Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins
Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame retardant for epoxy resins was studied. In order to enhance its flame retardancy, the synergistic flame retardancy between Mg-Phyt and agricultu...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 146; no. 1; pp. 153 - 164 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame retardant for epoxy resins was studied. In order to enhance its flame retardancy, the synergistic flame retardancy between Mg-Phyt and agricultural waste material rice husk ash (RHS) and the synergistic effects of different ratios of these two were investigated. The results show that the addition of 10 mass% Mg-Phyt can reduce the thermal decomposition rate and achieve good flame retardant performance for epoxy resins. Furthermore, the combination of Mg-Phyt with RHS can have a synergistic flame retardant effect. Among them, the synergistic effect of 5 mass% Mg-Phyt and 5 mass% RHS is the best when the two substances are added into epoxy resins. More specifically, compared to pure epoxy resins, the peak heat release rate, total heat release, peak smoke production rate, and total smoke release of epoxy resins with 5 mass% Mg-Phyt and 5 mass% RHS are reduced remarkably by 28.6%, 10.6%, 33.0%, and 7.8%, respectively. The burning rate is also reduced by 42.4%. During the combustion process, this synergistic flame retardant effect is attributed to the formation of a compact silica-rich char layer containing Si–P and P–O–C structures with strong thermal stability to hinder the heat transfer into the epoxy resins substrate and reduce flammable gas emission, so that a better flame retardancy and smoke suppression of epoxy resins can be attained. |
---|---|
AbstractList | Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame retardant for epoxy resins was studied. In order to enhance its flame retardancy, the synergistic flame retardancy between Mg-Phyt and agricultural waste material rice husk ash (RHS) and the synergistic effects of different ratios of these two were investigated. The results show that the addition of 10 mass% Mg-Phyt can reduce the thermal decomposition rate and achieve good flame retardant performance for epoxy resins. Furthermore, the combination of Mg-Phyt with RHS can have a synergistic flame retardant effect. Among them, the synergistic effect of 5 mass% Mg-Phyt and 5 mass% RHS is the best when the two substances are added into epoxy resins. More specifically, compared to pure epoxy resins, the peak heat release rate, total heat release, peak smoke production rate, and total smoke release of epoxy resins with 5 mass% Mg-Phyt and 5 mass% RHS are reduced remarkably by 28.6%, 10.6%, 33.0%, and 7.8%, respectively. The burning rate is also reduced by 42.4%. During the combustion process, this synergistic flame retardant effect is attributed to the formation of a compact silica-rich char layer containing Si–P and P–O–C structures with strong thermal stability to hinder the heat transfer into the epoxy resins substrate and reduce flammable gas emission, so that a better flame retardancy and smoke suppression of epoxy resins can be attained. Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame retardant for epoxy resins was studied. In order to enhance its flame retardancy, the synergistic flame retardancy between Mg-Phyt and agricultural waste material rice husk ash (RHS) and the synergistic effects of different ratios of these two were investigated. The results show that the addition of 10 mass% Mg-Phyt can reduce the thermal decomposition rate and achieve good flame retardant performance for epoxy resins. Furthermore, the combination of Mg-Phyt with RHS can have a synergistic flame retardant effect. Among them, the synergistic effect of 5 mass% Mg-Phyt and 5 mass% RHS is the best when the two substances are added into epoxy resins. More specifically, compared to pure epoxy resins, the peak heat release rate, total heat release, peak smoke production rate, and total smoke release of epoxy resins with 5 mass% Mg-Phyt and 5 mass% RHS are reduced remarkably by 28.6%, 10.6%, 33.0%, and 7.8%, respectively. The burning rate is also reduced by 42.4%. During the combustion process, this synergistic flame retardant effect is attributed to the formation of a compact silica-rich char layer containing Si–P and P–O–C structures with strong thermal stability to hinder the heat transfer into the epoxy resins substrate and reduce flammable gas emission, so that a better flame retardancy and smoke suppression of epoxy resins can be attained. |
Audience | Academic |
Author | Xu, Yanying Li, Jindu Hu, Po Wang, Zhi Wang, Qingsheng Shen, Ruiqing |
Author_xml | – sequence: 1 givenname: Yanying surname: Xu fullname: Xu, Yanying organization: Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University – sequence: 2 givenname: Jindu surname: Li fullname: Li, Jindu organization: Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University – sequence: 3 givenname: Ruiqing surname: Shen fullname: Shen, Ruiqing organization: Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University – sequence: 4 givenname: Zhi surname: Wang fullname: Wang, Zhi organization: Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University – sequence: 5 givenname: Po surname: Hu fullname: Hu, Po organization: Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University – sequence: 6 givenname: Qingsheng orcidid: 0000-0002-6411-984X surname: Wang fullname: Wang, Qingsheng email: qwang@tamu.edu organization: Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University |
BookMark | eNp9kV9r3iAUh8PoYG23L7ArYVe7SHfURJPLUrqtUBjsz7UYc8xrl5hMDby56Hef7zIY3UUR9CDPc8TzuyjO_OyxKN5SuKIA8kOk0EpeAoOSQpX35kVxTuumKVnLxFmuea4FreFVcRHjAwC0LdDz4vH2uGBwE_qkRxLT2m9k9iQdkMTNYxhcTM4QO-oJScCkQ699ImgtmkRmSzo3l52O2JNJDx6jWyeyHLakExLtexKcQXJY40-i4-HUGpf5uOVW0fn4unhp9Rjxzd_zsvjx8fb7zefy_sunu5vr-9LwlqWyF9q0rDGAkvZ13QkmtKXIoQYLTS-ElJXkGmTbGbSMCy0b2TDd1lVnLAh-Wbzb-y5h_rViTOphXoPPTypWC17JijKeqaudGvSIynk7p6BNXj1OzuSBW5fvr4VkbQ2iarLw_omQmYTHNOg1RnX37etTttlZE-YYA1plXB6Sy0rQblQU1ClJtSepcpLqT5LqpLL_1CUnpsP2vMR3KWbYDxj-ffkZ6zdxb7LU |
CitedBy_id | crossref_primary_10_1002_app_54680 crossref_primary_10_1002_app_56279 crossref_primary_10_1016_j_aiepr_2022_07_003 crossref_primary_10_1016_j_jmst_2024_03_001 crossref_primary_10_1007_s10973_022_11467_5 crossref_primary_10_1016_j_polymer_2023_126610 crossref_primary_10_1007_s10973_022_11279_7 crossref_primary_10_3390_ma17102266 crossref_primary_10_3390_chemengineering5030056 crossref_primary_10_3390_polym13152391 crossref_primary_10_1007_s10973_023_12568_5 crossref_primary_10_1007_s13726_023_01238_w crossref_primary_10_1016_j_polymertesting_2023_108100 crossref_primary_10_3389_fmats_2021_712188 crossref_primary_10_1002_app_53267 crossref_primary_10_1007_s10973_023_12416_6 crossref_primary_10_1016_j_indcrop_2024_118647 crossref_primary_10_1016_j_ijbiomac_2025_141130 crossref_primary_10_2139_ssrn_4075465 |
Cites_doi | 10.1016/j.compscitech.2019.107748 10.2134/jeq2006.0008 10.1023/A:1011247000996 10.1016/j.matlet.2016.12.076 10.1016/j.tca.2003.09.004 10.1007/s10973-019-09095-7 10.1007/s10973-019-08247-z 10.3390/ma3084300 10.1016/j.compositesa.2018.04.027 10.1016/j.ijbiomac.2019.08.049 10.1002/app.45552 10.1002/app.40218 10.1007/s11164-018-3654-z 10.1007/s10973-019-08372-9 10.1016/j.polymdegradstab.2015.05.014 10.1016/j.compscitech.2018.09.024 10.1002/fam.2199 10.1016/j.polymer.2015.05.031 10.1002/pc.23069 10.1016/j.eurpolymj.2011.02.008 10.1021/acs.iecr.6b04292 10.3390/ma3104710 10.1007/s10973-019-08298-2 10.1016/j.micromeso.2013.02.016 10.1021/acs.iecr.6b01899 10.1016/j.compositesb.2019.03.017 10.1039/C7TA10961J 10.1016/j.clay.2017.05.048 10.1007/s10973-016-6070-x 10.1007/s10973-018-7127-9 10.1016/j.polymdegradstab.2013.04.009 10.1016/j.polymdegradstab.2016.01.022 10.1007/s10973-010-1053-9 10.1002/pc.25675 10.1016/j.polymdegradstab.2019.02.005 10.1016/j.polymdegradstab.2011.05.006 10.1002/app.11383 10.1016/j.jaap.2016.09.018 10.1177/0021998312453865 10.1002/app.46601 10.1016/j.polymdegradstab.2016.09.023 10.1177/0734904119867912 10.1016/j.polymdegradstab.2014.12.014 10.1002/pat.3274 10.1016/S0079-6700(02)00018-7 10.1016/j.powtec.2019.05.077 10.1016/j.polymdegradstab.2016.07.004 10.1039/C5CY01123J 10.1021/ie101737n 10.1007/s10973-018-7735-4 10.1016/j.polymdegradstab.2008.04.002 10.1016/j.polymdegradstab.2007.03.006 10.1016/j.conbuildmat.2006.05.037 10.1016/j.matpr.2019.03.054 10.1016/j.matpr.2015.08.029 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2021 COPYRIGHT 2021 Springer Akadémiai Kiadó, Budapest, Hungary 2021. |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2021 – notice: COPYRIGHT 2021 Springer – notice: Akadémiai Kiadó, Budapest, Hungary 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10973-020-10420-8 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 164 |
ExternalDocumentID | A672950648 10_1007_s10973_020_10420_8 |
GrantInformation_xml | – fundername: Natural Science Foundation of Liaoning Province grantid: 20180540033 funderid: http://dx.doi.org/10.13039/501100005047 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c392t-d6ac928c0e71d55b626af1e3050f08d6677473a079bcef236a78782a954bcf063 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 11:10:51 EDT 2025 Tue Jun 10 20:27:25 EDT 2025 Fri Jun 27 03:50:08 EDT 2025 Tue Jul 01 02:44:38 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Fri Feb 21 02:47:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rice husk ash Bio-based flame retardants Synergistic flame retardant effect Epoxy resins Magnesium phytate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-d6ac928c0e71d55b626af1e3050f08d6677473a079bcef236a78782a954bcf063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6411-984X |
PQID | 2563474123 |
PQPubID | 2043843 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2563474123 gale_infotracacademiconefile_A672950648 gale_incontextgauss_ISR_A672950648 crossref_citationtrail_10_1007_s10973_020_10420_8 crossref_primary_10_1007_s10973_020_10420_8 springer_journals_10_1007_s10973_020_10420_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Attia, Lee, Kim, Geckeler (CR30) 2013; 173 Liu, Xu, Xu, Li, Hu, Li (CR2) 2019; 167 Tan, Shao, Yu, Xu, Rao, Chen, Wang (CR25) 2016; 131 Yan, Xu, Deng, Chu (CR1) 2019; 138 Rakotomalala, Wagner, Doring (CR9) 2010; 3 Zhao, Li, Xing, He, Yue (CR24) 2014; 131 Yang, Zhang, Hu (CR18) 2016; 133 Mariappan, Wilkie (CR3) 2014; 38 Schartel (CR10) 2010; 3 Liu, Chiu, Wu (CR35) 2003; 87 Nour, Heshiam, Mohamed (CR40) 2015; 2 Ren, Sun, Wu, Zhou (CR20) 2007; 92 Feng, Liang, Zhang, Jiang, Huang, Liu (CR53) 2016; 122 Lu, Hamerton (CR7) 2002; 27 Zheng, Liu, Wang, Yang, Cui, Wang (CR46) 2015; 36 Costesab, Laoutida, Dumazertc, José-Marie, Sylvain, Christian, Philippe (CR29) 2015; 119 Kong, Sun, Zhang, Guan, Zhang, Wang, Zhang (CR19) 2019; 182 Wu, He, Liu, Wei, Cao, Sun, Venkatesh (CR34) 2018; 168 Anurag, Amit, Kamal, Manoj (CR4) 2019; 11 Arora, Kumar, Kumar (CR32) 2012; 47 Ahmed, Zhang, Shen, Agnew, Park, Cheng, Mannan, Wang (CR43) 2018; 132 Shen, Hatanaka, Ahmed, Agnew, Mannan, Wang (CR42) 2017; 128 Gao, Deng, Du, Huang, Wang (CR52) 2019; 161 Zhang, Kong, Wang (CR14) 2018; 6 Zhao, Liu, Wang, Wang, Wang (CR48) 2008; 93 He, Wayne, Zhang, Paul (CR36) 2006; 35 Xu, Sun, Shen, Wang, Wang (CR39) 2020; 141 Ma, Yu, Hong, Pan, Hu, Hu (CR8) 2016; 55 Xue, Zhang, Li, Wang, Zhao, Mu (CR37) 2016; 6 Cheng, Wu, Meng, Xu, Han, Yu, Qu, Xu (CR28) 2018; 135 Zhang, Yu, Wang, Liew, Song, Wang, Hu (CR6) 2017; 56 Alexander, Sebastian, Wiebke, Olaf, Manfred (CR21) 2008; 105 Liu, Zhao, Deng, Chen, Wang, Wang (CR50) 2011; 50 Baine, Khor, Gamble, Armstrong, Mitchell (CR56) 2001; 12 Cheng, Shi (CR12) 2011; 103 Chen, Zhu (CR51) 2019; 45 Ding, Zhang, Zhang, Kong, Zhang, Liu, Zhang (CR15) 2020; 140 Almiron, Roudet, Duquesne (CR33) 2019; 37 Perret, Schartel, Stoss, Ciesielski, Diederichs, Doring, Krämer, Altstädt (CR22) 2011; 47 Saraswathy, Hawon (CR31) 2007; 21 Kong, Wu, Zhang, Zhang, Zhang, Si, Yang, Zhang (CR16) 2017; 146 Yang, Tawiah, Yu, Qian, Wang, Yuen, Zhu, Hu, Chen, Yu, Lu (CR27) 2018; 110 Zhang, Ma, Leng, Wang (CR26) 2019; 140 Chen, Liu, Liu, Wang (CR54) 2017; 134 Sun, Li, Song, Wang, Yin, Wang (CR38) 2017; 191 Chen, Jiang, Chen, Chen, Yu, Jiang (CR47) 2019; 354 Qin, Li, Yang (CR11) 2016; 126 Xu, Lv, Shen, Wang, Wang (CR44) 2019; 136 Song, Wu, Liu, Han, Qu, Xu (CR5) 2019; 138 Liu, Wei, Hsu, Ho (CR41) 2004; 412 Xu, Lv, Shen, Wang, Wang (CR45) 2020; 9 Murat, Dilem, Dogan (CR13) 2014; 25 Salmeia, Gaan (CR23) 2015; 113 Richard, Artur, Luke (CR55) 2011; 96 Qian, Qiu, Wang, Wang (CR17) 2015; 68 Bettina, Karen, Daniel, Rolf, Bernhard (CR49) 2013; 98 X Cheng (10420_CR12) 2011; 103 ZL Qin (10420_CR11) 2016; 126 Y Liu (10420_CR50) 2011; 50 P Baine (10420_CR56) 2001; 12 V Saraswathy (10420_CR31) 2007; 21 L Cheng (10420_CR28) 2018; 135 C Zhao (10420_CR24) 2014; 131 Z Zhang (10420_CR26) 2019; 140 S Lu (10420_CR7) 2002; 27 Z Chen (10420_CR47) 2019; 354 Y Tan (10420_CR25) 2016; 131 W Yang (10420_CR27) 2018; 110 Y Anurag (10420_CR4) 2019; 11 J Chen (10420_CR51) 2019; 45 J Almiron (10420_CR33) 2019; 37 C Feng (10420_CR53) 2016; 122 R Shen (10420_CR42) 2017; 128 Z He (10420_CR36) 2006; 35 Y Xu (10420_CR39) 2020; 141 T Mariappan (10420_CR3) 2014; 38 L Qian (10420_CR17) 2015; 68 NF Attia (10420_CR30) 2013; 173 L Ahmed (10420_CR43) 2018; 132 Y Gao (10420_CR52) 2019; 161 Y Liu (10420_CR41) 2004; 412 B Perret (10420_CR22) 2011; 47 S Arora (10420_CR32) 2012; 47 FA Nour (10420_CR40) 2015; 2 W Wu (10420_CR34) 2018; 168 S Alexander (10420_CR21) 2008; 105 C Ma (10420_CR8) 2016; 55 JH Zhang (10420_CR14) 2018; 6 QH Kong (10420_CR19) 2019; 182 JM Ding (10420_CR15) 2020; 140 Y Xu (10420_CR44) 2019; 136 P Sun (10420_CR38) 2017; 191 H Ren (10420_CR20) 2007; 92 M Rakotomalala (10420_CR9) 2010; 3 L Liu (10420_CR2) 2019; 167 Y Liu (10420_CR35) 2003; 87 L Costesab (10420_CR29) 2015; 119 L Yan (10420_CR1) 2019; 138 W Chen (10420_CR54) 2017; 134 Q Song (10420_CR5) 2019; 138 B Schartel (10420_CR10) 2010; 3 Z Xue (10420_CR37) 2016; 6 QH Kong (10420_CR16) 2017; 146 Z Zheng (10420_CR46) 2015; 36 Y Zhang (10420_CR6) 2017; 56 S Yang (10420_CR18) 2016; 133 KA Salmeia (10420_CR23) 2015; 113 C Zhao (10420_CR48) 2008; 93 D Bettina (10420_CR49) 2013; 98 S Murat (10420_CR13) 2014; 25 Y Xu (10420_CR45) 2020; 9 HT Richard (10420_CR55) 2011; 96 |
References_xml | – volume: 182 start-page: 107748 year: 2019 ident: CR19 article-title: Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2019.107748 – volume: 35 start-page: 1319 year: 2006 end-page: 1328 ident: CR36 article-title: Preparation and FT-IR characterization of metal phytate compounds publication-title: J Environ Qual doi: 10.2134/jeq2006.0008 – volume: 12 start-page: 215 year: 2001 end-page: 218 ident: CR56 article-title: Novel materials for thermal via incorporation into SOI structures publication-title: J Mater Sci Mater Eectron doi: 10.1023/A:1011247000996 – volume: 11 start-page: 837 year: 2019 end-page: 842 ident: CR4 article-title: Investigating the effects of amine functionalized graphene on the mechanical properties of epoxy nanocomposites publication-title: Mater Today – volume: 191 start-page: 161 year: 2017 end-page: 164 ident: CR38 article-title: Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor publication-title: Mater Lett doi: 10.1016/j.matlet.2016.12.076 – volume: 412 start-page: 139 issue: 1–2 year: 2004 end-page: 147 ident: CR41 article-title: Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis publication-title: Thermochim Acta doi: 10.1016/j.tca.2003.09.004 – volume: 141 start-page: 1173 issue: 3 year: 2020 end-page: 1182 ident: CR39 article-title: Thermal behavior and smoke characteristics of glass/epoxy laminate and its foam core sandwich composite publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-09095-7 – volume: 138 start-page: 1259 issue: 2 year: 2019 end-page: 1267 ident: CR5 article-title: Synergistic flame-retardant effects of ammonium polyphosphate and AC-Fe O in epoxy resin publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08247-z – volume: 3 start-page: 4300 year: 2010 end-page: 4327 ident: CR9 article-title: Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications publication-title: Materials doi: 10.3390/ma3084300 – volume: 110 start-page: 227 year: 2018 end-page: 236 ident: CR27 article-title: Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2018.04.027 – volume: 140 start-page: 303 year: 2019 end-page: 310 ident: CR26 article-title: Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.08.049 – volume: 134 start-page: 45552 issue: 48 year: 2017 ident: CR54 article-title: Preparation of alginate flame retardant containing P and Si and its flame retardancy in epoxy resin publication-title: J Appl Polym Sci doi: 10.1002/app.45552 – volume: 131 start-page: 40218 issue: 9 year: 2014 ident: CR24 article-title: Flame retardant and mechanical properties of epoxy composites containing APP-PSt core-shell microspheres publication-title: Appl Polym Sci doi: 10.1002/app.40218 – volume: 45 start-page: 947 year: 2019 end-page: 950 ident: CR51 article-title: A query on the Mg 2p binding energy of MgO publication-title: Res Chem Intermed doi: 10.1007/s11164-018-3654-z – volume: 140 start-page: 149 issue: 1 year: 2020 end-page: 156 ident: CR15 article-title: Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08372-9 – volume: 119 start-page: 217 year: 2015 end-page: 227 ident: CR29 article-title: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid) publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2015.05.014 – volume: 168 start-page: 246 year: 2018 end-page: 254 ident: CR34 article-title: Synergetic enhancement on flame retardancy by melamine phosphate modified lignin in rice husk ash filled P34HB biocomposites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.09.024 – volume: 38 start-page: 588 year: 2014 end-page: 598 ident: CR3 article-title: Flame retardant epoxy resin for electrical and electronic applications publication-title: Fire Mater doi: 10.1002/fam.2199 – volume: 68 start-page: 262 year: 2015 end-page: 269 ident: CR17 article-title: High-performance flame retardancy by char-cage hindering and free radical quenching effects in epoxy thermosets publication-title: Polymer doi: 10.1016/j.polymer.2015.05.031 – volume: 36 start-page: 1606 year: 2015 end-page: 1619 ident: CR46 article-title: Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system publication-title: Polym Compos doi: 10.1002/pc.23069 – volume: 47 start-page: 1081 year: 2011 end-page: 1089 ident: CR22 article-title: Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2011.02.008 – volume: 56 start-page: 1245 year: 2017 end-page: 1255 ident: CR6 article-title: Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b04292 – volume: 3 start-page: 4710 year: 2010 end-page: 4745 ident: CR10 article-title: Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? publication-title: Materials doi: 10.3390/ma3104710 – volume: 138 start-page: 915 issue: 2 year: 2019 end-page: 927 ident: CR1 article-title: Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08298-2 – volume: 173 start-page: 139 year: 2013 end-page: 146 ident: CR30 article-title: Nanoporous carbon-templated silica nanoparticles: preparation, effect of different carbon precursors, and their hydrogen storage adsorption publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2013.02.016 – volume: 55 start-page: 10868 year: 2016 end-page: 10879 ident: CR8 article-title: Facile synthesis of a highly efficient, halogen-free, and intumescent flame retardant for epoxy resins: thermal properties, combustion behaviors, and flame-retardant mechanisms publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b01899 – volume: 167 start-page: 422 year: 2019 end-page: 433 ident: CR2 article-title: Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2019.03.017 – volume: 2 start-page: 3998 year: 2015 end-page: 4005 ident: CR40 article-title: Synergistic study of carbon nanotubes, rice husk ash and flame retardant materials on the flammability of polystyrene nanocomposites publication-title: Mater Today – volume: 6 start-page: 6376 issue: 15 year: 2018 end-page: 6386 ident: CR14 article-title: Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation publication-title: J Mater Chem A doi: 10.1039/C7TA10961J – volume: 146 start-page: 230 year: 2017 end-page: 237 ident: CR16 article-title: Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan publication-title: Appl Clay Sci doi: 10.1016/j.clay.2017.05.048 – volume: 128 start-page: 1443 issue: 3 year: 2017 end-page: 1451 ident: CR42 article-title: Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-6070-x – volume: 132 start-page: 1853 issue: 3 year: 2018 end-page: 1865 ident: CR43 article-title: Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7127-9 – volume: 98 start-page: 1495 year: 2013 end-page: 1505 ident: CR49 article-title: Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2013.04.009 – volume: 126 start-page: 117 year: 2016 end-page: 124 ident: CR11 article-title: Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.01.022 – volume: 103 start-page: 303 issue: 1 year: 2011 end-page: 310 ident: CR12 article-title: Synthesis and thermal properties of silicon-containing epoxy resin used for UV-curable flame-retardant coatings publication-title: J Therm Anal Calorim doi: 10.1007/s10973-010-1053-9 – volume: 9 start-page: 3778 issue: 41 year: 2020 end-page: 3786 ident: CR45 article-title: Comparison of thermal and fire properties of carbon/epoxy laminate composites manufactured using two forming processes publication-title: Polym Compos doi: 10.1002/pc.25675 – volume: 161 start-page: 298 year: 2019 end-page: 308 ident: CR52 article-title: A novel bio-based flame retardant for polypropylene from phytic acid publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2019.02.005 – volume: 96 start-page: 1462 year: 2011 end-page: 1469 ident: CR55 article-title: Fire retardant action of mineral fillers publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2011.05.006 – volume: 87 start-page: 404 issue: 3 year: 2003 end-page: 411 ident: CR35 article-title: Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy publication-title: J Appl Polym Sci doi: 10.1002/app.11383 – volume: 105 start-page: 685 year: 2008 end-page: 696 ident: CR21 article-title: Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO publication-title: J Appl Polym Sci – volume: 122 start-page: 241 year: 2016 end-page: 248 ident: CR53 article-title: Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2016.09.018 – volume: 47 start-page: 2027 year: 2012 end-page: 2038 ident: CR32 article-title: Preparation and thermal stability of poly(methyl methacrylate)/rice husk silica/triphenylphosphine nanocomposites: assessment of degradation mechanism using model-free kinetics publication-title: J Compos Mater doi: 10.1177/0021998312453865 – volume: 135 start-page: 46601 issue: 33 year: 2018 ident: CR28 article-title: Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants publication-title: J Appl Polym Sci doi: 10.1002/app.46601 – volume: 133 start-page: 358 year: 2016 end-page: 366 ident: CR18 article-title: Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.09.023 – volume: 37 start-page: 434 year: 2019 end-page: 451 ident: CR33 article-title: Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites publication-title: J Fire Sci doi: 10.1177/0734904119867912 – volume: 113 start-page: 119 year: 2015 end-page: 134 ident: CR23 article-title: An overview of some recent advances in DOPO derivatives: chemistry and flame retardant applications publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2014.12.014 – volume: 25 start-page: 769 year: 2014 end-page: 776 ident: CR13 article-title: Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin publication-title: Polym Adv Technol doi: 10.1002/pat.3274 – volume: 27 start-page: 1661 year: 2002 end-page: 1712 ident: CR7 article-title: Recent developments in the chemistry of halogen-free flame retardant polymers publication-title: Prog Polym Sci doi: 10.1016/S0079-6700(02)00018-7 – volume: 354 start-page: 71 year: 2019 end-page: 81 ident: CR47 article-title: Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins publication-title: Powder Technol doi: 10.1016/j.powtec.2019.05.077 – volume: 131 start-page: 62 year: 2016 end-page: 70 ident: CR25 article-title: Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.07.004 – volume: 6 start-page: 1070 year: 2016 end-page: 1076 ident: CR37 article-title: Niobium phytate prepared from phytic acid and NbCl : a highly efficient and heterogeneous acid catalyst publication-title: Catal Sci Technol doi: 10.1039/C5CY01123J – volume: 50 start-page: 2047 year: 2011 end-page: 2054 ident: CR50 article-title: Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system publication-title: Ind Eng Chem Res doi: 10.1021/ie101737n – volume: 136 start-page: 1237 issue: 3 year: 2019 end-page: 1247 ident: CR44 article-title: Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7735-4 – volume: 93 start-page: 1323 year: 2008 end-page: 1331 ident: CR48 article-title: Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol) publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2008.04.002 – volume: 92 start-page: 956 year: 2007 end-page: 961 ident: CR20 article-title: Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bisphenoxy (3-hydroxy) phenyl phosphine oxide publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2007.03.006 – volume: 21 start-page: 1779 year: 2007 end-page: 1784 ident: CR31 article-title: Corrosion performance of rice husk ash blended concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2006.05.037 – volume: 11 start-page: 837 year: 2019 ident: 10420_CR4 publication-title: Mater Today doi: 10.1016/j.matpr.2019.03.054 – volume: 131 start-page: 40218 issue: 9 year: 2014 ident: 10420_CR24 publication-title: Appl Polym Sci doi: 10.1002/app.40218 – volume: 27 start-page: 1661 year: 2002 ident: 10420_CR7 publication-title: Prog Polym Sci doi: 10.1016/S0079-6700(02)00018-7 – volume: 21 start-page: 1779 year: 2007 ident: 10420_CR31 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2006.05.037 – volume: 354 start-page: 71 year: 2019 ident: 10420_CR47 publication-title: Powder Technol doi: 10.1016/j.powtec.2019.05.077 – volume: 161 start-page: 298 year: 2019 ident: 10420_CR52 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2019.02.005 – volume: 55 start-page: 10868 year: 2016 ident: 10420_CR8 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b01899 – volume: 135 start-page: 46601 issue: 33 year: 2018 ident: 10420_CR28 publication-title: J Appl Polym Sci doi: 10.1002/app.46601 – volume: 87 start-page: 404 issue: 3 year: 2003 ident: 10420_CR35 publication-title: J Appl Polym Sci doi: 10.1002/app.11383 – volume: 9 start-page: 3778 issue: 41 year: 2020 ident: 10420_CR45 publication-title: Polym Compos doi: 10.1002/pc.25675 – volume: 412 start-page: 139 issue: 1–2 year: 2004 ident: 10420_CR41 publication-title: Thermochim Acta doi: 10.1016/j.tca.2003.09.004 – volume: 136 start-page: 1237 issue: 3 year: 2019 ident: 10420_CR44 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7735-4 – volume: 96 start-page: 1462 year: 2011 ident: 10420_CR55 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2011.05.006 – volume: 128 start-page: 1443 issue: 3 year: 2017 ident: 10420_CR42 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-6070-x – volume: 6 start-page: 1070 year: 2016 ident: 10420_CR37 publication-title: Catal Sci Technol doi: 10.1039/C5CY01123J – volume: 131 start-page: 62 year: 2016 ident: 10420_CR25 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.07.004 – volume: 12 start-page: 215 year: 2001 ident: 10420_CR56 publication-title: J Mater Sci Mater Eectron doi: 10.1023/A:1011247000996 – volume: 119 start-page: 217 year: 2015 ident: 10420_CR29 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2015.05.014 – volume: 45 start-page: 947 year: 2019 ident: 10420_CR51 publication-title: Res Chem Intermed doi: 10.1007/s11164-018-3654-z – volume: 37 start-page: 434 year: 2019 ident: 10420_CR33 publication-title: J Fire Sci doi: 10.1177/0734904119867912 – volume: 138 start-page: 1259 issue: 2 year: 2019 ident: 10420_CR5 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08247-z – volume: 110 start-page: 227 year: 2018 ident: 10420_CR27 publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2018.04.027 – volume: 47 start-page: 2027 year: 2012 ident: 10420_CR32 publication-title: J Compos Mater doi: 10.1177/0021998312453865 – volume: 182 start-page: 107748 year: 2019 ident: 10420_CR19 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2019.107748 – volume: 140 start-page: 303 year: 2019 ident: 10420_CR26 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.08.049 – volume: 25 start-page: 769 year: 2014 ident: 10420_CR13 publication-title: Polym Adv Technol doi: 10.1002/pat.3274 – volume: 105 start-page: 685 year: 2008 ident: 10420_CR21 publication-title: J Appl Polym Sci – volume: 132 start-page: 1853 issue: 3 year: 2018 ident: 10420_CR43 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7127-9 – volume: 3 start-page: 4300 year: 2010 ident: 10420_CR9 publication-title: Materials doi: 10.3390/ma3084300 – volume: 47 start-page: 1081 year: 2011 ident: 10420_CR22 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2011.02.008 – volume: 98 start-page: 1495 year: 2013 ident: 10420_CR49 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2013.04.009 – volume: 134 start-page: 45552 issue: 48 year: 2017 ident: 10420_CR54 publication-title: J Appl Polym Sci doi: 10.1002/app.45552 – volume: 138 start-page: 915 issue: 2 year: 2019 ident: 10420_CR1 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08298-2 – volume: 93 start-page: 1323 year: 2008 ident: 10420_CR48 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2008.04.002 – volume: 56 start-page: 1245 year: 2017 ident: 10420_CR6 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b04292 – volume: 68 start-page: 262 year: 2015 ident: 10420_CR17 publication-title: Polymer doi: 10.1016/j.polymer.2015.05.031 – volume: 3 start-page: 4710 year: 2010 ident: 10420_CR10 publication-title: Materials doi: 10.3390/ma3104710 – volume: 133 start-page: 358 year: 2016 ident: 10420_CR18 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.09.023 – volume: 36 start-page: 1606 year: 2015 ident: 10420_CR46 publication-title: Polym Compos doi: 10.1002/pc.23069 – volume: 126 start-page: 117 year: 2016 ident: 10420_CR11 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.01.022 – volume: 167 start-page: 422 year: 2019 ident: 10420_CR2 publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2019.03.017 – volume: 113 start-page: 119 year: 2015 ident: 10420_CR23 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2014.12.014 – volume: 35 start-page: 1319 year: 2006 ident: 10420_CR36 publication-title: J Environ Qual doi: 10.2134/jeq2006.0008 – volume: 140 start-page: 149 issue: 1 year: 2020 ident: 10420_CR15 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08372-9 – volume: 103 start-page: 303 issue: 1 year: 2011 ident: 10420_CR12 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-010-1053-9 – volume: 2 start-page: 3998 year: 2015 ident: 10420_CR40 publication-title: Mater Today doi: 10.1016/j.matpr.2015.08.029 – volume: 141 start-page: 1173 issue: 3 year: 2020 ident: 10420_CR39 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-09095-7 – volume: 191 start-page: 161 year: 2017 ident: 10420_CR38 publication-title: Mater Lett doi: 10.1016/j.matlet.2016.12.076 – volume: 92 start-page: 956 year: 2007 ident: 10420_CR20 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2007.03.006 – volume: 6 start-page: 6376 issue: 15 year: 2018 ident: 10420_CR14 publication-title: J Mater Chem A doi: 10.1039/C7TA10961J – volume: 38 start-page: 588 year: 2014 ident: 10420_CR3 publication-title: Fire Mater doi: 10.1002/fam.2199 – volume: 50 start-page: 2047 year: 2011 ident: 10420_CR50 publication-title: Ind Eng Chem Res doi: 10.1021/ie101737n – volume: 122 start-page: 241 year: 2016 ident: 10420_CR53 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2016.09.018 – volume: 173 start-page: 139 year: 2013 ident: 10420_CR30 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2013.02.016 – volume: 168 start-page: 246 year: 2018 ident: 10420_CR34 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.09.024 – volume: 146 start-page: 230 year: 2017 ident: 10420_CR16 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2017.05.048 |
SSID | ssj0009901 |
Score | 2.4140797 |
Snippet | Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 153 |
SubjectTerms | Agricultural wastes Analytical Chemistry Ashes Burning rate Chelation Chemistry Chemistry and Materials Science Combustion Emissions control Enthalpy Epoxy resins Fireproofing agents Flame retardants Flammability Flammable gases Heat release rate Inorganic Chemistry Magnesium Measurement Science and Instrumentation Physical Chemistry Polymer Sciences Silicon dioxide Smoke Substrates Synergistic effect Thermal decomposition Thermal stability |
Title | Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins |
URI | https://link.springer.com/article/10.1007/s10973-020-10420-8 https://www.proquest.com/docview/2563474123 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgPcBlYnyI7ktPCIkDRHKdxImP3dSuA7EDUKmcLNuJtwqWTHMrsQP_O--lydqND4lLc-iLk_h9-Gf5vd9j7HXOE8fLQRoJr6iFmUSfE5Q0jkDOemHSWFI18sczOZkm72fprC0KC122e3ck2UTqjWI3ldGZI8fQkeBv_pD1Uty7UyLXVAzXVLuKr7ZZaANEd96Wyvx5jDvL0f2g_NvpaLPojJ-w7RYtwnCl3h32oKyeskfHXZO2Z-znaIOhHxquWKgrQFQH4YbK-hoeZvCo9xIotfC6wKmEVRYH1B7svI5oJSvg0pxj2JsvLwFnniAomKoA4hyCi2X4BiZc0NAI2H_c4FBhXoXnbDoefTmeRG1HhcghDlpEhTROiRy1kw2KNLW4mzF-UKLPc8_zQkoEg1lseKasK72IpUF_zoVRaWKdRzTzgm1VdVW-ZGCVEq4ouSysSmKbWQR2HuGkz7lR3qk-G3QTq11LN05dL77rNVEyKUOjMnSjDJ332dvbe65WZBv_lH5F-tLEYlFRmsy5WYagTz9_0kOJpkZUfCj0phXyNT7embbqAD-CiK_uSO53etetHweNgDBOEHSJuM_edbaw_vvvL7f7f-J77LGgZJkmS3CfbS2ul-UBop2FPWS94fjo6IyuJ18_jA4bY_8FGdj3Fw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLojzEQgsjBOIAkbJO4sQHDqs-tEsfB-hKvRnbsdtVaYLqXcEe-Df9ocxkE7blJXHoJZdMHCcznvksz3zD2MsiTm3s-lnEvaQWZgLXHKekcQRyxnOdJYKqkQ8OxXCcvj_OjlfYZVcL02S7d0eSjae-UuwmczpzjNF1pHgt2lTKPTf_ihu18G60jVp9xfnuztHWMGp7CUQWEcA0KoW2khc4r7xfZplBHK9936G1xz4uSiEQBuWJjnNprPM8ERotueBaZqmxHuM4jnuL3UbwUdDaGfPBktpXxottHdoc0au3pTl_nvO18PdrEPjtNLYJcrv32N0WncJgYU7rbMVV99naVtcU7gH7vnOlIwA03LRQV4AoEsKcyggb3mfwaGcOKJXxokTVwSJrBGoPZlJHFDlLONcn6GYns3NATRPkBV2VQBxHcDoLZ6DDKQ2NG4RvcxwqTKrwkI1v5K8_YqtVXbnHDIyU3JYuFqWRaWJyg0DSI3z1Raylt7LH-t2PVbalN6cuG5_VkpiZlKFQGapRhip67M3PZ74syD3-Kf2C9KWINaOitJwTPQtBjT5-UAOBpk3Ufyj0uhXyNb7e6rbKAT-CiLauSW50elet3wgKAWiSIsjjSY-97Wxhefvvk3vyf-LP2drw6GBf7Y8O956yO5wSdZoMxQ22Or2YuU1EWlPzrDF0YJ9uemX9AHMBMDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYALKi81pQULgTjAqo5317s-9BC1jRoKFQIi9Wb8bCPa3aqbCHLgP_ETO7MP0vKSOPSSSyaOd2fs-SzP9w0hz3OWWOb7acSDxBZmAtYcx6JxAHImcJ3GAtnI7w7E3jh5c5geLpEfHRemrnbvriQbTgOqNBXTzTMXNi8R32SG948MtpEEPvO2rHLfz7_Coa3aGu2Ah19wPtz9tL0XtX0FIgtoYBo5oa3kOcwx67s0NYDpdeh7iHwWWO6EAEiUxZpl0lgfeCw0RHXOtUwTYwPkdBj3BrmZIPsYVtCYDxYyv5I1RzyIP5Rab2k6f57zlVT4a0L47Wa2TnjDFXK3Rap00ITWPbLki_vk9nbXIO4B-b57qTsArXVqaVlQQJS0miOlsNaApgFizlMsazx34EbaVJDQMlAzKSPMoo6e6iPYciezUwpeR_hLdeEo6h3R41n1herqGIeGw8K3OQxVTYrqIRlfy1t_RJaLsvCrhBopuXWeCWdkEpvMAKgMAGVDzrQMVvZIv3uxyrZS59hx40QtRJrRGQqcoWpnqLxHXv38zVkj9PFP62foL4UKGgWW6BzpWVWp0ccPaiAgzFEGEIxetkahhL-3umU8wEOg6NYVy_XO76rdQyoFYDROAPDxuEded7Gw-Prvk1v7P_On5Nb7naF6OzrYf0zucKzZqYsV18ny9HzmNwB0Tc2TOs4p-XzdC-sCHM00bA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+the+synergistic+flame+retardant+effect+of+bio-based+magnesium+phytate+and+rice+husk+ash+on+epoxy+resins&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Xu%2C+Yanying&rft.au=Li%2C+Jindu&rft.au=Shen%2C+Ruiqing&rft.au=Wang%2C+Zhi&rft.date=2021-10-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=146&rft.issue=1&rft.spage=153&rft_id=info:doi/10.1007%2Fs10973-020-10420-8&rft.externalDBID=ISR&rft.externalDocID=A672950648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |