Maximum margin partial label learning
Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling inf...
Saved in:
Published in | Machine learning Vol. 106; no. 4; pp. 573 - 593 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partial label learning aims to learn from training examples each associated with a set of
candidate
labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of
ground-truth label identification
and
margin maximization
iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches. |
---|---|
AbstractList | Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of ground-truth label identification and margin maximization iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches. Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of ground-truth label identification and margin maximization iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches. |
Author | Zhang, Min-Ling Yu, Fei |
Author_xml | – sequence: 1 givenname: Fei surname: Yu fullname: Yu, Fei organization: School of Computer Science and Engineering, Southeast University, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education – sequence: 2 givenname: Min-Ling orcidid: 0000-0003-1880-5918 surname: Zhang fullname: Zhang, Min-Ling email: zhangml@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeCCF6ik-zm6yjFL6h40XNId6clZTdbk13Qf2_KepCCXmbm8Lwvw3NKJqELSMgFgxsGoG4TA2NKCkxSIUHS8ohMmVAFBSHFhExBa0El4-KEnKa0BQAutZySqxf36duhnbcubnyY71zsvWvmjVthnuhi8GFzRo7Xrkl4_rNn5P3h_m3xRJevj8-LuyWtCsN7WvNVhXWFogTDaimNzIPlSzl0mqtVzR0i1nUhFaAsy7UUXBRGKoSirk0xI9dj7y52HwOm3rY-Vdg0LmA3JMsMlByUgjKjlwfothtiyN9ZprU0hVZCZ0qNVBW7lCKubeV71_su9NH5xjKwe3121GezPrvXZ_f97CC5iz5L-vo3w8dMymzYYPz105-hb6t-gh4 |
CitedBy_id | crossref_primary_10_1007_s00500_019_04269_9 crossref_primary_10_1109_ACCESS_2020_3042838 crossref_primary_10_1109_TMM_2023_3338080 crossref_primary_10_23919_JSEE_2022_000102 crossref_primary_10_1109_TPAMI_2020_2985210 crossref_primary_10_1109_TPAMI_2021_3059290 crossref_primary_10_1016_j_ins_2022_04_044 crossref_primary_10_1109_TNNLS_2021_3118362 crossref_primary_10_1109_TCYB_2020_3000053 crossref_primary_10_1109_TPAMI_2024_3455260 crossref_primary_10_1145_3498333 crossref_primary_10_1007_s10489_023_04548_x crossref_primary_10_1145_3494565 crossref_primary_10_1109_TKDE_2022_3232482 crossref_primary_10_1109_TCSVT_2022_3192907 crossref_primary_10_1109_TNNLS_2019_2945133 crossref_primary_10_1016_j_ins_2021_11_070 crossref_primary_10_1109_TMM_2021_3109438 crossref_primary_10_1109_TCYB_2020_2990908 crossref_primary_10_1016_j_ins_2022_07_175 crossref_primary_10_1109_TNNLS_2021_3125366 crossref_primary_10_1007_s13042_021_01470_x crossref_primary_10_1109_TKDE_2019_2933837 crossref_primary_10_1016_j_neucom_2024_127822 crossref_primary_10_1007_s11432_023_3771_6 crossref_primary_10_1109_TPAMI_2022_3228755 crossref_primary_10_1109_TKDE_2024_3367721 crossref_primary_10_46300_9106_2022_16_35 crossref_primary_10_1109_TNNLS_2022_3191726 crossref_primary_10_1145_3558547 crossref_primary_10_1109_TNNLS_2021_3083397 crossref_primary_10_1109_TKDE_2024_3405489 crossref_primary_10_1109_TMM_2024_3402534 crossref_primary_10_3390_electronics13234754 crossref_primary_10_1109_TNNLS_2021_3071924 crossref_primary_10_1109_TPAMI_2021_3120012 crossref_primary_10_1109_TKDE_2017_2721942 crossref_primary_10_1007_s11390_021_0992_x crossref_primary_10_1109_TIT_2022_3187948 crossref_primary_10_32604_iasc_2023_040497 crossref_primary_10_1017_S0269888920000417 crossref_primary_10_1007_s10489_021_03137_0 crossref_primary_10_1109_TPAMI_2020_3017456 crossref_primary_10_1109_TAI_2022_3148059 crossref_primary_10_1109_TCSVT_2021_3139968 crossref_primary_10_1016_j_knosys_2021_107116 crossref_primary_10_1109_TKDE_2024_3365691 crossref_primary_10_1007_s00500_020_05203_0 crossref_primary_10_1109_TNNLS_2021_3084373 crossref_primary_10_1007_s10489_024_05639_z crossref_primary_10_1186_s12859_022_04681_3 crossref_primary_10_1145_3379501 crossref_primary_10_1016_j_ins_2024_121163 crossref_primary_10_1109_TNNLS_2019_2933530 crossref_primary_10_1016_j_ins_2024_121043 crossref_primary_10_1016_j_ins_2021_12_093 crossref_primary_10_1016_j_ins_2022_07_114 crossref_primary_10_1145_3569421 crossref_primary_10_1109_TCYB_2021_3107422 |
Cites_doi | 10.1109/TIFS.2014.2359642 10.1017/CBO9780511804441 10.1016/j.artint.2013.06.003 10.7551/mitpress/9780262033589.001.0001 10.1109/TKDE.2013.39 10.1109/72.991427 10.1016/S0004-3702(96)00034-3 10.2200/S00196ED1V01Y200906AIM006 10.1145/2339530.2339616 10.1145/2939672.2939788 10.1109/CVPR.2009.5206667 10.1145/1401890.1401958 10.1145/2716262 10.1137/1.9781611973440.5 10.1109/CVPR.2013.97 10.3233/IDA-2006-10503 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Machine Learning is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Author(s) 2016 – notice: Machine Learning is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-016-5606-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 593 |
ExternalDocumentID | 4321660303 10_1007_s10994_016_5606_4 |
Genre | Feature |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61222309; 61573104 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c392t-d2bcedce54091d6696d6611d67aea827bd2aeeedd3670e644f65253967e03dd93 |
IEDL.DBID | U2A |
ISSN | 0885-6125 |
IngestDate | Fri Jul 11 01:45:52 EDT 2025 Fri Jul 25 02:30:32 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Tue Jul 01 00:46:05 EDT 2025 Fri Feb 21 02:28:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Disambiguation Maximum margin Candidate label Partial label learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-d2bcedce54091d6696d6611d67aea827bd2aeeedd3670e644f65253967e03dd93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1880-5918 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-016-5606-4.pdf |
PQID | 1886938758 |
PQPubID | 54194 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1904207704 proquest_journals_1886938758 crossref_citationtrail_10_1007_s10994_016_5606_4 crossref_primary_10_1007_s10994_016_5606_4 springer_journals_10_1007_s10994_016_5606_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170400 2017-4-00 20170401 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 4 year: 2017 text: 20170400 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Côme, Oukhellou, Denœux, Aknin, Dubois, Lubiano, Prade, Gil, Grzegorzewski, Hryniewicz (CR9) 2008 Hsu, Lin (CR19) 2002; 13 Cour, Sapp, Taskar (CR11) 2011; 12 Panis, Lanitis, Agapito, Bronstein, Rother (CR27) 2015 Zhu, Goldberg (CR36) 2009; 3 Crammer, Singer (CR12) 2001; 2 Heller, Tompkins, Kuhn, Tucker (CR18) 1956 Cid-Sueiro, Pereira, Burges, Bottou, Weinberger (CR8) 2012 CR16 CR15 CR35 CR33 CR10 CR32 CR31 Chapelle, Sindhwani, Keerthi (CR6) 2008; 9 CR30 Hüllermeier, Beringer (CR20) 2006; 10 Liu, Dietterich, Pereira, Burges, Bottou, Weinberger (CR24) 2012 Dietterich, Lathrop, Lozano-Pérez (CR13) 1997; 89 CR2 CR4 Chen, Patel, Chellappa, Phillips (CR7) 2014; 9 Jie, Orabona, Lafferty, Williams, Shawe-Taylor, Zemel, Culotta (CR21) 2010 Amores (CR1) 2013; 201 Fan, Chang, Hsieh, Wang, Lin (CR14) 2008; 9 CR29 CR26 CR25 Guillaumin, Verbeek, Schmid, Daniilidis, Maragos, Paragios (CR17) 2010 CR23 Boyd, Vandenberghe (CR3) 2004 Zhang, Zhou (CR34) 2014; 26 Jin, Ghahramani, Becker, Thrun, Obermayer (CR22) 2003 Papadimitriou, Steiglitz (CR28) 1998 Chapelle, Schölkopf, Zien (CR5) 2006 RE Fan (5606_CR14) 2008; 9 G Panis (5606_CR27) 2015 R Jin (5606_CR22) 2003 J Cid-Sueiro (5606_CR8) 2012 M Guillaumin (5606_CR17) 2010 L Jie (5606_CR21) 2010 E Côme (5606_CR9) 2008 O Chapelle (5606_CR6) 2008; 9 K Crammer (5606_CR12) 2001; 2 L Liu (5606_CR24) 2012 O Chapelle (5606_CR5) 2006 5606_CR29 T Cour (5606_CR11) 2011; 12 5606_CR23 5606_CR26 I Heller (5606_CR18) 1956 5606_CR25 TG Dietterich (5606_CR13) 1997; 89 CH Papadimitriou (5606_CR28) 1998 E Hüllermeier (5606_CR20) 2006; 10 S Boyd (5606_CR3) 2004 X Zhu (5606_CR36) 2009; 3 ML Zhang (5606_CR34) 2014; 26 5606_CR31 5606_CR4 5606_CR30 5606_CR33 5606_CR10 5606_CR32 YC Chen (5606_CR7) 2014; 9 5606_CR2 5606_CR16 CW Hsu (5606_CR19) 2002; 13 5606_CR35 5606_CR15 J Amores (5606_CR1) 2013; 201 |
References_xml | – ident: CR4 – ident: CR2 – ident: CR16 – start-page: 1504 year: 2010 end-page: 1512 ident: CR21 article-title: Learning from candidate labeling sets publication-title: Advances in neural information processing systems – start-page: 921 year: 2003 end-page: 928 ident: CR22 article-title: Learning with multiple labels publication-title: Advances in neural information processing systems – year: 1998 ident: CR28 publication-title: Combinatorial optimization: Algorithms and complexity – ident: CR30 – start-page: 165 year: 2008 end-page: 174 ident: CR9 article-title: Mixture model estimation with soft labels publication-title: Advances in soft computing – ident: CR10 – volume: 2 start-page: 265 year: 2001 end-page: 292 ident: CR12 article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: Journal of Machine Learning Research – ident: CR33 – ident: CR35 – ident: CR29 – start-page: 634 year: 2010 end-page: 647 ident: CR17 article-title: Multiple instance metric learning from automatically labeled bags of faces publication-title: Lecture notes in computer science – volume: 9 start-page: 2076 issue: 12 year: 2014 end-page: 2088 ident: CR7 article-title: Ambiguously labeled learning using dictionaries publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2359642 – year: 2004 ident: CR3 publication-title: Convex optimization doi: 10.1017/CBO9780511804441 – ident: CR25 – volume: 201 start-page: 81 year: 2013 end-page: 105 ident: CR1 article-title: Multiple instance classification: Review, taxonomy and comparative study publication-title: Artificial Intelligence doi: 10.1016/j.artint.2013.06.003 – ident: CR23 – year: 2006 ident: CR5 publication-title: Semi-supervised learning doi: 10.7551/mitpress/9780262033589.001.0001 – volume: 10 start-page: 419 issue: 5 year: 2006 end-page: 439 ident: CR20 article-title: Learning from ambiguously labeled examples publication-title: Intelligent Data Analysis – volume: 26 start-page: 1819 issue: 8 year: 2014 end-page: 1937 ident: CR34 article-title: A review on multi-label learning algorithms publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.39 – start-page: 1574 year: 2012 end-page: 1582 ident: CR8 article-title: Proper losses for learning from partial labels publication-title: Advances in neural information processing systems – start-page: 247 year: 1956 end-page: 254 ident: CR18 article-title: An extension of a theorem of dantzig’s publication-title: Linear inequalities and related systems – volume: 12 start-page: 1501 year: 2011 end-page: 1536 ident: CR11 article-title: Learning from partial labels publication-title: Journal of Machine Learning Research – volume: 13 start-page: 415 issue: 2 year: 2002 end-page: 425 ident: CR19 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.991427 – ident: CR15 – start-page: 737 year: 2015 end-page: 750 ident: CR27 article-title: An overview of research activities in facial age estimation using the FG-NET aging database publication-title: Lecture notes in computer science – ident: CR31 – volume: 89 start-page: 31 issue: 1 year: 1997 end-page: 71 ident: CR13 article-title: Solving the multiple instance problem with axis-parallel rectangles publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(96)00034-3 – ident: CR32 – volume: 9 start-page: 203 year: 2008 end-page: 233 ident: CR6 article-title: Optimization techniques for semi-supervised support vector machines publication-title: Journal of Machine Learning Research – volume: 9 start-page: 1871 year: 2008 end-page: 1874 ident: CR14 article-title: Liblinear: A library for large linear classification publication-title: Journal of Machine Learning Research – volume: 3 start-page: 1 issue: 1 year: 2009 end-page: 130 ident: CR36 article-title: Introduction to semi-supervised learning publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00196ED1V01Y200906AIM006 – ident: CR26 – start-page: 557 year: 2012 end-page: 565 ident: CR24 article-title: A conditional multinomial mixture model for superset label learning publication-title: Advances in neural information processing systems – volume-title: Combinatorial optimization: Algorithms and complexity year: 1998 ident: 5606_CR28 – ident: 5606_CR16 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 5606_CR19 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.991427 – ident: 5606_CR4 doi: 10.1145/2339530.2339616 – volume: 9 start-page: 2076 issue: 12 year: 2014 ident: 5606_CR7 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2359642 – start-page: 1504 volume-title: Advances in neural information processing systems year: 2010 ident: 5606_CR21 – volume: 9 start-page: 1871 year: 2008 ident: 5606_CR14 publication-title: Journal of Machine Learning Research – ident: 5606_CR35 doi: 10.1145/2939672.2939788 – ident: 5606_CR10 doi: 10.1109/CVPR.2009.5206667 – ident: 5606_CR26 doi: 10.1145/1401890.1401958 – start-page: 634 volume-title: Lecture notes in computer science year: 2010 ident: 5606_CR17 – ident: 5606_CR33 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 5606_CR36 publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00196ED1V01Y200906AIM006 – start-page: 921 volume-title: Advances in neural information processing systems year: 2003 ident: 5606_CR22 – volume: 201 start-page: 81 year: 2013 ident: 5606_CR1 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2013.06.003 – ident: 5606_CR15 doi: 10.1145/2716262 – volume-title: Semi-supervised learning year: 2006 ident: 5606_CR5 doi: 10.7551/mitpress/9780262033589.001.0001 – volume: 89 start-page: 31 issue: 1 year: 1997 ident: 5606_CR13 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(96)00034-3 – volume-title: Convex optimization year: 2004 ident: 5606_CR3 doi: 10.1017/CBO9780511804441 – ident: 5606_CR2 – start-page: 247 volume-title: Linear inequalities and related systems year: 1956 ident: 5606_CR18 – ident: 5606_CR32 doi: 10.1137/1.9781611973440.5 – volume: 2 start-page: 265 year: 2001 ident: 5606_CR12 publication-title: Journal of Machine Learning Research – volume: 9 start-page: 203 year: 2008 ident: 5606_CR6 publication-title: Journal of Machine Learning Research – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 5606_CR34 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.39 – start-page: 1574 volume-title: Advances in neural information processing systems year: 2012 ident: 5606_CR8 – start-page: 165 volume-title: Advances in soft computing year: 2008 ident: 5606_CR9 – volume: 12 start-page: 1501 year: 2011 ident: 5606_CR11 publication-title: Journal of Machine Learning Research – ident: 5606_CR31 doi: 10.1109/CVPR.2013.97 – start-page: 737 volume-title: Lecture notes in computer science year: 2015 ident: 5606_CR27 – volume: 10 start-page: 419 issue: 5 year: 2006 ident: 5606_CR20 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2006-10503 – ident: 5606_CR30 – ident: 5606_CR23 – start-page: 557 volume-title: Advances in neural information processing systems year: 2012 ident: 5606_CR24 – ident: 5606_CR25 – ident: 5606_CR29 |
SSID | ssj0002686 |
Score | 2.4946654 |
Snippet | Partial label learning aims to learn from training examples each associated with a set of
candidate
labels, among which only one label is valid for the... Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 573 |
SubjectTerms | Artificial Intelligence Computer Science Control Labels Machine learning Mathematical models Maximization Mechatronics Natural Language Processing (NLP) Optimization Robotics Simulation and Modeling Strategy Tasks Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzidUkFflGCbpmnyJCobQ9gQcbC3kq_KwHVzH-Cf76VLNxX0JRSaD7hL7n65u9whdGkjRXJqLRaWJJhqSrHIZYipETaiuY61chfFbo91-vRpkAy8wW3mwyormVgKajPWzkZ-G3HORAzomt9NPrCrGuW8q76ExiaqgwjmcPmqP7R6zy8rWUxYWesRjlKCnS6v_JrLx3NlWtyIYdD6DNOfmmkNN395SEvF095F2x4xBvdLFu-hDVvso52qGkPgD-cBuurKz-FoMQpGcvo2LIKJ2xQwENhsofUmkEPUb7deHzvYF0HAGqDLHBuitIvUBGQlIsOYYNBE8JVKKzlJlSHSgqIzLhObBXSTs4QksWCpDWNjRHyEasW4sMco4IZykku4f8YJVczIJFUKKEQEjXLNeAOFFQEy7TOEu0IV79k6t7GjWeaiwhzNMtpA16shk2V6jP86NyuqZv6kzLI1XxvoYvUb9rhzXMjCjhfQR4BoCdM0hCluKm58m-KvBU_-X_AUbRGnpMs4nCaqzacLewYQY67O_T76AlMLy4g priority: 102 providerName: ProQuest |
Title | Maximum margin partial label learning |
URI | https://link.springer.com/article/10.1007/s10994-016-5606-4 https://www.proquest.com/docview/1886938758 https://www.proquest.com/docview/1904207704 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMLjtxRe_xekcFfRFCbRpkjaPm-wDZUPEwXwqSZPKwHVjH-DP99K12xQVfEkKzQdc7jN3uUPo2niKJNQYLAxhmMaUYpFIF1MtjEeT2I-VNRR7fd4d0IchG-bvuOdFtHvhksw49dZjtyyNrccxSGmOaQlVmDXdAYkHpLFmv4Rn5R2Behi24rtwZf60xFdhtNEwvzlFM1nTPkB7uZLoNFaneoh2THqE9osCDE5Oj8fopic_RuPl2BnL2dsodaYWD2AinKyBNr_1OEGDduvlvovzugc4Bm1lgTVRsQ3OBGVKeJpzwaHx4CuQRoYkUJpIA7JN2-RrBhSahDPCfMED4_paC_8UldNJas6QE2oakkSCyekzqriWLFAKIEQE9ZKYh1XkFgCI4jwpuK1N8R5t0hlbmEU2EMzCLKJVdLueMl1lxPhrcK2AapQTxzzywpALHwwl2P5q_RvQ2voqZGomSxgjgJu4QeDCEnfFaWwt8duG5_8afYF2iRXTWSRODZUXs6W5BCVjoeqoFLY7dVRptJvNvu07r48t6Jut_tNzPUO5T_UgzB0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHODCGzGeRYILKKJN07Q5IISAMR7jBBK3kjYpmsS6AZuAP8VvxO7aDZDgxqWq2jwk54vzJXZsgG3rJTwT1jJlecBEKgRTmXaZMMp6Ikv9NKGNYvNaNm7FxV1wNwYf1V0YcqusdGKhqE0npTPyfS-KpPKRXUeH3SdGWaPIulql0BjA4tK-v-KW7eXg_ATHd4fz-unNcYOVWQVYilygxwxPUnJ9RKqiPCOlkvjw8C3UVkc8TAzXFlcOQ6HNLNKFTAY88JUMresbQ8GXUOVPCB8_0c30-tlQ83NZZJbEiRswYg6VFXVwVa8IwutJhhxDMvF9HRyR2x_22GKZq8_CdMlPnaMBoOZgzObzMFPlfnBKVbAAO0391mr3205bPz-0cqdLEMSKCCqLz_LAZRFu_0U4SzCed3K7DE5kRMQzjbtdPxCJNDoIkwQlxJXwslRGNXArAcRpGY-c0mI8xqNIyiSzmHzQSGaxqMHusEp3EIzjr8JrlVTjcl6-xCMU1WBr-BtnFJlJdG47fSyjUJG5YehiE3vVaHxp4rcOV_7ucBMmGzfNq_jq_PpyFaY40YPCA2gNxnvPfbuO5KaXbBSIcuD-vyH8CaKfB8M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_GBPHFb3E6tYK-KME2TdPmQUTdhl8bIgq-1bRJZeC6OTfUf82_zkvXbiromy-h0HzA5XL3u9zlDmBHOxFNmNZEaOoRFjNGRCJtwpTQDktiN46Modhs8bM7dnHv3Zfgo3gLY8IqC5mYCWrVjc0d-YETBFy4iK6DgyQPi7iuNY56z8RUkDKe1qKcxohFLvX7K5pvL4fnNdzrXUob9dvTM5JXGCAx4oIBUTSKTRgkwhbhKM4Fx8bBL19qGVA_UlRq1CLKpDnTCB0S7lHPFdzXtquUScSE4n_KR6vILsPUSb11fTPWA5RndSbxGHvE4IjCpzp6uJel5HU4QcTBCfuuFSdQ94d3NlN6jXmYzdGqdTxirwUo6XQR5opKEFYuGJZgtynf2p1hx-rI_mM7tXqGIXEgspjGNr9-WYa7fyHPCpTTbqpXwQoUC2gi0fZ1PRZxJT0_ipBCVDAniXlQAbsgQBjn2clNkYyncJJX2dAsNBFphmYhq8DeeEhvlJrjr87VgqphfkpfwglPVWB7_BvPl3GayFR3h9hHoFizfd_GKfaL3fgyxW8Lrv294BZMI_uGV-ety3WYoQYrZOFAVSgP-kO9gUhnEG3mLGXBw39z8Sd4uQ1V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+margin+partial+label+learning&rft.jtitle=Machine+learning&rft.au=Yu%2C+Fei&rft.au=Zhang%2C+Min-Ling&rft.date=2017-04-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=106&rft.issue=4&rft.spage=573&rft.epage=593&rft_id=info:doi/10.1007%2Fs10994-016-5606-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_016_5606_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |