Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System

Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learni...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 6; pp. 4002 - 4014
Main Authors Hu, Yingbai, Chen, Guang, Li, Zhijun, Knoll, Alois
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.
AbstractList Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.
Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.
Author Li, Zhijun
Hu, Yingbai
Chen, Guang
Knoll, Alois
Author_xml – sequence: 1
  givenname: Yingbai
  orcidid: 0000-0003-2452-3570
  surname: Hu
  fullname: Hu, Yingbai
  email: yingbai.hu@tum.de
  organization: Department of Informatics, Technical University of Munich, Munich, Germany
– sequence: 2
  givenname: Guang
  orcidid: 0000-0002-7416-592X
  surname: Chen
  fullname: Chen, Guang
  email: guangchen@tongji.edu.cn
  organization: Department of Informatics, Technical University of Munich, Munich, Germany
– sequence: 3
  givenname: Zhijun
  orcidid: 0000-0002-3909-488X
  surname: Li
  fullname: Li, Zhijun
  email: zjli@ieee.org
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Alois
  orcidid: 0000-0003-4840-076X
  surname: Knoll
  fullname: Knoll, Alois
  email: knoll@mytum.de
  organization: Department of Informatics, Technical University of Munich, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35930520$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vVCEUxYmpsbX2AxgTQ-LGzYz8ecBjqWPVJk01ThPjCnnMHaXhQQVek_n28jLTLrqQDVzyOzf3nvMcHcUUAaGXlCwpJfrd9ernhyUjjC051Yx0-gk6YVT2C8aUOHp4S3WMzkq5Ie307Uv3z9AxF5oTwcgJ-vU9Danibyl4t8MX421OdzBCrPiHr3_wla1TtgGf36UwVZ8iXtdsK_z2UPA25VbaIQC-SjH4CDbjj7toR--aZr0rFcYX6OnWhgJnh_sUrT-dX6--LC6_fr5Yvb9cOK5ZXWykFK7jGrqBbKiVvNt0UitFlOWaO2q7wYHVgjnLnVSMEK505xS43uktP0Vv913b_H8nKNWMvjgIwUZIUzFMaq2IoFI09M0j9CZNObbZDOtpJwSnfKZeH6hpGGFjbrMfbd6Ze-caoPaAy6mUDFvjfLWzRc0gHwwlZo7JzDGZOSZziKkp6SPlffP_aV7tNR4AHnjdt42aPf8A_k2cUA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TMRB_2024_3387040
crossref_primary_10_1109_TIM_2024_3403172
crossref_primary_10_1109_TVT_2024_3424871
crossref_primary_10_1109_TASE_2023_3345919
crossref_primary_10_1088_2631_8695_ad8d32
crossref_primary_10_1142_S273748072350019X
crossref_primary_10_1109_TCYB_2025_3531433
crossref_primary_10_3390_s23042186
crossref_primary_10_1109_TCYB_2023_3298195
crossref_primary_10_1109_TFUZZ_2023_3328884
crossref_primary_10_1016_j_anucene_2023_110171
crossref_primary_10_1109_LRA_2023_3322094
crossref_primary_10_1109_TNSRE_2023_3315373
crossref_primary_10_3389_fnins_2023_1219363
crossref_primary_10_1109_TASE_2024_3379364
crossref_primary_10_1109_TASE_2024_3418018
crossref_primary_10_1109_TMRB_2024_3389490
crossref_primary_10_3390_act12120461
crossref_primary_10_1109_TASE_2024_3378915
crossref_primary_10_3389_fnins_2024_1344841
crossref_primary_10_1007_s41315_024_00353_y
crossref_primary_10_1016_j_isatra_2024_01_007
crossref_primary_10_1109_TCYB_2024_3395626
crossref_primary_10_3389_fnins_2023_1213176
crossref_primary_10_1002_aisy_202400068
crossref_primary_10_1109_LRA_2024_3355635
crossref_primary_10_3389_fnins_2023_1254088
Cites_doi 10.1016/j.robot.2014.03.001
10.1109/TIE.2018.2884240
10.1109/ICASSP.2007.366913
10.1109/IROS40897.2019.8968496
10.1007/s10514-017-9636-y
10.2478/pjbr-2013-0003
10.1162/NECO_a_00393
10.1109/TCYB.2020.3030310
10.1109/TNNLS.2019.2892207
10.1109/TCYB.2019.2940276
10.1007/s42154-021-00157-x
10.1109/TASE.2018.2841358
10.1016/j.robot.2018.07.008
10.1109/TCYB.2018.2838573
10.1109/TCYB.2018.2864784
10.1177/0278364911402527
10.1109/TASE.2019.2947071
10.1016/j.simpat.2006.12.002
10.1109/LRA.2019.2932610
10.1109/LRA.2016.2517825
10.1109/TRO.2011.2159412
10.1109/TCYB.2020.2977374
10.1145/1830483.1830557
10.1109/TRO.2012.2210294
10.1109/TSMC.2017.2705279
10.1007/978-3-642-15844-5_16
10.1145/1553374.1553522
10.1109/TMECH.2017.2717461
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3192049
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4014
ExternalDocumentID 35930520
10_1109_TCYB_2022_3192049
9851639
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ZJ Lab
– fundername: Anhui Provincial Natural Science Foundation, Anhui Energy-Internet Joint Program
  grantid: 2008085UD01
  funderid: 10.13039/501100003995
– fundername: Shanghai Rising Star Program
  grantid: 21QC1400900
– fundername: European Union’s Horizon 2020 Framework Program for Research and Innovation
  grantid: 945539 (Human Brain Project SGA3)
– fundername: Shanghai Center for Brain Science and Brain-Inspired Technology
– fundername: National Natural Science Foundation of China
  grantid: 62133013; U2013601
  funderid: 10.13039/501100001809
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX01
– fundername: Major Science and Technology Projects of Anhui Province
  grantid: 202103a05020004
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-d665c439e4b0d1a634d4697707a393c1a4bcea952ca3c672003794c7ec8c9f3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 06:35:59 EDT 2025
Mon Jun 30 03:02:55 EDT 2025
Thu Jan 02 22:51:30 EST 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 00:54:03 EDT 2025
Wed Aug 27 02:50:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-d665c439e4b0d1a634d4697707a393c1a4bcea952ca3c672003794c7ec8c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4840-076X
0000-0002-3909-488X
0000-0003-2452-3570
0000-0002-7416-592X
OpenAccessLink https://mediatum.ub.tum.de/doc/1685409/document.pdf
PMID 35930520
PQID 2814553135
PQPubID 85422
PageCount 13
ParticipantIDs proquest_miscellaneous_2699705165
ieee_primary_9851639
proquest_journals_2814553135
pubmed_primary_35930520
crossref_citationtrail_10_1109_TCYB_2022_3192049
crossref_primary_10_1109_TCYB_2022_3192049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
saveriano (ref4) 2021
ref15
ref14
ref31
ref30
kroemer (ref3) 2021; 22
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
jaquier (ref25) 2020
wierstra (ref23) 2014; 15
ref24
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref6
ref5
References_xml – ident: ref8
  doi: 10.1016/j.robot.2014.03.001
– ident: ref21
  doi: 10.1109/TIE.2018.2884240
– ident: ref32
  doi: 10.1109/ICASSP.2007.366913
– ident: ref15
  doi: 10.1109/IROS40897.2019.8968496
– ident: ref18
  doi: 10.1007/s10514-017-9636-y
– year: 2021
  ident: ref4
  article-title: Dynamic movement primitives in robotics: A tutorial survey
  publication-title: arXiv 2102 03861
– ident: ref20
  doi: 10.2478/pjbr-2013-0003
– ident: ref27
  doi: 10.1162/NECO_a_00393
– ident: ref9
  doi: 10.1109/TCYB.2020.3030310
– ident: ref12
  doi: 10.1109/TNNLS.2019.2892207
– ident: ref19
  doi: 10.1109/TCYB.2019.2940276
– ident: ref6
  doi: 10.1007/s42154-021-00157-x
– ident: ref10
  doi: 10.1109/TASE.2018.2841358
– ident: ref24
  doi: 10.1016/j.robot.2018.07.008
– ident: ref17
  doi: 10.1109/TCYB.2018.2838573
– start-page: 247
  year: 2020
  ident: ref25
  article-title: Learning from demonstration with model-based Gaussian process
  publication-title: Proc Conf Robot Learn
– ident: ref1
  doi: 10.1109/TCYB.2018.2864784
– ident: ref16
  doi: 10.1177/0278364911402527
– ident: ref2
  doi: 10.1109/TASE.2019.2947071
– ident: ref31
  doi: 10.1016/j.simpat.2006.12.002
– ident: ref5
  doi: 10.1109/LRA.2019.2932610
– volume: 15
  start-page: 949
  year: 2014
  ident: ref23
  article-title: Natural evolution strategies
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1109/LRA.2016.2517825
– ident: ref7
  doi: 10.1109/TRO.2011.2159412
– ident: ref13
  doi: 10.1109/TCYB.2020.2977374
– ident: ref30
  doi: 10.1145/1830483.1830557
– ident: ref14
  doi: 10.1109/TRO.2012.2210294
– ident: ref11
  doi: 10.1109/TSMC.2017.2705279
– ident: ref22
  doi: 10.1007/978-3-642-15844-5_16
– volume: 22
  start-page: 1395
  year: 2021
  ident: ref3
  article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1145/1553374.1553522
– ident: ref28
  doi: 10.1109/TMECH.2017.2717461
SSID ssj0000816898
Score 2.5034223
Snippet Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4002
SubjectTerms Cloning
Dynamic stability
Dynamical system
Dynamical systems
Evolution
exponential natural evolution strategies (NESs)
Heuristic algorithms
imitation learning
Impedance
Motion planning
Motion stability
Obstacle avoidance
Parameters
policy improvement of robustness and adaptability
Probabilistic models
Robot dynamics
Robots
Robustness
Stability analysis
Stability criteria
Stiffness
Supervised learning
Task analysis
Task complexity
Title Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System
URI https://ieeexplore.ieee.org/document/9851639
https://www.ncbi.nlm.nih.gov/pubmed/35930520
https://www.proquest.com/docview/2814553135
https://www.proquest.com/docview/2699705165
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AB8JFBPx4gGZNPKixj3Z3u317VIQQE95BMeKp7k73RSNpCfSR6F_v7EebaJRwa9Ppts3MdH8zO_sbgOdWo8NiUWRVjjyTi0JlujQiK2cOnRTIm7CCfzpXJ5_k-_PyfAVej3thnHOh-MxN_WFYy286XPpU2YEmeEAz6iqsUuAW92qN-ZTQQCK0vuV0kBGqqNIiZpHrg7PDL28pGOScYlTNCRVvwLootfBVIH_MSKHFyv_RZph1jjfhdHjfWGzyY7rs7RR__UXleNcPug_3Evxkb6K9bMGKa7dhKzn4NXuRWKhf7sDXD53tehZ5g1nMPYRUIvv8vf_G5iYQdrCjm2S7bOC5pWEICNOp35TF5pGKw1yxdz9bE7gJWGRJfwAfj4_ODk-y1I4hQwJRfdYoVSLhFydt3hRGCdlQbF1VeWWEFlgYadEZXXI0AlXlq97I2bFyOEO9EA9hre1a9xhY01iJvFhwIYXkuSKMgkrlVtqy8fBvAvmgkBoTU7lvmHFRh4gl17VXZ-3VWSd1TuDVeMtlpOm4TXjHq2IUTFqYwP6g9To58nXNZ57JXRSinMCz8TK5oF9XMa3rliSjtK7o56ZI5lG0lnHswch2__3MPdjw_etj7dk-rPVXS_eEUE5vnwbz_g1qDfTF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGkGAvwBiwg8EyiQdA9NYmaXp5hLHpYLt7gEOMp5K6OTGBWrT1kOCvx_nRSiBAe2tVN21lu_4SO58BHlcaLWbLLClS5IlcZirRuRFJPrFopUBe-wz-bK6m7-Wb0_x0DZ4Pe2Gstb74zI7doc_l1y2u3FLZviZ4QBH1ClyluJ9nYbfWsKLiW0j45recDhLCFUVMY2ap3l8cfHxJ00HOaZaqOeHiDbgmci1cHchvMck3Wfk33vRx5-gmzPo3DuUmX8arrhrjzz_IHC_7SbfgRgSg7EWwmE1Ys81t2IwufsGeRB7qp1vw6W1btR0LzMEsrD74xUT24az7zObGU3aww-_RelnPdEvDEBSmU7cti80DGYc5Z69-NMazE7DAk34H3h0dLg6mSWzIkCDBqC6plcqREIyVVVpnRglZ0-y6KNLCCC0wM7JCa3TO0QhUhat7I3fHwuIE9VLchfWmbew2sLquJPJsyYUUkqeKUAoqlVayymsHAEeQ9gopMXKVu5YZX0s_Z0l16dRZOnWWUZ0jeDbc8i0QdfxPeMupYhCMWhjBTq_1MrryRcknjstdZCIfwd5wmZzQZVZMY9sVySitC_q9KZK5F6xlGLs3svt_f-YuXJ8uZiflyev58QPYcN3sQyXaDqx35yv7kDBPVz3ypv4LVpf4Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+Policy+Improvement+With+Natural+Evolution+Strategies+for+Stable+Nonlinear+Dynamical+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Hu%2C+Yingbai&rft.au=Chen%2C+Guang&rft.au=Li%2C+Zhijun&rft.au=Knoll%2C+Alois&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=53&rft.issue=6&rft.spage=4002&rft.epage=4014&rft_id=info:doi/10.1109%2FTCYB.2022.3192049&rft_id=info%3Apmid%2F35930520&rft.externalDocID=9851639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon