Transparent Digital Twin for Output Control Using Belief Rule Base

A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 10; pp. 10364 - 10378
Main Authors Chang, Leilei, Zhang, Limao, Fu, Chao, Chen, Yu-Wang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3063285

Cover

Loading…
Abstract A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.
AbstractList A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.
A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.
Author Zhang, Limao
Chang, Leilei
Fu, Chao
Chen, Yu-Wang
Author_xml – sequence: 1
  givenname: Leilei
  orcidid: 0000-0002-0126-0635
  surname: Chang
  fullname: Chang, Leilei
  email: leileichang@hotmail.com
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Limao
  orcidid: 0000-0002-7245-3741
  surname: Zhang
  fullname: Zhang, Limao
  email: limao.zhang@ntu.edu.sg
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-1455-080X
  surname: Fu
  fullname: Fu, Chao
  email: wls_fuchao@163.com
  organization: School of Management, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Yu-Wang
  orcidid: 0000-0002-2007-1821
  surname: Chen
  fullname: Chen, Yu-Wang
  email: yu-wang.chen@manchester.ac.uk
  organization: Manchester Business School, The University of Manchester, Manchester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33760751$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLQzEQhYMovn-ACBJw46Y1j-Zxl7Y-QShIXbgKuelEIre5NbkX8d-b0taFC2czw_CdYTjnCO3GNgJCZ5QMKSXV9WzyNh4ywuiQE8mZFjvokFGpB4wpsfs7S3WATnP-IKV0WVV6Hx1wriRRgh6i8SzZmJc2QezwbXgPnW3w7CtE7NuEp3237Ds8aWOX2ga_5hDf8RiaAB6_9A3gsc1wgva8bTKcbvoxer2_m00eB8_Th6fJzfPA8Yp1A08p1TVRTAFz4H3tmRTOjaStBCUjWxNQVjpN6jI7rtVckRH3ykE1t85Lfoyu1neXqf3sIXdmEbKDprER2j4bJojgUhMmCnr5B_1o-xTLd4YpKvlIU8oKdbGh-noBc7NMYWHTt9m6UwC1Blxqc07gjSv-dGFlhw2NocSsojCrKMwqCrOJoijpH-X2-H-a87UmAMAvX3EtqoryH_JWkeA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s11042_023_16037_x
crossref_primary_10_1016_j_ress_2023_109172
crossref_primary_10_1007_s10489_021_02956_5
crossref_primary_10_1002_int_22598
crossref_primary_10_1109_TKDE_2022_3177896
crossref_primary_10_1016_j_eswa_2024_125517
crossref_primary_10_12688_digitaltwin_17549_1
crossref_primary_10_12688_digitaltwin_17549_2
crossref_primary_10_1109_TIE_2023_3277095
crossref_primary_10_1016_j_jocs_2024_102423
crossref_primary_10_1109_TFUZZ_2024_3416448
crossref_primary_10_1109_TKDE_2024_3369719
crossref_primary_10_3390_math12203283
crossref_primary_10_1007_s10489_022_03768_x
crossref_primary_10_1109_TKDE_2025_3530524
crossref_primary_10_1016_j_asoc_2022_109895
crossref_primary_10_1109_TASE_2023_3305524
crossref_primary_10_32604_csse_2023_037330
crossref_primary_10_3390_diagnostics12102299
crossref_primary_10_1007_s10489_022_04182_z
crossref_primary_10_1109_TSMC_2025_3534988
crossref_primary_10_1109_TASE_2024_3402099
crossref_primary_10_1007_s00500_023_08334_2
crossref_primary_10_1016_j_autcon_2023_105059
crossref_primary_10_1007_s10489_022_04181_0
crossref_primary_10_1016_j_eswa_2023_122459
crossref_primary_10_12688_digitaltwin_17632_2
crossref_primary_10_1109_TCYB_2024_3471608
crossref_primary_10_1002_int_22912
crossref_primary_10_1016_j_eng_2023_12_006
crossref_primary_10_1016_j_measurement_2022_112161
