Preparing Hydrophobic Cellulose Nanofibers-SiO2 Films and Coating by One-Step Mechanochemical Method

Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modif...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 20; p. 4413
Main Authors Chen, Xi, Zhang, Lijiaqi, Wu, Min, Huang, Yong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.10.2022
MDPI
Subjects
Online AccessGet full text
ISSN2073-4360
2073-4360
DOI10.3390/polym14204413

Cover

Loading…
Abstract Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.
AbstractList Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.
Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.
Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO 2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO 2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO 2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO 2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.
Author Wu, Min
Chen, Xi
Huang, Yong
Zhang, Lijiaqi
AuthorAffiliation 1 National Engineering Research Center of Engineering and Eco-Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 1 National Engineering Research Center of Engineering and Eco-Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– name: 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
– sequence: 2
  givenname: Lijiaqi
  orcidid: 0000-0003-1366-428X
  surname: Zhang
  fullname: Zhang, Lijiaqi
– sequence: 3
  givenname: Min
  orcidid: 0000-0003-0542-4235
  surname: Wu
  fullname: Wu, Min
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-1742-2691
  surname: Huang
  fullname: Huang, Yong
BookMark eNptkc1LHTEUxUOxoLUuux_oxs3UfE0m2QjyqLVg-4Rn1yHJZJxIJhmTmcL775vhKag0m-SS3zmXe-4ncBRisAB8QfAbIQJeTNHvR0QxpBSRD-AEw5bUlDB49Op9DM5yfoTl0IYx1J6A7i7ZSSUXHqqbfZfiNETtTLWx3i8-Zlv9ViH2TtuU653b4ura-TFXKnTVJqp51el9tQ223s12qn5ZMxSBGezojPKlnofYfQYfe-WzPXu-T8Gf6-_3m5v6dvvj5-bqtjZE4LnusWaiI8b0WBiriGpaoltsONcEKmhayjvIeSuQob3uOKTMCK61wAJSQgU5BZcH32nRo-2MDXNSXk7JjSrtZVROvv0JbpAP8a8UDCHGWDE4fzZI8WmxeZajy6ZkoYKNS5a4xaJBnIsV_foOfYxLCmW8leINbgimhSIHyqSYc7K9NG4uscW1v_MSQbluT77ZXlHV71QvI_yf_wdtrZ-0
CitedBy_id crossref_primary_10_1016_j_porgcoat_2025_109154
crossref_primary_10_1016_j_psep_2025_107032
crossref_primary_10_1021_acsapm_3c02088
crossref_primary_10_3390_polym16081095
Cites_doi 10.1016/j.apsusc.2010.12.116
10.1007/s00226-022-01363-4
10.1021/acssuschemeng.0c00203
10.1021/jp103479k
10.1021/am4015346
10.1021/acsanm.8b00079
10.1016/j.matlet.2014.08.127
10.1007/s11051-017-3762-5
10.1016/j.jcis.2018.10.045
10.1016/j.cej.2017.05.175
10.15251/DJNB.2020.151.85
10.1039/C5TA04428F
10.1039/C2TA00288D
10.1016/j.carbpol.2020.116694
10.1016/j.polymer.2013.09.004
10.1002/admi.201900892
10.1016/j.compscitech.2016.05.014
10.1021/nn4060368
10.1007/s10971-019-05206-w
10.1016/j.fuel.2018.05.066
10.1021/acsami.0c12504
10.1021/la204492q
10.1016/j.nanoen.2015.02.015
10.1016/j.colsurfa.2018.10.005
10.1016/j.carbpol.2022.119504
10.1021/acsnano.0c07613
10.1021/am900704u
10.1016/j.carbpol.2022.119371
10.1016/j.apsusc.2015.02.157
10.1039/C5GC01979F
10.1016/j.apsusc.2014.05.207
10.1016/j.apsusc.2017.02.201
10.1016/j.apsusc.2012.08.097
10.1002/adma.201003129
10.1039/D0GC01834A
10.3390/coatings11101147
10.1021/acsami.8b12116
10.1021/acs.langmuir.1c00706
10.1016/j.apsusc.2019.145165
10.1016/j.apsusc.2019.143648
10.1007/s10570-018-2197-1
10.1002/adma.200290020
10.1007/s10570-021-04279-7
10.1016/j.carbpol.2013.05.082
10.1016/j.carbpol.2016.07.112
10.1016/j.polymdegradstab.2021.109808
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym14204413
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Collection (ProQuest)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC9611666
10_3390_polym14204413
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52073291; 51733009
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c392t-f2b69d3ccf29cea3a573b72c88b30a0c748d088791c4fbd8046c98bb929043493
IEDL.DBID 8FG
ISSN 2073-4360
IngestDate Thu Aug 21 18:38:50 EDT 2025
Thu Sep 04 23:58:57 EDT 2025
Fri Jul 25 11:56:18 EDT 2025
Tue Jul 01 02:20:47 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-f2b69d3ccf29cea3a573b72c88b30a0c748d088791c4fbd8046c98bb929043493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1742-2691
0000-0003-1366-428X
0000-0003-0542-4235
OpenAccessLink https://www.proquest.com/docview/2728525324?pq-origsite=%requestingapplication%
PQID 2728525324
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611666
proquest_miscellaneous_2729518896
proquest_journals_2728525324
crossref_citationtrail_10_3390_polym14204413
crossref_primary_10_3390_polym14204413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221019
PublicationDateYYYYMMDD 2022-10-19
PublicationDate_xml – month: 10
  year: 2022
  text: 20221019
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_45) 2022; 288
Chen (ref_6) 2020; 8
Paul (ref_38) 2022; 195
Huang (ref_12) 2019; 536
Zhang (ref_15) 2012; 261
Huang (ref_2) 2020; 12
Nau (ref_36) 2019; 6
Feng (ref_4) 2002; 14
Wang (ref_16) 2010; 2
Kuga (ref_34) 2019; 26
Liu (ref_21) 2021; 29
Wang (ref_24) 2020; 22
Zhang (ref_37) 2020; 15
Musikavanhu (ref_11) 2019; 496
Chen (ref_7) 2017; 409
Zheng (ref_10) 2019; 560
Le (ref_20) 2016; 153
Trosien (ref_47) 2018; 10
Yang (ref_9) 2020; 507
Tarabanko (ref_35) 2022; 56
Zhou (ref_5) 2013; 5
Xu (ref_26) 2020; 247
Rahmawan (ref_3) 2013; 1
Gao (ref_13) 2017; 326
Li (ref_42) 2015; 44
Xu (ref_30) 2016; 131
Zhou (ref_33) 2018; 1
Li (ref_22) 2021; 15
Xu (ref_23) 2011; 257
Du (ref_8) 2014; 313
Shi (ref_40) 2013; 98
Ogihara (ref_28) 2012; 28
Combariza (ref_43) 2018; 231
He (ref_41) 2014; 137
ref_44
Cho (ref_46) 2010; 114
Hamedi (ref_29) 2014; 8
Chen (ref_19) 2022; 290
Li (ref_32) 2015; 13
Hu (ref_27) 2017; 19
Zhang (ref_17) 2021; 37
Liu (ref_18) 2015; 339
Blank (ref_25) 2013; 54
Verho (ref_1) 2011; 23
Junyan (ref_14) 2015; 3
Ye (ref_31) 2016; 18
Zhang (ref_39) 2019; 93
References_xml – volume: 257
  start-page: 5491
  year: 2011
  ident: ref_23
  article-title: Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.12.116
– volume: 56
  start-page: 437
  year: 2022
  ident: ref_35
  article-title: Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s00226-022-01363-4
– volume: 8
  start-page: 8505
  year: 2020
  ident: ref_6
  article-title: Nonfluorinated Multifunctional Superhydrophobic Cellulose Sheet with Polysaccharide B Biopolymer-Based Hierarchical Rough Composite Structure
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00203
– volume: 114
  start-page: 11228
  year: 2010
  ident: ref_46
  article-title: Influence of Roughness on a Transparent Superhydrophobic Coating
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103479k
– volume: 5
  start-page: 7208
  year: 2013
  ident: ref_5
  article-title: Robust and durable superhydrophobic cotton fabrics for oil/water separation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4015346
– volume: 1
  start-page: 2095
  year: 2018
  ident: ref_33
  article-title: Superhydrophobic Cellulose Nanofiber-Assembled Aerogels for Highly Efficient Water-in-Oil Emulsions Separation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00079
– volume: 137
  start-page: 167
  year: 2014
  ident: ref_41
  article-title: Fabrication of hydrophobic silica–cellulose aerogels by using dimethyl sulfoxide (DMSO) as solvent
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.08.127
– volume: 19
  start-page: 46
  year: 2017
  ident: ref_27
  article-title: Removal of methylene blue from its aqueous solution by froth flotation: Hydrophobic silica nanoparticle as a collector
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-017-3762-5
– volume: 536
  start-page: 349
  year: 2019
  ident: ref_12
  article-title: A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.045
– volume: 326
  start-page: 443
  year: 2017
  ident: ref_13
  article-title: Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.175
– volume: 15
  start-page: 85
  year: 2020
  ident: ref_37
  article-title: Ternary Flame Retardant System of Ammonium Polyphosphate-Diatomite-Nano-SiO2 and Its Application in Fibrous Materials
  publication-title: Dig. J. Nanomater. Biostructures
  doi: 10.15251/DJNB.2020.151.85
– volume: 3
  start-page: 20134
  year: 2015
  ident: ref_14
  article-title: Durable superhydrophobic/highly oleophobic coatings from multi-dome SiO2 nanoparticles and fluoroacrylate block copolymers on flat substrates
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04428F
– volume: 1
  start-page: 2955
  year: 2013
  ident: ref_3
  article-title: Self-assembly of nanostructures towards transparent, superhydrophobic surfaces
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00288D
– volume: 247
  start-page: 116694
  year: 2020
  ident: ref_26
  article-title: High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116694
– volume: 54
  start-page: 6177
  year: 2013
  ident: ref_25
  article-title: Superhard transparent hybrid nanocomposites for high fidelity UV-nanoimprint lithography
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.09.004
– volume: 6
  start-page: 1900892
  year: 2019
  ident: ref_36
  article-title: Janus-Type Hybrid Paper Membranes
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900892
– volume: 131
  start-page: 67
  year: 2016
  ident: ref_30
  article-title: Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.05.014
– volume: 8
  start-page: 2467
  year: 2014
  ident: ref_29
  article-title: Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes
  publication-title: ACS Nano
  doi: 10.1021/nn4060368
– volume: 93
  start-page: 309
  year: 2019
  ident: ref_39
  article-title: Flame-retardant paper with robust hydrophobicity enabled by perfluorodecane doped SiO2 nanofibers
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-019-05206-w
– volume: 231
  start-page: 297
  year: 2018
  ident: ref_43
  article-title: Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.066
– volume: 12
  start-page: 40968
  year: 2020
  ident: ref_2
  article-title: Cellulose-Based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12504
– volume: 28
  start-page: 4605
  year: 2012
  ident: ref_28
  article-title: Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency
  publication-title: Langmuir
  doi: 10.1021/la204492q
– volume: 13
  start-page: 346
  year: 2015
  ident: ref_32
  article-title: Nanocellulose as green dispersant for two-dimensional energy materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.015
– volume: 560
  start-page: 171
  year: 2019
  ident: ref_10
  article-title: Reconstructing micro/nano hierarchical structures particle with nanocellulose for superhydrophobic coatings
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.10.005
– volume: 290
  start-page: 119504
  year: 2022
  ident: ref_19
  article-title: Cellulose nanofiber assisted dispersion of hydrophobic SiO2 nanoparticles in water and its superhydrophobic coating
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119504
– volume: 15
  start-page: 3646
  year: 2021
  ident: ref_22
  article-title: Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07613
– volume: 2
  start-page: 677
  year: 2010
  ident: ref_16
  article-title: Filter paper with selective absorption and separation of liquids that differ in surface tension
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900704u
– volume: 288
  start-page: 119371
  year: 2022
  ident: ref_45
  article-title: High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119371
– volume: 339
  start-page: 94
  year: 2015
  ident: ref_18
  article-title: Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.02.157
– volume: 18
  start-page: 1674
  year: 2016
  ident: ref_31
  article-title: Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites
  publication-title: Green Chem.
  doi: 10.1039/C5GC01979F
– volume: 313
  start-page: 304
  year: 2014
  ident: ref_8
  article-title: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.05.207
– volume: 409
  start-page: 45
  year: 2017
  ident: ref_7
  article-title: Durable superhydrophobic paper enabled by surface sizing of starch-based composite films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.02.201
– volume: 261
  start-page: 764
  year: 2012
  ident: ref_15
  article-title: Fabrication of coral-like superhydrophobic coating on filter paper for water–oil separation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.08.097
– volume: 23
  start-page: 673
  year: 2011
  ident: ref_1
  article-title: Mechanically Durable Superhydrophobic Surfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003129
– volume: 22
  start-page: 7424
  year: 2020
  ident: ref_24
  article-title: Development of a facile and bi-functional superhydrophobic suspension and its applications in superhydrophobic coatings and aerogels in high-efficiency oil–water separation
  publication-title: Green Chem.
  doi: 10.1039/D0GC01834A
– ident: ref_44
  doi: 10.3390/coatings11101147
– volume: 10
  start-page: 37478
  year: 2018
  ident: ref_47
  article-title: Superhydrophobic Hybrid Paper Sheets with Janus-Type Wettability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12116
– volume: 37
  start-page: 6042
  year: 2021
  ident: ref_17
  article-title: Large-Scale Spraying Fabrication of Robust Fluorine-Free Superhydrophobic Coatings Based on Dual-Sized Silica Particles for Effective Antipollution and Strong Buoyancy
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00706
– volume: 507
  start-page: 145165
  year: 2020
  ident: ref_9
  article-title: A water-rich system of constructing durable and fluorine-free superhydrophobic surfaces for oil/water separation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.145165
– volume: 496
  start-page: 143648
  year: 2019
  ident: ref_11
  article-title: Facile method for the preparation of superhydrophobic cellulosic paper
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143648
– volume: 26
  start-page: 215
  year: 2019
  ident: ref_34
  article-title: Mechanochemistry of cellulose
  publication-title: Cellulose
  doi: 10.1007/s10570-018-2197-1
– volume: 14
  start-page: 1857
  year: 2002
  ident: ref_4
  article-title: Super-hydrophobic surfaces: From natural to artificial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– volume: 29
  start-page: 527
  year: 2021
  ident: ref_21
  article-title: Fabrication of superhydrophobic and degradable cellulose paper materials for straw application
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04279-7
– volume: 98
  start-page: 282
  year: 2013
  ident: ref_40
  article-title: Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.05.082
– volume: 153
  start-page: 266
  year: 2016
  ident: ref_20
  article-title: Preparing hydrophobic nanocellulose-silica film by a facile one-pot method
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.07.112
– volume: 195
  start-page: 10980
  year: 2022
  ident: ref_38
  article-title: Silica incorporated cellulose fibres as green concept for textiles with reduced flammability
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2021.109808
– volume: 44
  start-page: 647
  year: 2015
  ident: ref_42
  article-title: Hydrophobic Cellulose-SiO2 Composite Aerogel Prepared by a Non-Supercritical Drying Process
  publication-title: Rare Met. Mater. Eng.
SSID ssj0000456617
Score 2.342569
Snippet Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4413
SubjectTerms Ball milling
Cellulose
Cellulose fibers
Coatings
Contact angle
Dispersion
Hydrophobic surfaces
Hydrophobicity
Industrial research
Isocyanates
Microscopy
Moisture effects
Morphology
Nanocomposites
Nanofibers
Nanoparticles
Silicon dioxide
Title Preparing Hydrophobic Cellulose Nanofibers-SiO2 Films and Coating by One-Step Mechanochemical Method
URI https://www.proquest.com/docview/2728525324
https://www.proquest.com/docview/2729518896
https://pubmed.ncbi.nlm.nih.gov/PMC9611666
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58HPQiPnF9EUE8WWyTbtucRBfXRfCBD9hbSdLUXajtuo_D_ntnut3VHhR6CRkITNKZbyaT-QDOELAJrYg0Q_qSslWeo9HRO1YjGE9di5EQvUZ-eAw67_59t9mtEm6jqqxybhNLQ50UhnLklzzkUZM30f9fDb4cYo2i29WKQmMZVj30NHTOo_bdIsdCcAU99Ky1psDo_nJQZNNPz-cuogBRd0U_-LJeHfnL3bQ3YaPCiex6trFbsGTzbVhrzenZdiB5HlpiEMw_WGeaDItBr9B9w1o2yyZZMbIM7SYeHE0F76_9J87a_exzxFSesFahqNiZ6Sl7yq1DhV7swdITYKLPKvsH4JiYpXfhvX371uo4FWWCYxDojJ2U60AmwpiUS2OVUM1Q6JCbKNLCVa4J_SghuyI946c6iTA6NjLSGkGS6wtfij1YyYvc7gOTFkO5VKUoKPFztY48FXiptIgIlG8bcDHXXmyqfuJEa5HFGFeQsuOashtwvhAfzBpp_CV4NN-KuPqfRvHP7jfgdDGNGqfrDZXbYlLKSGovJ4MGhLUtXCxIvbTrM3m_V_bUloFHF6gH_y9-COucnj9QRYs8gpXxcGKPEZSM9Ul58k5g9eb28fkFR3dd7xtTvudG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5N3cN4QcA2URjDSLCnRUtsN4kfEIKyqmNrN8Em7S3YjsMqZUnpD6H-U_sbuWuTjjyMt0l5iXySpfP5_J19dx_AewRswmgizVBS0W1V4Bk86D1nEIxnvsNIiKqRB8OwfyW_XXeuN-CuroWhtMraJy4ddVpauiM_4hGPO7yD5_-n8W-PWKPodbWm0FiZxalb_MGQbfrx5Cuu7wfOe8eX3b5XsQp4FrHAzMu4CVUqrM24sk4L3YmEibiNYyN87dtIxiltPRVYmZk0xgDSqtgYxBG-FJKaL6HL35RU0dqCzS_Hw4vv61sdAkiICVbNPIVQ_tG4zBe3geQ-4g7RPPzuEW0zH_OfA673DJ5WyJR9XpnSc9hwxQvY6taEcNuQXkwccRYWv1h_kU7K8U1pRpZ1XZ7P83LqGHpqNFVDKfY_Ruec9Ub57ZTpImXdUlN6NTMLdl44j1LL2MBR0TERdi07FuA_cVnvwNWjqHMXWkVZuJfAlMPgMdMZCir8fGPiQIdBphxiEC1dGw5r7SW26mBORBp5gpEMKTtpKLsNB2vx8ap1x0OCe_VSJNUOnib39taGd-th1Dg9qOjClfOljKKGdipsQ9RYwvWE1L27OVKMbpZdvFUY0JPtq_9P_ha2-peDs-TsZHj6Gp5wKr6gfBq1B63ZZO7eICSamf3KDhn8fGzT_wtEhSKr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CAm0vIX2Ebh6tAm1PNWtLXts6hFI2dTdN84AmkJsjyXKy4NibfRD2r_XXdcZrb-pDcgv4YjQgGI1G30gz8wF8QsAmtCLSDOlLuq3yHI0HvWM1gvHMtRgJUTXy8UkwuPB_XfYuV-BvUwtDaZWNT6wcdVoauiPv8pBHPd7D87-b1WkRZwfxt9GdQwxS9NLa0GksTOTIzu8xfJvsHx7gWn_mPP5x3h84NcOAYxAXTJ2M60CmwpiMS2OVUL1Q6JCbKNLCVa4J_SilbSg942c6jTCYNDLSGjGF6wufGjGh-18LRSgp8Ivin8v7HYJKiA4WbT2FkG53VObzW8_nLiIQ0T4GH7BtOzPzv6Mu3oD1GqOy7wujeg0rtngDL_sNNdxbSM_GltgLi2s2mKfjcnRT6qFhfZvns7ycWIY-G41WU7L9n-EpZ_Ewv50wVaSsXypKtGZ6zk4L61CSGTu2VH5M1F1V7wL8J1brd3DxLMrchNWiLOx7YNJiGJmpDAUlfq7WkacCL5MW0YjybQe-NtpLTN3LnCg18gRjGlJ20lJ2B74sxUeLJh6PCe40S5HUe3mSPFheB_aWw6hxelpRhS1nlYyk1nYy6EDYWsLlhNTHuz1SDG-qft4y8OjxduvpyT_CCzT45PfhydE2vOJUhUGJNXIHVqfjmd1FbDTVHyojZHD13Fb_D2-gJXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparing+Hydrophobic+Cellulose+Nanofibers-SiO2+Films+and+Coating+by+One-Step+Mechanochemical+Method&rft.jtitle=Polymers&rft.au=Chen%2C+Xi&rft.au=Zhang%2C+Lijiaqi&rft.au=Wu%2C+Min&rft.au=Huang%2C+Yong&rft.date=2022-10-19&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Fpolym14204413&rft.externalDocID=PMC9611666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon