Mesenchymal stromal cell characteristics vary depending on their origin
Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. How...
Saved in:
Published in | Stem cells and development Vol. 22; no. 19; p. 2606 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. However, source-dependent and donor-dependent differences of MSC properties, including implications on their clinical application are still largely unknown. We evaluated MSCs derived from perinatal tissues umbilical cord (UC) and amniotic membrane (AM) in comparison to adult MSCs from bone marrow (BM), which were used as gold standard. We found genetic background-independent differences between MSCs from UC and AM. While AM- and UC-MSCs were closer to each other than to BM-MSCs, they also exhibited differences between each other. AM-MSCs from different donors but not UC-MSCs displayed high interdonor variability. In addition, we show that although all MSCs expressed similar surface markers, MSC populations from UC and AM showed differential profiles of gene expression and paracrine factor secretion to BM-derived MSCs. Notably, pathway analysis of gene expression data revealed intriguing differences between MSCs suggesting that MSCs from UC and AM possess in general a higher potential of immunomodulatory capacity, whereas BM-MSCs showed a higher potential of supporting regenerative processes as exemplified by neuronal differentiation and development. These differences between perinatal and BM-derived MSCs may be relevant for clinical applications. |
---|---|
AbstractList | Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. However, source-dependent and donor-dependent differences of MSC properties, including implications on their clinical application are still largely unknown. We evaluated MSCs derived from perinatal tissues umbilical cord (UC) and amniotic membrane (AM) in comparison to adult MSCs from bone marrow (BM), which were used as gold standard. We found genetic background-independent differences between MSCs from UC and AM. While AM- and UC-MSCs were closer to each other than to BM-MSCs, they also exhibited differences between each other. AM-MSCs from different donors but not UC-MSCs displayed high interdonor variability. In addition, we show that although all MSCs expressed similar surface markers, MSC populations from UC and AM showed differential profiles of gene expression and paracrine factor secretion to BM-derived MSCs. Notably, pathway analysis of gene expression data revealed intriguing differences between MSCs suggesting that MSCs from UC and AM possess in general a higher potential of immunomodulatory capacity, whereas BM-MSCs showed a higher potential of supporting regenerative processes as exemplified by neuronal differentiation and development. These differences between perinatal and BM-derived MSCs may be relevant for clinical applications. |
Author | Nisslbeck, Anna Katharina Wiechmann, Kornelius Bröske, Ann-Marie Stein, Carsten Funk, Jürgen Kuentzer, Karin Wegmeyer, Heike Huss, Ralf Leddin, Mathias Hupfeld, Julia von Schwerin, Christoffer Knothe, Saskia Neubauer, Markus Kuhlen, Jennifer |
Author_xml | – sequence: 1 givenname: Heike surname: Wegmeyer fullname: Wegmeyer, Heike organization: 1 Roche Diagnostics GmbH , pharma Research and Early Development (pRED), Penzberg, Germany – sequence: 2 givenname: Ann-Marie surname: Bröske fullname: Bröske, Ann-Marie – sequence: 3 givenname: Mathias surname: Leddin fullname: Leddin, Mathias – sequence: 4 givenname: Karin surname: Kuentzer fullname: Kuentzer, Karin – sequence: 5 givenname: Anna Katharina surname: Nisslbeck fullname: Nisslbeck, Anna Katharina – sequence: 6 givenname: Julia surname: Hupfeld fullname: Hupfeld, Julia – sequence: 7 givenname: Kornelius surname: Wiechmann fullname: Wiechmann, Kornelius – sequence: 8 givenname: Jennifer surname: Kuhlen fullname: Kuhlen, Jennifer – sequence: 9 givenname: Christoffer surname: von Schwerin fullname: von Schwerin, Christoffer – sequence: 10 givenname: Carsten surname: Stein fullname: Stein, Carsten – sequence: 11 givenname: Saskia surname: Knothe fullname: Knothe, Saskia – sequence: 12 givenname: Jürgen surname: Funk fullname: Funk, Jürgen – sequence: 13 givenname: Ralf surname: Huss fullname: Huss, Ralf – sequence: 14 givenname: Markus surname: Neubauer fullname: Neubauer, Markus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23676112$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81KxDAYRYMozo8u3UpeoDX5mp92KYOOwogbXQ9p8mUaadOSVGHe3hF1c87ucO-KnMcxIiE3nJWc1c1dtq4ExquSMa7OyJJLqYtaVmJBVjl_MAYKanFJFlAprTiHJdm-YMZou-NgeprnNP7YYn9CZ5KxM6aQ52Az_TLpSB1OGF2IBzpGOncYEh1TOIR4RS686TNe_3lN3h8f3jZPxe51-7y53xW2amAuPAPhZKVMCwZAmcY71NLU3BlobY1M-9ajRmFBCyFbpZlCh7zWSoP2Dtbk9rc7fbYDuv2UwnAatv9_BN8ADE6C |
CitedBy_id | crossref_primary_10_3390_jcm13092480 crossref_primary_10_1155_2017_6917941 crossref_primary_10_1007_s12015_024_10787_3 crossref_primary_10_5966_sctm_2015_0022 crossref_primary_10_1007_s13577_023_00971_x crossref_primary_10_1016_j_berh_2014_10_023 crossref_primary_10_1080_15384101_2015_1128591 crossref_primary_10_1155_2015_895714 crossref_primary_10_1186_s13287_020_02121_8 crossref_primary_10_3390_polym15102324 crossref_primary_10_3390_ijms23020863 crossref_primary_10_1007_s12016_021_08892_z crossref_primary_10_1371_journal_pone_0117068 crossref_primary_10_5966_sctm_2015_0427 crossref_primary_10_1007_s11926_017_0671_7 crossref_primary_10_1016_j_jcyt_2016_11_011 crossref_primary_10_1007_s12015_019_09924_0 crossref_primary_10_1016_j_isci_2024_110811 crossref_primary_10_1038_s41390_019_0425_5 crossref_primary_10_4236_scd_2017_71001 crossref_primary_10_1089_scd_2015_0120 crossref_primary_10_1016_j_bbrep_2024_101739 crossref_primary_10_3390_ijms17060982 crossref_primary_10_1155_2016_3409169 crossref_primary_10_3389_fcell_2020_00458 crossref_primary_10_1016_j_jcyt_2015_05_001 crossref_primary_10_3390_ijms24108614 crossref_primary_10_5507_bp_2018_071 crossref_primary_10_1038_s41591_024_02990_z crossref_primary_10_3389_fimmu_2024_1436653 crossref_primary_10_3390_ijms22073576 crossref_primary_10_1007_s12015_020_09959_8 crossref_primary_10_1088_1748_605X_ab4243 crossref_primary_10_1186_s13287_015_0194_y crossref_primary_10_1016_j_heliyon_2024_e35785 crossref_primary_10_1089_scd_2019_0144 crossref_primary_10_1002_bit_25281 crossref_primary_10_3390_ijms22063142 crossref_primary_10_1089_scd_2014_0110 crossref_primary_10_1016_j_intimp_2020_106595 crossref_primary_10_3389_fimmu_2023_1200180 crossref_primary_10_1016_j_biochi_2018_06_028 crossref_primary_10_1016_j_bbagen_2014_02_030 crossref_primary_10_3109_0886022X_2015_1136894 crossref_primary_10_1177_19476035211044822 crossref_primary_10_1038_s41598_018_22326_5 crossref_primary_10_1155_2014_479269 crossref_primary_10_1016_j_healun_2016_04_017 crossref_primary_10_3390_ijms20081922 crossref_primary_10_3892_mmr_2014_2967 crossref_primary_10_1038_s41598_018_23396_1 crossref_primary_10_1016_j_intimp_2021_108404 crossref_primary_10_3390_ijms22157850 crossref_primary_10_1007_s40883_017_0036_9 crossref_primary_10_3389_fcell_2022_1006295 crossref_primary_10_3390_ijms20081807 crossref_primary_10_1016_j_retram_2016_04_007 crossref_primary_10_1186_s10020_022_00536_y crossref_primary_10_1080_19768354_2015_1089323 crossref_primary_10_1371_journal_pone_0313693 crossref_primary_10_3727_096368915X687462 crossref_primary_10_3389_fphys_2018_00464 crossref_primary_10_1016_j_stemcr_2017_03_001 crossref_primary_10_1002_term_2167 crossref_primary_10_1042_BSR20201325 crossref_primary_10_1016_j_placenta_2017_05_010 crossref_primary_10_1038_s41591_020_1050_x crossref_primary_10_1186_s13287_017_0755_3 crossref_primary_10_1007_s12015_020_10089_4 crossref_primary_10_1186_s13287_019_1516_2 crossref_primary_10_3389_fbioe_2019_00075 crossref_primary_10_1007_s00393_020_00790_7 crossref_primary_10_1016_j_jcyt_2024_05_020 crossref_primary_10_1016_j_semperi_2023_151731 crossref_primary_10_3390_ph8020196 crossref_primary_10_4252_wjsc_v15_i4_105 crossref_primary_10_1186_s13287_018_0936_8 crossref_primary_10_1517_14712598_2015_960837 crossref_primary_10_3390_cells9061343 crossref_primary_10_5435_JAAOS_D_16_00086 crossref_primary_10_1186_s13287_017_0555_9 crossref_primary_10_1016_j_bbrc_2015_09_078 crossref_primary_10_1186_s13287_021_02435_1 crossref_primary_10_1089_scd_2020_0170 crossref_primary_10_1155_2020_4356359 crossref_primary_10_1177_0963689717742819 crossref_primary_10_1007_s00441_017_2772_z crossref_primary_10_1007_s12015_014_9546_8 crossref_primary_10_1007_s13577_023_00957_9 crossref_primary_10_1155_2019_1613701 crossref_primary_10_1186_s13287_018_1104_x crossref_primary_10_1155_2016_6323486 crossref_primary_10_23868_gc120484 crossref_primary_10_1089_scd_2018_0170 crossref_primary_10_14789_jmj_2021_67_JMJ20_LN03 crossref_primary_10_1007_s10571_022_01201_y crossref_primary_10_1517_14712598_2015_1000856 crossref_primary_10_3389_fcell_2021_632717 crossref_primary_10_1038_s41536_020_00105_z crossref_primary_10_4236_scd_2016_62005 crossref_primary_10_3727_096368914X683502 crossref_primary_10_2106_JBJS_RVW_18_00008 crossref_primary_10_1515_biol_2018_0065 crossref_primary_10_1177_1947603520941227 crossref_primary_10_1007_s12016_016_8552_9 crossref_primary_10_1186_s13619_020_00058_0 crossref_primary_10_1111_micc_70007 crossref_primary_10_3727_215517916X693357 crossref_primary_10_3390_ijms23136877 crossref_primary_10_3390_ijms242216544 crossref_primary_10_3390_ph17030350 crossref_primary_10_1038_s41390_020_0758_0 crossref_primary_10_18632_aging_103277 crossref_primary_10_1155_2024_1022338 crossref_primary_10_1111_trf_15252 crossref_primary_10_3390_cells10020312 crossref_primary_10_4103_ijmr_IJMR_1450_18 crossref_primary_10_3390_cells9061489 crossref_primary_10_1007_s12015_021_10197_9 crossref_primary_10_18502_jovr_v15i4_7780 crossref_primary_10_3389_fimmu_2021_761616 crossref_primary_10_3390_polym14091669 crossref_primary_10_1155_2019_2186728 crossref_primary_10_1089_scd_2014_0327 crossref_primary_10_1007_s00277_018_3384_8 crossref_primary_10_1186_s13287_020_1558_5 crossref_primary_10_3390_cimb44090291 crossref_primary_10_1186_s13075_015_0819_7 crossref_primary_10_1089_scd_2016_0107 crossref_primary_10_1371_journal_pone_0172642 crossref_primary_10_1155_2016_6901286 crossref_primary_10_1186_s13287_022_02791_6 crossref_primary_10_3390_cells12040538 crossref_primary_10_3892_ol_2017_5686 crossref_primary_10_1080_23144599_2023_2197393 crossref_primary_10_1007_s12016_025_09030_9 crossref_primary_10_1253_circj_CJ_18_0786 crossref_primary_10_3934_celltissue_2017_2_104 crossref_primary_10_1089_scd_2020_0198 crossref_primary_10_1186_s13287_015_0165_3 crossref_primary_10_1186_s13287_015_0146_6 crossref_primary_10_1007_s40139_015_0070_6 crossref_primary_10_3390_cells8111401 crossref_primary_10_1111_jog_13432 crossref_primary_10_2217_rme_14_65 crossref_primary_10_1089_ten_teb_2013_0771 crossref_primary_10_2217_rme_2018_0145 crossref_primary_10_3389_fmed_2021_728496 crossref_primary_10_1016_j_jcyt_2015_09_007 crossref_primary_10_3389_fbioe_2020_00640 crossref_primary_10_3389_fimmu_2021_683003 crossref_primary_10_1134_S1990519X16010065 crossref_primary_10_15283_ijsc20167 crossref_primary_10_1016_j_procbio_2016_04_017 crossref_primary_10_1111_acel_12933 crossref_primary_10_1007_s40135_019_00193_1 crossref_primary_10_1002_stem_2920 crossref_primary_10_1038_srep23544 crossref_primary_10_3389_fped_2022_855260 crossref_primary_10_4236_scd_2014_42004 crossref_primary_10_1155_2016_9364974 crossref_primary_10_1371_journal_pone_0110764 crossref_primary_10_1186_s13287_020_01690_y crossref_primary_10_1155_2018_6726185 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/scd.2013.0016 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-8534 |
ExternalDocumentID | 23676112 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 0VX 123 29Q 34G 39C 4.4 ABBKN ABJNI ACGFS ADBBV ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF DU5 ECM EIF EJD F5P IHR IM4 MV1 NPM NQHIM O9- RML UE5 |
ID | FETCH-LOGICAL-c392t-f024d536ab2a226a9fde75a81da2bc8e07fbfe7e4c27445b6706ede1876727fd2 |
IngestDate | Thu Jan 02 22:12:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c392t-f024d536ab2a226a9fde75a81da2bc8e07fbfe7e4c27445b6706ede1876727fd2 |
PMID | 23676112 |
ParticipantIDs | pubmed_primary_23676112 |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cells and development |
PublicationTitleAlternate | Stem Cells Dev |
PublicationYear | 2013 |
References | 21669042 - Cell Transplant. 2011;20(11-12):1721-30 20415588 - Annu Rev Biomed Eng. 2010 Aug 15;12:87-117 23235695 - Cell Physiol Biochem. 2012;30(6):1526-37 15671145 - Stem Cells. 2005 Feb;23(2):220-9 16045817 - Cell Res. 2005 Jul;15(7):539-47 23296015 - Nat Med. 2013 Jan;19(1):35-42 17395729 - Ann N Y Acad Sci. 2007 Jun;1106:262-71 20491562 - Stem Cells Dev. 2010 May;19(5):593-4 22073147 - PLoS One. 2011;6(11):e26136 17071860 - Stem Cells. 2006 Nov;24(11):2466-77 11986244 - Blood. 2002 May 15;99(10):3838-43 18086871 - Blood. 2008 Mar 1;111(5):2631-5 18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6 16410387 - Stem Cells. 2006 May;24(5):1294-301 17901399 - Stem Cells. 2008 Jan;26(1):182-92 16923606 - Cytotherapy. 2006;8(4):315-7 19530993 - Inflamm Allergy Drug Targets. 2009 Jun;8(2):110-23 21073342 - Annu Rev Pathol. 2011;6:457-78 18786417 - Cell Stem Cell. 2008 Sep 11;3(3):301-13 19523334 - Cell Transplant. 2009;18(8):899-914 19161980 - Biochem Biophys Res Commun. 2009 Feb 20;379(4):1114-9 12900350 - Blood. 2003 Aug 15;102(4):1548-9 19635009 - Stem Cells Dev. 2010 Apr;19(4):491-502 8062829 - EMBO J. 1994 Aug 1;13(15):3524-32 22542159 - Cell Stem Cell. 2012 May 4;10(5):544-55 17569781 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11002-7 18728246 - Blood. 2008 Nov 1;112(9):3601-14 19657615 - Int J Hematol. 2009 Sep;90(2):261-9 19337235 - Mol Ther. 2009 Jun;17(6):939-46 16887966 - J Immunol. 2006 Aug 15;177(4):2080-7 20200854 - Curr Protoc Stem Cell Biol. 2010 Mar;Chapter 1:Unit 1E.5 22522999 - Stem Cells. 2012 Jul;30(7):1565-74 16684817 - J Cell Sci. 2006 Jun 1;119(Pt 11):2204-13 19663934 - Vox Sang. 2010 Feb;98(2):93-107 17136117 - Leukemia. 2007 Feb;21(2):297-303 18818395 - Blood. 2009 Jan 22;113(4):816-26 22213121 - J Cell Biochem. 2012 May;113(5):1460-9 19622228 - Cell Transplant. 2009;18(4):405-22 20179086 - Haematologica. 2010 Apr;95(4):651-9 18995896 - Placenta. 2009 Jan;30(1):2-10 19383412 - Stem Cell Res. 2009 Jan;2(1):83-94 11823036 - Exp Hematol. 2002 Jan;30(1):42-8 17339426 - J Immunol. 2007 Mar 15;178(6):3345-51 18593610 - Methods. 2008 Jun;45(2):133-41 19796239 - Ann N Y Acad Sci. 2009 Sep;1176:118-23 19641298 - Cells Tissues Organs. 2010;191(2):105-18 17975221 - Stem Cells. 2008 Feb;26(2):300-11 17604725 - Cell. 2007 Jun 29;129(7):1377-88 17141054 - Methods Enzymol. 2006;419:117-48 18713024 - Stem Cells Dev. 2008 Dec;17(6):1039-41 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 18442646 - Methods Cell Biol. 2008;86:101-19 21547114 - Transfus Med Hemother. 2008;35(3):160-167 18038420 - J Tissue Eng Regen Med. 2007 Jul-Aug;1(4):296-305 10102814 - Science. 1999 Apr 2;284(5411):143-7 17332507 - Stem Cells. 2007 Jun;25(6):1384-92 20861473 - Am J Physiol Cell Physiol. 2010 Dec;299(6):C1562-70 19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107 19926330 - Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):419-27 17709496 - J Immunol. 2007 Sep 1;179(5):2824-31 19462316 - Cytotherapy. 2009;11(5):527-33 17518752 - Tissue Eng. 2007 Jun;13(6):1173-83 20037738 - J Biomed Biotechnol. 2009;2009:789526 15554943 - Differentiation. 2004 Sep;72(7):319-26 22531326 - Nat Rev Immunol. 2012 May;12(5):383-96 19608159 - Cell Immunol. 2009;259(2):150-6 19172693 - Nat Rev Immunol. 2008 Sep;8(9):726-36 16410389 - Stem Cells. 2006 May;24(5):1254-64 21054940 - Cell Transplant. 2011;20(5):655-67 |
References_xml | – reference: 22213121 - J Cell Biochem. 2012 May;113(5):1460-9 – reference: 22531326 - Nat Rev Immunol. 2012 May;12(5):383-96 – reference: 15554943 - Differentiation. 2004 Sep;72(7):319-26 – reference: 16410389 - Stem Cells. 2006 May;24(5):1254-64 – reference: 18713024 - Stem Cells Dev. 2008 Dec;17(6):1039-41 – reference: 19608159 - Cell Immunol. 2009;259(2):150-6 – reference: 19383412 - Stem Cell Res. 2009 Jan;2(1):83-94 – reference: 19622228 - Cell Transplant. 2009;18(4):405-22 – reference: 17136117 - Leukemia. 2007 Feb;21(2):297-303 – reference: 20415588 - Annu Rev Biomed Eng. 2010 Aug 15;12:87-117 – reference: 17339426 - J Immunol. 2007 Mar 15;178(6):3345-51 – reference: 17604725 - Cell. 2007 Jun 29;129(7):1377-88 – reference: 11986244 - Blood. 2002 May 15;99(10):3838-43 – reference: 21669042 - Cell Transplant. 2011;20(11-12):1721-30 – reference: 21054940 - Cell Transplant. 2011;20(5):655-67 – reference: 18442646 - Methods Cell Biol. 2008;86:101-19 – reference: 19523334 - Cell Transplant. 2009;18(8):899-914 – reference: 18086871 - Blood. 2008 Mar 1;111(5):2631-5 – reference: 22542159 - Cell Stem Cell. 2012 May 4;10(5):544-55 – reference: 22522999 - Stem Cells. 2012 Jul;30(7):1565-74 – reference: 19657615 - Int J Hematol. 2009 Sep;90(2):261-9 – reference: 16923606 - Cytotherapy. 2006;8(4):315-7 – reference: 18818395 - Blood. 2009 Jan 22;113(4):816-26 – reference: 19796239 - Ann N Y Acad Sci. 2009 Sep;1176:118-23 – reference: 19663934 - Vox Sang. 2010 Feb;98(2):93-107 – reference: 19161980 - Biochem Biophys Res Commun. 2009 Feb 20;379(4):1114-9 – reference: 18786417 - Cell Stem Cell. 2008 Sep 11;3(3):301-13 – reference: 19926330 - Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):419-27 – reference: 20179086 - Haematologica. 2010 Apr;95(4):651-9 – reference: 18593610 - Methods. 2008 Jun;45(2):133-41 – reference: 22073147 - PLoS One. 2011;6(11):e26136 – reference: 17071860 - Stem Cells. 2006 Nov;24(11):2466-77 – reference: 21073342 - Annu Rev Pathol. 2011;6:457-78 – reference: 17141054 - Methods Enzymol. 2006;419:117-48 – reference: 19641298 - Cells Tissues Organs. 2010;191(2):105-18 – reference: 17332507 - Stem Cells. 2007 Jun;25(6):1384-92 – reference: 18038420 - J Tissue Eng Regen Med. 2007 Jul-Aug;1(4):296-305 – reference: 19172693 - Nat Rev Immunol. 2008 Sep;8(9):726-36 – reference: 20491562 - Stem Cells Dev. 2010 May;19(5):593-4 – reference: 17975221 - Stem Cells. 2008 Feb;26(2):300-11 – reference: 17518752 - Tissue Eng. 2007 Jun;13(6):1173-83 – reference: 19530993 - Inflamm Allergy Drug Targets. 2009 Jun;8(2):110-23 – reference: 19462316 - Cytotherapy. 2009;11(5):527-33 – reference: 20037738 - J Biomed Biotechnol. 2009;2009:789526 – reference: 16684817 - J Cell Sci. 2006 Jun 1;119(Pt 11):2204-13 – reference: 10102814 - Science. 1999 Apr 2;284(5411):143-7 – reference: 16887966 - J Immunol. 2006 Aug 15;177(4):2080-7 – reference: 16045817 - Cell Res. 2005 Jul;15(7):539-47 – reference: 19635009 - Stem Cells Dev. 2010 Apr;19(4):491-502 – reference: 15671145 - Stem Cells. 2005 Feb;23(2):220-9 – reference: 20200854 - Curr Protoc Stem Cell Biol. 2010 Mar;Chapter 1:Unit 1E.5 – reference: 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 – reference: 8062829 - EMBO J. 1994 Aug 1;13(15):3524-32 – reference: 16410387 - Stem Cells. 2006 May;24(5):1294-301 – reference: 23235695 - Cell Physiol Biochem. 2012;30(6):1526-37 – reference: 17901399 - Stem Cells. 2008 Jan;26(1):182-92 – reference: 18995896 - Placenta. 2009 Jan;30(1):2-10 – reference: 19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107 – reference: 17569781 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11002-7 – reference: 21547114 - Transfus Med Hemother. 2008;35(3):160-167 – reference: 18728246 - Blood. 2008 Nov 1;112(9):3601-14 – reference: 17709496 - J Immunol. 2007 Sep 1;179(5):2824-31 – reference: 17395729 - Ann N Y Acad Sci. 2007 Jun;1106:262-71 – reference: 12900350 - Blood. 2003 Aug 15;102(4):1548-9 – reference: 19337235 - Mol Ther. 2009 Jun;17(6):939-46 – reference: 18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6 – reference: 11823036 - Exp Hematol. 2002 Jan;30(1):42-8 – reference: 20861473 - Am J Physiol Cell Physiol. 2010 Dec;299(6):C1562-70 – reference: 23296015 - Nat Med. 2013 Jan;19(1):35-42 |
SSID | ssj0026284 |
Score | 2.465246 |
Snippet | Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 2606 |
SubjectTerms | Amnion - cytology Amnion - metabolism Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Cell Differentiation - physiology Cell Lineage Cell Proliferation Cell- and Tissue-Based Therapy Cells, Cultured Cytokines - secretion Female Gene Expression Humans Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - secretion Karyotype Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Placenta - cytology Pregnancy Regeneration Umbilical Cord - cytology Umbilical Cord - metabolism |
Title | Mesenchymal stromal cell characteristics vary depending on their origin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23676112 |
Volume | 22 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GCIkL4v1GOXAtrFmbtkdAwIQ0LmwSN5SkCSC0boKBGL8eO8nWbjwEXLqqWaOon5PYsf2ZkAORRJpluQxSDdMtUioKRD3SQSM1TBqZpI0Q851bV7zZiS5v4pta7a0StfQykIfq_cu8kv-gCs8AV8yS_QOy407hAdwDvnAFhOH6K4xbmDqk7oddl_TRw188icd03gka5leMjXP1bm2U89hBYMtiVRXU64Hu2j4cd3NexhSVPpy7rh46pJv64bHilkev-wl_dvE-x0URtNASL2N-8twxFrQw5FFU3EjQ_fsouuPJD8gfRYRlUBvsJH75jGHPi_3xpF9fGavKUVZdLbllG_i8jNfTzBaeRCrXEClow4n_AQr9rsUU-ed46AKxf26dYtUeNc2QGbAvsGAqnvJ4Q53Dnu35WGEkRxPjQPZo_-6UJWI1kvYSWfSmBD12crFMarpYIfOuuOhwlVxUpIN66aCILJ2SDorSQcfSQXsFtdJBnXSskc75Wfu0GfiyGYECZXcQGFC78rjBhWQClGuRmVwnsQDDRDCpYE4mRhqd6EghO2QseVLnOtch7IugzJqcrZPZolfoTUI1ZyrjMM1lyiIljIgy2Uh1aEQSYgr-FtlwX-C277hRbkffZvvblh2yUMrOLpkzMBn1Hmh2A7lvYfgAI_dQWw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal+stromal+cell+characteristics+vary+depending+on+their+origin&rft.jtitle=Stem+cells+and+development&rft.au=Wegmeyer%2C+Heike&rft.au=Br%C3%B6ske%2C+Ann-Marie&rft.au=Leddin%2C+Mathias&rft.au=Kuentzer%2C+Karin&rft.date=2013-10-01&rft.eissn=1557-8534&rft.volume=22&rft.issue=19&rft.spage=2606&rft_id=info:doi/10.1089%2Fscd.2013.0016&rft_id=info%3Apmid%2F23676112&rft_id=info%3Apmid%2F23676112&rft.externalDocID=23676112 |