crossref_primary_10_1016_j_ins_2023_119744
crossref_primary_10_1016_j_engappai_2023_106027
crossref_primary_10_1109_TSMC_2023_3279286
crossref_primary_10_3233_JIFS_223025
crossref_primary_10_3390_sym15020507
crossref_primary_10_1016_j_ress_2024_110387
crossref_primary_10_1109_TR_2023_3311436
crossref_primary_10_1016_j_cja_2022_11_007
crossref_primary_10_3390_sym16070819
crossref_primary_10_1016_j_cja_2025_103420
crossref_primary_10_1016_j_eswa_2024_124806
crossref_primary_10_1016_j_aei_2024_102852
crossref_primary_10_1007_s11227_024_06363_8
crossref_primary_10_1109_TPAMI_2022_3167045
crossref_primary_10_1007_s40314_022_01975_3
crossref_primary_10_1016_j_ins_2024_120462
crossref_primary_10_1007_s00500_022_07361_9
crossref_primary_10_3390_buildings14113349
crossref_primary_10_1016_j_eswa_2023_120485
crossref_primary_10_1007_s40314_023_02543_z
crossref_primary_10_1109_JAS_2023_123834
crossref_primary_10_1109_TSMC_2024_3507827
crossref_primary_10_23919_JSEE_2024_000095
crossref_primary_10_1007_s10462_024_10833_z
crossref_primary_10_1016_j_measurement_2025_116713
crossref_primary_10_23919_JSEE_2022_000112
crossref_primary_10_1109_TSMC_2022_3233156
crossref_primary_10_1016_j_engappai_2023_106950
crossref_primary_10_1002_int_22863
crossref_primary_10_1007_s10489_023_05217_9
crossref_primary_10_1007_s00500_023_09112_w
crossref_primary_10_1016_j_cja_2024_103350
crossref_primary_10_1002_int_23070
crossref_primary_10_1016_j_engappai_2024_108164
crossref_primary_10_1109_JBHI_2024_3485871
crossref_primary_10_1016_j_engappai_2024_109696
crossref_primary_10_1016_j_ress_2024_110796
crossref_primary_10_1002_int_22615
crossref_primary_10_1016_j_ress_2024_110712
crossref_primary_10_1007_s11227_023_05284_2
crossref_primary_10_1109_TKDE_2022_3206871
crossref_primary_10_1109_TSMC_2022_3211498
Cites_doi 10.7551/mitpress/1090.001.0001
10.1109/TII.2019.2938572
10.1109/ICNN.1995.488968
10.1109/TSMC.2019.2944893
10.1109/ICEC.1997.592287
10.1109/TCYB.2017.2710205
10.1109/TEVC.2010.2058121
10.1109/TSUSC.2017.2697768
10.1016/j.inffus.2020.02.003
10.1016/j.autcon.2020.103517
10.1520/SSMS20160008
10.1016/j.ijepes.2019.105699
10.1016/j.autcon.2012.11.001
10.1016/j.ejor.2004.09.059
10.1109/JSYST.2020.2991161
10.1061/(ASCE)CP.1943-5487.0000714
10.1016/j.buildenv.2014.02.005
10.1109/TCYB.2016.2536628
10.1061/(ASCE)0733-9364(2002)128:3(203)
10.5120/ijca2017914007
10.1109/TII.2018.2873186
10.1109/TSMC.2020.2967885
10.1109/TNNLS.2019.2919441
10.1016/j.asoc.2018.06.026
10.1109/TCYB.2018.2865499
10.1109/TSMCA.2005.851270
10.1109/TFUZZ.2019.2892348
10.1016/j.tust.2015.07.016
10.1007/978-3-319-38756-7_4
10.1061/(ASCE)0733-9410(1989)115:1(1)
10.1109/TCYB.2018.2827037
10.1109/CEC.2014.6900618
10.5821/dissertation-2117-95656
10.2514/1.J055201
10.1109/TII.2018.2804917
10.1109/TAC.2005.864200
10.1111/j.1539-6924.1999.tb00393.x
10.1109/JSYST.2019.2925627
10.1061/(ASCE)CP.1943-5487.0000621
10.1109/TSMC.2017.2678607
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3063285
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 10378
ExternalDocumentID 33760751
10_1109_TCYB_2021_3063285
9385991
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Start-Up Grant at Nanyang Technological University, Singapore
  grantid: 04INS000423C120
  funderid: 10.13039/501100001475
– fundername: Ministry of Education Tier 1 Grants, Singapore
  grantid: 04MNP000279C120; 04MNP002126C120
– fundername: National Natural Science Foundation of China
  grantid: 71601180; 71622003; 71571060
  funderid: 10.13039/501100001809
– fundername: Shenzhen Basic Research Project for Development of Science and Technology
  grantid: JCYJ20200109141218676
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-f1118b0727e2ceffbf265cc46a95104ab0e7a6c80b4abc387d7043f7ce9dacf63
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 01:35:45 EDT 2025
Mon Jun 30 05:59:42 EDT 2025
Thu Jan 02 22:54:46 EST 2025
Tue Jul 01 00:53:59 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Wed Aug 27 02:15:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-f1118b0727e2ceffbf265cc46a95104ab0e7a6c80b4abc387d7043f7ce9dacf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1455-080X
0000-0002-0126-0635
0000-0002-7245-3741
0000-0002-2007-1821
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9385991
PMID 33760751
PQID 2716348112
PQPubID 85422
PageCount 15
ParticipantIDs proquest_journals_2716348112
crossref_citationtrail_10_1109_TCYB_2021_3063285
crossref_primary_10_1109_TCYB_2021_3063285
proquest_miscellaneous_2505368025
ieee_primary_9385991
pubmed_primary_33760751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref17
ref39
ref16
ref19
ref18
Fan (ref38) 2005; 6
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Syahputra (ref40) 2016; 11
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Grieves (ref1) 2014
ref3
ref6
DeGroot (ref32) 2012
ref5
References_xml – ident: ref24
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref7
  doi: 10.1109/TII.2019.2938572
– ident: ref25
  doi: 10.1109/ICNN.1995.488968
– ident: ref16
  doi: 10.1109/TSMC.2019.2944893
– ident: ref26
  doi: 10.1109/ICEC.1997.592287
– ident: ref20
  doi: 10.1109/TCYB.2017.2710205
– ident: ref31
  doi: 10.1109/TEVC.2010.2058121
– ident: ref22
  doi: 10.1109/TSUSC.2017.2697768
– ident: ref27
  doi: 10.1016/j.inffus.2020.02.003
– ident: ref28
  doi: 10.1016/j.autcon.2020.103517
– ident: ref44
  doi: 10.1520/SSMS20160008
– ident: ref39
  doi: 10.1016/j.ijepes.2019.105699
– ident: ref34
  doi: 10.1016/j.autcon.2012.11.001
– ident: ref17
  doi: 10.1016/j.ejor.2004.09.059
– ident: ref29
  doi: 10.1109/JSYST.2020.2991161
– ident: ref10
  doi: 10.1061/(ASCE)CP.1943-5487.0000714
– volume-title: Probability and Statistics
  year: 2012
  ident: ref32
– ident: ref11
  doi: 10.1016/j.buildenv.2014.02.005
– ident: ref9
  doi: 10.1109/TCYB.2016.2536628
– ident: ref36
  doi: 10.1061/(ASCE)0733-9364(2002)128:3(203)
– ident: ref41
  doi: 10.5120/ijca2017914007
– ident: ref4
  doi: 10.1109/TII.2018.2873186
– ident: ref21
  doi: 10.1109/TSMC.2020.2967885
– ident: ref42
  doi: 10.1109/TNNLS.2019.2919441
– ident: ref43
  doi: 10.1016/j.asoc.2018.06.026
– ident: ref14
  doi: 10.1109/TCYB.2018.2865499
– ident: ref15
  doi: 10.1109/TSMCA.2005.851270
– ident: ref19
  doi: 10.1109/TFUZZ.2019.2892348
– volume: 11
  start-page: 5256
  issue: 7
  year: 2016
  ident: ref40
  article-title: DFIG control scheme of wind power using ANFIS method in electrical power grid system
  publication-title: Int. J. Appl. Eng. Res.
– ident: ref33
  doi: 10.1016/j.tust.2015.07.016
– volume-title: Digital Twin: Manufacturing Excellence Through Virtual Factory Replication, White Paper
  year: 2014
  ident: ref1
– ident: ref2
  doi: 10.1007/978-3-319-38756-7_4
– ident: ref35
  doi: 10.1061/(ASCE)0733-9410(1989)115:1(1)
– ident: ref37
  doi: 10.1109/TCYB.2018.2827037
– ident: ref30
  doi: 10.1109/CEC.2014.6900618
– ident: ref13
  doi: 10.5821/dissertation-2117-95656
– ident: ref3
  doi: 10.2514/1.J055201
– ident: ref5
  doi: 10.1109/TII.2018.2804917
– ident: ref8
  doi: 10.1109/TAC.2005.864200
– ident: ref18
  doi: 10.1111/j.1539-6924.1999.tb00393.x
– ident: ref6
  doi: 10.1109/JSYST.2019.2925627
– volume: 6
  start-page: 1889
  year: 2005
  ident: ref38
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1061/(ASCE)CP.1943-5487.0000621
– ident: ref23
  doi: 10.1109/TSMC.2017.2678607
SSID ssj0000816898
Score 2.5898702
Snippet A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10364
SubjectTerms Analytical models
Belief rule base (BRB)
building tilt rate (BTR)
Data models
Digital twin
Digital twins
Iterative methods
Mathematical models
Optimization
output control
Parameter identification
Testing
transparent digital twin (DT)
Tunnel construction
Uncertainty
Title Transparent Digital Twin for Output Control Using Belief Rule Base
URI https://ieeexplore.ieee.org/document/9385991
https://www.ncbi.nlm.nih.gov/pubmed/33760751
https://www.proquest.com/docview/2716348112
https://www.proquest.com/docview/2505368025
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Uk5f1c9eqKxE8uLJ9tknbtEffUxFBheUJ7qmkabLISp9oy8L-9TuT5hWUVbwFmn4kM9P8JpmZH8ABr2StY52G6CPbMMmsDfO6QLuKEpmmWuWqoEThq-vs4ja5vEvvFuD7kAtjjHHBZ2ZETXeWX890R1tlx4XI04JS1RfRcetztYb9FEcg4ahvOTZCRBXSH2LGUXE8nfwcozPI4xFCZMFzIqwRFA8i0_jFiuQoVt5Gm27VOV-Bq_n39sEmv0ddW43031elHD86oFX45OEnO-n1ZQ0WTLMOa97An9mhr0L9bQPGfdlzyhVr2en9LyIXYdM_9w1DmMtuuvaxa9mkD3RnLvCAjQ0CWst-dA-GjXF13ITb87Pp5CL0hAuhRpjUhhZ_fHkVIaQxXBtrK8uzVOskU4TDElVFRqpM51GFbS1yWcsoEVZqU9RK20x8hqVm1pgtYMbEqkLkzoWlUuiWwqlSJWSSUX0haQOI5pNeal-NnEgxHkrnlURFSSIrSWSlF1kAR8Mtj30pjvc6b9B0Dx39TAewO5ds6Y31ueToM1I-cswD2B8uo5nR2YlqzKzDPogURZYjQgzgS68Rw7PnirT9_3fuwDKnnAkXAbgLS-1TZ74ikmmrPafC_wDfh-oz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLam8QAvwBiwsjGCxAMgemuTpmkfuYPpgN2Q0E0aT1WaJmhi6k1bq0n767HTXCXQQLxFavortuvPzWcb4BWvVWNSI2OMkV2c5c7FRVOiXSWZktLoQpeUKLw4zucn2edTeboB78ZcGGutJ5_ZCQ39Xn6zMj39KjsoRSFLSlW_g35fpkO21vhHxbeQ8M1vOQ5ixBUqbGOmSXmwnH2fYjjI0wmCZMELalkjiBGiZPqbT_JNVv6ON73fOXwAi_UTD3STn5O-qyfm5o9ijv_7Sg_hfgCg7P2gMVuwYdtHsBVM_Iq9DnWo32zDdCh8TtliHftw9oPai7Dl9VnLEOiyr3130XdsNlDdmacesKlFSOvYt_7csin6x8dwcvhxOZvHoeVCbBAodbHDT19RJwhqLDfWudrxXBqT5ZqQWKbrxCqdmyKpcWxEoRqVZMIpY8tGG5eLJ7DZrlq7A8zaVNeI3blwVAzdEaFKaqGynCoMKRdBsl70yoR65NQW47zycUlSViSyikRWBZFF8HY85WIoxvGvydu03OPEsNIR7K0lWwVzvao4Ro2UkZzyCF6Oh9HQaPdEt3bV4xzEiiIvECNG8HTQiPHaa0V6dvs9X8Dd-XJxVB19Ov6yC_c4ZVB4PuAebHaXvX2OuKar9706_wJC9-18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparent+Digital+Twin+for+Output+Control+Using+Belief+Rule+Base&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chang%2C+Leilei&rft.au=Zhang%2C+Limao&rft.au=Fu%2C+Chao&rft.au=Yu-Wang%2C+Chen&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=10&rft.spage=10364&rft_id=info:doi/10.1109%2FTCYB.2021.3063285&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon