Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System
Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learni...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 6; pp. 4002 - 4014 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning. |
---|---|
AbstractList | Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning. Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning. |
Author | Li, Zhijun Hu, Yingbai Chen, Guang Knoll, Alois |
Author_xml | – sequence: 1 givenname: Yingbai orcidid: 0000-0003-2452-3570 surname: Hu fullname: Hu, Yingbai email: yingbai.hu@tum.de organization: Department of Informatics, Technical University of Munich, Munich, Germany – sequence: 2 givenname: Guang orcidid: 0000-0002-7416-592X surname: Chen fullname: Chen, Guang email: guangchen@tongji.edu.cn organization: Department of Informatics, Technical University of Munich, Munich, Germany – sequence: 3 givenname: Zhijun orcidid: 0000-0002-3909-488X surname: Li fullname: Li, Zhijun email: zjli@ieee.org organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Alois orcidid: 0000-0003-4840-076X surname: Knoll fullname: Knoll, Alois email: knoll@mytum.de organization: Department of Informatics, Technical University of Munich, Munich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35930520$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vVCEUxYmpsbX2AxgTQ-LGzYz8ecBjqWPVJk01ThPjCnnMHaXhQQVek_n28jLTLrqQDVzyOzf3nvMcHcUUAaGXlCwpJfrd9ernhyUjjC051Yx0-gk6YVT2C8aUOHp4S3WMzkq5Ie307Uv3z9AxF5oTwcgJ-vU9Danibyl4t8MX421OdzBCrPiHr3_wla1TtgGf36UwVZ8iXtdsK_z2UPA25VbaIQC-SjH4CDbjj7toR--aZr0rFcYX6OnWhgJnh_sUrT-dX6--LC6_fr5Yvb9cOK5ZXWykFK7jGrqBbKiVvNt0UitFlOWaO2q7wYHVgjnLnVSMEK505xS43uktP0Vv913b_H8nKNWMvjgIwUZIUzFMaq2IoFI09M0j9CZNObbZDOtpJwSnfKZeH6hpGGFjbrMfbd6Ze-caoPaAy6mUDFvjfLWzRc0gHwwlZo7JzDGZOSZziKkp6SPlffP_aV7tNR4AHnjdt42aPf8A_k2cUA |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TMRB_2024_3387040 crossref_primary_10_1109_TIM_2024_3403172 crossref_primary_10_1109_TVT_2024_3424871 crossref_primary_10_1109_TASE_2023_3345919 crossref_primary_10_1088_2631_8695_ad8d32 crossref_primary_10_1142_S273748072350019X crossref_primary_10_1109_TCYB_2025_3531433 crossref_primary_10_3390_s23042186 crossref_primary_10_1109_TCYB_2023_3298195 crossref_primary_10_1109_TFUZZ_2023_3328884 crossref_primary_10_1016_j_anucene_2023_110171 crossref_primary_10_1109_LRA_2023_3322094 crossref_primary_10_1109_TNSRE_2023_3315373 crossref_primary_10_3389_fnins_2023_1219363 crossref_primary_10_1109_TASE_2024_3379364 crossref_primary_10_1109_TASE_2024_3418018 crossref_primary_10_1109_TMRB_2024_3389490 crossref_primary_10_3390_act12120461 crossref_primary_10_1109_TASE_2024_3378915 crossref_primary_10_3389_fnins_2024_1344841 crossref_primary_10_1007_s41315_024_00353_y crossref_primary_10_1016_j_isatra_2024_01_007 crossref_primary_10_1109_TCYB_2024_3395626 crossref_primary_10_3389_fnins_2023_1213176 crossref_primary_10_1002_aisy_202400068 crossref_primary_10_1109_LRA_2024_3355635 crossref_primary_10_3389_fnins_2023_1254088 |
Cites_doi | 10.1016/j.robot.2014.03.001 10.1109/TIE.2018.2884240 10.1109/ICASSP.2007.366913 10.1109/IROS40897.2019.8968496 10.1007/s10514-017-9636-y 10.2478/pjbr-2013-0003 10.1162/NECO_a_00393 10.1109/TCYB.2020.3030310 10.1109/TNNLS.2019.2892207 10.1109/TCYB.2019.2940276 10.1007/s42154-021-00157-x 10.1109/TASE.2018.2841358 10.1016/j.robot.2018.07.008 10.1109/TCYB.2018.2838573 10.1109/TCYB.2018.2864784 10.1177/0278364911402527 10.1109/TASE.2019.2947071 10.1016/j.simpat.2006.12.002 10.1109/LRA.2019.2932610 10.1109/LRA.2016.2517825 10.1109/TRO.2011.2159412 10.1109/TCYB.2020.2977374 10.1145/1830483.1830557 10.1109/TRO.2012.2210294 10.1109/TSMC.2017.2705279 10.1007/978-3-642-15844-5_16 10.1145/1553374.1553522 10.1109/TMECH.2017.2717461 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2022.3192049 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4014 |
ExternalDocumentID | 35930520 10_1109_TCYB_2022_3192049 9851639 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: ZJ Lab – fundername: Anhui Provincial Natural Science Foundation, Anhui Energy-Internet Joint Program grantid: 2008085UD01 funderid: 10.13039/501100003995 – fundername: Shanghai Rising Star Program grantid: 21QC1400900 – fundername: European Union’s Horizon 2020 Framework Program for Research and Innovation grantid: 945539 (Human Brain Project SGA3) – fundername: Shanghai Center for Brain Science and Brain-Inspired Technology – fundername: National Natural Science Foundation of China grantid: 62133013; U2013601 funderid: 10.13039/501100001809 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2018SHZDZX01 – fundername: Major Science and Technology Projects of Anhui Province grantid: 202103a05020004 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c392t-d665c439e4b0d1a634d4697707a393c1a4bcea952ca3c672003794c7ec8c9f3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 06:35:59 EDT 2025 Mon Jun 30 03:02:55 EDT 2025 Thu Jan 02 22:51:30 EST 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 00:54:03 EDT 2025 Wed Aug 27 02:50:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-d665c439e4b0d1a634d4697707a393c1a4bcea952ca3c672003794c7ec8c9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4840-076X 0000-0002-3909-488X 0000-0003-2452-3570 0000-0002-7416-592X |
OpenAccessLink | https://mediatum.ub.tum.de/doc/1685409/document.pdf |
PMID | 35930520 |
PQID | 2814553135 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2699705165 ieee_primary_9851639 proquest_journals_2814553135 pubmed_primary_35930520 crossref_citationtrail_10_1109_TCYB_2022_3192049 crossref_primary_10_1109_TCYB_2022_3192049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 saveriano (ref4) 2021 ref15 ref14 ref31 ref30 kroemer (ref3) 2021; 22 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 jaquier (ref25) 2020 wierstra (ref23) 2014; 15 ref24 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref6 ref5 |
References_xml | – ident: ref8 doi: 10.1016/j.robot.2014.03.001 – ident: ref21 doi: 10.1109/TIE.2018.2884240 – ident: ref32 doi: 10.1109/ICASSP.2007.366913 – ident: ref15 doi: 10.1109/IROS40897.2019.8968496 – ident: ref18 doi: 10.1007/s10514-017-9636-y – year: 2021 ident: ref4 article-title: Dynamic movement primitives in robotics: A tutorial survey publication-title: arXiv 2102 03861 – ident: ref20 doi: 10.2478/pjbr-2013-0003 – ident: ref27 doi: 10.1162/NECO_a_00393 – ident: ref9 doi: 10.1109/TCYB.2020.3030310 – ident: ref12 doi: 10.1109/TNNLS.2019.2892207 – ident: ref19 doi: 10.1109/TCYB.2019.2940276 – ident: ref6 doi: 10.1007/s42154-021-00157-x – ident: ref10 doi: 10.1109/TASE.2018.2841358 – ident: ref24 doi: 10.1016/j.robot.2018.07.008 – ident: ref17 doi: 10.1109/TCYB.2018.2838573 – start-page: 247 year: 2020 ident: ref25 article-title: Learning from demonstration with model-based Gaussian process publication-title: Proc Conf Robot Learn – ident: ref1 doi: 10.1109/TCYB.2018.2864784 – ident: ref16 doi: 10.1177/0278364911402527 – ident: ref2 doi: 10.1109/TASE.2019.2947071 – ident: ref31 doi: 10.1016/j.simpat.2006.12.002 – ident: ref5 doi: 10.1109/LRA.2019.2932610 – volume: 15 start-page: 949 year: 2014 ident: ref23 article-title: Natural evolution strategies publication-title: J Mach Learn Res – ident: ref26 doi: 10.1109/LRA.2016.2517825 – ident: ref7 doi: 10.1109/TRO.2011.2159412 – ident: ref13 doi: 10.1109/TCYB.2020.2977374 – ident: ref30 doi: 10.1145/1830483.1830557 – ident: ref14 doi: 10.1109/TRO.2012.2210294 – ident: ref11 doi: 10.1109/TSMC.2017.2705279 – ident: ref22 doi: 10.1007/978-3-642-15844-5_16 – volume: 22 start-page: 1395 year: 2021 ident: ref3 article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms publication-title: J Mach Learn Res – ident: ref29 doi: 10.1145/1553374.1553522 – ident: ref28 doi: 10.1109/TMECH.2017.2717461 |
SSID | ssj0000816898 |
Score | 2.5034223 |
Snippet | Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4002 |
SubjectTerms | Cloning Dynamic stability Dynamical system Dynamical systems Evolution exponential natural evolution strategies (NESs) Heuristic algorithms imitation learning Impedance Motion planning Motion stability Obstacle avoidance Parameters policy improvement of robustness and adaptability Probabilistic models Robot dynamics Robots Robustness Stability analysis Stability criteria Stiffness Supervised learning Task analysis Task complexity |
Title | Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System |
URI | https://ieeexplore.ieee.org/document/9851639 https://www.ncbi.nlm.nih.gov/pubmed/35930520 https://www.proquest.com/docview/2814553135 https://www.proquest.com/docview/2699705165 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AB8JFBPx4gGZNPKixj3Z3u317VIQQE95BMeKp7k73RSNpCfSR6F_v7EebaJRwa9Ppts3MdH8zO_sbgOdWo8NiUWRVjjyTi0JlujQiK2cOnRTIm7CCfzpXJ5_k-_PyfAVej3thnHOh-MxN_WFYy286XPpU2YEmeEAz6iqsUuAW92qN-ZTQQCK0vuV0kBGqqNIiZpHrg7PDL28pGOScYlTNCRVvwLootfBVIH_MSKHFyv_RZph1jjfhdHjfWGzyY7rs7RR__UXleNcPug_3Evxkb6K9bMGKa7dhKzn4NXuRWKhf7sDXD53tehZ5g1nMPYRUIvv8vf_G5iYQdrCjm2S7bOC5pWEICNOp35TF5pGKw1yxdz9bE7gJWGRJfwAfj4_ODk-y1I4hQwJRfdYoVSLhFydt3hRGCdlQbF1VeWWEFlgYadEZXXI0AlXlq97I2bFyOEO9EA9hre1a9xhY01iJvFhwIYXkuSKMgkrlVtqy8fBvAvmgkBoTU7lvmHFRh4gl17VXZ-3VWSd1TuDVeMtlpOm4TXjHq2IUTFqYwP6g9To58nXNZ57JXRSinMCz8TK5oF9XMa3rliSjtK7o56ZI5lG0lnHswch2__3MPdjw_etj7dk-rPVXS_eEUE5vnwbz_g1qDfTF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGkGAvwBiwg8EyiQdA9NYmaXp5hLHpYLt7gEOMp5K6OTGBWrT1kOCvx_nRSiBAe2tVN21lu_4SO58BHlcaLWbLLClS5IlcZirRuRFJPrFopUBe-wz-bK6m7-Wb0_x0DZ4Pe2Gstb74zI7doc_l1y2u3FLZviZ4QBH1ClyluJ9nYbfWsKLiW0j45recDhLCFUVMY2ap3l8cfHxJ00HOaZaqOeHiDbgmci1cHchvMck3Wfk33vRx5-gmzPo3DuUmX8arrhrjzz_IHC_7SbfgRgSg7EWwmE1Ys81t2IwufsGeRB7qp1vw6W1btR0LzMEsrD74xUT24az7zObGU3aww-_RelnPdEvDEBSmU7cti80DGYc5Z69-NMazE7DAk34H3h0dLg6mSWzIkCDBqC6plcqREIyVVVpnRglZ0-y6KNLCCC0wM7JCa3TO0QhUhat7I3fHwuIE9VLchfWmbew2sLquJPJsyYUUkqeKUAoqlVayymsHAEeQ9gopMXKVu5YZX0s_Z0l16dRZOnWWUZ0jeDbc8i0QdfxPeMupYhCMWhjBTq_1MrryRcknjstdZCIfwd5wmZzQZVZMY9sVySitC_q9KZK5F6xlGLs3svt_f-YuXJ8uZiflyev58QPYcN3sQyXaDqx35yv7kDBPVz3ypv4LVpf4Dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+Policy+Improvement+With+Natural+Evolution+Strategies+for+Stable+Nonlinear+Dynamical+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Hu%2C+Yingbai&rft.au=Chen%2C+Guang&rft.au=Li%2C+Zhijun&rft.au=Knoll%2C+Alois&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=53&rft.issue=6&rft.spage=4002&rft.epage=4014&rft_id=info:doi/10.1109%2FTCYB.2022.3192049&rft_id=info%3Apmid%2F35930520&rft.externalDocID=9851639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |