Transparent Digital Twin for Output Control Using Belief Rule Base
A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 10; pp. 10364 - 10378 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2021.3063285 |
Cover
Loading…
Abstract | A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed. |
---|---|
AbstractList | A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed. A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed. |
Author | Zhang, Limao Chang, Leilei Fu, Chao Chen, Yu-Wang |
Author_xml | – sequence: 1 givenname: Leilei orcidid: 0000-0002-0126-0635 surname: Chang fullname: Chang, Leilei email: leileichang@hotmail.com organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Limao orcidid: 0000-0002-7245-3741 surname: Zhang fullname: Zhang, Limao email: limao.zhang@ntu.edu.sg organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Chao orcidid: 0000-0002-1455-080X surname: Fu fullname: Fu, Chao email: wls_fuchao@163.com organization: School of Management, Hefei University of Technology, Hefei, China – sequence: 4 givenname: Yu-Wang orcidid: 0000-0002-2007-1821 surname: Chen fullname: Chen, Yu-Wang email: yu-wang.chen@manchester.ac.uk organization: Manchester Business School, The University of Manchester, Manchester, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33760751$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLQzEQhYMovn-ACBJw46Y1j-Zxl7Y-QShIXbgKuelEIre5NbkX8d-b0taFC2czw_CdYTjnCO3GNgJCZ5QMKSXV9WzyNh4ywuiQE8mZFjvokFGpB4wpsfs7S3WATnP-IKV0WVV6Hx1wriRRgh6i8SzZmJc2QezwbXgPnW3w7CtE7NuEp3237Ds8aWOX2ga_5hDf8RiaAB6_9A3gsc1wgva8bTKcbvoxer2_m00eB8_Th6fJzfPA8Yp1A08p1TVRTAFz4H3tmRTOjaStBCUjWxNQVjpN6jI7rtVckRH3ykE1t85Lfoyu1neXqf3sIXdmEbKDprER2j4bJojgUhMmCnr5B_1o-xTLd4YpKvlIU8oKdbGh-noBc7NMYWHTt9m6UwC1Blxqc07gjSv-dGFlhw2NocSsojCrKMwqCrOJoijpH-X2-H-a87UmAMAvX3EtqoryH_JWkeA |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1007_s11042_023_16037_x crossref_primary_10_1016_j_ress_2023_109172 crossref_primary_10_1007_s10489_021_02956_5 crossref_primary_10_1002_int_22598 crossref_primary_10_1109_TKDE_2022_3177896 crossref_primary_10_1016_j_eswa_2024_125517 crossref_primary_10_12688_digitaltwin_17549_1 crossref_primary_10_12688_digitaltwin_17549_2 crossref_primary_10_1109_TIE_2023_3277095 crossref_primary_10_1016_j_jocs_2024_102423 crossref_primary_10_1109_TFUZZ_2024_3416448 crossref_primary_10_1109_TKDE_2024_3369719 crossref_primary_10_3390_math12203283 crossref_primary_10_1007_s10489_022_03768_x crossref_primary_10_1109_TKDE_2025_3530524 crossref_primary_10_1016_j_asoc_2022_109895 crossref_primary_10_1109_TASE_2023_3305524 crossref_primary_10_32604_csse_2023_037330 crossref_primary_10_3390_diagnostics12102299 crossref_primary_10_1007_s10489_022_04182_z crossref_primary_10_1109_TSMC_2025_3534988 crossref_primary_10_1109_TASE_2024_3402099 crossref_primary_10_1007_s00500_023_08334_2 crossref_primary_10_1016_j_autcon_2023_105059 crossref_primary_10_1007_s10489_022_04181_0 crossref_primary_10_1016_j_eswa_2023_122459 crossref_primary_10_12688_digitaltwin_17632_2 crossref_primary_10_1109_TCYB_2024_3471608 crossref_primary_10_1002_int_22912 crossref_primary_10_1016_j_eng_2023_12_006 crossref_primary_10_1016_j_measurement_2022_112161 crossref_primary_10_1016_j_ins_2023_119744 crossref_primary_10_1016_j_engappai_2023_106027 crossref_primary_10_1109_TSMC_2023_3279286 crossref_primary_10_3233_JIFS_223025 crossref_primary_10_3390_sym15020507 crossref_primary_10_1016_j_ress_2024_110387 crossref_primary_10_1109_TR_2023_3311436 crossref_primary_10_1016_j_cja_2022_11_007 crossref_primary_10_3390_sym16070819 crossref_primary_10_1016_j_cja_2025_103420 crossref_primary_10_1016_j_eswa_2024_124806 crossref_primary_10_1016_j_aei_2024_102852 crossref_primary_10_1007_s11227_024_06363_8 crossref_primary_10_1109_TPAMI_2022_3167045 crossref_primary_10_1007_s40314_022_01975_3 crossref_primary_10_1016_j_ins_2024_120462 crossref_primary_10_1007_s00500_022_07361_9 crossref_primary_10_3390_buildings14113349 crossref_primary_10_1016_j_eswa_2023_120485 crossref_primary_10_1007_s40314_023_02543_z crossref_primary_10_1109_JAS_2023_123834 crossref_primary_10_1109_TSMC_2024_3507827 crossref_primary_10_23919_JSEE_2024_000095 crossref_primary_10_1007_s10462_024_10833_z crossref_primary_10_1016_j_measurement_2025_116713 crossref_primary_10_23919_JSEE_2022_000112 crossref_primary_10_1109_TSMC_2022_3233156 crossref_primary_10_1016_j_engappai_2023_106950 crossref_primary_10_1002_int_22863 crossref_primary_10_1007_s10489_023_05217_9 crossref_primary_10_1007_s00500_023_09112_w crossref_primary_10_1016_j_cja_2024_103350 crossref_primary_10_1002_int_23070 crossref_primary_10_1016_j_engappai_2024_108164 crossref_primary_10_1109_JBHI_2024_3485871 crossref_primary_10_1016_j_engappai_2024_109696 crossref_primary_10_1016_j_ress_2024_110796 crossref_primary_10_1002_int_22615 crossref_primary_10_1016_j_ress_2024_110712 crossref_primary_10_1007_s11227_023_05284_2 crossref_primary_10_1109_TKDE_2022_3206871 crossref_primary_10_1109_TSMC_2022_3211498 |
Cites_doi | 10.7551/mitpress/1090.001.0001 10.1109/TII.2019.2938572 10.1109/ICNN.1995.488968 10.1109/TSMC.2019.2944893 10.1109/ICEC.1997.592287 10.1109/TCYB.2017.2710205 10.1109/TEVC.2010.2058121 10.1109/TSUSC.2017.2697768 10.1016/j.inffus.2020.02.003 10.1016/j.autcon.2020.103517 10.1520/SSMS20160008 10.1016/j.ijepes.2019.105699 10.1016/j.autcon.2012.11.001 10.1016/j.ejor.2004.09.059 10.1109/JSYST.2020.2991161 10.1061/(ASCE)CP.1943-5487.0000714 10.1016/j.buildenv.2014.02.005 10.1109/TCYB.2016.2536628 10.1061/(ASCE)0733-9364(2002)128:3(203) 10.5120/ijca2017914007 10.1109/TII.2018.2873186 10.1109/TSMC.2020.2967885 10.1109/TNNLS.2019.2919441 10.1016/j.asoc.2018.06.026 10.1109/TCYB.2018.2865499 10.1109/TSMCA.2005.851270 10.1109/TFUZZ.2019.2892348 10.1016/j.tust.2015.07.016 10.1007/978-3-319-38756-7_4 10.1061/(ASCE)0733-9410(1989)115:1(1) 10.1109/TCYB.2018.2827037 10.1109/CEC.2014.6900618 10.5821/dissertation-2117-95656 10.2514/1.J055201 10.1109/TII.2018.2804917 10.1109/TAC.2005.864200 10.1111/j.1539-6924.1999.tb00393.x 10.1109/JSYST.2019.2925627 10.1061/(ASCE)CP.1943-5487.0000621 10.1109/TSMC.2017.2678607 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3063285 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 10378 |
ExternalDocumentID | 33760751 10_1109_TCYB_2021_3063285 9385991 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Start-Up Grant at Nanyang Technological University, Singapore grantid: 04INS000423C120 funderid: 10.13039/501100001475 – fundername: Ministry of Education Tier 1 Grants, Singapore grantid: 04MNP000279C120; 04MNP002126C120 – fundername: National Natural Science Foundation of China grantid: 71601180; 71622003; 71571060 funderid: 10.13039/501100001809 – fundername: Shenzhen Basic Research Project for Development of Science and Technology grantid: JCYJ20200109141218676 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c392t-f1118b0727e2ceffbf265cc46a95104ab0e7a6c80b4abc387d7043f7ce9dacf63 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 01:35:45 EDT 2025 Mon Jun 30 05:59:42 EDT 2025 Thu Jan 02 22:54:46 EST 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Wed Aug 27 02:15:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-f1118b0727e2ceffbf265cc46a95104ab0e7a6c80b4abc387d7043f7ce9dacf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1455-080X 0000-0002-0126-0635 0000-0002-7245-3741 0000-0002-2007-1821 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9385991 |
PMID | 33760751 |
PQID | 2716348112 |
PQPubID | 85422 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2716348112 crossref_citationtrail_10_1109_TCYB_2021_3063285 crossref_primary_10_1109_TCYB_2021_3063285 proquest_miscellaneous_2505368025 ieee_primary_9385991 pubmed_primary_33760751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref17 ref39 ref16 ref19 ref18 Fan (ref38) 2005; 6 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Syahputra (ref40) 2016; 11 ref28 ref27 ref29 ref8 ref7 ref9 ref4 Grieves (ref1) 2014 ref3 ref6 DeGroot (ref32) 2012 ref5 |
References_xml | – ident: ref24 doi: 10.7551/mitpress/1090.001.0001 – ident: ref7 doi: 10.1109/TII.2019.2938572 – ident: ref25 doi: 10.1109/ICNN.1995.488968 – ident: ref16 doi: 10.1109/TSMC.2019.2944893 – ident: ref26 doi: 10.1109/ICEC.1997.592287 – ident: ref20 doi: 10.1109/TCYB.2017.2710205 – ident: ref31 doi: 10.1109/TEVC.2010.2058121 – ident: ref22 doi: 10.1109/TSUSC.2017.2697768 – ident: ref27 doi: 10.1016/j.inffus.2020.02.003 – ident: ref28 doi: 10.1016/j.autcon.2020.103517 – ident: ref44 doi: 10.1520/SSMS20160008 – ident: ref39 doi: 10.1016/j.ijepes.2019.105699 – ident: ref34 doi: 10.1016/j.autcon.2012.11.001 – ident: ref17 doi: 10.1016/j.ejor.2004.09.059 – ident: ref29 doi: 10.1109/JSYST.2020.2991161 – ident: ref10 doi: 10.1061/(ASCE)CP.1943-5487.0000714 – volume-title: Probability and Statistics year: 2012 ident: ref32 – ident: ref11 doi: 10.1016/j.buildenv.2014.02.005 – ident: ref9 doi: 10.1109/TCYB.2016.2536628 – ident: ref36 doi: 10.1061/(ASCE)0733-9364(2002)128:3(203) – ident: ref41 doi: 10.5120/ijca2017914007 – ident: ref4 doi: 10.1109/TII.2018.2873186 – ident: ref21 doi: 10.1109/TSMC.2020.2967885 – ident: ref42 doi: 10.1109/TNNLS.2019.2919441 – ident: ref43 doi: 10.1016/j.asoc.2018.06.026 – ident: ref14 doi: 10.1109/TCYB.2018.2865499 – ident: ref15 doi: 10.1109/TSMCA.2005.851270 – ident: ref19 doi: 10.1109/TFUZZ.2019.2892348 – volume: 11 start-page: 5256 issue: 7 year: 2016 ident: ref40 article-title: DFIG control scheme of wind power using ANFIS method in electrical power grid system publication-title: Int. J. Appl. Eng. Res. – ident: ref33 doi: 10.1016/j.tust.2015.07.016 – volume-title: Digital Twin: Manufacturing Excellence Through Virtual Factory Replication, White Paper year: 2014 ident: ref1 – ident: ref2 doi: 10.1007/978-3-319-38756-7_4 – ident: ref35 doi: 10.1061/(ASCE)0733-9410(1989)115:1(1) – ident: ref37 doi: 10.1109/TCYB.2018.2827037 – ident: ref30 doi: 10.1109/CEC.2014.6900618 – ident: ref13 doi: 10.5821/dissertation-2117-95656 – ident: ref3 doi: 10.2514/1.J055201 – ident: ref5 doi: 10.1109/TII.2018.2804917 – ident: ref8 doi: 10.1109/TAC.2005.864200 – ident: ref18 doi: 10.1111/j.1539-6924.1999.tb00393.x – ident: ref6 doi: 10.1109/JSYST.2019.2925627 – volume: 6 start-page: 1889 year: 2005 ident: ref38 article-title: Working set selection using second order information for training support vector machines publication-title: J. Mach. Learn. Res. – ident: ref12 doi: 10.1061/(ASCE)CP.1943-5487.0000621 – ident: ref23 doi: 10.1109/TSMC.2017.2678607 |
SSID | ssj0000816898 |
Score | 2.5898702 |
Snippet | A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10364 |
SubjectTerms | Analytical models Belief rule base (BRB) building tilt rate (BTR) Data models Digital twin Digital twins Iterative methods Mathematical models Optimization output control Parameter identification Testing transparent digital twin (DT) Tunnel construction Uncertainty |
Title | Transparent Digital Twin for Output Control Using Belief Rule Base |
URI | https://ieeexplore.ieee.org/document/9385991 https://www.ncbi.nlm.nih.gov/pubmed/33760751 https://www.proquest.com/docview/2716348112 https://www.proquest.com/docview/2505368025 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Uk5f1c9eqKxE8uLJ9tknbtEffUxFBheUJ7qmkabLISp9oy8L-9TuT5hWUVbwFmn4kM9P8JpmZH8ABr2StY52G6CPbMMmsDfO6QLuKEpmmWuWqoEThq-vs4ja5vEvvFuD7kAtjjHHBZ2ZETXeWX890R1tlx4XI04JS1RfRcetztYb9FEcg4ahvOTZCRBXSH2LGUXE8nfwcozPI4xFCZMFzIqwRFA8i0_jFiuQoVt5Gm27VOV-Bq_n39sEmv0ddW43031elHD86oFX45OEnO-n1ZQ0WTLMOa97An9mhr0L9bQPGfdlzyhVr2en9LyIXYdM_9w1DmMtuuvaxa9mkD3RnLvCAjQ0CWst-dA-GjXF13ITb87Pp5CL0hAuhRpjUhhZ_fHkVIaQxXBtrK8uzVOskU4TDElVFRqpM51GFbS1yWcsoEVZqU9RK20x8hqVm1pgtYMbEqkLkzoWlUuiWwqlSJWSSUX0haQOI5pNeal-NnEgxHkrnlURFSSIrSWSlF1kAR8Mtj30pjvc6b9B0Dx39TAewO5ds6Y31ueToM1I-cswD2B8uo5nR2YlqzKzDPogURZYjQgzgS68Rw7PnirT9_3fuwDKnnAkXAbgLS-1TZ74ikmmrPafC_wDfh-oz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLam8QAvwBiwsjGCxAMgemuTpmkfuYPpgN2Q0E0aT1WaJmhi6k1bq0n767HTXCXQQLxFavortuvPzWcb4BWvVWNSI2OMkV2c5c7FRVOiXSWZktLoQpeUKLw4zucn2edTeboB78ZcGGutJ5_ZCQ39Xn6zMj39KjsoRSFLSlW_g35fpkO21vhHxbeQ8M1vOQ5ixBUqbGOmSXmwnH2fYjjI0wmCZMELalkjiBGiZPqbT_JNVv6ON73fOXwAi_UTD3STn5O-qyfm5o9ijv_7Sg_hfgCg7P2gMVuwYdtHsBVM_Iq9DnWo32zDdCh8TtliHftw9oPai7Dl9VnLEOiyr3130XdsNlDdmacesKlFSOvYt_7csin6x8dwcvhxOZvHoeVCbBAodbHDT19RJwhqLDfWudrxXBqT5ZqQWKbrxCqdmyKpcWxEoRqVZMIpY8tGG5eLJ7DZrlq7A8zaVNeI3blwVAzdEaFKaqGynCoMKRdBsl70yoR65NQW47zycUlSViSyikRWBZFF8HY85WIoxvGvydu03OPEsNIR7K0lWwVzvao4Ro2UkZzyCF6Oh9HQaPdEt3bV4xzEiiIvECNG8HTQiPHaa0V6dvs9X8Dd-XJxVB19Ov6yC_c4ZVB4PuAebHaXvX2OuKar9706_wJC9-18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparent+Digital+Twin+for+Output+Control+Using+Belief+Rule+Base&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chang%2C+Leilei&rft.au=Zhang%2C+Limao&rft.au=Fu%2C+Chao&rft.au=Yu-Wang%2C+Chen&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=10&rft.spage=10364&rft_id=info:doi/10.1109%2FTCYB.2021.3063285&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |