Structure-Measure: A New Way to Evaluate Foreground Maps

Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several measures (e.g., area-under-the-curve, F1-measure,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 129; no. 9; pp. 2622 - 2638
Main Authors Cheng, Ming-Ming, Fan, Deng-Ping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several measures (e.g., area-under-the-curve, F1-measure, average precision, etc.) have been used to evaluate the similarity between a foreground map and a ground-truth map. The existing measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient (0.005 s per image), and easy to calculate measure known as S-measure (structural measure) to evaluate foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a foreground map and a ground-truth map. We demonstrate superiority of our measure over existing ones using 4 meta-measures on 5 widely-used benchmark datasets. Furthermore, we conduct a behavioral judgment study over a new database. Data from 45 subjects shows that on average they preferred the saliency maps chosen by our measure over the saliency maps chosen by the state-of-the-art measures. Our experimental results offer new insights into foreground map evaluation where current measures fail to truly examine the strengths and weaknesses of models. Code: https://github.com/DengPingFan/S-measure .
AbstractList Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several measures (e.g., area-under-the-curve, F1-measure, average precision, etc.) have been used to evaluate the similarity between a foreground map and a ground-truth map. The existing measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient (0.005 s per image), and easy to calculate measure known as S-measure (structural measure) to evaluate foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a foreground map and a ground-truth map. We demonstrate superiority of our measure over existing ones using 4 meta-measures on 5 widely-used benchmark datasets. Furthermore, we conduct a behavioral judgment study over a new database. Data from 45 subjects shows that on average they preferred the saliency maps chosen by our measure over the saliency maps chosen by the state-of-the-art measures. Our experimental results offer new insights into foreground map evaluation where current measures fail to truly examine the strengths and weaknesses of models. Code: https://github.com/DengPingFan/S-measure.
Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several measures (e.g., area-under-the-curve, F1-measure, average precision, etc.) have been used to evaluate the similarity between a foreground map and a ground-truth map. The existing measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient (0.005 s per image), and easy to calculate measure known as S-measure (structural measure) to evaluate foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a foreground map and a ground-truth map. We demonstrate superiority of our measure over existing ones using 4 meta-measures on 5 widely-used benchmark datasets. Furthermore, we conduct a behavioral judgment study over a new database. Data from 45 subjects shows that on average they preferred the saliency maps chosen by our measure over the saliency maps chosen by the state-of-the-art measures. Our experimental results offer new insights into foreground map evaluation where current measures fail to truly examine the strengths and weaknesses of models. Code:
Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several measures (e.g., area-under-the-curve, F1-measure, average precision, etc.) have been used to evaluate the similarity between a foreground map and a ground-truth map. The existing measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient (0.005 s per image), and easy to calculate measure known as S-measure (structural measure) to evaluate foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a foreground map and a ground-truth map. We demonstrate superiority of our measure over existing ones using 4 meta-measures on 5 widely-used benchmark datasets. Furthermore, we conduct a behavioral judgment study over a new database. Data from 45 subjects shows that on average they preferred the saliency maps chosen by our measure over the saliency maps chosen by the state-of-the-art measures. Our experimental results offer new insights into foreground map evaluation where current measures fail to truly examine the strengths and weaknesses of models. Code: https://github.com/DengPingFan/S-measure .
Audience Academic
Author Cheng, Ming-Ming
Fan, Deng-Ping
Author_xml – sequence: 1
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
  organization: College of Computer Science, Nankai University
– sequence: 2
  givenname: Deng-Ping
  orcidid: 0000-0002-5245-7518
  surname: Fan
  fullname: Fan, Deng-Ping
  organization: College of Computer Science, Nankai University
BookMark eNp9kE1LJDEQhsOisKPuH9hTw548xE2lk3Syt0HUFfwAP9hjKDPVQ8vYPSZpP_69me0FcQ9WHQrC89ZbeXfYVj_0xNh3EAcgRPMzAUhTcyGBC1BOcPuFzUA3NQcl9BabCScF18bBV7aT0r0QQlpZz5i9znEMeYzEzwlTmb-qeXVBz9UffK3yUB094WrETNXxEGkZh7FfVOe4Tntsu8VVom__5i67PT66OfzNzy5PTg_nZzzUTmZOzglCKxrtoJaAtjEB8K6lUkYrtKQW6q6VLQinKZAxjTIL29SkAqrg6l32Y9q7jsPjSCn7-2GMfbH0UmsDqtHSFupgopa4It_17ZAjhtILeuhCyartyvvcNAIMaL1Zu_9BUJhML3mJY0r-9PrqIysnNsQhpUitX8fuAeOrB-E38fspfl_i93_j95uL7H-i0GXMXfGJ2K0-l9aTNBWffknx_cufqN4A0BOYsQ
CitedBy_id crossref_primary_10_3390_math13050747
crossref_primary_10_1109_TPAMI_2021_3140168
crossref_primary_10_1007_s00371_022_02630_y
crossref_primary_10_1007_s00521_025_11144_2
crossref_primary_10_3390_electronics14061118
crossref_primary_10_1016_j_compbiomed_2024_108302
crossref_primary_10_1007_s12274_023_6104_1
crossref_primary_10_1007_s11042_023_17614_w
crossref_primary_10_1016_j_knosys_2022_109938
crossref_primary_10_1109_TCSVT_2024_3437685
crossref_primary_10_1038_s41598_025_86353_9
crossref_primary_10_1109_TCSVT_2023_3349209
crossref_primary_10_1007_s11042_024_19891_5
crossref_primary_10_1109_TCI_2023_3237176
crossref_primary_10_1016_j_aej_2023_02_020
crossref_primary_10_1007_s10489_023_04645_x
crossref_primary_10_1109_TIM_2024_3470039
crossref_primary_10_3390_app122311967
crossref_primary_10_1007_s00034_024_02983_w
crossref_primary_10_1016_j_infrared_2023_104673
crossref_primary_10_1109_TII_2023_3327341
crossref_primary_10_1007_s44267_023_00019_6
crossref_primary_10_1007_s00138_024_01552_0
crossref_primary_10_3390_electronics14050831
crossref_primary_10_1109_ACCESS_2024_3382195
crossref_primary_10_1007_s11042_023_15794_z
crossref_primary_10_1016_j_asoc_2024_112685
crossref_primary_10_1016_j_media_2025_103510
crossref_primary_10_1007_s00371_024_03786_5
crossref_primary_10_1016_j_patcog_2022_108624
crossref_primary_10_1109_ACCESS_2025_3532303
crossref_primary_10_1109_TPAMI_2022_3179526
crossref_primary_10_1007_s41095_022_0268_6
crossref_primary_10_1145_3570507
crossref_primary_10_1109_TCSVT_2023_3339181
crossref_primary_10_1109_TCSVT_2024_3370685
crossref_primary_10_1007_s11042_023_17560_7
crossref_primary_10_1109_TCSVT_2022_3180274
crossref_primary_10_1109_TIM_2023_3330222
crossref_primary_10_1016_j_displa_2025_102993
crossref_primary_10_1016_j_engappai_2024_107995
crossref_primary_10_1007_s11633_023_1472_2
crossref_primary_10_1109_TETCI_2024_3367821
crossref_primary_10_1109_TRPMS_2023_3272209
crossref_primary_10_1016_j_bspc_2024_106906
crossref_primary_10_1109_TCDS_2022_3172331
crossref_primary_10_1177_15485129241233299
crossref_primary_10_3389_fmars_2022_1003568
crossref_primary_10_1007_s10489_022_03612_2
crossref_primary_10_26599_AIR_2023_9150015
crossref_primary_10_1016_j_imavis_2024_105218
crossref_primary_10_1007_s11042_023_15304_1
crossref_primary_10_1007_s11633_022_1371_y
crossref_primary_10_1109_ACCESS_2024_3496999
crossref_primary_10_32604_cmc_2024_057833
crossref_primary_10_1109_TCSVT_2024_3374758
crossref_primary_10_1016_j_patcog_2023_109555
crossref_primary_10_1016_j_neunet_2024_106284
crossref_primary_10_12677_pm_2025_151023
crossref_primary_10_1016_j_isprsjprs_2023_07_027
crossref_primary_10_1016_j_compbiomed_2024_108930
crossref_primary_10_1117_1_JRS_16_046507
crossref_primary_10_2139_ssrn_4170553
crossref_primary_10_1016_j_jvcir_2024_104304
crossref_primary_10_1109_TIP_2022_3217695
crossref_primary_10_26599_AIR_2024_9150044
crossref_primary_10_1016_j_displa_2023_102600
crossref_primary_10_3390_s24237473
crossref_primary_10_1016_j_neucom_2025_129648
crossref_primary_10_1117_1_JEI_31_4_043032
crossref_primary_10_1186_s13007_023_01045_7
crossref_primary_10_3390_electronics13214277
crossref_primary_10_1007_s00530_025_01674_z
crossref_primary_10_1016_j_dsp_2025_105172
crossref_primary_10_1109_TMM_2023_3274933
crossref_primary_10_3390_rs16162978
crossref_primary_10_7717_peerj_cs_2178
crossref_primary_10_1364_AO_466339
crossref_primary_10_1109_TPAMI_2024_3511621
Cites_doi 10.1109/ICCV.2017.487
10.2307/2347111
10.1109/CVPR.2018.00746
10.1109/CVPR.2017.34
10.1109/CVPR.2016.257
10.1109/ICCV.2019.00887
10.1109/CVPR.2009.5206596
10.1007/978-3-319-46493-0_50
10.1109/TNNLS.2020.3007534
10.1109/TPAMI.2021.3060412
10.1109/TPAMI.2021.3073689
10.1109/CVPR.2016.58
10.1109/CVPR.2014.43
10.1109/CVPR.2018.00177
10.1007/978-3-030-59725-2_26
10.1109/TPAMI.2011.272
10.1109/ICCV.2019.00733
10.1109/TPAMI.2014.2345401
10.1109/TIP.2012.2216276
10.1109/TNNLS.2015.2506664
10.1109/TIP.2009.2030969
10.5244/C.25.110
10.1109/TNNLS.2020.2996406
10.1007/s41095-020-0199-z
10.1109/TPAMI.2010.70
10.1109/TIP.2014.2383320
10.1109/TIP.2012.2210727
10.1007/s11263-009-0275-4
10.1109/CVPR.2006.68
10.1109/TPAMI.2022.3179526
10.1109/TPAMI.2012.89
10.1109/CVPR.2016.78
10.1109/CVPR46437.2021.01211
10.1109/CVPR.2010.5539947
10.1109/TPAMI.2021.3073564
10.1109/MMUL.2013.15
10.1007/978-3-319-10578-9_7
10.1109/CVPR46437.2021.01280
10.1109/TIP.2019.2959253
10.1109/ISCC-C.2013.21
10.1109/CVPR.2018.00326
10.1109/CVPR.2013.151
10.1109/CVPR.2018.00342
10.1016/0031-3203(93)90135-J
10.1109/CVPR.2018.00187
10.1016/j.patcog.2015.02.005
10.1109/TIP.2013.2297027
10.1609/aaai.v34i07.6860
10.1007/978-3-030-58520-4_21
10.1109/CVPR.2018.00783
10.1109/TPAMI.2010.161
10.1109/CVPR.2018.00864
10.1609/aaai.v34i07.6633
10.1109/CVPR.2018.00941
10.1007/978-3-030-58536-5_3
10.1109/TIP.2015.2487833
10.1109/CVPR.2013.271
10.1109/TIP.2004.834657
10.1109/ICCV.2017.31
10.1109/CVPR.2013.277
10.1109/CVPR46437.2021.00866
10.1109/TIP.2003.819861
10.1109/CVPR.2015.7298731
10.1109/ICCV.2001.937655
10.1109/CVPR.2018.00322
10.1109/ICCV.2013.370
10.1109/CVPR.2018.00184
10.1016/j.visres.2013.07.016
10.1109/CVPR.2016.80
10.1109/CVPR.2014.39
10.1109/CVPR.2018.00081
10.1360/SSI-2020-0370
10.1109/CVPR46437.2021.01246
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-021-01490-8
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 2638
ExternalDocumentID A670161559
10_1007_s11263_021_01490_8
GrantInformation_xml – fundername: Major Project for New Generation of AI
  grantid: 2018AAA0100400
– fundername: National Natural Science Foundation of China
  grantid: 61922046
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-e990ea807591321a876c1abfeeee654a8e4d4bf2f1095ece66746d873e4ca4c93
IEDL.DBID BENPR
ISSN 0920-5691
IngestDate Sat Jul 26 00:05:23 EDT 2025
Tue Jun 10 20:35:28 EDT 2025
Fri Jun 27 03:36:45 EDT 2025
Tue Jul 01 04:30:57 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Fri Feb 21 02:48:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Evaluation
Foreground maps
Structure measure
Salient object detection
S-measure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-e990ea807591321a876c1abfeeee654a8e4d4bf2f1095ece66746d873e4ca4c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5245-7518
0000-0001-5550-8758
PQID 2556147528
PQPubID 1456341
PageCount 17
ParticipantIDs proquest_journals_2556147528
gale_infotracacademiconefile_A670161559
gale_incontextgauss_ISR_A670161559
crossref_primary_10_1007_s11263_021_01490_8
crossref_citationtrail_10_1007_s11263_021_01490_8
springer_journals_10_1007_s11263_021_01490_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861
Fu, K., Fan, D. -P., Ji, G. -P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3073689
Ghosh, J., Lee, Y. J., & Grauman, K. (2012). Discovering important people and objects for egocentric video summarization. In IEEE conference on computer vision and pattern recognition (pp. 1346–1353).
LiuZZouWLe MeurOSaliency tree: A novel saliency detection frameworkIEEE Transactions on Image Processing201423519371952320897710.1109/TIP.2013.2297027
BorjiAIttiLState-of-the-art in visual attention modelingIEEE Transactions on Pattern Analysis and Machine Intelligence201335118520710.1109/TPAMI.2012.89
Zhang, J., Zhang, T., Dai, Y., Harandi, M., & Hartley, R. (2018a). Deep unsupervised saliency detection: A multiple noisy labeling perspective. In IEEE conference on computer vision and pattern recognition.
Fan, D. P., Cheng, M. M., Liu, Y., Li, T., & Borji, A. (2017). Structure-measure: A new way to evaluate foreground maps. In International conference on computer vision (pp. 4548–4557).
LewMSSebeNDjerabaCJainRContent-based multimedia information retrieval: State of the art and challengesACM Transactions on Multimedia Computing200021119
Li, G., & Yu, Y. (2015). Visual saliency based on multiscale deep features. In IEEE conference on computer vision and pattern recognition (pp. 5455–5463).
Jiang, Y., Zhou, T., Ji, G. P., Fu, K., Zhao, Q., & Fan, D. P. (2020). Light field salient object detection: A review and benchmark. arXiv preprint arXiv:2010.04968
Zhang, Q., Cong, R., Hou, J., Li, C., & Zhao, Y. (2020b). Coadnet: Collaborative aggregation-and-distribution networks for co-salient object detection. In Advances in neural information processing systems.
BorjiASihiteDIttiLQuantitative analysis of human-model agreement in visual saliency modeling: A comparative studyIEEE Transactions on Image Processing20132215569301744610.1109/TIP.2012.2210727
Feng, D., Barnes, N., You, S., & McCarthy, C. (2016). Local background enclosure for RGB-D salient object detection. In IEEE conference on computer vision and pattern recognition (pp. 2343–2350).
Zeng, Y., Zhang, P., Zhang, J., Lin, Z., & Lu, H. (2019). Towards high-resolution salient object detection. In International conference on computer vision (pp. 7234–7243).
GofermanSZelnik-ManorLTalAContext-aware saliency detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201234101915192610.1109/TPAMI.2011.272
Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct? In IEEE conference on computer vision and pattern recognition (pp. 1139–1146).
Wang, L., Wang, L., Lu, H., Zhang, P., & Ruan, X. (2016). Saliency detection with recurrent fully convolutional networks. In European conference on computer vision (pp. 825–841).
XieYLuHYangMHBayesian saliency via low and mid level cuesIEEE Transactions on Image Processing201322516891698306161510.1109/TIP.2012.2216276
Zhang, M., Li, J., Wei, J., Piao, Y., & Lu, H. (2019a). Memory-oriented decoder for light field salient object detection. In Advances in neural information processing systems (pp. 898–908).
Fan, Q., Fan, D. P., Fu, H., Tang, C. K., Shao, L., & Tai, Y. W. (2021e). Group collaborative learning for co-salient object detection. In IEEE conference on computer vision and pattern recognition.
Lee, G., Tai, Y. W., & Kim, J. (2016). Deep saliency with encoded low level distance map and high level features. In IEEE conference on computer vision and pattern recognition (pp. 660–668).
LiuTYuanZSunJWangJZhengNTangXShumHYLearning to detect a salient objectIEEE Transactions on Pattern Analysis and Machine Intelligence201133235336710.1109/TPAMI.2010.70
IttiLAutomatic foveation for video compression using a neurobiological model of visual attentionIEEE Transactions on Image Processing200413101304131810.1109/TIP.2004.834657
ZhangQHuangNYaoLZhangDShanCHanJRGB-T salient object detection via fusing multi-level CNN featuresIEEE Transactions on Image Processing2019293321333510.1109/TIP.2019.2959253
ChengMMitraNJHuangXTorrPHHuSGlobal contrast based salient region detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201537356958210.1109/TPAMI.2014.2345401
Wang, W., Shen, J., Dong, X., & Borji, A. (2018). Salient object detection driven by fixation prediction. In IEEE conference on computer vision and pattern recognition.
Pont-Tuset, J., & Marques, F. (2013). Measures and meta-measures for the supervised evaluation of image segmentation. In IEEE conference on computer vision and pattern recognition (pp. 2131–2138).
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2169–2178).
Zhang, P., Wang, D., Lu, H., Wang, H., & Ruan, X. (2017). Amulet: Aggregating multi-level convolutional features for salient object detection. In International conference on computer vision.
Zhao, J. X., Liu, J. J., Fan, D. P., Cao, Y., Yang, J., & Cheng, M. M. (2019). EGNet: Edge guidance network for salient object detection. In International conference on computer vision (pp. 8779–8788).
Zhang, J., Xie, J., & Barnes, N. (2020a). Learning noise-aware encoder–decoder from noisy labels by alternating back-propagation for saliency detection. In European conference on computer vision.
Achanta, R., Hemami, S., Estrada, F., & Susstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE conference on computer vision and pattern recognition (pp. 1597–1604) .
Li, X., Lu, H., Zhang, L., Ruan, X., & Yang, M. H. (2013b). Saliency detection via dense and sparse reconstruction. In International conference on computer vision (pp. 2976–2983).
Mei, H., Ji, G. P., Wei, Z., Yang, X., Wei, X., & Fan, D. P. (2021). Camouflaged object segmentation with distraction mining. In IEEE conference on computer vision and pattern recognition.
BorjiAWhat is a salient object? A dataset and a baseline model for salient object detectionIEEE Transactions on Image Processing2015242742756341785210.1109/TIP.2014.2383320
EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (VOC) challengeInternational Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
PalNRPalSKA review on image segmentation techniquesPattern Recognition19932691277129410.1016/0031-3203(93)90135-J
Li, G., & Yu, Y. (2016). Deep contrast learning for salient object detection. In IEEE conference on computer vision and pattern recognition (pp. 478–487).
Margolin, R., Zelnik-Manor, L., & Tal, A. (2014). How to evaluate foreground maps? In IEEE conference on computer vision and pattern recognition (pp. 248–255).
Qin, X., Fan, D. P., Huang, C., Diagne, C., Zhang, Z., Sant’Anna, A. C., Suàrez, A., Jagersand, M., & Shao, L. (2021). Boundary-aware segmentation network for mobile and web applications. arXiv preprint arXiv:2101.04704
Ji, Y., Zhang, H., Jie, Z., Ma, L., & Wu, Q. J. (2021). Casnet: A cross-attention siamese network for video salient object detection. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2676–2690. https://doi.org/10.1109/TNNLS.2020.3007534
Kanan, C., & Cottrell, G. (2010). Robust classification of objects, faces, and flowers using natural image statistics. In IEEE conference on computer vision and pattern recognition (pp. 2472–2479).
Zeng, Y., Lu, H., Zhang, L., Feng, M., & Borji, A. (2018). Learning to promote saliency detectors. In IEEE conference on computer vision and pattern recognition.
GuoCZhangLA novel multiresolution spatiotemporal saliency detection model and its applications in image and video compressionIEEE Transactions on Image Processing2010191185198274446410.1109/TIP.2009.2030969
Zhou, T., Fan, D. -P., Cheng, M. -M., Shen, J., & Shao, L. (2021). RGB-D salient object detection: A survey. Computational Visual Media, 7(1), 37–69.
Li, G., Xie, Y., Lin, L., & Yu, Y. (2017). Instance-level salient object segmentation. In IEEE conference on computer vision and pattern recognition (pp. 2386–2395).
Best, D., & Roberts, D.: Algorithm as 89: The upper tail probabilities of spearman’s rho. Journal of the Royal Statistical Society. Series C (Applied Statistics) 24(3), 377–379 (1975)
Chen, H., & Li, Y. F. (2018). Progressively complementarity-aware fusion network for RGB-D salient object detection. In IEEE conference on computer vision and pattern recognition.
ChenTLinLLiuLLuoXLiXDisc: Deep image saliency computing via progressive representation learningIEEE Transactions on Neural Networks and Learning Systems201627611351149350723010.1109/TNNLS.2015.2506664
Zhuge, M., Fan, D. P., Liu, N., Zhang, D., Xu, D., & Shao, L. (2021a). Salient object detection via integrity learning. arXiv:2101.07663
Amirul Islam, M., Kalash, M., & Bruce, N. D. (2018). Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. In IEEE conference on computer vision and pattern recognition (pp. 7142–7150).
BorjiAChengMMJiangHLiJSalient object detection: A benchmarkIEEE Transactions on Image Processing2015241257065722341785210.1109/TIP.2015.2487833
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., & Li, S. (2011). Automatic salient object segmentation based on context and shape prior. In British machine vision conference (p. 9).
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2083–2090).
Chen, Z., Xu, Q., Cong, R., & Huang, Q. (2020). Global context-aware progressive aggregation network for salient object detection. In AAAI conference on artificial intelligence.
Fan, D. P., Ji, G. P., Cheng
DP Fan (1490_CR20) 2021
1490_CR48
A Borji (1490_CR5) 2015; 24
1490_CR44
1490_CR46
GH Liu (1490_CR49) 2015; 48
T Chen (1490_CR14) 2016; 27
1490_CR47
T Liu (1490_CR52) 2011; 33
1490_CR84
1490_CR41
1490_CR85
1490_CR42
1490_CR86
1490_CR43
1490_CR87
1490_CR81
1490_CR4
1490_CR82
1490_CR83
A Borji (1490_CR7) 2013; 35
C Guo (1490_CR30) 2010; 19
T Chen (1490_CR13) 2009; 28
1490_CR19
A Borji (1490_CR9) 2013; 91
1490_CR15
1490_CR59
Q Zhang (1490_CR80) 2019; 29
L Itti (1490_CR32) 2004; 13
1490_CR18
1490_CR11
1490_CR55
1490_CR12
1490_CR56
1490_CR57
1490_CR2
1490_CR51
1490_CR1
1490_CR10
1490_CR54
1490_CR50
Z Liu (1490_CR53) 2014; 23
Z Wang (1490_CR67) 2004; 13
L Li (1490_CR45) 2013; 20
Y Xie (1490_CR68) 2013; 22
1490_CR26
1490_CR27
1490_CR29
1490_CR22
1490_CR66
1490_CR23
1490_CR24
1490_CR25
1490_CR69
1490_CR62
1490_CR63
1490_CR64
1490_CR21
1490_CR65
A Borji (1490_CR8) 2013; 22
1490_CR60
1490_CR61
P Arbelaez (1490_CR3) 2011; 33
1490_CR37
1490_CR38
1490_CR39
1490_CR33
1490_CR77
1490_CR34
1490_CR78
1490_CR35
1490_CR79
M Everingham (1490_CR17) 2010; 88
1490_CR36
NR Pal (1490_CR58) 1993; 26
1490_CR73
1490_CR74
1490_CR31
1490_CR75
S Goferman (1490_CR28) 2012; 34
1490_CR76
MS Lew (1490_CR40) 2000; 2
1490_CR70
1490_CR71
1490_CR72
M Cheng (1490_CR16) 2015; 37
A Borji (1490_CR6) 2015; 24
References_xml – reference: Zhou, T., Fan, D. -P., Cheng, M. -M., Shen, J., & Shao, L. (2021). RGB-D salient object detection: A survey. Computational Visual Media, 7(1), 37–69.
– reference: Liu, G., & Fan, D. (2013). A model of visual attention for natural image retrieval. In International conference on information science and cloud computing companion (pp. 728–733).
– reference: Wang, L., Wang, L., Lu, H., Zhang, P., & Ruan, X. (2016). Saliency detection with recurrent fully convolutional networks. In European conference on computer vision (pp. 825–841).
– reference: Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., & Torralba, A. (2015). Mit saliency benchmark. http://saliency.mit.edu/results_mit300.html
– reference: GofermanSZelnik-ManorLTalAContext-aware saliency detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201234101915192610.1109/TPAMI.2011.272
– reference: Best, D., & Roberts, D.: Algorithm as 89: The upper tail probabilities of spearman’s rho. Journal of the Royal Statistical Society. Series C (Applied Statistics) 24(3), 377–379 (1975)
– reference: BorjiAIttiLState-of-the-art in visual attention modelingIEEE Transactions on Pattern Analysis and Machine Intelligence201335118520710.1109/TPAMI.2012.89
– reference: ChenTChengMMTanPShamirAHuSMSketch2photo: Internet image montageACM Transactions on Graphics2009285124
– reference: ChengMMitraNJHuangXTorrPHHuSGlobal contrast based salient region detectionIEEE Transactions on Pattern Analysis and Machine Intelligence201537356958210.1109/TPAMI.2014.2345401
– reference: Mei, H., Ji, G. P., Wei, Z., Yang, X., Wei, X., & Fan, D. P. (2021). Camouflaged object segmentation with distraction mining. In IEEE conference on computer vision and pattern recognition.
– reference: Peng, H., Li, B., Xiong, W., Hu, W., & Ji, R. (2014). RGBD salient object detection: A benchmark and algorithms. In European conference on computer vision (pp. 92–109).
– reference: Chen, H., & Li, Y. F. (2018). Progressively complementarity-aware fusion network for RGB-D salient object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Achanta, R., Hemami, S., Estrada, F., & Susstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE conference on computer vision and pattern recognition (pp. 1597–1604) .
– reference: Gorji, S., & Clark, J. (2018). Going from image to video saliency: Augmenting image salience with dynamic attentional push. In IEEE conference on computer vision and pattern recognition.
– reference: Zhang, X., Wang, T., Qi, J., Lu, H., & Wang, G. (2018c). Progressive attention guided recurrent network for salient object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Li, X., Lu, H., Zhang, L., Ruan, X., & Yang, M. H. (2013b). Saliency detection via dense and sparse reconstruction. In International conference on computer vision (pp. 2976–2983).
– reference: Islam, M.A., Kalash, M., D. B. Bruce, N. (2018). Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. In IEEE conference on computer vision and pattern recognition.
– reference: Ji, Y., Zhang, H., Jie, Z., Ma, L., & Wu, Q. J. (2021). Casnet: A cross-attention siamese network for video salient object detection. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2676–2690. https://doi.org/10.1109/TNNLS.2020.3007534
– reference: Zhang, Q., Cong, R., Hou, J., Li, C., & Zhao, Y. (2020b). Coadnet: Collaborative aggregation-and-distribution networks for co-salient object detection. In Advances in neural information processing systems.
– reference: Kanan, C., & Cottrell, G. (2010). Robust classification of objects, faces, and flowers using natural image statistics. In IEEE conference on computer vision and pattern recognition (pp. 2472–2479).
– reference: ArbelaezPMaireMFowlkesCMalikJContour detection and hierarchical image segmentationIEEE Transactions on Pattern Analysis and Machine Intelligence201133589891610.1109/TPAMI.2010.161
– reference: Zhang, L., Dai, J., Lu, H., He, Y., & Wang, G. (2018b). A bi-directional message passing model for salient object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Zhang, J., Xie, J., & Barnes, N. (2020a). Learning noise-aware encoder–decoder from noisy labels by alternating back-propagation for saliency detection. In European conference on computer vision.
– reference: Zhang, P., Wang, D., Lu, H., Wang, H., & Ruan, X. (2017). Amulet: Aggregating multi-level convolutional features for salient object detection. In International conference on computer vision.
– reference: LiuGHYangJYLiZContent-based image retrieval using computational visual attention modelPattern Recognition20154882554256610.1016/j.patcog.2015.02.005
– reference: BorjiAWhat is a salient object? A dataset and a baseline model for salient object detectionIEEE Transactions on Image Processing2015242742756341785210.1109/TIP.2014.2383320
– reference: Liu, N., & Han, J. (2016). Dhsnet: Deep hierarchical saliency network for salient object detection. In IEEE conference on computer vision pattern recognition (pp. 678–686).
– reference: Li, G., Xie, Y., Lin, L., & Yu, Y. (2017). Instance-level salient object segmentation. In IEEE conference on computer vision and pattern recognition (pp. 2386–2395).
– reference: ZhangQHuangNYaoLZhangDShanCHanJRGB-T salient object detection via fusing multi-level CNN featuresIEEE Transactions on Image Processing2019293321333510.1109/TIP.2019.2959253
– reference: Chen, Z., Xu, Q., Cong, R., & Huang, Q. (2020). Global context-aware progressive aggregation network for salient object detection. In AAAI conference on artificial intelligence.
– reference: Liu, N., Han, J., & Yang, M. H. (2018). Picanet: Learning pixel-wise contextual attention for saliency detection. In IEEE conference on computer vision and pattern recognition.
– reference: Li, G., & Yu, Y. (2016). Deep contrast learning for salient object detection. In IEEE conference on computer vision and pattern recognition (pp. 478–487).
– reference: Zhang, J., Zhang, T., Dai, Y., Harandi, M., & Hartley, R. (2018a). Deep unsupervised saliency detection: A multiple noisy labeling perspective. In IEEE conference on computer vision and pattern recognition.
– reference: Li, G., Xie, Y., Wei, T., & Lin, L. (2018). Flow guided recurrent neural encoder for video salient object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Zeng, Y., Lu, H., Zhang, L., Feng, M., & Borji, A. (2018). Learning to promote saliency detectors. In IEEE conference on computer vision and pattern recognition.
– reference: Tiantian, W., Zhang, L., Lu, H., & Borji, A. (2018). Detect globally, refine locally: A novel approach to saliency detection. In IEEE conference on computer vision and pattern recognition.
– reference: Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E. K., & Yuille, A. L. (2018). Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation. In IEEE conference on computer vision and pattern recognition.
– reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (VOC) challengeInternational Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
– reference: Fu, K., Fan, D. -P., Ji, G. -P., Zhao, Q., Shen, J., & Zhu, C. (2021). Siamese network for RGB-D salient object detection and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3073689
– reference: Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The secrets of salient object segmentation. In IEEE conference on computer vision and pattern recognition (pp. 280–287).
– reference: ChenTLinLLiuLLuoXLiXDisc: Deep image saliency computing via progressive representation learningIEEE Transactions on Neural Networks and Learning Systems201627611351149350723010.1109/TNNLS.2015.2506664
– reference: Rutishauser, U., Walther, D., Koch, C., & Perona, P. (2004). Is bottom-up attention useful for object recognition? In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. II–37).
– reference: Zhuge, M., Fan, D. P., Liu, N., Zhang, D., Xu, D., & Shao, L. (2021a). Salient object detection via integrity learning. arXiv:2101.07663
– reference: LiuTYuanZSunJWangJZhengNTangXShumHYLearning to detect a salient objectIEEE Transactions on Pattern Analysis and Machine Intelligence201133235336710.1109/TPAMI.2010.70
– reference: Piao, Y., Rong, Z., Zhang, M., & Lu, H. (2020). Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection. In AAAI conference on artificial intelligence (pp. 11865–11873).
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861
– reference: Qin, X., Fan, D. P., Huang, C., Diagne, C., Zhang, Z., Sant’Anna, A. C., Suàrez, A., Jagersand, M., & Shao, L. (2021). Boundary-aware segmentation network for mobile and web applications. arXiv preprint arXiv:2101.04704
– reference: Fan, D. -P., Li, T., Lin, Z., Ji, G. -P., Zhang, D., Cheng, M. -M., Fu, H., & Shen, J. (2021c). Re-thinking co-salient object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3060412
– reference: Margolin, R., Zelnik-Manor, L., & Tal, A. (2014). How to evaluate foreground maps? In IEEE conference on computer vision and pattern recognition (pp. 248–255).
– reference: Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International conference on computer vision (Vol. 2, pp. 416–423).
– reference: BorjiAChengMMJiangHLiJSalient object detection: A benchmarkIEEE Transactions on Image Processing2015241257065722341785210.1109/TIP.2015.2487833
– reference: Zhao, J. X., Liu, J. J., Fan, D. P., Cao, Y., Yang, J., & Cheng, M. M. (2019). EGNet: Edge guidance network for salient object detection. In International conference on computer vision (pp. 8779–8788).
– reference: Fan, D. P., Ji, G. P., Cheng, M. M., & Shao, L. (2021a). Concealed object detection. arXiv preprint arXiv:2102.10274
– reference: Ghosh, J., Lee, Y. J., & Grauman, K. (2012). Discovering important people and objects for egocentric video summarization. In IEEE conference on computer vision and pattern recognition (pp. 1346–1353).
– reference: Zhuge, M., Gao, D., Fan, D. P., Jin, L., Chen, B., Zhou, H., Qiu, M., & Shao, L. (2021b). Kaleido-bert: Vision-language pre-training on fashion domain. In IEEE conference on computer vision and pattern recognition.
– reference: Fan, D. -P., Ji, G. -P., Zhou, T., Chen, G., Fu, H., Shen, J., & Shao, L. (2020). Pranet: Parallel reverse attention network for polyp segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 263–273). Springer.
– reference: Zeng, Y., Zhang, P., Zhang, J., Lin, Z., & Lu, H. (2019). Towards high-resolution salient object detection. In International conference on computer vision (pp. 7234–7243).
– reference: LewMSSebeNDjerabaCJainRContent-based multimedia information retrieval: State of the art and challengesACM Transactions on Multimedia Computing200021119
– reference: BorjiASihiteDIttiLQuantitative analysis of human-model agreement in visual saliency modeling: A comparative studyIEEE Transactions on Image Processing20132215569301744610.1109/TIP.2012.2210727
– reference: Li, G., & Yu, Y. (2015). Visual saliency based on multiscale deep features. In IEEE conference on computer vision and pattern recognition (pp. 5455–5463).
– reference: BorjiASihiteDNIttiLWhat stands out in a scene? A study of human explicit saliency judgmentVision Research201391627710.1016/j.visres.2013.07.016
– reference: XieYLuHYangMHBayesian saliency via low and mid level cuesIEEE Transactions on Image Processing201322516891698306161510.1109/TIP.2012.2216276
– reference: Fan, D. P., Cheng, M. M., Liu, Y., Li, T., & Borji, A. (2017). Structure-measure: A new way to evaluate foreground maps. In International conference on computer vision (pp. 4548–4557).
– reference: IttiLAutomatic foveation for video compression using a neurobiological model of visual attentionIEEE Transactions on Image Processing200413101304131810.1109/TIP.2004.834657
– reference: Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2169–2178).
– reference: Wang, W., Shen, J., Dong, X., & Borji, A. (2018). Salient object detection driven by fixation prediction. In IEEE conference on computer vision and pattern recognition.
– reference: Zhai, Q., Li, X., Yang, F., Chen, C., Cheng, H., & Fan, D. P. (2021). Mutual graph learning for camouflaged object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Feng, D., Barnes, N., You, S., & McCarthy, C. (2016). Local background enclosure for RGB-D salient object detection. In IEEE conference on computer vision and pattern recognition (pp. 2343–2350).
– reference: LiLJiangSZhaZWuZHuangQPartial-duplicate image retrieval via saliency-guided visually matchingIEEE Transactions on Multimedia2013203132310.1109/MMUL.2013.15
– reference: Fan, Q., Fan, D. P., Fu, H., Tang, C. K., Shao, L., & Tai, Y. W. (2021e). Group collaborative learning for co-salient object detection. In IEEE conference on computer vision and pattern recognition.
– reference: Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct? In IEEE conference on computer vision and pattern recognition (pp. 1139–1146).
– reference: Zhang, M., Li, J., Wei, J., Piao, Y., & Lu, H. (2019a). Memory-oriented decoder for light field salient object detection. In Advances in neural information processing systems (pp. 898–908).
– reference: Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., & Li, S. (2011). Automatic salient object segmentation based on context and shape prior. In British machine vision conference (p. 9).
– reference: Lee, G., Tai, Y. W., & Kim, J. (2016). Deep saliency with encoded low level distance map and high level features. In IEEE conference on computer vision and pattern recognition (pp. 660–668).
– reference: Zhao, X., Pang, Y., Zhang, L., Lu, H., & Zhang, L. (2020). Suppress and balance: A simple gated network for salient object detection. In European conference on computer vision.
– reference: Pont-Tuset, J., & Marques, F. (2013). Measures and meta-measures for the supervised evaluation of image segmentation. In IEEE conference on computer vision and pattern recognition (pp. 2131–2138).
– reference: Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2083–2090).
– reference: Zhao, R., Ouyang, W., Li, H., & Wang, X. (2015). Saliency detection by multi-context deep learning. In IEEE conference on computer vision and pattern recognition (pp. 1265–1274).
– reference: PalNRPalSKA review on image segmentation techniquesPattern Recognition19932691277129410.1016/0031-3203(93)90135-J
– reference: Amirul Islam, M., Kalash, M., & Bruce, N. D. (2018). Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. In IEEE conference on computer vision and pattern recognition (pp. 7142–7150).
– reference: GuoCZhangLA novel multiresolution spatiotemporal saliency detection model and its applications in image and video compressionIEEE Transactions on Image Processing2010191185198274446410.1109/TIP.2009.2030969
– reference: Fan, D. -P., Lin, Z., Zhang, Z., Zhu, M., & Cheng, M. -M. (2021d). Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2075–2089. https://doi.org/10.1109/TNNLS.2020.2996406
– reference: Chang, K. Y., Liu, T. L., Chen, H. T., & Lai, S. H. (2011). Fusing generic objectness and visual saliency for salient object detection. In International conference on computer vision (pp. 914–921).
– reference: Jiang, Y., Zhou, T., Ji, G. P., Fu, K., Zhao, Q., & Fan, D. P. (2020). Light field salient object detection: A review and benchmark. arXiv preprint arXiv:2010.04968
– reference: LiuZZouWLe MeurOSaliency tree: A novel saliency detection frameworkIEEE Transactions on Image Processing201423519371952320897710.1109/TIP.2013.2297027
– reference: FanDPJiGPQinXChengMMCognitive vision inspired object segmentation metric and loss functionSSI202110.1360/SSI-2020-0370
– reference: Zhang, J., Fan, D. -P., Dai, Y., Anwar, S., Saleh, F., Aliakbarian, S., & Barnes, N. (2021). Uncertainty inspired RGB-D saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3073564
– ident: 1490_CR18
  doi: 10.1109/ICCV.2017.487
– ident: 1490_CR4
  doi: 10.2307/2347111
– ident: 1490_CR31
  doi: 10.1109/CVPR.2018.00746
– ident: 1490_CR41
  doi: 10.1109/CVPR.2017.34
– ident: 1490_CR25
  doi: 10.1109/CVPR.2016.257
– ident: 1490_CR82
  doi: 10.1109/ICCV.2019.00887
– ident: 1490_CR1
  doi: 10.1109/CVPR.2009.5206596
– ident: 1490_CR36
– ident: 1490_CR10
– ident: 1490_CR62
– ident: 1490_CR65
  doi: 10.1007/978-3-319-46493-0_50
– ident: 1490_CR33
  doi: 10.1109/TNNLS.2020.3007534
– ident: 1490_CR22
  doi: 10.1109/TPAMI.2021.3060412
– ident: 1490_CR26
  doi: 10.1109/TPAMI.2021.3073689
– ident: 1490_CR44
  doi: 10.1109/CVPR.2016.58
– ident: 1490_CR43
– ident: 1490_CR47
  doi: 10.1109/CVPR.2014.43
– ident: 1490_CR70
  doi: 10.1109/CVPR.2018.00177
– ident: 1490_CR21
  doi: 10.1007/978-3-030-59725-2_26
– volume: 2
  start-page: 1
  issue: 1
  year: 2000
  ident: 1490_CR40
  publication-title: ACM Transactions on Multimedia Computing
– volume: 34
  start-page: 1915
  issue: 10
  year: 2012
  ident: 1490_CR28
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.272
– ident: 1490_CR11
– ident: 1490_CR71
  doi: 10.1109/ICCV.2019.00733
– volume: 37
  start-page: 569
  issue: 3
  year: 2015
  ident: 1490_CR16
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2345401
– volume: 22
  start-page: 1689
  issue: 5
  year: 2013
  ident: 1490_CR68
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2216276
– volume: 27
  start-page: 1135
  issue: 6
  year: 2016
  ident: 1490_CR14
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2506664
– volume: 19
  start-page: 185
  issue: 1
  year: 2010
  ident: 1490_CR30
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2030969
– ident: 1490_CR34
  doi: 10.5244/C.25.110
– ident: 1490_CR23
  doi: 10.1109/TNNLS.2020.2996406
– ident: 1490_CR85
  doi: 10.1007/s41095-020-0199-z
– volume: 33
  start-page: 353
  issue: 2
  year: 2011
  ident: 1490_CR52
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.70
– volume: 24
  start-page: 742
  issue: 2
  year: 2015
  ident: 1490_CR5
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2383320
– volume: 22
  start-page: 55
  issue: 1
  year: 2013
  ident: 1490_CR8
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2210727
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1490_CR17
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 1490_CR38
  doi: 10.1109/CVPR.2006.68
– ident: 1490_CR86
  doi: 10.1109/TPAMI.2022.3179526
– volume: 35
  start-page: 185
  issue: 1
  year: 2013
  ident: 1490_CR7
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.89
– ident: 1490_CR39
  doi: 10.1109/CVPR.2016.78
– ident: 1490_CR63
– ident: 1490_CR24
  doi: 10.1109/CVPR46437.2021.01211
– ident: 1490_CR37
  doi: 10.1109/CVPR.2010.5539947
– ident: 1490_CR73
  doi: 10.1109/TPAMI.2021.3073564
– volume: 20
  start-page: 13
  issue: 3
  year: 2013
  ident: 1490_CR45
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/MMUL.2013.15
– ident: 1490_CR59
  doi: 10.1007/978-3-319-10578-9_7
– ident: 1490_CR72
  doi: 10.1109/CVPR46437.2021.01280
– volume: 29
  start-page: 3321
  year: 2019
  ident: 1490_CR80
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2959253
– ident: 1490_CR48
  doi: 10.1109/ISCC-C.2013.21
– ident: 1490_CR51
  doi: 10.1109/CVPR.2018.00326
– ident: 1490_CR54
  doi: 10.1109/CVPR.2013.151
– ident: 1490_CR77
– ident: 1490_CR19
– ident: 1490_CR42
  doi: 10.1109/CVPR.2018.00342
– volume: 26
  start-page: 1277
  issue: 9
  year: 1993
  ident: 1490_CR58
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(93)90135-J
– ident: 1490_CR76
  doi: 10.1109/CVPR.2018.00187
– volume: 48
  start-page: 2554
  issue: 8
  year: 2015
  ident: 1490_CR49
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2015.02.005
– volume: 28
  start-page: 124
  issue: 5
  year: 2009
  ident: 1490_CR13
  publication-title: ACM Transactions on Graphics
– volume: 23
  start-page: 1937
  issue: 5
  year: 2014
  ident: 1490_CR53
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2013.2297027
– ident: 1490_CR60
  doi: 10.1609/aaai.v34i07.6860
– ident: 1490_CR2
  doi: 10.1109/CVPR.2018.00746
– ident: 1490_CR74
  doi: 10.1007/978-3-030-58520-4_21
– ident: 1490_CR29
  doi: 10.1109/CVPR.2018.00783
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 1490_CR3
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.161
– ident: 1490_CR64
– ident: 1490_CR69
  doi: 10.1109/CVPR.2018.00864
– ident: 1490_CR15
  doi: 10.1609/aaai.v34i07.6633
– ident: 1490_CR75
  doi: 10.1109/CVPR.2018.00941
– ident: 1490_CR84
  doi: 10.1007/978-3-030-58536-5_3
– volume: 24
  start-page: 5706
  issue: 12
  year: 2015
  ident: 1490_CR6
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2487833
– ident: 1490_CR35
  doi: 10.1109/CVPR.2013.271
– volume: 13
  start-page: 1304
  issue: 10
  year: 2004
  ident: 1490_CR32
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2004.834657
– ident: 1490_CR78
  doi: 10.1109/ICCV.2017.31
– ident: 1490_CR61
  doi: 10.1109/CVPR.2013.277
– ident: 1490_CR57
  doi: 10.1109/CVPR46437.2021.00866
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1490_CR67
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: 1490_CR83
  doi: 10.1109/CVPR.2015.7298731
– ident: 1490_CR56
  doi: 10.1109/ICCV.2001.937655
– ident: 1490_CR12
  doi: 10.1109/CVPR.2018.00322
– ident: 1490_CR46
  doi: 10.1109/ICCV.2013.370
– ident: 1490_CR66
  doi: 10.1109/CVPR.2018.00184
– volume: 91
  start-page: 62
  year: 2013
  ident: 1490_CR9
  publication-title: Vision Research
  doi: 10.1016/j.visres.2013.07.016
– ident: 1490_CR50
  doi: 10.1109/CVPR.2016.80
– ident: 1490_CR55
  doi: 10.1109/CVPR.2014.39
– ident: 1490_CR79
– ident: 1490_CR81
  doi: 10.1109/CVPR.2018.00081
– year: 2021
  ident: 1490_CR20
  publication-title: SSI
  doi: 10.1360/SSI-2020-0370
– ident: 1490_CR27
– ident: 1490_CR87
  doi: 10.1109/CVPR46437.2021.01246
SSID ssj0002823
Score 2.6560237
Snippet Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2622
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Computer Imaging
Computer Science
Evaluation
Gaging
Image Processing and Computer Vision
Image segmentation
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Salience
Similarity
Vision
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXLjwRgwGihASB4hEujRtuU1o00AaB8bEblGSplxQN9HtwL_HbtNN4yXRY-o2qZ04dh1_JuTCRkJmsXMsi1LLhIs5M05qZhIughuTZGGE2ciDR9kfiYdxOPZJYUV92r0OSZaaepnsxoMy5ojur8AE6HWyEaLvDrN4FHQW-heciKqAPDhGoUy4T5X5-R0r29FXpfwtOlpuOr0dsuWtRdqpxLtL1ly-R7a95Uj9uiygqS7OULftk3hYIsPO3x0bVP8Bb2mHgk6jL_qDzia0W-F8O4rVOTG5I0_pQE-LAzLqdZ_v-syXSWAWjJsZc7ChOI2gwgm4llyDfrNcm8zBJUOhYydSYbIg42BOOeukBPmkcdR2wmphk_YhaeST3B0RCua2TGyitYiNyBDKxSDAnwGzIA3CVDcJr7mlrMcQx1IWb2qJfowcVsBhVXJYxU1ytXhmWiFo_El9jkJQCE2R49mXVz0vCnU_fFIdGfkwapNceqJsAt1b7VMJ4CMQzWqFslULU_nFWShEXeMiCgPo7boW8PL274M7_h_5CdkMyqmGJ9JapAFid6dgwszMWTljPwFHv-OZ
  priority: 102
  providerName: Springer Nature
Title Structure-Measure: A New Way to Evaluate Foreground Maps
URI https://link.springer.com/article/10.1007/s11263-021-01490-8
https://www.proquest.com/docview/2556147528
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB613QsXSnmIbcvKQpU4gAVOHcfhglK62_LYCnVZUU6W7Ti9VNmFbA_8-84kTlcF0Vwi2U6czNjjGY_nG4ADn0lV6RB4lZWey6AFd0FZ7nIhk3cur9KMopGnZ-p0Lj9fpBdxw62Jxyp7mdgK6nLhaY_8LUFlCZmlif6w_MUpaxR5V2MKjU0YoAjWaHwNjsZn385vZTEaFF0yeTSSUpWLGDbTBc-JpPVhkjktKaD6ztL0t4D-x1PaLkCTR_Awao6s6Fi9AxuhfgzbUYtkcY42WNQnaujLnoCetSix178Dn3Z7gu9ZwVC-sR_2D1st2LjD_A6MMnVSoEddsqldNk9hPhl__3jKY8oE7lHRWfGAi0uwBDCco5kpLMo6L6yrAl4qlVYHWUpXJZVA1Sr4oBTyqtTZYZDeSp8fPoOtelGH58BQ9Va5z62V2smKYF0cgf05VBHKJC3tEERPLeMjnjiltbgyayRkorBBCpuWwkYP4fXtM8sOTePe1i-JCYZgKmo6B3Npr5vGfJqdm0Jl0aU6hFexUbXA7r2NYQX4E4Rsdaflfs9MEydqY9bDaghvegavq___cbv3v20PHiTt0KLTaPuwhWwOL1B9WbkRbOrJyQgGxfH064zuJz-_jEdx5GLtPCluAM5W7R8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ4QfMAXFdR4itgYjQ_aaPe63S4JMRfgvBOOB4HIW2m7XV_M3sEeMfxT_o3O7Ha5gIE39rHb_TUz_Tqz7XwD8M5nUpU6BF5mhecyaMFdUJa7XMjki8vLNKNs5MmBGh3L7yfpyRL87XJhaFtlh4kNUBdTT__IPxNVlpBZmuivszNOVaNodbUrodGaxV64_IMhW7013kH9vk-S4e7R9ojHqgLcoy8w5wHxN1ji4M0xEhMW4cAL68qAh0ql1UEW0pVJKdD7CD4ohZ9T6KwfpLfSE_kSQv4D2e_nNKL08NsV8mP40paux5AsVbmISTptqp5ImhVTCt4lpW9fmwhvTgf_rcs2093wCTyKfiobtIa1CkuhWoPH0WdlERFqbOrKQnRtT0EfNpy0F-eBT9o_kJtswBBN2U97yeZTttsyjAdGdUEpraQq2MTO6mdwfC-ifA7L1bQKL4Cho69yn1srtZMlkcg4ohZ06JAUSVrYHohOWsZH9nIqovHbLHiXScIGJWwaCRvdg49X18xa7o47e78lJRgixaho180ve1HXZnz4wwxUFhdwe_Ahdiqn-HhvYxIDfgTxaF3rud4p00RYqM3CiHvwqVPw4vTtL_fy7ru9gZXR0WTf7I8P9l7Bw6QxM9oHtw7LqPLwGh2nudtorJXB6X0Pj3_4YCRx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnYR4YXyKwgYWAvEA1ubgOAkSQoW1Whmtpo2JvXm2Y-8Fpd3SCe1f21_HXeKsGoi9LY-O8-G78_nO5_sdwGuXSRVy73nISselzwW3XhluCyGTLVuENKNs5MlU7RzKb0fp0QpcdrkwdKyy04mNoi5njvbINwkqS8gsTfLNEI9F7G2PPs9POVWQokhrV06jFZFdf_Eb3bf603gbef0mSUbDH193eKwwwB3aBQvuURd7Q3i8BXplwqBqcMLY4PFSqTS5l6W0IQkCLRHvvFI4tDLPPnjpjHQExITqfzVDr2irB6tfhtO9_at1AJ2ZtpA9OmipKkRM2WkT90TSxE_JlZeUzH1tWfx7cfgnStssfqP7cC9arWzQitkDWPHVQ1iLFiyL-qHGpq5IRNf2CPKDBqH2_MzzSbsf-ZENGOpW9tNcsMWMDVu8cc-oSiglmVQlm5h5_RgOb4WYT6BXzSr_FBia_apwhTEytzIQpIwloEGL5kmZpKXpg-iopV3EMqeSGr_0EoWZKKyRwrqhsM778O7qmXmL5HFj71fEBE0QGRUJ24k5r2s9PtjXA5XFcG4f3sZOYYafdyamNOAgCFXrWs_1jpk6KolaL0W6D-87Bi9v___nnt38tpdwB6eG_j6e7j6Hu0kjZXQobh16yHG_gVbUwr6I4srg-LZnyB_MJSoD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Measure%3A+A+New+Way+to+Evaluate+Foreground+Maps&rft.jtitle=International+journal+of+computer+vision&rft.au=Cheng%2C+Ming-Ming&rft.au=Fan%2C+Deng-Ping&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=129&rft.issue=9&rft.spage=2622&rft_id=info:doi/10.1007%2Fs11263-021-01490-8&rft.externalDocID=A670161559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon