Convolutional transformer-driven robust electrocardiogram signal denoising framework with adaptive parametric ReLU

The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adapti...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 21; no. 3; pp. 4286 - 4308
Main Authors Wang, Jing, Pei, Shicheng, Yang, Yihang, Wang, Huan
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.
AbstractList The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.
The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.
Author Pei, Shicheng
Wang, Huan
Yang, Yihang
Wang, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: School of Computer Science, Xi'an Polytechnic University, Xi'an 710021, China
– sequence: 2
  givenname: Shicheng
  surname: Pei
  fullname: Pei, Shicheng
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 3
  givenname: Yihang
  surname: Yang
  fullname: Yang, Yihang
  organization: School of Computer Science, Xi'an Polytechnic University, Xi'an 710021, China
– sequence: 4
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu 611731, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38549328$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rFTEUhoNU7Jcr9zJLQabma2aSpVysFi4I0q7DmeTkmjozuSaZFv99Z7zXIuIq4c1z3sB5zsnJFCck5A2jV0IL-WHs8YpTLpnSL8gZaxpWU8rUyV_3U3Ke8z2lQgohX5FToRqpBVdnJG3i9BCHuYQ4wVCVBFP2MY2YapfCA05Viv2cS4UD2pKiheRC3CUYqxx264jDKYYcpl3llxQfY_pRPYbyvQIH-7JUVHtYH0oKtvqG27tL8tLDkPH18bwgd9efbjdf6u3Xzzebj9vaCs1LjbLhvWZOdQ5btJp6QYG3mqo1bVH2zHENTdN6J5zttGQefU9RSQHQCnFBbg69LsK92acwQvplIgTzO4hpZyCVYAc01neSC-iEa71slVBeC7ssCIFZ4ZVfut4duvYp_pwxFzOGbHEYYMI4ZyMo502rpOoW9O0RnfsR3fPHf3a-AO8PgE0x54T-GWHUrEbNYtQcjS40-4e2ocCqa3EVhv_OPAEwoKZF
CitedBy_id crossref_primary_10_3390_biomimetics10030191
crossref_primary_10_3390_bioengineering11111109
crossref_primary_10_1016_j_bspc_2024_107225
Cites_doi 10.1016/j.knosys.2021.107187
10.1161/01.CIR.101.23.e215
10.1016/j.bspc.2022.105271
10.1109/TIM.2013.2278430
10.1016/j.compbiomed.2020.103801
10.5555/3295222.3295349
10.1016/j.artmed.2021.102236
10.1109/ACCESS.2019.2912036
10.1109/CVPR.2018.00745
10.3390/bioengineering7020053
10.23919/EUSIPCO.2019.8902833
10.1016/j.compbiomed.2023.107553
10.1109/TIE.2020.2972458
10.1016/j.future.2018.03.057
10.1109/JSEN.2011.2111453
10.1016/S0010-4825(03)00090-8
10.22489/CinC.2019.015
10.1109/51.932724
10.1016/j.compbiomed.2022.106248
10.1109/TIM.2021.3109396
10.1007/s10916-019-1511-2
10.1109/TIM.2022.3198441
10.1109/TCBB.2020.2976981
10.1049/iet-spr.2020.0104
10.1109/JBHI.2023.3146990
10.1016/j.compbiomed.2022.105325
10.1515/9783110864250.bm
10.1109/TIM.2021.3073707
10.1109/ACCESS.2020.2964749
10.1109/TIM.2007.907967
10.1016/j.engappai.2016.02.015
10.1016/j.compbiomed.2013.07.030
10.1109/TIM.2017.2759398
10.1088/1361-6579/ac34ea
10.1109/TIM.2021.3137710
10.1016/j.bspc.2022.104276
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3934/mbe.2024189
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 4308
ExternalDocumentID oai_doaj_org_article_cf7423a73d6f46838f93c932ea1c3f8f
38549328
10_3934_mbe_2024189
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
NPM
7X8
ID FETCH-LOGICAL-c392t-e452b91d87de6ec90f30a26908b91d6e4b1d29a556fd3dc7941fefb0e843aa633
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 01:28:03 EDT 2025
Fri Jul 11 10:19:20 EDT 2025
Mon Jul 21 05:53:43 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Tue Jul 01 02:58:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords signal denoising
transformer
ECG signal
convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-e452b91d87de6ec90f30a26908b91d6e4b1d29a556fd3dc7941fefb0e843aa633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/cf7423a73d6f46838f93c932ea1c3f8f
PMID 38549328
PQID 3022568487
PQPubID 23479
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_cf7423a73d6f46838f93c932ea1c3f8f
proquest_miscellaneous_3022568487
pubmed_primary_38549328
crossref_primary_10_3934_mbe_2024189
crossref_citationtrail_10_3934_mbe_2024189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2024189-22
key-10.3934/mbe.2024189-23
key-10.3934/mbe.2024189-24
key-10.3934/mbe.2024189-25
key-10.3934/mbe.2024189-26
key-10.3934/mbe.2024189-27
key-10.3934/mbe.2024189-28
key-10.3934/mbe.2024189-29
key-10.3934/mbe.2024189-7
key-10.3934/mbe.2024189-6
key-10.3934/mbe.2024189-5
key-10.3934/mbe.2024189-4
key-10.3934/mbe.2024189-3
key-10.3934/mbe.2024189-2
key-10.3934/mbe.2024189-1
key-10.3934/mbe.2024189-30
key-10.3934/mbe.2024189-9
key-10.3934/mbe.2024189-31
key-10.3934/mbe.2024189-8
key-10.3934/mbe.2024189-10
key-10.3934/mbe.2024189-32
key-10.3934/mbe.2024189-11
key-10.3934/mbe.2024189-33
key-10.3934/mbe.2024189-12
key-10.3934/mbe.2024189-34
key-10.3934/mbe.2024189-13
key-10.3934/mbe.2024189-35
key-10.3934/mbe.2024189-14
key-10.3934/mbe.2024189-36
key-10.3934/mbe.2024189-15
key-10.3934/mbe.2024189-37
key-10.3934/mbe.2024189-16
key-10.3934/mbe.2024189-38
key-10.3934/mbe.2024189-17
key-10.3934/mbe.2024189-39
key-10.3934/mbe.2024189-18
key-10.3934/mbe.2024189-19
key-10.3934/mbe.2024189-40
key-10.3934/mbe.2024189-41
key-10.3934/mbe.2024189-20
key-10.3934/mbe.2024189-42
key-10.3934/mbe.2024189-21
key-10.3934/mbe.2024189-43
References_xml – ident: key-10.3934/mbe.2024189-1
  doi: 10.1016/j.knosys.2021.107187
– ident: key-10.3934/mbe.2024189-37
  doi: 10.1161/01.CIR.101.23.e215
– ident: key-10.3934/mbe.2024189-28
  doi: 10.1016/j.bspc.2022.105271
– ident: key-10.3934/mbe.2024189-8
  doi: 10.1109/TIM.2013.2278430
– ident: key-10.3934/mbe.2024189-17
  doi: 10.1016/j.compbiomed.2020.103801
– ident: key-10.3934/mbe.2024189-34
  doi: 10.5555/3295222.3295349
– ident: key-10.3934/mbe.2024189-26
  doi: 10.1016/j.artmed.2021.102236
– ident: key-10.3934/mbe.2024189-20
  doi: 10.1109/ACCESS.2019.2912036
– ident: key-10.3934/mbe.2024189-31
  doi: 10.1109/CVPR.2018.00745
– ident: key-10.3934/mbe.2024189-4
  doi: 10.3390/bioengineering7020053
– ident: key-10.3934/mbe.2024189-36
– ident: key-10.3934/mbe.2024189-13
  doi: 10.23919/EUSIPCO.2019.8902833
– ident: key-10.3934/mbe.2024189-11
– ident: key-10.3934/mbe.2024189-32
– ident: key-10.3934/mbe.2024189-22
  doi: 10.1016/j.compbiomed.2023.107553
– ident: key-10.3934/mbe.2024189-33
  doi: 10.1109/TIE.2020.2972458
– ident: key-10.3934/mbe.2024189-40
  doi: 10.1016/j.future.2018.03.057
– ident: key-10.3934/mbe.2024189-7
  doi: 10.1109/JSEN.2011.2111453
– ident: key-10.3934/mbe.2024189-3
  doi: 10.1016/S0010-4825(03)00090-8
– ident: key-10.3934/mbe.2024189-24
  doi: 10.22489/CinC.2019.015
– ident: key-10.3934/mbe.2024189-35
  doi: 10.1109/51.932724
– ident: key-10.3934/mbe.2024189-30
  doi: 10.1016/j.compbiomed.2022.106248
– ident: key-10.3934/mbe.2024189-15
  doi: 10.1109/TIM.2021.3109396
– ident: key-10.3934/mbe.2024189-18
– ident: key-10.3934/mbe.2024189-42
  doi: 10.1007/s10916-019-1511-2
– ident: key-10.3934/mbe.2024189-9
  doi: 10.1109/TIM.2022.3198441
– ident: key-10.3934/mbe.2024189-14
  doi: 10.1109/TCBB.2020.2976981
– ident: key-10.3934/mbe.2024189-19
  doi: 10.1049/iet-spr.2020.0104
– ident: key-10.3934/mbe.2024189-29
  doi: 10.1109/JBHI.2023.3146990
– ident: key-10.3934/mbe.2024189-10
– ident: key-10.3934/mbe.2024189-25
  doi: 10.1016/j.compbiomed.2022.105325
– ident: key-10.3934/mbe.2024189-38
  doi: 10.1515/9783110864250.bm
– ident: key-10.3934/mbe.2024189-12
– ident: key-10.3934/mbe.2024189-16
  doi: 10.1109/TIM.2021.3073707
– ident: key-10.3934/mbe.2024189-43
  doi: 10.1109/ACCESS.2020.2964749
– ident: key-10.3934/mbe.2024189-5
  doi: 10.1109/TIM.2007.907967
– ident: key-10.3934/mbe.2024189-39
  doi: 10.1109/ACCESS.2019.2912036
– ident: key-10.3934/mbe.2024189-23
  doi: 10.1016/j.engappai.2016.02.015
– ident: key-10.3934/mbe.2024189-2
  doi: 10.1016/j.compbiomed.2013.07.030
– ident: key-10.3934/mbe.2024189-6
  doi: 10.1109/TIM.2017.2759398
– ident: key-10.3934/mbe.2024189-41
  doi: 10.1088/1361-6579/ac34ea
– ident: key-10.3934/mbe.2024189-21
  doi: 10.1109/TIM.2021.3137710
– ident: key-10.3934/mbe.2024189-27
  doi: 10.1016/j.bspc.2022.104276
SSID ssj0034334
Score 2.3404715
Snippet The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 4286
SubjectTerms convolutional neural network
ecg signal
signal denoising
transformer
Title Convolutional transformer-driven robust electrocardiogram signal denoising framework with adaptive parametric ReLU
URI https://www.ncbi.nlm.nih.gov/pubmed/38549328
https://www.proquest.com/docview/3022568487
https://doaj.org/article/cf7423a73d6f46838f93c932ea1c3f8f
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA8iLOxF1v1wq6tkwdNCeW0nTdPjKorIrgfxwbuVfIKgrdQ-Yf_7nWnahwfFi9cwJenMZD6SyfwYOy5lZaQMRYoKgwmKKlWqK5On6NrqTEvQMKI1_L2SF0txuSpXz6C-qCYstgeOjFvYQHeJugIng5AKVKjBYtDhdW4hqEDWF33enExFGwwCQMTXeFCDWNwb6oiJzorQ3J_5n7FN_-ux5ehjzj-xnSk45L_jonbZlm8_sw8RLvLfF9afdu3TpCpINswxp-9T15PV4n1n1o8Dn7Bt7FhrSuVXnMo08BM0Mt0tnQ7wMBdlcTqJ5drpBzJ8nFqB3xPKluXX_s_yK1uen92cXqQTZkJqMdIZUi_KwtS5U5Xz0ts6C5DpAlNgRaPSC5O7otZlKYMDZ3E35sEHk3klQKNs4BvbbrvWf2dcFEGiuwcplaO3zybT2ngla2FCESqTsF8zJxs7NRQnXIu7BhMLYnuDbG8mtifseEP8EPtovEx2QiLZkFDz63EAVaKZVKJ5SyUS9nMWaIObhW5AdOu79WMDGLGUUmGSlrC9KOnNVKAwVYZC7b_HEg7YR_qjeFbzg20P_dofYvQymKNRUf8DEhTvOQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+transformer-driven+robust+electrocardiogram+signal+denoising+framework+with+adaptive+parametric+ReLU&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Wang%2C+Jing&rft.au=Pei%2C+Shicheng&rft.au=Yang%2C+Yihang&rft.au=Wang%2C+Huan&rft.date=2024-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=21&rft.issue=3&rft.spage=4286&rft_id=info:doi/10.3934%2Fmbe.2024189&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon