L., Akata, Z., Erdem, A., & Erdem, E. (2016). Learning to generate images of outdoor scenes from attributes and semantic layouts. arXiv preprint arXiv:1612.00215. KoniuszPYanFGosselinPMikolajczykKHigher-order occurrence pooling for bags-of-words: Visual concept detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201639231332610.1109/TPAMI.2016.2545667 Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV. Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016a). Texture networks: Feed-forward synthesis of textures and stylized images. In ICML. Sharma, A., & Jacobs, D. W. (2011). Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch. In CVPR. IEEE. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In CVPR. Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016b). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. Koniusz, P., Zhang, H., & Porikli, F. (2018). A deeper look at power normalizations. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 5774–5783). Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365. Kazemi, H., Iranmanesh, M., Dabouei, A., Soleymani, S., & Nasrabadi, N.M. (2018). Facial attributes guided deep sketch-to-photo synthesis. In 2018 IEEE winter applications of computer vision workshops (WACVW) (pp. 1–8). IEEE. Sangkloy, P., Lu, J., Fang, C., Yu, F., & Hays, J. (2016). Scribbler: Controlling deep image synthesis with sketch and color. arXiv preprint arXiv:1612.00835. Denton, E. L., Chintala, S., & Fergus, R., et al. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS. Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In ICML. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. SelimAElgharibMDoyleLPainting style transfer for head portraits using convolutional neural networksACM (TOG)2016354129 Wang, X., Oxholm, G., Zhang, D., & Wang, Y.F. (2016). Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer. arXiv preprint arXiv:1612.01895. Zhang, H., & Dana, K. (2017). Multi-style generative network for real-time transfer. arXiv preprint arXiv:1703.06953. Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. In NIPS. Li, C., & Wand, M. (2016b). Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV (pp. 702–716). Springer. Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC. Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., & Shechtman, E. (2016) Controlling perceptual factors in neural style transfer. arXiv preprint arXiv:1611.07865. Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759. Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2019). Recovering faces from portraits with auxiliary facial attributes. In WACV. Zhang, W., Wang, X., & Tang, X. (2011b). Coupled information-theoretic encoding for face photo-sketch recognition. In CVPR. IEEE. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M.H. (2017). Diversified texture synthesis with feed-forward networks. arXiv preprint arXiv:1703.01664. Shiri, F., Yu, X., Koniusz, P., & Porikli, F. (2017). Face destylization. In International conference on digital image computing: Techniques and applications (DICTA). https://doi.org/10.1109/DICTA.2017.8227432. WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE TIP2004134600612 Chen, T. Q., & Schmidt, M. (2016). Fast patch-based style transfer of arbitrary style. arXiv preprint arXiv:1612.04337. WangNZhaWLiJGaoXBack projection: An effective postprocessing method for gan-based face sketch synthesisPattern Recognition Letters2018107596510.1016/j.patrec.2017.06.012 Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2018). Identity-preserving face recovery from portraits. In WACV (pp. 102–111). https://doi.org/10.1109/WACV.2018.00018. Yu, X., & Porikli, F. (2017b). Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In CVPR. Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In CVPR. Jaderberg, M., Simonyan, K., & Zisserman, A., et al. (2015). Spatial transformer networks. In NIPS (pp. 2017–2025). Nejati, H., & Sim, T. (2011). A study on recognizing non-artistic face sketches. In WACV. IEEE. PhillipsPJWechslerHHuangJRaussPJThe feret database and evaluation procedure for face-recognition algorithmsImage and Vision Computing199816529530610.1016/S0262-8856(97)00070-X Hinton, G.: Neural Networks for Machine Learning Lecture 6a: Overview of mini-batch gradient descent Reminder: The error surface for a linear neuron Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV. Springer. Gatys, L. A., Bethge, M., Hertzmann, A., & Shechtman, E. (2016). Preserving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897. Yin, R. (2016). Content aware neural style transfer. arXiv preprint arXiv:1601.04568. Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR. Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. arXiv preprint arXiv:1703.06868. Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086. Chen, D., Yuan, L., Liao, J., & Yu, N., Hua, G. (2017). Stylebank: An explicit representation for neural image style transfer. arXiv preprint arXiv:1703.09210. Wang, L., Sindagi, V., & Patel, V. (2018a). High-quality facial photo-sketch synthesis using multi-adversarial networks. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 83–90). IEEE. Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., & Zhang, R. (2018). Museum exhibit identification challenge for the supervised domain adaptation and beyond. In ECCV (pp. 788–804). ZhangLZhangLMouXZhangDFsim: A feature similarity index for image quality assessmentIEEE Transactions on Image Processing201120823782386286634210.1109/TIP.2011.21097301373.62333 Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. arXiv preprint arXiv:1701.02096. Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2014). Facial landmark detection by deep multi-task learning. In ECCV. Springer. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z., et al. (2016). Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A.(2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593. 1169_CR31 1169_CR30 1169_CR33 1169_CR32 1169_CR34 1169_CR37 1169_CR36 1169_CR39 1169_CR38 1169_CR60 1169_CR62 1169_CR20 1169_CR64 1169_CR63 1169_CR21 1169_CR24 P Koniusz (1169_CR22) 2016; 39 1169_CR23 1169_CR26 1169_CR25 1169_CR28 1169_CR27 1169_CR29 A Selim (1169_CR40) 2016; 35 L Zhang (1169_CR61) 2011; 20 1169_CR51 1169_CR53 1169_CR11 1169_CR55 1169_CR10 1169_CR54 1169_CR13 1169_CR57 1169_CR12 1169_CR56 1169_CR15 1169_CR59 1169_CR14 1169_CR58 1169_CR17 1169_CR16 1169_CR19 1169_CR18 Z Wang (1169_CR52) 2004; 13 1169_CR1 1169_CR2 1169_CR3 1169_CR42 1169_CR4 1169_CR41 1169_CR5 1169_CR44 1169_CR6 1169_CR43 1169_CR7 1169_CR46 1169_CR8 1169_CR45 N Wang (1169_CR50) 2018; 107 1169_CR9 1169_CR48 1169_CR47 1169_CR49 PJ Phillips (1169_CR35) 1998; 16 |
References_xml | – reference: Yu, X., & Porikli, F. (2017b). Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In CVPR. – reference: Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC. – reference: Gatys, L. A., Bethge, M., Hertzmann, A., & Shechtman, E. (2016). Preserving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897. – reference: Ronneberger, O., & Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer. – reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. – reference: Karacan, L., Akata, Z., Erdem, A., & Erdem, E. (2016). Learning to generate images of outdoor scenes from attributes and semantic layouts. arXiv preprint arXiv:1612.00215. – reference: SelimAElgharibMDoyleLPainting style transfer for head portraits using convolutional neural networksACM (TOG)2016354129 – reference: Wilmot, P., Risser, E., & Barnes, C. (2017). Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893. – reference: Shiri, F., Yu, X., Koniusz, P., & Porikli, F. (2017). Face destylization. In International conference on digital image computing: Techniques and applications (DICTA). https://doi.org/10.1109/DICTA.2017.8227432. – reference: Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In ICML. – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE TIP2004134600612 – reference: Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759. – reference: Nejati, H., & Sim, T. (2011). A study on recognizing non-artistic face sketches. In WACV. IEEE. – reference: Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., & Zhang, R. (2018). Museum exhibit identification challenge for the supervised domain adaptation and beyond. In ECCV (pp. 788–804). – reference: Zhang, H., Sindagi, V., & Patel, V. M. (2017). Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957. – reference: Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004. – reference: Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016b). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. – reference: Wang, L., Sindagi, V., & Patel, V. (2018a). High-quality facial photo-sketch synthesis using multi-adversarial networks. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 83–90). IEEE. – reference: Jayasumana, S., Hartley, R., Salzmann, M., Li, H., & Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR. – reference: Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A learned representation for artistic style. arXiv preprint arXiv:1610.07629. – reference: Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV. Springer. – reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. – reference: Archibald prize; art gallery of nsw. https://www.artgallery.nsw.gov.au/prizes/archibald/. https://www.artgallery.nsw.gov.au/prizes/archibald/ (2017). – reference: Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z., et al. (2016). Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802. – reference: Zhang, H., & Dana, K. (2017). Multi-style generative network for real-time transfer. arXiv preprint arXiv:1703.06953. – reference: Yu, X., & Porikli, F. (2017a). Face hallucination with tiny unaligned images by transformative discriminative neural networks. In AAAI. – reference: Kazemi, H., Iranmanesh, M., Dabouei, A., Soleymani, S., & Nasrabadi, N.M. (2018). Facial attributes guided deep sketch-to-photo synthesis. In 2018 IEEE winter applications of computer vision workshops (WACVW) (pp. 1–8). IEEE. – reference: Chen, D., Yuan, L., Liao, J., & Yu, N., Hua, G. (2017). Stylebank: An explicit representation for neural image style transfer. arXiv preprint arXiv:1703.09210. – reference: Jaderberg, M., Simonyan, K., & Zisserman, A., et al. (2015). Spatial transformer networks. In NIPS (pp. 2017–2025). – reference: Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M.H. (2017). Diversified texture synthesis with feed-forward networks. arXiv preprint arXiv:1703.01664. – reference: Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365. – reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In CVPR. – reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR. – reference: Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2018). Identity-preserving face recovery from portraits. In WACV (pp. 102–111). https://doi.org/10.1109/WACV.2018.00018. – reference: Zhu, J. Y., Park, T., Isola, P., & Efros, A. A.(2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593. – reference: Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. arXiv preprint arXiv:1701.02096. – reference: Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. In NIPS. – reference: Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. arXiv preprint arXiv:1703.06868. – reference: Koniusz, P., Zhang, H., & Porikli, F. (2018). A deeper look at power normalizations. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 5774–5783). – reference: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV. – reference: Yin, R. (2016). Content aware neural style transfer. arXiv preprint arXiv:1601.04568. – reference: Denton, E. L., Chintala, S., & Fergus, R., et al. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS. – reference: PhillipsPJWechslerHHuangJRaussPJThe feret database and evaluation procedure for face-recognition algorithmsImage and Vision Computing199816529530610.1016/S0262-8856(97)00070-X – reference: Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016a). Texture networks: Feed-forward synthesis of textures and stylized images. In ICML. – reference: Gupta, A., Johnson, J., Alahi, A., & Fei-Fei, L. (2017). Characterizing and improving stability in neural style transfer. arXiv preprint arXiv:1705.02092. – reference: Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., & Shechtman, E. (2016) Controlling perceptual factors in neural style transfer. arXiv preprint arXiv:1611.07865. – reference: Sharma, A., & Jacobs, D. W. (2011). Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch. In CVPR. IEEE. – reference: Yu, X., & Porikli, F. (2016). Ultra-resolving face images by discriminative generative networks. In ECCV. – reference: Li, C., & Wand, M. (2016a). Combining markov random fields and convolutional neural networks for image synthesis. In CVPR. – reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In CVPR. – reference: Wang, X., Oxholm, G., Zhang, D., & Wang, Y.F. (2016). Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer. arXiv preprint arXiv:1612.01895. – reference: KoniuszPYanFGosselinPMikolajczykKHigher-order occurrence pooling for bags-of-words: Visual concept detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201639231332610.1109/TPAMI.2016.2545667 – reference: Sangkloy, P., Lu, J., Fang, C., Yu, F., & Hays, J. (2016). Scribbler: Controlling deep image synthesis with sketch and color. arXiv preprint arXiv:1612.00835. – reference: Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2014). Facial landmark detection by deep multi-task learning. In ECCV. Springer. – reference: Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086. – reference: ZhangLZhangLMouXZhangDFsim: A feature similarity index for image quality assessmentIEEE Transactions on Image Processing201120823782386286634210.1109/TIP.2011.21097301373.62333 – reference: WangNZhaWLiJGaoXBack projection: An effective postprocessing method for gan-based face sketch synthesisPattern Recognition Letters2018107596510.1016/j.patrec.2017.06.012 – reference: Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2019). Recovering faces from portraits with auxiliary facial attributes. In WACV. – reference: Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. – reference: Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR. – reference: Li, C., & Wand, M. (2016b). Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV (pp. 702–716). Springer. – reference: Chen, T. Q., & Schmidt, M. (2016). Fast patch-based style transfer of arbitrary style. arXiv preprint arXiv:1612.04337. – reference: Hinton, G.: Neural Networks for Machine Learning Lecture 6a: Overview of mini-batch gradient descent Reminder: The error surface for a linear neuron – reference: Zhang, W., Wang, X., & Tang, X. (2011b). Coupled information-theoretic encoding for face photo-sketch recognition. In CVPR. IEEE. – ident: 1169_CR10 – ident: 1169_CR8 doi: 10.1109/CVPR.2017.397 – ident: 1169_CR14 – ident: 1169_CR42 doi: 10.1109/DICTA.2017.8227432 – ident: 1169_CR9 – ident: 1169_CR29 doi: 10.1109/CVPR.2015.7298965 – ident: 1169_CR20 – ident: 1169_CR6 – ident: 1169_CR18 – ident: 1169_CR21 doi: 10.1007/978-3-030-01270-0_48 – ident: 1169_CR24 – ident: 1169_CR2 – ident: 1169_CR31 doi: 10.1109/WACV.2011.5711509 – ident: 1169_CR47 – ident: 1169_CR57 doi: 10.1609/aaai.v31i1.11206 – ident: 1169_CR39 doi: 10.1109/CVPR.2015.7298682 – ident: 1169_CR23 doi: 10.1109/CVPR.2018.00605 – ident: 1169_CR55 – volume: 16 start-page: 295 issue: 5 year: 1998 ident: 1169_CR35 publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(97)00070-X – ident: 1169_CR13 – ident: 1169_CR30 – ident: 1169_CR38 – ident: 1169_CR51 – ident: 1169_CR58 doi: 10.1109/CVPR.2017.570 – ident: 1169_CR63 doi: 10.1007/978-3-319-10599-4_7 – ident: 1169_CR59 – ident: 1169_CR16 doi: 10.1109/CVPR.2013.17 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1169_CR52 publication-title: IEEE TIP – ident: 1169_CR5 – ident: 1169_CR62 doi: 10.1109/CVPR.2011.5995324 – ident: 1169_CR1 – ident: 1169_CR27 – ident: 1169_CR33 doi: 10.5244/C.29.41 – ident: 1169_CR48 – volume: 107 start-page: 59 year: 2018 ident: 1169_CR50 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.06.012 – ident: 1169_CR43 doi: 10.1109/WACV.2018.00018 – ident: 1169_CR54 – ident: 1169_CR60 – ident: 1169_CR12 – ident: 1169_CR34 doi: 10.1109/CVPR.2016.278 – ident: 1169_CR28 doi: 10.1109/ICCV.2015.425 – ident: 1169_CR49 doi: 10.1109/FG.2018.00022 – volume: 35 start-page: 129 issue: 4 year: 2016 ident: 1169_CR40 publication-title: ACM (TOG) – ident: 1169_CR19 doi: 10.1109/WACVW.2018.00006 – ident: 1169_CR45 – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 1169_CR61 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2109730 – ident: 1169_CR4 – volume: 39 start-page: 313 issue: 2 year: 2016 ident: 1169_CR22 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2545667 – ident: 1169_CR64 – ident: 1169_CR7 doi: 10.1109/CVPR.2016.265 – ident: 1169_CR17 doi: 10.1007/978-3-319-46475-6_43 – ident: 1169_CR32 – ident: 1169_CR37 doi: 10.1007/978-3-319-24574-4_28 – ident: 1169_CR44 doi: 10.1109/WACV.2019.00049 – ident: 1169_CR11 – ident: 1169_CR41 doi: 10.1109/CVPR.2011.5995350 – ident: 1169_CR36 – ident: 1169_CR53 – ident: 1169_CR25 doi: 10.1109/CVPR.2016.272 – ident: 1169_CR46 – ident: 1169_CR3 – ident: 1169_CR26 doi: 10.1007/978-3-319-46487-9_43 – ident: 1169_CR15 – ident: 1169_CR56 doi: 10.1007/978-3-319-46454-1_20 |
SSID | ssj0002823 |
Score | 2.430707 |
Snippet | Given an artistic portrait, recovering the latent photorealistic face that preserves the subject’s identity is challenging because the facial details are often... Given an artistic portrait, recovering the latent photorealistic face that preserves the subject's identity is challenging because the facial details are often... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 863 |
SubjectTerms | Artificial Intelligence Computer Imaging Computer Science Distance measurement Feature extraction Feature maps Ground truth Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics Portraits Recovery Sketches Vision |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy--xfVFEcGDBjZN0zTHRVxU0IO64C2keYggVbb1sP56Z7qpi0_w0kM6TdOZZDLTzDdDyKEXrmTSF9RLKWjmJaNlyUvKhLSeKbCJHQKcr67z81F2eS_uIyis7qLduyPJVlPPwG4sxTNHBN0wlisKPs-CAN8d5_UoHXzoX3AipgXkwTESuWIRKvNzH5-2o69K-dvpaLvpDFfIUrQWk8FUvKtkzldrZDlajklclzU0dcUZurZ1oiIEd0IxygI1QvWQDI31CXqcMIEnCUJLkttm8vT4Br1hTOnYPDb1BhkNz-5Oz2msk0AtWDcNDcqBI5sJAx6mNSxzQfUD7xfG8eCKYJU0PMu84GWQXmAhwdRwHvJ-cLDhg8GySear58pvkcTmJpQBOkidyuBSSGt4XmYuFamzedojrGOXtjGJOI7tSc_SHyOLNbBYtyzWrEeOP555mabQ-JP6AKWgMTdFhcEvD-a1rvXF7Y0eiCLHck1c9chRJArP8HprIpYAPgLTWX2i3O2kqePqrDVoabA8VSHh9kkn4dnt3we3_T_yHbKYtnMNf9rskvlm_Or3wIZpyv12yr4D1UrlNw priority: 102 providerName: Springer Nature |
Title | Identity-Preserving Face Recovery from Stylized Portraits |
URI | https://link.springer.com/article/10.1007/s11263-019-01169-1 https://www.proquest.com/docview/2190839879 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcEThwqUtfahLKYqqSj20Fus4TuJTtaBdoFVRBawEJ8vxAyGhLCXhsP36zmQdVoDgkkiO4zgz43nY8wD44qWreOFL5otCsswXnFWVqBiXhfVcoU7sKMD591F-MM1-nsmzuOHWRLfKnid2jNrNLO2R7-DKQm0BLWT14_ovo6pRdLoaS2i8gDWOkoYovJzs33FiNCcWpeTRRJK54jFoZhE6hy-QJxF5C_FcMX5PMD1kz4_OSTvxM3kNL6PemIwWiN6AFV-_gVdRh0ziCm2wqS_T0Le9BRWDceeM_C2IN9QXycRYn5DtiaQ8TyjIJDlp51eX_3A08i69MZdt8w6mk_Hp3gGLFROYRT2nZUE5NGkzadDWtIZnLqhhEMPSOBFcGawqjMgyL0UVCi-ppGBqhAj5MDgU_ai6vIfVelb7D5DY3IQq4ACpUxleysIakVeZS2XqbJ4OgPfg0jamE6e5XellImQCsUYQ6w7Emg_g290714tkGs_2_kxY0JSloiY3mAtz2zT68ORYj2SZU-EmoQbwNXYKM_y8NTGqAH-CElvd67nVY1PHddroJVUN4HuP4eXjpye3-fxoH2E97WiLtmu2YLW9ufWfUHtpq-2ORLdhbbR__muM993x0Z9jbJ2mo__tw-yH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALlJfYUiBCIA5gsX4l8QGhClh26eNAW6k34_hRVaqybZMKLT-K38hM4nRVEL31kkPiOM7MeDxjzzdDyKugfMWKUNJQFIrKUDBaVaKiTBUuMA02sUeA885uPj2Q3w7V4Qr5PWBhMKxy0ImdovZzh3vk72FmgbUAHrL-eHpGsWoUnq4OJTR6sdgKi5_gsjUfZp-Bv685n3zZ_zSlqaoAdWALtDRqD26fVBb8MWeZ9FGPoxiX1ovoy-h0YYWUQYkqFkFh2T1uhYj5OHpYHktMvgQq_5YUQmMIYTn5eqn5wX3pS9eDS6ZyzRJIp4fqMY4npggZYizXlF1ZCP9eDv45l-2Wu8kauZvs1GyzF6z7ZCXUD8i9ZLNmSSM0cGsoCzHce0h0Av8uKMZ3oC6qj7KJdSFDXxemziJDUEu21y5Ojn9BbxjNem6P2-YRObgRWj4mq_W8Dk9I5nIbqwgdcK8lXMrCWZFX0nPFvcv5iLCBXMal9OU4thOzTLyMJDZAYtOR2LAReXv5zmmfvOPa1i-RCwazYtQYdnNkL5rGzPa-m01V5lgoSugReZMaxTl83tmEYoCfwERaV1puDNw0SS80ZinFI_Ju4PDy8f8Ht359by_I7en-zrbZnu1uPSV3eCdnuFW0QVbb84vwDCyntnreiWtGftz0_PgDYVwk9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9UwNIwJ4ovf4tWpRRQfNOwmaZrmQWQ4667TIc7B3rI0H2MweufaIdef5q_znDbdZYp720sf2jRNz_dJzgchL4L0NVOhpEEpSfOgGK1rUVMmlQtMg03sMcH5y06xtZd_2pf7K-T3mAuDYZWjTOwFtZ873CNfB84CawE8ZL0eU1jE183q3ckPih2k8KR1bKcxkMh2WPwE9619O9sEXL_kvPrw_f0WTR0GqAO7oKNRe3ABc2nBN3OW5T7qaRTT0noRfRmdVlbkeZCijipIbMHHrRCxmEYPqrLEQkwg_q8pUU6xe0JZfTzXAuDKDG3swT2ThWYpYWdI22McT08xfYixQlN2QSn-rRr-OaPtVV91m9xMNmu2MRDZHbISmrvkVrJfsyQdWrg1togY790jOiUCLyjGeqBcag6zyrqQod8LbLTIMMEl2-0Wx0e_YDaMbD21R117n-xdCSwfkNVm3oSHJHOFjXWECbjXOVxK5awo6txzyb0r-ISwEVzGpVLmuLZjsyzCjCA2AGLTg9iwCXl9_s7JUMjj0tHPEQsGK2Q0SGuH9qxtzWz3m9mQZYFNo4SekFdpUJzD551NGQ3wE1hU68LItRGbJsmI1iwpekLejBhePv7_4h5dPtszch04w3ye7Ww_Jjd4T2a4a7RGVrvTs_AEjKiuftpTa0YOrpo9_gAbQSki |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity-Preserving+Face+Recovery+from+Stylized+Portraits&rft.jtitle=International+journal+of+computer+vision&rft.au=Shiri%2C+Fatemeh&rft.au=Yu%2C+Xin&rft.au=Porikli%2C+Fatih&rft.au=Hartley%2C+Richard&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=127&rft.issue=6-7&rft.spage=863&rft.epage=883&rft_id=info:doi/10.1007%2Fs11263-019-01169-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |