Preparing Hydrophobic Cellulose Nanofibers-SiO2 Films and Coating by One-Step Mechanochemical Method
Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modif...
Saved in:
Published in | Polymers Vol. 14; no. 20; p. 4413 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4360 2073-4360 |
DOI | 10.3390/polym14204413 |
Cover
Loading…
Abstract | Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings. |
---|---|
AbstractList | Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings. Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings. Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO 2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO 2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO 2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO 2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings. |
Author | Wu, Min Chen, Xi Huang, Yong Zhang, Lijiaqi |
AuthorAffiliation | 1 National Engineering Research Center of Engineering and Eco-Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
AuthorAffiliation_xml | – name: 1 National Engineering Research Center of Engineering and Eco-Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China – name: 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
Author_xml | – sequence: 1 givenname: Xi surname: Chen fullname: Chen, Xi – sequence: 2 givenname: Lijiaqi orcidid: 0000-0003-1366-428X surname: Zhang fullname: Zhang, Lijiaqi – sequence: 3 givenname: Min orcidid: 0000-0003-0542-4235 surname: Wu fullname: Wu, Min – sequence: 4 givenname: Yong orcidid: 0000-0003-1742-2691 surname: Huang fullname: Huang, Yong |
BookMark | eNptkc1LHTEUxUOxoLUuux_oxs3UfE0m2QjyqLVg-4Rn1yHJZJxIJhmTmcL775vhKag0m-SS3zmXe-4ncBRisAB8QfAbIQJeTNHvR0QxpBSRD-AEw5bUlDB49Op9DM5yfoTl0IYx1J6A7i7ZSSUXHqqbfZfiNETtTLWx3i8-Zlv9ViH2TtuU653b4ura-TFXKnTVJqp51el9tQ223s12qn5ZMxSBGezojPKlnofYfQYfe-WzPXu-T8Gf6-_3m5v6dvvj5-bqtjZE4LnusWaiI8b0WBiriGpaoltsONcEKmhayjvIeSuQob3uOKTMCK61wAJSQgU5BZcH32nRo-2MDXNSXk7JjSrtZVROvv0JbpAP8a8UDCHGWDE4fzZI8WmxeZajy6ZkoYKNS5a4xaJBnIsV_foOfYxLCmW8leINbgimhSIHyqSYc7K9NG4uscW1v_MSQbluT77ZXlHV71QvI_yf_wdtrZ-0 |
CitedBy_id | crossref_primary_10_1016_j_porgcoat_2025_109154 crossref_primary_10_1016_j_psep_2025_107032 crossref_primary_10_1021_acsapm_3c02088 crossref_primary_10_3390_polym16081095 |
Cites_doi | 10.1016/j.apsusc.2010.12.116 10.1007/s00226-022-01363-4 10.1021/acssuschemeng.0c00203 10.1021/jp103479k 10.1021/am4015346 10.1021/acsanm.8b00079 10.1016/j.matlet.2014.08.127 10.1007/s11051-017-3762-5 10.1016/j.jcis.2018.10.045 10.1016/j.cej.2017.05.175 10.15251/DJNB.2020.151.85 10.1039/C5TA04428F 10.1039/C2TA00288D 10.1016/j.carbpol.2020.116694 10.1016/j.polymer.2013.09.004 10.1002/admi.201900892 10.1016/j.compscitech.2016.05.014 10.1021/nn4060368 10.1007/s10971-019-05206-w 10.1016/j.fuel.2018.05.066 10.1021/acsami.0c12504 10.1021/la204492q 10.1016/j.nanoen.2015.02.015 10.1016/j.colsurfa.2018.10.005 10.1016/j.carbpol.2022.119504 10.1021/acsnano.0c07613 10.1021/am900704u 10.1016/j.carbpol.2022.119371 10.1016/j.apsusc.2015.02.157 10.1039/C5GC01979F 10.1016/j.apsusc.2014.05.207 10.1016/j.apsusc.2017.02.201 10.1016/j.apsusc.2012.08.097 10.1002/adma.201003129 10.1039/D0GC01834A 10.3390/coatings11101147 10.1021/acsami.8b12116 10.1021/acs.langmuir.1c00706 10.1016/j.apsusc.2019.145165 10.1016/j.apsusc.2019.143648 10.1007/s10570-018-2197-1 10.1002/adma.200290020 10.1007/s10570-021-04279-7 10.1016/j.carbpol.2013.05.082 10.1016/j.carbpol.2016.07.112 10.1016/j.polymdegradstab.2021.109808 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym14204413 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Collection (ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC9611666 10_3390_polym14204413 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52073291; 51733009 |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c392t-f2b69d3ccf29cea3a573b72c88b30a0c748d088791c4fbd8046c98bb929043493 |
IEDL.DBID | 8FG |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:38:50 EDT 2025 Thu Sep 04 23:58:57 EDT 2025 Fri Jul 25 11:56:18 EDT 2025 Tue Jul 01 02:20:47 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-f2b69d3ccf29cea3a573b72c88b30a0c748d088791c4fbd8046c98bb929043493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1742-2691 0000-0003-1366-428X 0000-0003-0542-4235 |
OpenAccessLink | https://www.proquest.com/docview/2728525324?pq-origsite=%requestingapplication% |
PQID | 2728525324 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611666 proquest_miscellaneous_2729518896 proquest_journals_2728525324 crossref_citationtrail_10_3390_polym14204413 crossref_primary_10_3390_polym14204413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221019 |
PublicationDateYYYYMMDD | 2022-10-19 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221019 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Polymers |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_45) 2022; 288 Chen (ref_6) 2020; 8 Paul (ref_38) 2022; 195 Huang (ref_12) 2019; 536 Zhang (ref_15) 2012; 261 Huang (ref_2) 2020; 12 Nau (ref_36) 2019; 6 Feng (ref_4) 2002; 14 Wang (ref_16) 2010; 2 Kuga (ref_34) 2019; 26 Liu (ref_21) 2021; 29 Wang (ref_24) 2020; 22 Zhang (ref_37) 2020; 15 Musikavanhu (ref_11) 2019; 496 Chen (ref_7) 2017; 409 Zheng (ref_10) 2019; 560 Le (ref_20) 2016; 153 Trosien (ref_47) 2018; 10 Yang (ref_9) 2020; 507 Tarabanko (ref_35) 2022; 56 Zhou (ref_5) 2013; 5 Xu (ref_26) 2020; 247 Rahmawan (ref_3) 2013; 1 Gao (ref_13) 2017; 326 Li (ref_42) 2015; 44 Xu (ref_30) 2016; 131 Zhou (ref_33) 2018; 1 Li (ref_22) 2021; 15 Xu (ref_23) 2011; 257 Du (ref_8) 2014; 313 Shi (ref_40) 2013; 98 Ogihara (ref_28) 2012; 28 Combariza (ref_43) 2018; 231 He (ref_41) 2014; 137 ref_44 Cho (ref_46) 2010; 114 Hamedi (ref_29) 2014; 8 Chen (ref_19) 2022; 290 Li (ref_32) 2015; 13 Hu (ref_27) 2017; 19 Zhang (ref_17) 2021; 37 Liu (ref_18) 2015; 339 Blank (ref_25) 2013; 54 Verho (ref_1) 2011; 23 Junyan (ref_14) 2015; 3 Ye (ref_31) 2016; 18 Zhang (ref_39) 2019; 93 |
References_xml | – volume: 257 start-page: 5491 year: 2011 ident: ref_23 article-title: Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.12.116 – volume: 56 start-page: 437 year: 2022 ident: ref_35 article-title: Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides publication-title: Wood Sci. Technol. doi: 10.1007/s00226-022-01363-4 – volume: 8 start-page: 8505 year: 2020 ident: ref_6 article-title: Nonfluorinated Multifunctional Superhydrophobic Cellulose Sheet with Polysaccharide B Biopolymer-Based Hierarchical Rough Composite Structure publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00203 – volume: 114 start-page: 11228 year: 2010 ident: ref_46 article-title: Influence of Roughness on a Transparent Superhydrophobic Coating publication-title: J. Phys. Chem. C doi: 10.1021/jp103479k – volume: 5 start-page: 7208 year: 2013 ident: ref_5 article-title: Robust and durable superhydrophobic cotton fabrics for oil/water separation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4015346 – volume: 1 start-page: 2095 year: 2018 ident: ref_33 article-title: Superhydrophobic Cellulose Nanofiber-Assembled Aerogels for Highly Efficient Water-in-Oil Emulsions Separation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00079 – volume: 137 start-page: 167 year: 2014 ident: ref_41 article-title: Fabrication of hydrophobic silica–cellulose aerogels by using dimethyl sulfoxide (DMSO) as solvent publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.08.127 – volume: 19 start-page: 46 year: 2017 ident: ref_27 article-title: Removal of methylene blue from its aqueous solution by froth flotation: Hydrophobic silica nanoparticle as a collector publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-017-3762-5 – volume: 536 start-page: 349 year: 2019 ident: ref_12 article-title: A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.045 – volume: 326 start-page: 443 year: 2017 ident: ref_13 article-title: Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.175 – volume: 15 start-page: 85 year: 2020 ident: ref_37 article-title: Ternary Flame Retardant System of Ammonium Polyphosphate-Diatomite-Nano-SiO2 and Its Application in Fibrous Materials publication-title: Dig. J. Nanomater. Biostructures doi: 10.15251/DJNB.2020.151.85 – volume: 3 start-page: 20134 year: 2015 ident: ref_14 article-title: Durable superhydrophobic/highly oleophobic coatings from multi-dome SiO2 nanoparticles and fluoroacrylate block copolymers on flat substrates publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04428F – volume: 1 start-page: 2955 year: 2013 ident: ref_3 article-title: Self-assembly of nanostructures towards transparent, superhydrophobic surfaces publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00288D – volume: 247 start-page: 116694 year: 2020 ident: ref_26 article-title: High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116694 – volume: 54 start-page: 6177 year: 2013 ident: ref_25 article-title: Superhard transparent hybrid nanocomposites for high fidelity UV-nanoimprint lithography publication-title: Polymer doi: 10.1016/j.polymer.2013.09.004 – volume: 6 start-page: 1900892 year: 2019 ident: ref_36 article-title: Janus-Type Hybrid Paper Membranes publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900892 – volume: 131 start-page: 67 year: 2016 ident: ref_30 article-title: Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.05.014 – volume: 8 start-page: 2467 year: 2014 ident: ref_29 article-title: Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes publication-title: ACS Nano doi: 10.1021/nn4060368 – volume: 93 start-page: 309 year: 2019 ident: ref_39 article-title: Flame-retardant paper with robust hydrophobicity enabled by perfluorodecane doped SiO2 nanofibers publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-019-05206-w – volume: 231 start-page: 297 year: 2018 ident: ref_43 article-title: Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane publication-title: Fuel doi: 10.1016/j.fuel.2018.05.066 – volume: 12 start-page: 40968 year: 2020 ident: ref_2 article-title: Cellulose-Based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12504 – volume: 28 start-page: 4605 year: 2012 ident: ref_28 article-title: Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency publication-title: Langmuir doi: 10.1021/la204492q – volume: 13 start-page: 346 year: 2015 ident: ref_32 article-title: Nanocellulose as green dispersant for two-dimensional energy materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.015 – volume: 560 start-page: 171 year: 2019 ident: ref_10 article-title: Reconstructing micro/nano hierarchical structures particle with nanocellulose for superhydrophobic coatings publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.10.005 – volume: 290 start-page: 119504 year: 2022 ident: ref_19 article-title: Cellulose nanofiber assisted dispersion of hydrophobic SiO2 nanoparticles in water and its superhydrophobic coating publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119504 – volume: 15 start-page: 3646 year: 2021 ident: ref_22 article-title: Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits publication-title: ACS Nano doi: 10.1021/acsnano.0c07613 – volume: 2 start-page: 677 year: 2010 ident: ref_16 article-title: Filter paper with selective absorption and separation of liquids that differ in surface tension publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900704u – volume: 288 start-page: 119371 year: 2022 ident: ref_45 article-title: High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119371 – volume: 339 start-page: 94 year: 2015 ident: ref_18 article-title: Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.02.157 – volume: 18 start-page: 1674 year: 2016 ident: ref_31 article-title: Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites publication-title: Green Chem. doi: 10.1039/C5GC01979F – volume: 313 start-page: 304 year: 2014 ident: ref_8 article-title: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.05.207 – volume: 409 start-page: 45 year: 2017 ident: ref_7 article-title: Durable superhydrophobic paper enabled by surface sizing of starch-based composite films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.201 – volume: 261 start-page: 764 year: 2012 ident: ref_15 article-title: Fabrication of coral-like superhydrophobic coating on filter paper for water–oil separation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.08.097 – volume: 23 start-page: 673 year: 2011 ident: ref_1 article-title: Mechanically Durable Superhydrophobic Surfaces publication-title: Adv. Mater. doi: 10.1002/adma.201003129 – volume: 22 start-page: 7424 year: 2020 ident: ref_24 article-title: Development of a facile and bi-functional superhydrophobic suspension and its applications in superhydrophobic coatings and aerogels in high-efficiency oil–water separation publication-title: Green Chem. doi: 10.1039/D0GC01834A – ident: ref_44 doi: 10.3390/coatings11101147 – volume: 10 start-page: 37478 year: 2018 ident: ref_47 article-title: Superhydrophobic Hybrid Paper Sheets with Janus-Type Wettability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12116 – volume: 37 start-page: 6042 year: 2021 ident: ref_17 article-title: Large-Scale Spraying Fabrication of Robust Fluorine-Free Superhydrophobic Coatings Based on Dual-Sized Silica Particles for Effective Antipollution and Strong Buoyancy publication-title: Langmuir doi: 10.1021/acs.langmuir.1c00706 – volume: 507 start-page: 145165 year: 2020 ident: ref_9 article-title: A water-rich system of constructing durable and fluorine-free superhydrophobic surfaces for oil/water separation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.145165 – volume: 496 start-page: 143648 year: 2019 ident: ref_11 article-title: Facile method for the preparation of superhydrophobic cellulosic paper publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143648 – volume: 26 start-page: 215 year: 2019 ident: ref_34 article-title: Mechanochemistry of cellulose publication-title: Cellulose doi: 10.1007/s10570-018-2197-1 – volume: 14 start-page: 1857 year: 2002 ident: ref_4 article-title: Super-hydrophobic surfaces: From natural to artificial publication-title: Adv. Mater. doi: 10.1002/adma.200290020 – volume: 29 start-page: 527 year: 2021 ident: ref_21 article-title: Fabrication of superhydrophobic and degradable cellulose paper materials for straw application publication-title: Cellulose doi: 10.1007/s10570-021-04279-7 – volume: 98 start-page: 282 year: 2013 ident: ref_40 article-title: Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.05.082 – volume: 153 start-page: 266 year: 2016 ident: ref_20 article-title: Preparing hydrophobic nanocellulose-silica film by a facile one-pot method publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.07.112 – volume: 195 start-page: 10980 year: 2022 ident: ref_38 article-title: Silica incorporated cellulose fibres as green concept for textiles with reduced flammability publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2021.109808 – volume: 44 start-page: 647 year: 2015 ident: ref_42 article-title: Hydrophobic Cellulose-SiO2 Composite Aerogel Prepared by a Non-Supercritical Drying Process publication-title: Rare Met. Mater. Eng. |
SSID | ssj0000456617 |
Score | 2.342569 |
Snippet | Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4413 |
SubjectTerms | Ball milling Cellulose Cellulose fibers Coatings Contact angle Dispersion Hydrophobic surfaces Hydrophobicity Industrial research Isocyanates Microscopy Moisture effects Morphology Nanocomposites Nanofibers Nanoparticles Silicon dioxide |
Title | Preparing Hydrophobic Cellulose Nanofibers-SiO2 Films and Coating by One-Step Mechanochemical Method |
URI | https://www.proquest.com/docview/2728525324 https://www.proquest.com/docview/2729518896 https://pubmed.ncbi.nlm.nih.gov/PMC9611666 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58HPQiPnF9EUE8WWyTbtucRBfXRfCBD9hbSdLUXajtuo_D_ntnut3VHhR6CRkITNKZbyaT-QDOELAJrYg0Q_qSslWeo9HRO1YjGE9di5EQvUZ-eAw67_59t9mtEm6jqqxybhNLQ50UhnLklzzkUZM30f9fDb4cYo2i29WKQmMZVj30NHTOo_bdIsdCcAU99Ky1psDo_nJQZNNPz-cuogBRd0U_-LJeHfnL3bQ3YaPCiex6trFbsGTzbVhrzenZdiB5HlpiEMw_WGeaDItBr9B9w1o2yyZZMbIM7SYeHE0F76_9J87a_exzxFSesFahqNiZ6Sl7yq1DhV7swdITYKLPKvsH4JiYpXfhvX371uo4FWWCYxDojJ2U60AmwpiUS2OVUM1Q6JCbKNLCVa4J_SghuyI946c6iTA6NjLSGkGS6wtfij1YyYvc7gOTFkO5VKUoKPFztY48FXiptIgIlG8bcDHXXmyqfuJEa5HFGFeQsuOashtwvhAfzBpp_CV4NN-KuPqfRvHP7jfgdDGNGqfrDZXbYlLKSGovJ4MGhLUtXCxIvbTrM3m_V_bUloFHF6gH_y9-COucnj9QRYs8gpXxcGKPEZSM9Ul58k5g9eb28fkFR3dd7xtTvudG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5N3cN4QcA2URjDSLCnRUtsN4kfEIKyqmNrN8Em7S3YjsMqZUnpD6H-U_sbuWuTjjyMt0l5iXySpfP5_J19dx_AewRswmgizVBS0W1V4Bk86D1nEIxnvsNIiKqRB8OwfyW_XXeuN-CuroWhtMraJy4ddVpauiM_4hGPO7yD5_-n8W-PWKPodbWm0FiZxalb_MGQbfrx5Cuu7wfOe8eX3b5XsQp4FrHAzMu4CVUqrM24sk4L3YmEibiNYyN87dtIxiltPRVYmZk0xgDSqtgYxBG-FJKaL6HL35RU0dqCzS_Hw4vv61sdAkiICVbNPIVQ_tG4zBe3geQ-4g7RPPzuEW0zH_OfA673DJ5WyJR9XpnSc9hwxQvY6taEcNuQXkwccRYWv1h_kU7K8U1pRpZ1XZ7P83LqGHpqNFVDKfY_Ruec9Ub57ZTpImXdUlN6NTMLdl44j1LL2MBR0TERdi07FuA_cVnvwNWjqHMXWkVZuJfAlMPgMdMZCir8fGPiQIdBphxiEC1dGw5r7SW26mBORBp5gpEMKTtpKLsNB2vx8ap1x0OCe_VSJNUOnib39taGd-th1Dg9qOjClfOljKKGdipsQ9RYwvWE1L27OVKMbpZdvFUY0JPtq_9P_ha2-peDs-TsZHj6Gp5wKr6gfBq1B63ZZO7eICSamf3KDhn8fGzT_wtEhSKr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CAm0vIX2Ebh6tAm1PNWtLXts6hFI2dTdN84AmkJsjyXKy4NibfRD2r_XXdcZrb-pDcgv4YjQgGI1G30gz8wF8QsAmtCLSDOlLuq3yHI0HvWM1gvHMtRgJUTXy8UkwuPB_XfYuV-BvUwtDaZWNT6wcdVoauiPv8pBHPd7D87-b1WkRZwfxt9GdQwxS9NLa0GksTOTIzu8xfJvsHx7gWn_mPP5x3h84NcOAYxAXTJ2M60CmwpiMS2OVUL1Q6JCbKNLCVa4J_SilbSg942c6jTCYNDLSGjGF6wufGjGh-18LRSgp8Ivin8v7HYJKiA4WbT2FkG53VObzW8_nLiIQ0T4GH7BtOzPzv6Mu3oD1GqOy7wujeg0rtngDL_sNNdxbSM_GltgLi2s2mKfjcnRT6qFhfZvns7ycWIY-G41WU7L9n-EpZ_Ewv50wVaSsXypKtGZ6zk4L61CSGTu2VH5M1F1V7wL8J1brd3DxLMrchNWiLOx7YNJiGJmpDAUlfq7WkacCL5MW0YjybQe-NtpLTN3LnCg18gRjGlJ20lJ2B74sxUeLJh6PCe40S5HUe3mSPFheB_aWw6hxelpRhS1nlYyk1nYy6EDYWsLlhNTHuz1SDG-qft4y8OjxduvpyT_CCzT45PfhydE2vOJUhUGJNXIHVqfjmd1FbDTVHyojZHD13Fb_D2-gJXs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparing+Hydrophobic+Cellulose+Nanofibers-SiO2+Films+and+Coating+by+One-Step+Mechanochemical+Method&rft.jtitle=Polymers&rft.au=Chen%2C+Xi&rft.au=Zhang%2C+Lijiaqi&rft.au=Wu%2C+Min&rft.au=Huang%2C+Yong&rft.date=2022-10-19&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Fpolym14204413&rft.externalDocID=PMC9611666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |