Maximum margin partial label learning

Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling inf...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 106; no. 4; pp. 573 - 593
Main Authors Yu, Fei, Zhang, Min-Ling
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of ground-truth label identification and margin maximization iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches.
AbstractList Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of ground-truth label identification and margin maximization iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches.
Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling information from the candidate label set. As one of the popular machine learning paradigms, maximum margin techniques have been employed to solve the partial label learning problem. Existing attempts perform disambiguation by optimizing the margin between the maximum modeling output from candidate labels and that from non-candidate ones. Nonetheless, this formulation ignores considering the margin between the ground-truth label and other candidate labels. In this paper, a new maximum margin formulation for partial label learning is proposed which directly optimizes the margin between the ground-truth label and all other labels. Specifically, the predictive model is learned via an alternating optimization procedure which coordinates the task of ground-truth label identification and margin maximization iteratively. Extensive experiments on artificial as well as real-world datasets show that the proposed approach is highly competitive to other well-established partial label learning approaches.
Author Zhang, Min-Ling
Yu, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Yu
  fullname: Yu, Fei
  organization: School of Computer Science and Engineering, Southeast University, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education
– sequence: 2
  givenname: Min-Ling
  orcidid: 0000-0003-1880-5918
  surname: Zhang
  fullname: Zhang, Min-Ling
  email: zhangml@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education
BookMark eNp9kE1LAzEQhoNUsFZ_gLeCCF6ik-zm6yjFL6h40XNId6clZTdbk13Qf2_KepCCXmbm8Lwvw3NKJqELSMgFgxsGoG4TA2NKCkxSIUHS8ohMmVAFBSHFhExBa0El4-KEnKa0BQAutZySqxf36duhnbcubnyY71zsvWvmjVthnuhi8GFzRo7Xrkl4_rNn5P3h_m3xRJevj8-LuyWtCsN7WvNVhXWFogTDaimNzIPlSzl0mqtVzR0i1nUhFaAsy7UUXBRGKoSirk0xI9dj7y52HwOm3rY-Vdg0LmA3JMsMlByUgjKjlwfothtiyN9ZprU0hVZCZ0qNVBW7lCKubeV71_su9NH5xjKwe3121GezPrvXZ_f97CC5iz5L-vo3w8dMymzYYPz105-hb6t-gh4
CitedBy_id crossref_primary_10_1007_s00500_019_04269_9
crossref_primary_10_1109_ACCESS_2020_3042838
crossref_primary_10_1109_TMM_2023_3338080
crossref_primary_10_23919_JSEE_2022_000102
crossref_primary_10_1109_TPAMI_2020_2985210
crossref_primary_10_1109_TPAMI_2021_3059290
crossref_primary_10_1016_j_ins_2022_04_044
crossref_primary_10_1109_TNNLS_2021_3118362
crossref_primary_10_1109_TCYB_2020_3000053
crossref_primary_10_1109_TPAMI_2024_3455260
crossref_primary_10_1145_3498333
crossref_primary_10_1007_s10489_023_04548_x
crossref_primary_10_1145_3494565
crossref_primary_10_1109_TKDE_2022_3232482
crossref_primary_10_1109_TCSVT_2022_3192907
crossref_primary_10_1109_TNNLS_2019_2945133
crossref_primary_10_1016_j_ins_2021_11_070
crossref_primary_10_1109_TMM_2021_3109438
crossref_primary_10_1109_TCYB_2020_2990908
crossref_primary_10_1016_j_ins_2022_07_175
crossref_primary_10_1109_TNNLS_2021_3125366
crossref_primary_10_1007_s13042_021_01470_x
crossref_primary_10_1109_TKDE_2019_2933837
crossref_primary_10_1016_j_neucom_2024_127822
crossref_primary_10_1007_s11432_023_3771_6
crossref_primary_10_1109_TPAMI_2022_3228755
crossref_primary_10_1109_TKDE_2024_3367721
crossref_primary_10_46300_9106_2022_16_35
crossref_primary_10_1109_TNNLS_2022_3191726
crossref_primary_10_1145_3558547
crossref_primary_10_1109_TNNLS_2021_3083397
crossref_primary_10_1109_TKDE_2024_3405489
crossref_primary_10_1109_TMM_2024_3402534
crossref_primary_10_3390_electronics13234754
crossref_primary_10_1109_TNNLS_2021_3071924
crossref_primary_10_1109_TPAMI_2021_3120012
crossref_primary_10_1109_TKDE_2017_2721942
crossref_primary_10_1007_s11390_021_0992_x
crossref_primary_10_1109_TIT_2022_3187948
crossref_primary_10_32604_iasc_2023_040497
crossref_primary_10_1017_S0269888920000417
crossref_primary_10_1007_s10489_021_03137_0
crossref_primary_10_1109_TPAMI_2020_3017456
crossref_primary_10_1109_TAI_2022_3148059
crossref_primary_10_1109_TCSVT_2021_3139968
crossref_primary_10_1016_j_knosys_2021_107116
crossref_primary_10_1109_TKDE_2024_3365691
crossref_primary_10_1007_s00500_020_05203_0
crossref_primary_10_1109_TNNLS_2021_3084373
crossref_primary_10_1007_s10489_024_05639_z
crossref_primary_10_1186_s12859_022_04681_3
crossref_primary_10_1145_3379501
crossref_primary_10_1016_j_ins_2024_121163
crossref_primary_10_1109_TNNLS_2019_2933530
crossref_primary_10_1016_j_ins_2024_121043
crossref_primary_10_1016_j_ins_2021_12_093
crossref_primary_10_1016_j_ins_2022_07_114
crossref_primary_10_1145_3569421
crossref_primary_10_1109_TCYB_2021_3107422
Cites_doi 10.1109/TIFS.2014.2359642
10.1017/CBO9780511804441
10.1016/j.artint.2013.06.003
10.7551/mitpress/9780262033589.001.0001
10.1109/TKDE.2013.39
10.1109/72.991427
10.1016/S0004-3702(96)00034-3
10.2200/S00196ED1V01Y200906AIM006
10.1145/2339530.2339616
10.1145/2939672.2939788
10.1109/CVPR.2009.5206667
10.1145/1401890.1401958
10.1145/2716262
10.1137/1.9781611973440.5
10.1109/CVPR.2013.97
10.3233/IDA-2006-10503
ContentType Journal Article
Copyright The Author(s) 2016
Machine Learning is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2016
– notice: Machine Learning is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-016-5606-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 593
ExternalDocumentID 4321660303
10_1007_s10994_016_5606_4
Genre Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61222309; 61573104
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c392t-d2bcedce54091d6696d6611d67aea827bd2aeeedd3670e644f65253967e03dd93
IEDL.DBID U2A
ISSN 0885-6125
IngestDate Fri Jul 11 01:45:52 EDT 2025
Fri Jul 25 02:30:32 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Tue Jul 01 00:46:05 EDT 2025
Fri Feb 21 02:28:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Disambiguation
Maximum margin
Candidate label
Partial label learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-d2bcedce54091d6696d6611d67aea827bd2aeeedd3670e644f65253967e03dd93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1880-5918
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-016-5606-4.pdf
PQID 1886938758
PQPubID 54194
PageCount 21
ParticipantIDs proquest_miscellaneous_1904207704
proquest_journals_1886938758
crossref_citationtrail_10_1007_s10994_016_5606_4
crossref_primary_10_1007_s10994_016_5606_4
springer_journals_10_1007_s10994_016_5606_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170400
2017-4-00
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 4
  year: 2017
  text: 20170400
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Côme, Oukhellou, Denœux, Aknin, Dubois, Lubiano, Prade, Gil, Grzegorzewski, Hryniewicz (CR9) 2008
Hsu, Lin (CR19) 2002; 13
Cour, Sapp, Taskar (CR11) 2011; 12
Panis, Lanitis, Agapito, Bronstein, Rother (CR27) 2015
Zhu, Goldberg (CR36) 2009; 3
Crammer, Singer (CR12) 2001; 2
Heller, Tompkins, Kuhn, Tucker (CR18) 1956
Cid-Sueiro, Pereira, Burges, Bottou, Weinberger (CR8) 2012
CR16
CR15
CR35
CR33
CR10
CR32
CR31
Chapelle, Sindhwani, Keerthi (CR6) 2008; 9
CR30
Hüllermeier, Beringer (CR20) 2006; 10
Liu, Dietterich, Pereira, Burges, Bottou, Weinberger (CR24) 2012
Dietterich, Lathrop, Lozano-Pérez (CR13) 1997; 89
CR2
CR4
Chen, Patel, Chellappa, Phillips (CR7) 2014; 9
Jie, Orabona, Lafferty, Williams, Shawe-Taylor, Zemel, Culotta (CR21) 2010
Amores (CR1) 2013; 201
Fan, Chang, Hsieh, Wang, Lin (CR14) 2008; 9
CR29
CR26
CR25
Guillaumin, Verbeek, Schmid, Daniilidis, Maragos, Paragios (CR17) 2010
CR23
Boyd, Vandenberghe (CR3) 2004
Zhang, Zhou (CR34) 2014; 26
Jin, Ghahramani, Becker, Thrun, Obermayer (CR22) 2003
Papadimitriou, Steiglitz (CR28) 1998
Chapelle, Schölkopf, Zien (CR5) 2006
RE Fan (5606_CR14) 2008; 9
G Panis (5606_CR27) 2015
R Jin (5606_CR22) 2003
J Cid-Sueiro (5606_CR8) 2012
M Guillaumin (5606_CR17) 2010
L Jie (5606_CR21) 2010
E Côme (5606_CR9) 2008
O Chapelle (5606_CR6) 2008; 9
K Crammer (5606_CR12) 2001; 2
L Liu (5606_CR24) 2012
O Chapelle (5606_CR5) 2006
5606_CR29
T Cour (5606_CR11) 2011; 12
5606_CR23
5606_CR26
I Heller (5606_CR18) 1956
5606_CR25
TG Dietterich (5606_CR13) 1997; 89
CH Papadimitriou (5606_CR28) 1998
E Hüllermeier (5606_CR20) 2006; 10
S Boyd (5606_CR3) 2004
X Zhu (5606_CR36) 2009; 3
ML Zhang (5606_CR34) 2014; 26
5606_CR31
5606_CR4
5606_CR30
5606_CR33
5606_CR10
5606_CR32
YC Chen (5606_CR7) 2014; 9
5606_CR2
5606_CR16
CW Hsu (5606_CR19) 2002; 13
5606_CR35
5606_CR15
J Amores (5606_CR1) 2013; 201
References_xml – ident: CR4
– ident: CR2
– ident: CR16
– start-page: 1504
  year: 2010
  end-page: 1512
  ident: CR21
  article-title: Learning from candidate labeling sets
  publication-title: Advances in neural information processing systems
– start-page: 921
  year: 2003
  end-page: 928
  ident: CR22
  article-title: Learning with multiple labels
  publication-title: Advances in neural information processing systems
– year: 1998
  ident: CR28
  publication-title: Combinatorial optimization: Algorithms and complexity
– ident: CR30
– start-page: 165
  year: 2008
  end-page: 174
  ident: CR9
  article-title: Mixture model estimation with soft labels
  publication-title: Advances in soft computing
– ident: CR10
– volume: 2
  start-page: 265
  year: 2001
  end-page: 292
  ident: CR12
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: Journal of Machine Learning Research
– ident: CR33
– ident: CR35
– ident: CR29
– start-page: 634
  year: 2010
  end-page: 647
  ident: CR17
  article-title: Multiple instance metric learning from automatically labeled bags of faces
  publication-title: Lecture notes in computer science
– volume: 9
  start-page: 2076
  issue: 12
  year: 2014
  end-page: 2088
  ident: CR7
  article-title: Ambiguously labeled learning using dictionaries
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2359642
– year: 2004
  ident: CR3
  publication-title: Convex optimization
  doi: 10.1017/CBO9780511804441
– ident: CR25
– volume: 201
  start-page: 81
  year: 2013
  end-page: 105
  ident: CR1
  article-title: Multiple instance classification: Review, taxonomy and comparative study
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2013.06.003
– ident: CR23
– year: 2006
  ident: CR5
  publication-title: Semi-supervised learning
  doi: 10.7551/mitpress/9780262033589.001.0001
– volume: 10
  start-page: 419
  issue: 5
  year: 2006
  end-page: 439
  ident: CR20
  article-title: Learning from ambiguously labeled examples
  publication-title: Intelligent Data Analysis
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  end-page: 1937
  ident: CR34
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.39
– start-page: 1574
  year: 2012
  end-page: 1582
  ident: CR8
  article-title: Proper losses for learning from partial labels
  publication-title: Advances in neural information processing systems
– start-page: 247
  year: 1956
  end-page: 254
  ident: CR18
  article-title: An extension of a theorem of dantzig’s
  publication-title: Linear inequalities and related systems
– volume: 12
  start-page: 1501
  year: 2011
  end-page: 1536
  ident: CR11
  article-title: Learning from partial labels
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  ident: CR19
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991427
– ident: CR15
– start-page: 737
  year: 2015
  end-page: 750
  ident: CR27
  article-title: An overview of research activities in facial age estimation using the FG-NET aging database
  publication-title: Lecture notes in computer science
– ident: CR31
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  end-page: 71
  ident: CR13
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(96)00034-3
– ident: CR32
– volume: 9
  start-page: 203
  year: 2008
  end-page: 233
  ident: CR6
  article-title: Optimization techniques for semi-supervised support vector machines
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: CR14
  article-title: Liblinear: A library for large linear classification
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  end-page: 130
  ident: CR36
  article-title: Introduction to semi-supervised learning
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00196ED1V01Y200906AIM006
– ident: CR26
– start-page: 557
  year: 2012
  end-page: 565
  ident: CR24
  article-title: A conditional multinomial mixture model for superset label learning
  publication-title: Advances in neural information processing systems
– volume-title: Combinatorial optimization: Algorithms and complexity
  year: 1998
  ident: 5606_CR28
– ident: 5606_CR16
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 5606_CR19
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991427
– ident: 5606_CR4
  doi: 10.1145/2339530.2339616
– volume: 9
  start-page: 2076
  issue: 12
  year: 2014
  ident: 5606_CR7
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2359642
– start-page: 1504
  volume-title: Advances in neural information processing systems
  year: 2010
  ident: 5606_CR21
– volume: 9
  start-page: 1871
  year: 2008
  ident: 5606_CR14
  publication-title: Journal of Machine Learning Research
– ident: 5606_CR35
  doi: 10.1145/2939672.2939788
– ident: 5606_CR10
  doi: 10.1109/CVPR.2009.5206667
– ident: 5606_CR26
  doi: 10.1145/1401890.1401958
– start-page: 634
  volume-title: Lecture notes in computer science
  year: 2010
  ident: 5606_CR17
– ident: 5606_CR33
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 5606_CR36
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00196ED1V01Y200906AIM006
– start-page: 921
  volume-title: Advances in neural information processing systems
  year: 2003
  ident: 5606_CR22
– volume: 201
  start-page: 81
  year: 2013
  ident: 5606_CR1
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2013.06.003
– ident: 5606_CR15
  doi: 10.1145/2716262
– volume-title: Semi-supervised learning
  year: 2006
  ident: 5606_CR5
  doi: 10.7551/mitpress/9780262033589.001.0001
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  ident: 5606_CR13
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(96)00034-3
– volume-title: Convex optimization
  year: 2004
  ident: 5606_CR3
  doi: 10.1017/CBO9780511804441
– ident: 5606_CR2
– start-page: 247
  volume-title: Linear inequalities and related systems
  year: 1956
  ident: 5606_CR18
– ident: 5606_CR32
  doi: 10.1137/1.9781611973440.5
– volume: 2
  start-page: 265
  year: 2001
  ident: 5606_CR12
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 203
  year: 2008
  ident: 5606_CR6
  publication-title: Journal of Machine Learning Research
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 5606_CR34
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.39
– start-page: 1574
  volume-title: Advances in neural information processing systems
  year: 2012
  ident: 5606_CR8
– start-page: 165
  volume-title: Advances in soft computing
  year: 2008
  ident: 5606_CR9
– volume: 12
  start-page: 1501
  year: 2011
  ident: 5606_CR11
  publication-title: Journal of Machine Learning Research
– ident: 5606_CR31
  doi: 10.1109/CVPR.2013.97
– start-page: 737
  volume-title: Lecture notes in computer science
  year: 2015
  ident: 5606_CR27
– volume: 10
  start-page: 419
  issue: 5
  year: 2006
  ident: 5606_CR20
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2006-10503
– ident: 5606_CR30
– ident: 5606_CR23
– start-page: 557
  volume-title: Advances in neural information processing systems
  year: 2012
  ident: 5606_CR24
– ident: 5606_CR25
– ident: 5606_CR29
SSID ssj0002686
Score 2.4946654
Snippet Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the...
Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 573
SubjectTerms Artificial Intelligence
Computer Science
Control
Labels
Machine learning
Mathematical models
Maximization
Mechatronics
Natural Language Processing (NLP)
Optimization
Robotics
Simulation and Modeling
Strategy
Tasks
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzidUkFflGCbpmnyJCobQ9gQcbC3kq_KwHVzH-Cf76VLNxX0JRSaD7hL7n65u9whdGkjRXJqLRaWJJhqSrHIZYipETaiuY61chfFbo91-vRpkAy8wW3mwyormVgKajPWzkZ-G3HORAzomt9NPrCrGuW8q76ExiaqgwjmcPmqP7R6zy8rWUxYWesRjlKCnS6v_JrLx3NlWtyIYdD6DNOfmmkNN395SEvF095F2x4xBvdLFu-hDVvso52qGkPgD-cBuurKz-FoMQpGcvo2LIKJ2xQwENhsofUmkEPUb7deHzvYF0HAGqDLHBuitIvUBGQlIsOYYNBE8JVKKzlJlSHSgqIzLhObBXSTs4QksWCpDWNjRHyEasW4sMco4IZykku4f8YJVczIJFUKKEQEjXLNeAOFFQEy7TOEu0IV79k6t7GjWeaiwhzNMtpA16shk2V6jP86NyuqZv6kzLI1XxvoYvUb9rhzXMjCjhfQR4BoCdM0hCluKm58m-KvBU_-X_AUbRGnpMs4nCaqzacLewYQY67O_T76AlMLy4g
  priority: 102
  providerName: ProQuest
Title Maximum margin partial label learning
URI https://link.springer.com/article/10.1007/s10994-016-5606-4
https://www.proquest.com/docview/1886938758
https://www.proquest.com/docview/1904207704
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMLjtxRe_xekcFfRFCbRpkjaPm-wDZUPEwXwqSZPKwHVjH-DP99K12xQVfEkKzQdc7jN3uUPo2niKJNQYLAxhmMaUYpFIF1MtjEeT2I-VNRR7fd4d0IchG-bvuOdFtHvhksw49dZjtyyNrccxSGmOaQlVmDXdAYkHpLFmv4Rn5R2Behi24rtwZf60xFdhtNEwvzlFM1nTPkB7uZLoNFaneoh2THqE9osCDE5Oj8fopic_RuPl2BnL2dsodaYWD2AinKyBNr_1OEGDduvlvovzugc4Bm1lgTVRsQ3OBGVKeJpzwaHx4CuQRoYkUJpIA7JN2-RrBhSahDPCfMED4_paC_8UldNJas6QE2oakkSCyekzqriWLFAKIEQE9ZKYh1XkFgCI4jwpuK1N8R5t0hlbmEU2EMzCLKJVdLueMl1lxPhrcK2AapQTxzzywpALHwwl2P5q_RvQ2voqZGomSxgjgJu4QeDCEnfFaWwt8duG5_8afYF2iRXTWSRODZUXs6W5BCVjoeqoFLY7dVRptJvNvu07r48t6Jut_tNzPUO5T_UgzB0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHODCGzGeRYILKKJN07Q5IISAMR7jBBK3kjYpmsS6AZuAP8VvxO7aDZDgxqWq2jwk54vzJXZsgG3rJTwT1jJlecBEKgRTmXaZMMp6Ikv9NKGNYvNaNm7FxV1wNwYf1V0YcqusdGKhqE0npTPyfS-KpPKRXUeH3SdGWaPIulql0BjA4tK-v-KW7eXg_ATHd4fz-unNcYOVWQVYilygxwxPUnJ9RKqiPCOlkvjw8C3UVkc8TAzXFlcOQ6HNLNKFTAY88JUMresbQ8GXUOVPCB8_0c30-tlQ83NZZJbEiRswYg6VFXVwVa8IwutJhhxDMvF9HRyR2x_22GKZq8_CdMlPnaMBoOZgzObzMFPlfnBKVbAAO0391mr3205bPz-0cqdLEMSKCCqLz_LAZRFu_0U4SzCed3K7DE5kRMQzjbtdPxCJNDoIkwQlxJXwslRGNXArAcRpGY-c0mI8xqNIyiSzmHzQSGaxqMHusEp3EIzjr8JrlVTjcl6-xCMU1WBr-BtnFJlJdG47fSyjUJG5YehiE3vVaHxp4rcOV_7ucBMmGzfNq_jq_PpyFaY40YPCA2gNxnvPfbuO5KaXbBSIcuD-vyH8CaKfB8M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_GBPHFb3E6tYK-KME2TdPmQUTdhl8bIgq-1bRJZeC6OTfUf82_zkvXbiromy-h0HzA5XL3u9zlDmBHOxFNmNZEaOoRFjNGRCJtwpTQDktiN46Modhs8bM7dnHv3Zfgo3gLY8IqC5mYCWrVjc0d-YETBFy4iK6DgyQPi7iuNY56z8RUkDKe1qKcxohFLvX7K5pvL4fnNdzrXUob9dvTM5JXGCAx4oIBUTSKTRgkwhbhKM4Fx8bBL19qGVA_UlRq1CLKpDnTCB0S7lHPFdzXtquUScSE4n_KR6vILsPUSb11fTPWA5RndSbxGHvE4IjCpzp6uJel5HU4QcTBCfuuFSdQ94d3NlN6jXmYzdGqdTxirwUo6XQR5opKEFYuGJZgtynf2p1hx-rI_mM7tXqGIXEgspjGNr9-WYa7fyHPCpTTbqpXwQoUC2gi0fZ1PRZxJT0_ipBCVDAniXlQAbsgQBjn2clNkYyncJJX2dAsNBFphmYhq8DeeEhvlJrjr87VgqphfkpfwglPVWB7_BvPl3GayFR3h9hHoFizfd_GKfaL3fgyxW8Lrv294BZMI_uGV-ety3WYoQYrZOFAVSgP-kO9gUhnEG3mLGXBw39z8Sd4uQ1V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+margin+partial+label+learning&rft.jtitle=Machine+learning&rft.au=Yu%2C+Fei&rft.au=Zhang%2C+Min-Ling&rft.date=2017-04-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=106&rft.issue=4&rft.spage=573&rft.epage=593&rft_id=info:doi/10.1007%2Fs10994-016-5606-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_016_5606_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon