A Survey of techniques for fine-grained web traffic identification and classification
After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet the demand of modern networks. Recently, fine-grained network traffic identification has been proved to be an e...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 19; no. 3; pp. 2996 - 3021 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet the demand of modern networks. Recently, fine-grained network traffic identification has been proved to be an effective solution for managing network resources. There is a massive increase in the use of fine-grained network traffic identification in the communications industry. In this article, we propose a comprehensive overview of fine-grained network traffic identification. Then, we conduct a detailed literature review on fine-grained network traffic identification from three perspectives: wired network, mobile network, and malware traffic identification. Finally, we also draw the conclusion on the challenges of fine-grained network traffic identification and future research prospects. |
---|---|
AbstractList | After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet the demand of modern networks. Recently, fine-grained network traffic identification has been proved to be an effective solution for managing network resources. There is a massive increase in the use of fine-grained network traffic identification in the communications industry. In this article, we propose a comprehensive overview of fine-grained network traffic identification. Then, we conduct a detailed literature review on fine-grained network traffic identification from three perspectives: wired network, mobile network, and malware traffic identification. Finally, we also draw the conclusion on the challenges of fine-grained network traffic identification and future research prospects.After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet the demand of modern networks. Recently, fine-grained network traffic identification has been proved to be an effective solution for managing network resources. There is a massive increase in the use of fine-grained network traffic identification in the communications industry. In this article, we propose a comprehensive overview of fine-grained network traffic identification. Then, we conduct a detailed literature review on fine-grained network traffic identification from three perspectives: wired network, mobile network, and malware traffic identification. Finally, we also draw the conclusion on the challenges of fine-grained network traffic identification and future research prospects. After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet the demand of modern networks. Recently, fine-grained network traffic identification has been proved to be an effective solution for managing network resources. There is a massive increase in the use of fine-grained network traffic identification in the communications industry. In this article, we propose a comprehensive overview of fine-grained network traffic identification. Then, we conduct a detailed literature review on fine-grained network traffic identification from three perspectives: wired network, mobile network, and malware traffic identification. Finally, we also draw the conclusion on the challenges of fine-grained network traffic identification and future research prospects. |
Author | Ji, Lejun Luo, Yong Cao, Yuanlong You, Ilsun Gui, Xiaolin Luo, Zhenzhen |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Gui fullname: Gui, Xiaolin – sequence: 2 givenname: Yuanlong surname: Cao fullname: Cao, Yuanlong – sequence: 3 givenname: Ilsun surname: You fullname: You, Ilsun – sequence: 4 givenname: Lejun surname: Ji fullname: Ji, Lejun – sequence: 5 givenname: Yong surname: Luo fullname: Luo, Yong – sequence: 6 givenname: Zhenzhen surname: Luo fullname: Luo, Zhenzhen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35240817$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLJDEQxoMojq_T3pccF6THvDqdPor4AmEPq-eQR2WM9HTcpGfF_96MMw7Lsqcqil99VXzfMdof0wgIfaNkznsuLpYW5owwRrnaQ0e0bWlDCFX7f_UzdFzKCyFccC4O0Yy3TBBFuyP0dIl_rfIfeMcp4Anc8xh_r6DgkDIOcYRmkU0tHr-BxVM2IUSHo4dxirUzU0wjNqPHbjCl7Ean6CCYocDZtp6gp5vrx6u75uHn7f3V5UPjeM-mJjCivAXb1bek5GCZFda2YIULQXnfdSC97ZQXnhFpWiFVZRywTjFhheIn6H6j65N50a85Lk1-18lE_TlIeaFNnqIbQEPvLelbYqqsINDaYKkkknDfBW5FX7V-bLRec1pbMOllLA6GwYyQVkUzySUVnWzX6PcturJL8LvDX7ZWgG4Al1MpGYJ2cfp0ploYB02JXkena3R6G13dOf9n50v2f_QH5HGaFg |
CitedBy_id | crossref_primary_10_32604_cmc_2024_048461 |
Cites_doi | 10.1109/IWCMC.2016.7577032 10.1145/1067343.1067373 10.1016/j.comnet.2011.01.020 10.1016/j.eswa.2021.114885 10.1109/TNSM.2019.2899085 10.1109/TNSM.2020.3028197 10.1109/COMST.2018.2883147 10.1109/ACCESS.2017.2747560 10.1145/1129582.1129589 10.1109/ICMLC.2010.5580591 10.1002/nem.1901 10.1007/978-3-319-76481-8_9 10.1109/CCNC.2017.8013420 10.1109/ICC.2008.1083 10.1016/j.comnet.2019.106944 10.1145/1644893.1644904 10.1109/TII.2019.2950109 10.1109/SURV.2008.080406 10.1109/SURV.2013.100613.00161 10.1109/ATNAC.2017.8215411 10.1109/TDSC.2010.13 10.1109/MSR.2017.11 10.1109/SURV.2013.070813.00214 10.1109/TII.2020.3029766 10.1016/j.jnca.2020.102890 10.1007/978-3-540-71617-4_17 10.1109/JIOT.2019.2958097 10.1109/TNSM.2019.2933358 10.1145/1568613.1568616 10.1109/ACCESS.2020.3013849 10.1109/CC.2016.7513208 10.1016/j.jnca.2021.102985 10.1109/SURV.2009.090304 10.1016/j.jnca.2016.10.007 10.1109/SURV.2013.101613.00077 10.1007/978-3-642-54999-1_8 10.1109/LCN.2016.91 10.1016/j.jnca.2017.11.007 10.1155/2020/8848863 10.1016/j.neucom.2020.05.036 10.1145/2068816.2068847 10.1155/2016/2048302 10.23919/TMA.2017.8002899 10.1109/JSYST.2014.2364743 10.1109/INFOCOM.2019.8737507 10.1016/S1005-8885(16)60035-3 10.1145/3131365.3131367 10.1145/1080091.1080119 10.1109/MALWARE.2008.4690854 10.1109/TNET.2012.2187305 10.1016/j.ins.2012.12.039 10.1007/s10844-010-0148-x 10.1109/90.330413 10.1109/INFCOMW.2019.8845315 10.1016/j.peva.2010.01.001 10.1109/CC.2013.6723876 10.4028/www.scientific.net/AMM.263-266.3005 10.1109/MCOM.2019.1800819 10.11959/j.issn.1000-436x.2016187 10.1109/LISAT.2015.7160176 10.1007/978-3-642-19260-9_18 10.3969/j.issn.1000-436x.2013.10.017 10.1587/transinf.2021NGP0009 10.3724/SP.J.1001.2013.04253 10.1109/ACCESS.2020.3010637 10.1007/s12243-021-00876-6 10.1109/JIOT.2015.2452964 10.1109/MNET.011.2000613 10.1109/MNET.2012.6135854 10.1109/SP.2012.16 10.1109/ICC.2014.6883505 10.1145/2993419 10.1002/cpe.3703 10.23919/IFIPNetworking.2017.8264830 10.1109/COMST.2015.2491361 10.1109/TIFS.2017.2730819 10.1007/s00521-017-3081-x 10.1016/j.comnet.2017.03.019 10.1145/1368436.1368445 10.1145/1298306.1298349 10.1109/INFCOMW.2013.6970744 |
ContentType | Journal Article |
CorporateAuthor | School of software, Jiangxi Normal University, Nanchang 330027, China Department of Information Security Engineering, Soonchunhyang University, Asan 31538, South Korea |
CorporateAuthor_xml | – name: School of software, Jiangxi Normal University, Nanchang 330027, China – name: Department of Information Security Engineering, Soonchunhyang University, Asan 31538, South Korea |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3934/mbe.2022138 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 3021 |
ExternalDocumentID | oai_doaj_org_article_e9db0950add740e5bfb160603d7f3b49 35240817 10_3934_mbe_2022138 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 |
ID | FETCH-LOGICAL-c392t-f208dbeb7433663eb2b4bb5eb4cff8dd77e6db78d4d206a5468eb2ce27824b483 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:06:07 EDT 2025 Fri Jul 11 06:01:32 EDT 2025 Thu Jan 02 22:55:34 EST 2025 Tue Jul 01 02:58:34 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | web traffic traffic identification traffic classification fine-grained traffic identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-f208dbeb7433663eb2b4bb5eb4cff8dd77e6db78d4d206a5468eb2ce27824b483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/e9db0950add740e5bfb160603d7f3b49 |
PMID | 35240817 |
PQID | 2636147659 |
PQPubID | 23479 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e9db0950add740e5bfb160603d7f3b49 proquest_miscellaneous_2636147659 pubmed_primary_35240817 crossref_citationtrail_10_3934_mbe_2022138 crossref_primary_10_3934_mbe_2022138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2022138-13 key-10.3934/mbe.2022138-14 key-10.3934/mbe.2022138-15 key-10.3934/mbe.2022138-16 key-10.3934/mbe.2022138-97 key-10.3934/mbe.2022138-10 key-10.3934/mbe.2022138-98 key-10.3934/mbe.2022138-11 key-10.3934/mbe.2022138-99 key-10.3934/mbe.2022138-12 key-10.3934/mbe.2022138-93 key-10.3934/mbe.2022138-94 key-10.3934/mbe.2022138-95 key-10.3934/mbe.2022138-96 key-10.3934/mbe.2022138-90 key-10.3934/mbe.2022138-91 key-10.3934/mbe.2022138-92 key-10.3934/mbe.2022138-17 key-10.3934/mbe.2022138-18 key-10.3934/mbe.2022138-19 key-10.3934/mbe.2022138-24 key-10.3934/mbe.2022138-25 key-10.3934/mbe.2022138-26 key-10.3934/mbe.2022138-27 key-10.3934/mbe.2022138-20 key-10.3934/mbe.2022138-21 key-10.3934/mbe.2022138-22 key-10.3934/mbe.2022138-23 key-10.3934/mbe.2022138-109 key-10.3934/mbe.2022138-79 key-10.3934/mbe.2022138-114 key-10.3934/mbe.2022138-115 key-10.3934/mbe.2022138-112 key-10.3934/mbe.2022138-113 key-10.3934/mbe.2022138-75 key-10.3934/mbe.2022138-76 key-10.3934/mbe.2022138-77 key-10.3934/mbe.2022138-116 key-10.3934/mbe.2022138-78 key-10.3934/mbe.2022138-71 key-10.3934/mbe.2022138-72 key-10.3934/mbe.2022138-73 key-10.3934/mbe.2022138-74 key-10.3934/mbe.2022138-110 key-10.3934/mbe.2022138-111 key-10.3934/mbe.2022138-70 key-10.3934/mbe.2022138-86 key-10.3934/mbe.2022138-87 key-10.3934/mbe.2022138-88 key-10.3934/mbe.2022138-89 key-10.3934/mbe.2022138-82 key-10.3934/mbe.2022138-83 key-10.3934/mbe.2022138-84 key-10.3934/mbe.2022138-85 key-10.3934/mbe.2022138-80 key-10.3934/mbe.2022138-81 key-10.3934/mbe.2022138-57 key-10.3934/mbe.2022138-58 key-10.3934/mbe.2022138-59 key-10.3934/mbe.2022138-53 key-10.3934/mbe.2022138-54 key-10.3934/mbe.2022138-55 key-10.3934/mbe.2022138-56 key-10.3934/mbe.2022138-50 key-10.3934/mbe.2022138-51 key-10.3934/mbe.2022138-52 key-10.3934/mbe.2022138-5 key-10.3934/mbe.2022138-4 key-10.3934/mbe.2022138-3 key-10.3934/mbe.2022138-2 key-10.3934/mbe.2022138-9 key-10.3934/mbe.2022138-8 key-10.3934/mbe.2022138-7 key-10.3934/mbe.2022138-6 key-10.3934/mbe.2022138-1 key-10.3934/mbe.2022138-68 key-10.3934/mbe.2022138-103 key-10.3934/mbe.2022138-69 key-10.3934/mbe.2022138-104 key-10.3934/mbe.2022138-101 key-10.3934/mbe.2022138-102 key-10.3934/mbe.2022138-64 key-10.3934/mbe.2022138-107 key-10.3934/mbe.2022138-65 key-10.3934/mbe.2022138-108 key-10.3934/mbe.2022138-66 key-10.3934/mbe.2022138-105 key-10.3934/mbe.2022138-67 key-10.3934/mbe.2022138-106 key-10.3934/mbe.2022138-60 key-10.3934/mbe.2022138-61 key-10.3934/mbe.2022138-62 key-10.3934/mbe.2022138-63 key-10.3934/mbe.2022138-100 key-10.3934/mbe.2022138-28 key-10.3934/mbe.2022138-29 key-10.3934/mbe.2022138-35 key-10.3934/mbe.2022138-36 key-10.3934/mbe.2022138-37 key-10.3934/mbe.2022138-38 key-10.3934/mbe.2022138-31 key-10.3934/mbe.2022138-32 key-10.3934/mbe.2022138-33 key-10.3934/mbe.2022138-34 key-10.3934/mbe.2022138-30 key-10.3934/mbe.2022138-39 key-10.3934/mbe.2022138-46 key-10.3934/mbe.2022138-47 key-10.3934/mbe.2022138-48 key-10.3934/mbe.2022138-49 key-10.3934/mbe.2022138-42 key-10.3934/mbe.2022138-43 key-10.3934/mbe.2022138-44 key-10.3934/mbe.2022138-45 key-10.3934/mbe.2022138-40 key-10.3934/mbe.2022138-41 |
References_xml | – ident: key-10.3934/mbe.2022138-10 doi: 10.1109/IWCMC.2016.7577032 – ident: key-10.3934/mbe.2022138-96 – ident: key-10.3934/mbe.2022138-71 doi: 10.1145/1067343.1067373 – ident: key-10.3934/mbe.2022138-74 doi: 10.1016/j.comnet.2011.01.020 – ident: key-10.3934/mbe.2022138-37 doi: 10.1016/j.eswa.2021.114885 – ident: key-10.3934/mbe.2022138-8 – ident: key-10.3934/mbe.2022138-15 doi: 10.1109/TNSM.2019.2899085 – ident: key-10.3934/mbe.2022138-44 doi: 10.1109/TNSM.2020.3028197 – ident: key-10.3934/mbe.2022138-28 doi: 10.1109/COMST.2018.2883147 – ident: key-10.3934/mbe.2022138-89 doi: 10.1109/ACCESS.2017.2747560 – ident: key-10.3934/mbe.2022138-58 doi: 10.1145/1129582.1129589 – ident: key-10.3934/mbe.2022138-101 doi: 10.1109/ICMLC.2010.5580591 – ident: key-10.3934/mbe.2022138-25 doi: 10.1002/nem.1901 – ident: key-10.3934/mbe.2022138-55 – ident: key-10.3934/mbe.2022138-93 – ident: key-10.3934/mbe.2022138-4 doi: 10.1007/978-3-319-76481-8_9 – ident: key-10.3934/mbe.2022138-35 – ident: key-10.3934/mbe.2022138-48 doi: 10.1109/CCNC.2017.8013420 – ident: key-10.3934/mbe.2022138-62 doi: 10.1109/ICC.2008.1083 – ident: key-10.3934/mbe.2022138-85 doi: 10.1016/j.comnet.2019.106944 – ident: key-10.3934/mbe.2022138-57 doi: 10.1145/1644893.1644904 – ident: key-10.3934/mbe.2022138-87 – ident: key-10.3934/mbe.2022138-116 doi: 10.1109/TII.2019.2950109 – ident: key-10.3934/mbe.2022138-20 doi: 10.1109/SURV.2008.080406 – ident: key-10.3934/mbe.2022138-23 doi: 10.1109/SURV.2013.100613.00161 – ident: key-10.3934/mbe.2022138-6 doi: 10.1109/ATNAC.2017.8215411 – ident: key-10.3934/mbe.2022138-104 doi: 10.1109/TDSC.2010.13 – ident: key-10.3934/mbe.2022138-56 – ident: key-10.3934/mbe.2022138-50 doi: 10.1109/MSR.2017.11 – ident: key-10.3934/mbe.2022138-98 doi: 10.1109/SURV.2013.070813.00214 – ident: key-10.3934/mbe.2022138-75 – ident: key-10.3934/mbe.2022138-110 doi: 10.1109/TII.2020.3029766 – ident: key-10.3934/mbe.2022138-18 doi: 10.1016/j.jnca.2020.102890 – ident: key-10.3934/mbe.2022138-60 doi: 10.1007/978-3-540-71617-4_17 – ident: key-10.3934/mbe.2022138-115 doi: 10.1109/JIOT.2019.2958097 – ident: key-10.3934/mbe.2022138-30 doi: 10.1109/TNSM.2019.2933358 – ident: key-10.3934/mbe.2022138-42 – ident: key-10.3934/mbe.2022138-61 doi: 10.1145/1568613.1568616 – ident: key-10.3934/mbe.2022138-17 doi: 10.1109/ACCESS.2020.3013849 – ident: key-10.3934/mbe.2022138-13 doi: 10.1109/CC.2016.7513208 – ident: key-10.3934/mbe.2022138-69 – ident: key-10.3934/mbe.2022138-84 – ident: key-10.3934/mbe.2022138-95 – ident: key-10.3934/mbe.2022138-2 – ident: key-10.3934/mbe.2022138-70 – ident: key-10.3934/mbe.2022138-112 doi: 10.1016/j.jnca.2021.102985 – ident: key-10.3934/mbe.2022138-21 doi: 10.1109/SURV.2009.090304 – ident: key-10.3934/mbe.2022138-53 – ident: key-10.3934/mbe.2022138-26 doi: 10.1016/j.jnca.2016.10.007 – ident: key-10.3934/mbe.2022138-78 – ident: key-10.3934/mbe.2022138-111 – ident: key-10.3934/mbe.2022138-33 – ident: key-10.3934/mbe.2022138-99 doi: 10.1109/SURV.2013.101613.00077 – ident: key-10.3934/mbe.2022138-7 – ident: key-10.3934/mbe.2022138-51 doi: 10.1007/978-3-642-54999-1_8 – ident: key-10.3934/mbe.2022138-46 doi: 10.1109/LCN.2016.91 – ident: key-10.3934/mbe.2022138-105 – ident: key-10.3934/mbe.2022138-81 – ident: key-10.3934/mbe.2022138-86 doi: 10.1016/j.jnca.2017.11.007 – ident: key-10.3934/mbe.2022138-1 – ident: key-10.3934/mbe.2022138-16 doi: 10.1155/2020/8848863 – ident: key-10.3934/mbe.2022138-32 doi: 10.1016/j.neucom.2020.05.036 – ident: key-10.3934/mbe.2022138-54 – ident: key-10.3934/mbe.2022138-114 – ident: key-10.3934/mbe.2022138-92 – ident: key-10.3934/mbe.2022138-82 doi: 10.1145/2068816.2068847 – ident: key-10.3934/mbe.2022138-39 doi: 10.1155/2016/2048302 – ident: key-10.3934/mbe.2022138-47 doi: 10.23919/TMA.2017.8002899 – ident: key-10.3934/mbe.2022138-11 – ident: key-10.3934/mbe.2022138-38 doi: 10.1109/JSYST.2014.2364743 – ident: key-10.3934/mbe.2022138-88 doi: 10.1109/INFOCOM.2019.8737507 – ident: key-10.3934/mbe.2022138-79 doi: 10.1016/S1005-8885(16)60035-3 – ident: key-10.3934/mbe.2022138-5 doi: 10.1145/3131365.3131367 – ident: key-10.3934/mbe.2022138-72 – ident: key-10.3934/mbe.2022138-40 doi: 10.1145/1080091.1080119 – ident: key-10.3934/mbe.2022138-45 – ident: key-10.3934/mbe.2022138-103 doi: 10.1109/MALWARE.2008.4690854 – ident: key-10.3934/mbe.2022138-64 doi: 10.1109/TNET.2012.2187305 – ident: key-10.3934/mbe.2022138-63 doi: 10.1016/j.ins.2012.12.039 – ident: key-10.3934/mbe.2022138-107 doi: 10.1007/s10844-010-0148-x – ident: key-10.3934/mbe.2022138-68 doi: 10.1109/90.330413 – ident: key-10.3934/mbe.2022138-90 doi: 10.1109/INFCOMW.2019.8845315 – ident: key-10.3934/mbe.2022138-31 – ident: key-10.3934/mbe.2022138-36 doi: 10.1016/j.peva.2010.01.001 – ident: key-10.3934/mbe.2022138-77 doi: 10.1109/CC.2013.6723876 – ident: key-10.3934/mbe.2022138-97 doi: 10.4028/www.scientific.net/AMM.263-266.3005 – ident: key-10.3934/mbe.2022138-66 – ident: key-10.3934/mbe.2022138-29 doi: 10.1109/MCOM.2019.1800819 – ident: key-10.3934/mbe.2022138-83 – ident: key-10.3934/mbe.2022138-27 doi: 10.11959/j.issn.1000-436x.2016187 – ident: key-10.3934/mbe.2022138-102 doi: 10.1109/LISAT.2015.7160176 – ident: key-10.3934/mbe.2022138-76 doi: 10.1007/978-3-642-19260-9_18 – ident: key-10.3934/mbe.2022138-52 – ident: key-10.3934/mbe.2022138-67 doi: 10.3969/j.issn.1000-436x.2013.10.017 – ident: key-10.3934/mbe.2022138-108 doi: 10.1587/transinf.2021NGP0009 – ident: key-10.3934/mbe.2022138-94 – ident: key-10.3934/mbe.2022138-65 doi: 10.3724/SP.J.1001.2013.04253 – ident: key-10.3934/mbe.2022138-113 doi: 10.1109/ACCESS.2020.3010637 – ident: key-10.3934/mbe.2022138-19 doi: 10.1007/s12243-021-00876-6 – ident: key-10.3934/mbe.2022138-9 doi: 10.1109/JIOT.2015.2452964 – ident: key-10.3934/mbe.2022138-109 doi: 10.1109/MNET.011.2000613 – ident: key-10.3934/mbe.2022138-106 – ident: key-10.3934/mbe.2022138-22 doi: 10.1109/MNET.2012.6135854 – ident: key-10.3934/mbe.2022138-100 doi: 10.1109/SP.2012.16 – ident: key-10.3934/mbe.2022138-80 doi: 10.1109/ICC.2014.6883505 – ident: key-10.3934/mbe.2022138-49 doi: 10.1145/2993419 – ident: key-10.3934/mbe.2022138-14 doi: 10.1002/cpe.3703 – ident: key-10.3934/mbe.2022138-91 – ident: key-10.3934/mbe.2022138-3 doi: 10.23919/IFIPNetworking.2017.8264830 – ident: key-10.3934/mbe.2022138-24 doi: 10.1109/COMST.2015.2491361 – ident: key-10.3934/mbe.2022138-43 doi: 10.1109/TIFS.2017.2730819 – ident: key-10.3934/mbe.2022138-34 doi: 10.1007/s00521-017-3081-x – ident: key-10.3934/mbe.2022138-41 doi: 10.1016/j.comnet.2017.03.019 – ident: key-10.3934/mbe.2022138-59 doi: 10.1145/1368436.1368445 – ident: key-10.3934/mbe.2022138-73 doi: 10.1145/1298306.1298349 – ident: key-10.3934/mbe.2022138-12 doi: 10.1109/INFCOMW.2013.6970744 |
SSID | ssj0034334 |
Score | 2.245154 |
Snippet | After decades of rapid development, the scale and complexity of modern networks have far exceed our expectations. In many conditions, traditional traffic... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 2996 |
SubjectTerms | fine-grained traffic identification traffic classification traffic identification web traffic |
Title | A Survey of techniques for fine-grained web traffic identification and classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35240817 https://www.proquest.com/docview/2636147659 https://doaj.org/article/e9db0950add740e5bfb160603d7f3b49 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDLAhexLfriwh7EsK2efRxXMVlEfSiC3sLnSQVQbuyD2G_vZOmW_agePFaBprONJlf2sx_COm5TBUiLTnjhUqYtCpihYoFyyFWADYGW9dWPT4lo7F8mKjJRqsvfyYsyAMHx_VdbgExIMJ5mMrIKSghRuiOhE1LAbIu3cOct95MhTVYSCFkqMYTuZD9D_CKmJzHvgxlI__UMv2_s2WdY4Z7ZLeBQzoIg9onW646INuhXeTqkIwH9Hk5-3IrOi1pK746p8idtERaZK--34OzFJdGupgVXh2CvtnmPFAdAlpUlhpPzO2lIzIe3r_cjVjTFoEZhJkFK3mUWXCAuV8gL-DWGCSAciBNWWboptQlFtLMSsujpFAyydDGOI4wIEFm4ph0qmnlTglNCpebzIBVUmJiEmAjzJkmhlzEsbGiS27WztKm0Qz3rSveNe4dvGc1elY3nu2SXmv8GaQyfja79V5vTby-dX0Bo66bqOu_ot4l1-uYaZwP_idHUbnpcq55IpA40kShzUkIZnsrhE2JCJSe_ccQzsmOf6LwOeaCdBazpbtEQFnAVf0ufgORLOUM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+techniques+for+fine-grained+web+traffic+identification+and+classification&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Xiaolin+Gui&rft.au=Yuanlong+Cao&rft.au=Ilsun+You&rft.au=Lejun+Ji&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=1551-0018&rft.volume=19&rft.issue=3&rft.spage=2996&rft.epage=3021&rft_id=info:doi/10.3934%2Fmbe.2022138&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e9db0950add740e5bfb160603d7f3b49 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |