Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death w...
Saved in:
Published in | Frontiers in medicine Vol. 9; p. 850374 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
02.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice. |
---|---|
AbstractList | The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice. The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice. |
Author | Giddey, Alexander Dyason Torres-Sangiao, Eva Soares, Nelson C. Leal Rodriguez, Cristina Tang, Zhiheng Liu, Xiaoyun |
AuthorAffiliation | 5 Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa 2 Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL) , Santander , Spain 3 Sharjah Institute of Medical Research, University of Sharjah , Sharjah , United Arab Emirates 4 Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah , Sharjah , United Arab Emirates 7 Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing , China 6 Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital , Herlev-Gentofte , Denmark 1 Clinical Microbiology Lab, University Hospital Marqués de Valdecilla , Santander , Spain |
AuthorAffiliation_xml | – name: 2 Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL) , Santander , Spain – name: 5 Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa – name: 4 Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah , Sharjah , United Arab Emirates – name: 7 Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing , China – name: 1 Clinical Microbiology Lab, University Hospital Marqués de Valdecilla , Santander , Spain – name: 3 Sharjah Institute of Medical Research, University of Sharjah , Sharjah , United Arab Emirates – name: 6 Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital , Herlev-Gentofte , Denmark |
Author_xml | – sequence: 1 givenname: Eva surname: Torres-Sangiao fullname: Torres-Sangiao, Eva – sequence: 2 givenname: Alexander Dyason surname: Giddey fullname: Giddey, Alexander Dyason – sequence: 3 givenname: Cristina surname: Leal Rodriguez fullname: Leal Rodriguez, Cristina – sequence: 4 givenname: Zhiheng surname: Tang fullname: Tang, Zhiheng – sequence: 5 givenname: Xiaoyun surname: Liu fullname: Liu, Xiaoyun – sequence: 6 givenname: Nelson C. surname: Soares fullname: Soares, Nelson C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35586072$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9rFDEUx4NUbK29e5IcveyaHzOZzEVYS9WFikUseAtvMm92U2aSNcku-N-bcVtpBU8Jyfd9Xt4335fkxAePhLzmbCmlbt8NE_ZLwYRY6prJpnpGzoRo1ULX-sfJo_0puUjpjjHGpagrLl-QU1nXWrFGnJHpJoaMYXKWrna7GMBuMdEc6K2PcMCRfkG7Be_SlGgY6Mpn17mQi_wbJpcyeIsUfE_X07T3SK8OkFzws_YD2IzRwUhvIG_DBn16RZ4PMCa8uF_Pye3Hq--XnxfXXz-tL1fXCytbkRfWdpLXHYDiDHSHTWcrOXCUZQjs-55LOVRNGRClQK0GbS3XVrGqh6pGJeU5WR-5fYA7s4tugvjLBHDmz0GIGwOxDDGi0cWUglEwWyjqFvq6ZbZuOXKOIIbCen9k7fZdcdyizxHGJ9CnN95tzSYcTMuZrqq2AN7eA2L4uceUzeSSxXEEj2GfjFBKtay8uinSN497_W3y8F9FoI4CG0NKEQdjXYZcHC-t3Wg4M3M2zJwNM2fDHLNRCtk_hQ_s_5b8Br2vvis |
CitedBy_id | crossref_primary_10_3390_biom14081018 crossref_primary_10_1021_acs_jproteome_4c00286 crossref_primary_10_1093_jambio_lxae143 crossref_primary_10_1007_s11274_024_04106_8 crossref_primary_10_3390_pharmaceutics15010152 crossref_primary_10_1039_D3CB00135K |
Cites_doi | 10.1002/prca.201400117 10.1073/pnas.2024144118 10.1016/bs.aivir.2019.07.003 10.1002/pmic.201100158 10.1021/pr0255708 10.1038/s42256-021-00304-3 10.1080/10408347.2021.1871844 10.1007/978-3-662-25813-2_14 10.1007/s13238-015-0136-6 10.1371/journal.ppat.1007741 10.1016/j.virol.2021.03.003 10.1155/2015/782798 10.1038/s41589-021-00894-4 10.1002/pmic.201700092 10.1038/s41564-019-0518-2 10.1038/msb4100024 10.1021/pr101065j 10.1016/j.aca.2017.01.059 10.3390/microorganisms9071539 10.1074/mcp.M112.026161 10.1021/pr800127y 10.1002/pmic.201100088 10.1021/acs.jproteome.7b00593 10.1021/pr060271u 10.1080/14789450.2019.1559062 10.1128/mSystems.00215-21 10.1038/s41467-019-10583-5 10.1021/pr900080y 10.1007/s13361-015-1204-0 10.3389/fimmu.2020.608466 10.1038/nature19949 10.1111/jam.14507 10.1016/j.mib.2017.09.013 10.3390/pathogens9070581 10.1021/acs.jproteome.6b00793 10.1093/chromsci/bmw167 10.1038/s41564-020-0736-7 10.1074/mcp.RA118.001093 10.15252/msb.20178126 10.1016/j.foodchem.2021.130008 10.1074/mcp.M116.063966 10.1016/j.jpeds.2013.10.091 10.1016/j.ijid.2020.02.026 10.1016/j.bbapap.2013.07.017 10.1074/jbc.M604640200 10.3389/fmicb.2014.00392 10.1021/ac048788h 10.1038/s12276-019-0281-8 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 10.1002/mas.20278 10.1126/science.1179687 10.1021/acs.analchem.1c01246 10.1038/s41596-019-0181-3 10.3390/proteomes4010011 10.1126/scisignal.2001668 10.1046/j.1462-5822.2003.00272.x 10.1039/c6mb00656f 10.1016/j.mcpro.2021.100080 10.1038/nature10307 10.1038/s41598-018-21984-9 10.1016/j.molcel.2016.04.015 10.5492/wjccm.v3.i2.45 10.1002/pmic.201500433 10.1016/j.mex.2021.101277 10.15252/msb.20167062 10.1038/nprot.2009.21 10.1128/IAI.00063-09 10.1038/nature01511 10.1074/jbc.M111.267674 10.1074/mcp.M117.068296 10.1016/j.jprot.2018.02.019 10.1371/journal.pcbi.1008169 10.1074/mcp.m200025-mcp200 10.1016/j.ymeth.2018.04.002 10.1039/c3mb70555b 10.1074/mcp.RA118.001138 10.1016/j.jprot.2016.02.002 10.1002/pmic.201600203 10.1038/s41586-021-04020-1 10.1016/j.str.2020.09.011 10.1128/mSystems.00314-18 10.1080/14786419.2019.1577837 10.1371/journal.ppat.1002562 10.1038/s41598-020-80120-8 10.1074/mcp.TIR118.000918 10.1038/nature10335 10.1126/science.1192276 10.15252/msb.20199356 10.1074/mcp.M116.064527 10.3389/fgene.2020.612475 10.1016/j.foodchem.2021.130042 10.1002/rcm.1196 10.1038/nature04616 10.1126/science.1207193 10.1016/j.str.2018.04.016 10.1111/nph.17423 10.3389/fimmu.2021.781100 10.1021/ac00096a002 10.3389/fmicb.2019.01883 10.7554/eLife.64159 10.3389/fmicb.2015.00081 10.1074/mcp.RA117.000023 10.3390/separations6010004 10.1002/rcm.525 10.1128/IAI.00975-13 10.1016/1044-0305(94)80016-2 10.1007/s00253-016-8029-z 10.1128/IAI.02882-14 10.1016/j.bbrc.2014.02.041 10.1038/s41598-019-55430-1 10.1002/rcm.8249 10.1038/nature17657 10.1016/j.ijmm.2018.06.002 10.3389/fphys.2020.00139 10.1016/j.jsb.2010.10.014 10.3390/v13040668 10.1155/2020/6681073 10.1021/pr3006843 10.1016/j.ijmm.2014.07.005 10.1016/j.vetmic.2018.09.024 10.1038/ncomms10261 10.1021/pr800978p 10.1074/mcp.M116.060582 10.1002/pro.2696 10.1007/s11419-016-0341-x 10.1016/j.jprot.2020.103929 10.1038/srep25289 10.1039/d0sc04392c 10.1074/mcp.M113.031591 10.1007/978-1-4939-0685-7_20 10.1073/pnas.1114023109 10.3389/fchem.2021.813359 10.3390/molecules21070867 10.1016/j.syapm.2015.03.006 10.3389/fimmu.2021.594270 10.3390/app9122486 10.1093/bib/bbx033 10.1038/s42003-020-1005-2 10.1039/d0nr02788j 10.1016/s0076-6879(73)27039-8 10.1038/nbt.1511 10.1002/pmic.200700664 10.3390/cells8101129 10.1038/srep25773 10.1038/nmeth.2703 10.1038/s41421-018-0055-9 10.1016/j.jprot.2017.10.006 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares |
Copyright_xml | – notice: Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. – notice: Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmed.2022.850374 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2296-858X |
ExternalDocumentID | oai_doaj_org_article_8325e326a0374259ad590c591e11ea2f PMC9108449 35586072 10_3389_fmed_2022_850374 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c392t-ccb315baa610a8be7bc43f1e3000eddd133f47229e32e86f8cc18c604da45e633 |
IEDL.DBID | M48 |
ISSN | 2296-858X |
IngestDate | Wed Aug 27 01:06:56 EDT 2025 Thu Aug 21 14:40:09 EDT 2025 Fri Jul 11 15:06:12 EDT 2025 Thu Apr 03 07:06:53 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 04:05:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SWATH-MS host-pathogen interactions system biology antibiotic resistance mass spectometry PTMs (post-translational modifications) |
Language | English |
License | Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-ccb315baa610a8be7bc43f1e3000eddd133f47229e32e86f8cc18c604da45e633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Mattias Collin, Lund University, Sweden Reviewed by: Christofer Karlsson, Lund University, Sweden; Jennifer Geddes-McAlister, University of Guelph, Canada These authors have contributed equally to this work This article was submitted to Infectious Diseases – Surveillance, Prevention and Treatment, a section of the journal Frontiers in Medicine |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmed.2022.850374 |
PMID | 35586072 |
PQID | 2666906337 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8325e326a0374259ad590c591e11ea2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9108449 proquest_miscellaneous_2666906337 pubmed_primary_35586072 crossref_citationtrail_10_3389_fmed_2022_850374 crossref_primary_10_3389_fmed_2022_850374 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-02 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in medicine |
PublicationTitleAlternate | Front Med (Lausanne) |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Erdmann (B37) 2019; 8 Snipsoyr (B145) 2020; 96 Aebersold (B65) 2016; 16 Malmstrom (B68) 2016; 7 Keller (B30) 2005; 1 Cox (B57) 2014; 13 Perkins (B28) 1999; 20 Ma (B21) 2015; 26 Mukherjee (B128) 2011; 477 Papafilippou (B136) 2020; 12 Sjoholm (B100) 2017; 16 Chavez (B105) 2019; 14 Qi (B115) 2017; 17 Zhang (B91) 2020; 9 Pettersen (B76) 2018; 17 Collins (B82) 2013; 10 Sylvester (B146) 2014; 164 Zoued (B87) 2021; 17 Megger (B55) 2014; 1844 Fiskin (B120) 2016; 62 Pettersen (B140) 2016; 15 Bakochi (B70) 2021; 10 Zhang (B2) 2016; 6 Ong (B54) 2003; 2 Surmann (B75) 2018; 2018 Wehr (B44) 2006; 24 Pflieger (B72) 2011; 30 Mónica Cartelle Gestal (B101) 2019; 9 Banaei-Esfahani (B84) 2017; 39 Cox (B58) 2008; 26 Tan (B127) 2011; 108 Sjoholm (B99) 2014; 10 Catherman (B43) 2014; 445 Sajic (B64) 2015; 9 Edman (B17) 1949; 22 Nakamura (B66) 2016; 16 Ludwig (B135) 2017; 13 Staali (B97) 2003; 5 Aebersold (B13) 2003; 422 Vidova (B59) 2017; 964 Qiao (B24) 2021; 3 Liu (B96) 2017; 16 Li (B3) 2021; 9 Ludwig (B63) 2018; 14 Qiu (B129) 2016; 533 Flores-Trevino (B150) 2019; 9 Park (B35) 2020; 10 Suhre (B88) 2022; 12 Eng (B27) 1994; 5 Patel (B56) 2009; 8 Minakata (B9) 2017; 35 Jean Beltran (B79) 2017; 13 Rappsilber (B47) 2011; 173 Sinz (B48) 2015; 24 Liu (B95) 2015; 83 Lamontagne (B112) 2009; 8 Bullock (B49) 2018; 26 Palma Medina (B113) 2019; 18 Liu (B109) 2017; 16 Aslam (B14) 2017; 55 Selkrig (B116) 2020; 5 Cox (B31) 2011; 10 Olaitan (B6) 2018; 32 Li (B123) 2021; 599 Frank (B23) 2007; 6 Niall (B18) 1973; 27 Happonen (B83) 2019; 10 Ling (B10) 2020; 34 Li (B107) 2019; 4 Yang (B90) 2015; 6 Ooi (B50) 2019; 4 Wang (B130) 2018; 4 Bu (B137) 2021; 12 Dülfer (B45) 2019; 105 Becker (B93) 2006; 440 Karlsson (B139) 2015; 38 Sidjabat (B69) 2018; 8 Torres-Sangiao (B147) 2016; 21 Charretier (B151) 2015; 6 Li (B142) 2020; 11 Simanjuntak (B41) 2021; 13 Schmidt (B92) 2011; 11 Liu (B94) 2012; 8 Shi (B106) 2006; 281 Boersema (B52) 2009; 4 Birk (B85) 2021; 6 Edman (B16) 1967; 1 Hristova (B61) 2019; 16 Tan (B126) 2011; 475 Hermann (B86) 2019; 191 Blangy-Letheule (B141) 2020; 2020 Yang (B25) 2019; 18 Noster (B108) 2019; 15 Pak (B62) 2021; 20 Albeldas (B133) 2017; 180 Fortuin (B80) 2020; 228 Fasih Ramandi (B7) 2021; 2021 Hahn (B119) 2021; 118 Li (B132) 2018; 226 Frankfater (B5) 2019; 6 Stewart (B51) 2001; 15 Malmstrom (B98) 2012; 287 Zampieri (B39) 2016; 6 Zhou (B42) 2020; 11 Meng (B122) 2020; 3 Imami (B118) 2013; 12 Rogers (B117) 2011; 4 Torres-Sangiao (B1) 2021; 9 Cifani (B12) 2017; 16 Baros-Steyl (B38) 2021; 2021 Malmstrom (B71) 2011; 11 Coiras (B73) 2008; 8 Wang (B131) 2010; 327 Chi (B19) 2013; 12 Neunuebel (B125) 2011; 333 Josten (B149) 2014; 304 Kalantari (B34) 2015; 2015 Frank (B33) 2005; 77 Ma (B32) 2003; 17 Holtfreter (B78) 2016; 4 Leitner (B104) 2020; 28 Castro-Gamero (B60) 2014; 1156 Khalilpour (B138) 2017; 101 Muth (B22) 2018; 19 Jo (B89) 2019; 51 Pravda (B143) 2014; 3 Kosma (B11) 2021; 360 Bader (B36) 2020; 16 Jadot (B15) 2017; 16 Mann (B26) 1994; 66 Surmann (B77) 2014; 5 Lamberti (B111) 2016; 136 Limpikirati (B46) 2018; 144 Spät (B134) 2021; 231 (B20) 2004; 2 Ong (B53) 2002; 1 Yuan (B8) 2021; 360 Newson (B121) 2019; 18 Heyer (B40) 2019; 10 Muller (B124) 2010; 329 Maus (B148) 2020; 128 Park (B29) 2008; 7 Belshan (B67) 2021; 558 Fortuin (B81) 2021; 8 Khakzad (B102) 2021; 17 Aebersold (B74) 2016; 537 Shi (B114) 2009; 77 Pieper (B110) 2013; 81 Xue (B4) 2021; 93 Khakzad (B103) 2020; 11 Caval (B144) 2020; 11 |
References_xml | – volume: 9 start-page: 307 year: 2015 ident: B64 article-title: Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. publication-title: Proteomics Clin Appl. doi: 10.1002/prca.201400117 – volume: 118 year: 2021 ident: B119 article-title: SIK2 orchestrates actin-dependent host response upon Salmonella infection. publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.2024144118 – volume: 105 start-page: 189 year: 2019 ident: B45 article-title: Structural mass spectrometry goes viral. publication-title: Adv Virus Res. doi: 10.1016/bs.aivir.2019.07.003 – volume: 11 start-page: 3203 year: 2011 ident: B92 article-title: Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. publication-title: Proteomics. doi: 10.1002/pmic.201100158 – volume: 2 start-page: 173 year: 2003 ident: B54 article-title: Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). publication-title: J Proteome Res. doi: 10.1021/pr0255708 – volume: 3 start-page: 420 year: 2021 ident: B24 article-title: Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices. publication-title: Nat Machine Intellig. doi: 10.1038/s42256-021-00304-3 – volume: 2021 start-page: 1 year: 2021 ident: B7 article-title: Mass spectrometry: a powerful method for monitoring various type of leukemia, especially MALDI-TOF in leukemia’s proteomics studies review. publication-title: Crit Rev Anal Chem. doi: 10.1080/10408347.2021.1871844 – volume: 1 start-page: 80 year: 1967 ident: B16 article-title: A protein sequenator. publication-title: Eur J Biochem. doi: 10.1007/978-3-662-25813-2_14 – volume: 6 start-page: 265 year: 2015 ident: B90 article-title: Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. publication-title: Protein Cell. doi: 10.1007/s13238-015-0136-6 – volume: 15 year: 2019 ident: B108 article-title: Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007741 – volume: 22 year: 1949 ident: B17 article-title: A method for the determination of amino acid sequence in peptides. publication-title: Arch Biochem. – volume: 2021 year: 2021 ident: B38 article-title: Phosphoproteomics reveals new insights into the role of PknG during the persistence of pathogenic mycobacteria in host macrophages. publication-title: bioRxiv. – volume: 558 start-page: 86 year: 2021 ident: B67 article-title: Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. publication-title: Virology. doi: 10.1016/j.virol.2021.03.003 – volume: 2015 year: 2015 ident: B34 article-title: Human urine proteomics: analytical techniques and clinical applications in renal diseases. publication-title: Int J Proteomics. doi: 10.1155/2015/782798 – volume: 17 start-page: 1199 year: 2021 ident: B87 article-title: Proteomic analysis of the host-pathogen interface in experimental cholera. publication-title: Nat Chem Biol. doi: 10.1038/s41589-021-00894-4 – volume: 17 year: 2017 ident: B115 article-title: Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium. publication-title: Proteomics. doi: 10.1002/pmic.201700092 – volume: 4 start-page: 2369 year: 2019 ident: B50 article-title: An RNA-centric dissection of host complexes controlling flavivirus infection. publication-title: Nat Microbiol. doi: 10.1038/s41564-019-0518-2 – volume: 1 year: 2005 ident: B30 article-title: A uniform proteomics MS/MS analysis platform utilizing open XML file formats. publication-title: Mol Syst Biol. doi: 10.1038/msb4100024 – volume: 10 start-page: 1794 year: 2011 ident: B31 article-title: Andromeda: a peptide search engine integrated into the maxquant environment. publication-title: J Proteome Res. doi: 10.1021/pr101065j – volume: 964 start-page: 7 year: 2017 ident: B59 article-title: A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. publication-title: Anal Chim Acta. doi: 10.1016/j.aca.2017.01.059 – volume: 9 year: 2021 ident: B1 article-title: Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. publication-title: Microorganisms. doi: 10.3390/microorganisms9071539 – volume: 12 start-page: 1632 year: 2013 ident: B118 article-title: Global impact of Salmonella pathogenicity island 2-secreted effectors on the host phosphoproteome. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M112.026161 – volume: 7 start-page: 3022 year: 2008 ident: B29 article-title: Rapid and accurate peptide identification from tandem mass spectra. publication-title: J Proteome Res. doi: 10.1021/pr800127y – volume: 11 start-page: 2947 year: 2011 ident: B71 article-title: Quantitative proteomics of microbes: principles and applications to virulence. publication-title: Proteomics. doi: 10.1002/pmic.201100088 – volume: 2 year: 2004 ident: B20 article-title: Algorithms for de novo peptide sequencing using tandem mass spectrometry. publication-title: Drug Discov Today BIOSILICO. – volume: 17 start-page: 325 year: 2018 ident: B76 article-title: Comparative Proteomics of Enterotoxigenic Escherichia coli Reveals Differences in Surface Protein Production and Similarities in Metabolism. publication-title: J Proteome Res. doi: 10.1021/acs.jproteome.7b00593 – volume: 6 start-page: 114 year: 2007 ident: B23 article-title: De novo peptide sequencing and identification with precision mass spectrometry. publication-title: J Proteome Res. doi: 10.1021/pr060271u – volume: 16 start-page: 93 year: 2019 ident: B61 article-title: Cancer biomarker discovery and translation: proteomics and beyond. publication-title: Expert Rev Proteomics. doi: 10.1080/14789450.2019.1559062 – volume: 6 year: 2021 ident: B85 article-title: Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation. publication-title: mSystems. doi: 10.1128/mSystems.00215-21 – volume: 10 year: 2019 ident: B83 article-title: A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. publication-title: Nat Commun. doi: 10.1038/s41467-019-10583-5 – volume: 8 start-page: 3752 year: 2009 ident: B56 article-title: A comparison of labeling and label-free mass spectrometry-based proteomics approaches. publication-title: J Proteome Res. doi: 10.1021/pr900080y – volume: 26 year: 2015 ident: B21 article-title: Novor: real-time peptide de novo sequencing software. publication-title: J Am Soc Mass Spectrom. doi: 10.1007/s13361-015-1204-0 – volume: 11 year: 2020 ident: B144 article-title: Glycoproteoform Profiles of Individual Patients’ Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode. publication-title: Front Immunol. doi: 10.3389/fimmu.2020.608466 – volume: 537 start-page: 347 year: 2016 ident: B74 article-title: Mass-spectrometric exploration of proteome structure and function. publication-title: Nature. doi: 10.1038/nature19949 – volume: 128 start-page: 697 year: 2020 ident: B148 article-title: Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS. publication-title: J Appl Microbiol. doi: 10.1111/jam.14507 – volume: 39 start-page: 64 year: 2017 ident: B84 article-title: Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis. publication-title: Curr Opin Microbiol. doi: 10.1016/j.mib.2017.09.013 – volume: 9 year: 2020 ident: B91 article-title: Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. publication-title: Pathogens. doi: 10.3390/pathogens9070581 – volume: 16 start-page: 788 year: 2017 ident: B96 article-title: Quantitative Proteomics Charts the Landscape of Salmonella Carbon Metabolism within Host Epithelial Cells. publication-title: J Proteome Res. doi: 10.1021/acs.jproteome.6b00793 – volume: 55 start-page: 182 year: 2017 ident: B14 article-title: Proteomics: technologies and Their Applications. publication-title: J Chromatogr Sci. doi: 10.1093/chromsci/bmw167 – volume: 5 start-page: 1119 year: 2020 ident: B116 article-title: Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. publication-title: Nat Microbiol. doi: 10.1038/s41564-020-0736-7 – volume: 18 start-page: 1138 year: 2019 ident: B121 article-title: Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.RA118.001093 – volume: 14 year: 2018 ident: B63 article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. publication-title: Mol Syst Biol. doi: 10.15252/msb.20178126 – volume: 360 year: 2021 ident: B11 article-title: Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS. publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.130008 – volume: 16 start-page: S29 year: 2017 ident: B100 article-title: Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M116.063966 – volume: 164 start-page: e1 year: 2014 ident: B146 article-title: Urine protein biomarkers for the diagnosis and prognosis of necrotizing enterocolitis in infants. publication-title: J Pediatr. doi: 10.1016/j.jpeds.2013.10.091 – volume: 96 start-page: 73 year: 2020 ident: B145 article-title: Towards identification of novel putative biomarkers for infective endocarditis by serum proteomic analysis. publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2020.02.026 – volume: 1844 start-page: 967 year: 2014 ident: B55 article-title: Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbapap.2013.07.017 – volume: 281 start-page: 29131 year: 2006 ident: B106 article-title: Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. publication-title: J Biol Chem. doi: 10.1074/jbc.M604640200 – volume: 5 year: 2014 ident: B77 article-title: Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. publication-title: Front Microbiol. doi: 10.3389/fmicb.2014.00392 – volume: 77 start-page: 964 year: 2005 ident: B33 article-title: PepNovo: de novo peptide sequencing via probabilistic network modeling. publication-title: Anal Chem. doi: 10.1021/ac048788h – volume: 51 start-page: 1 year: 2019 ident: B89 article-title: Interplay between host and pathogen: immune defense and beyond. publication-title: Exp Mol Med. doi: 10.1038/s12276-019-0281-8 – volume: 20 start-page: 3551 year: 1999 ident: B28 article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data. publication-title: Electrophoresis. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 – volume: 30 start-page: 268 year: 2011 ident: B72 article-title: Linking the proteins–elucidation of proteome-scale networks using mass spectrometry. publication-title: Mass Spectrom Rev. doi: 10.1002/mas.20278 – volume: 327 start-page: 1004 year: 2010 ident: B131 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. publication-title: Science. doi: 10.1126/science.1179687 – volume: 93 start-page: 10879 year: 2021 ident: B4 article-title: Single quadrupole multiple fragment ion monitoring quantitative mass spectrometry. publication-title: Anal Chem. doi: 10.1021/acs.analchem.1c01246 – volume: 14 start-page: 2318 year: 2019 ident: B105 article-title: Systems structural biology measurements by in vivo cross-linking with mass spectrometry. publication-title: Nat Protoc. doi: 10.1038/s41596-019-0181-3 – volume: 4 year: 2016 ident: B78 article-title: Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. publication-title: Proteomes. doi: 10.3390/proteomes4010011 – volume: 4 year: 2011 ident: B117 article-title: Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. publication-title: Sci Signal. doi: 10.1126/scisignal.2001668 – volume: 5 start-page: 253 year: 2003 ident: B97 article-title: Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. publication-title: Cell Microbiol. doi: 10.1046/j.1462-5822.2003.00272.x – volume: 13 start-page: 648 year: 2017 ident: B135 article-title: Mass spectrometry for the discovery of biomarkers of sepsis. publication-title: Mol Biosyst. doi: 10.1039/c6mb00656f – volume: 20 year: 2021 ident: B62 article-title: Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. publication-title: Mol Cell Proteomics. doi: 10.1016/j.mcpro.2021.100080 – volume: 475 start-page: 506 year: 2011 ident: B126 article-title: Legionella pneumophila SidD is a deAMPylase that modifies Rab1. publication-title: Nature. doi: 10.1038/nature10307 – volume: 8 year: 2018 ident: B69 article-title: The use of SWATH to analyse the dynamic changes of bacterial proteome of carbapanemase-producing Escherichia coli under antibiotic pressure. publication-title: Sci Rep. doi: 10.1038/s41598-018-21984-9 – volume: 62 start-page: 967 year: 2016 ident: B120 article-title: Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection. publication-title: Mol Cell. doi: 10.1016/j.molcel.2016.04.015 – volume: 3 start-page: 45 year: 2014 ident: B143 article-title: Metabolic theory of septic shock. publication-title: World J Crit Care Med. doi: 10.5492/wjccm.v3.i2.45 – volume: 16 start-page: 2106 year: 2016 ident: B66 article-title: Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM. publication-title: Proteomics. doi: 10.1002/pmic.201500433 – volume: 8 year: 2021 ident: B81 article-title: Liquid chromatography mass spectrometry-based proteomics of Escherichia coli single colony. publication-title: MethodsX. doi: 10.1016/j.mex.2021.101277 – volume: 13 year: 2017 ident: B79 article-title: Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. publication-title: Mol Syst Biol. doi: 10.15252/msb.20167062 – volume: 4 start-page: 484 year: 2009 ident: B52 article-title: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. publication-title: Nat Protoc. doi: 10.1038/nprot.2009.21 – volume: 77 start-page: 3227 year: 2009 ident: B114 article-title: Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. publication-title: Infect Immun. doi: 10.1128/IAI.00063-09 – volume: 422 start-page: 198 year: 2003 ident: B13 article-title: Mass spectrometry-based proteomics. publication-title: Nature. doi: 10.1038/nature01511 – volume: 287 start-page: 1415 year: 2012 ident: B98 article-title: Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics. publication-title: J Biol Chem. doi: 10.1074/jbc.M111.267674 – volume: 16 start-page: 1683 year: 2017 ident: B109 article-title: Temporal Regulation of a Salmonella Typhimurium Virulence Factor by the Transcriptional Regulator YdcR. publication-title: Mol Cell Proteom. doi: 10.1074/mcp.M117.068296 – volume: 191 start-page: 166 year: 2019 ident: B86 article-title: Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. publication-title: J Proteom. doi: 10.1016/j.jprot.2018.02.019 – volume: 17 year: 2021 ident: B102 article-title: Structural determination of Streptococcus pyogenes M1 protein interactions with human immunoglobulin G using integrative structural biology. publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1008169 – volume: 1 start-page: 376 year: 2002 ident: B53 article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.m200025-mcp200 – volume: 144 start-page: 79 year: 2018 ident: B46 article-title: Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. publication-title: Methods. doi: 10.1016/j.ymeth.2018.04.002 – volume: 10 start-page: 1698 year: 2014 ident: B99 article-title: A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network. publication-title: Mol Biosyst. doi: 10.1039/c3mb70555b – volume: 18 start-page: 892 year: 2019 ident: B113 article-title: Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.RA118.001138 – volume: 136 start-page: 55 year: 2016 ident: B111 article-title: Proteome analysis of Bordetella pertussis isolated from human macrophages. publication-title: J Proteomics. doi: 10.1016/j.jprot.2016.02.002 – volume: 16 start-page: 2065 year: 2016 ident: B65 article-title: Applications and developments in targeted proteomics: from SRM to DIA/SWATH. publication-title: Proteomics. doi: 10.1002/pmic.201600203 – volume: 599 start-page: 290 year: 2021 ident: B123 article-title: Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. publication-title: Nature. doi: 10.1038/s41586-021-04020-1 – volume: 28 start-page: 1259 year: 2020 ident: B104 article-title: Toward Increased Reliability, Transparency, and Accessibility in Cross-linking Mass Spectrometry. publication-title: Structure. doi: 10.1016/j.str.2020.09.011 – volume: 4 start-page: e314 year: 2019 ident: B107 article-title: Salmonella Proteomic Profiling during Infection Distinguishes the Intracellular Environment of Host Cells. publication-title: mSystems. doi: 10.1128/mSystems.00314-18 – volume: 34 start-page: 2144 year: 2020 ident: B10 article-title: Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS. publication-title: Nat Prod Res. doi: 10.1080/14786419.2019.1577837 – volume: 8 year: 2012 ident: B94 article-title: Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002562 – volume: 10 year: 2020 ident: B35 article-title: In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. publication-title: Sci Rep. doi: 10.1038/s41598-020-80120-8 – volume: 18 start-page: 773 year: 2019 ident: B25 article-title: Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.TIR118.000918 – volume: 477 start-page: 103 year: 2011 ident: B128 article-title: Modulation of Rab GTPase function by a protein phosphocholine transferase. publication-title: Nature. doi: 10.1038/nature10335 – volume: 329 start-page: 946 year: 2010 ident: B124 article-title: The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. publication-title: Science. doi: 10.1126/science.1192276 – volume: 24 year: 2006 ident: B44 article-title: Top-Down versus Bottom-Up Approaches in Proteomics. publication-title: LCGC North Am. – volume: 16 year: 2020 ident: B36 article-title: Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. publication-title: Mol Syst Biol. doi: 10.15252/msb.20199356 – volume: 16 start-page: 194 year: 2017 ident: B15 article-title: Accounting for protein subcellular localization: a compartmental map of the rat liver proteome. publication-title: Mol Cell Proteom. doi: 10.1074/mcp.M116.064527 – volume: 11 year: 2020 ident: B103 article-title: In vivo Cross-Linking MS of the Complement System MAC Assembled on Live Gram-Positive Bacteria. publication-title: Front Genet. doi: 10.3389/fgene.2020.612475 – volume: 360 year: 2021 ident: B8 article-title: Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.130042 – volume: 17 start-page: 2337 year: 2003 ident: B32 article-title: PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. publication-title: Rapid Commun Mass Spectrom. doi: 10.1002/rcm.1196 – volume: 440 start-page: 303 year: 2006 ident: B93 article-title: Robust Salmonella metabolism limits possibilities for new antimicrobials. publication-title: Nature. doi: 10.1038/nature04616 – volume: 333 start-page: 453 year: 2011 ident: B125 article-title: De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. publication-title: Science. doi: 10.1126/science.1207193 – volume: 26 start-page: 1015.e year: 2018 ident: B49 article-title: Modeling protein complexes using restraints from crosslinking mass spectrometry. publication-title: Structure. doi: 10.1016/j.str.2018.04.016 – volume: 231 start-page: 1123 year: 2021 ident: B134 article-title: Alterations in the CO2 availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803. publication-title: New Phytologist. doi: 10.1111/nph.17423 – volume: 12 year: 2022 ident: B88 article-title: Identification of Robust Protein Associations With COVID-19 Disease Based on Five Clinical Studies. publication-title: Front Immunol. doi: 10.3389/fimmu.2021.781100 – volume: 66 start-page: 4390 year: 1994 ident: B26 article-title: Error-tolerant identification of peptides in sequence databases by peptide sequence tags. publication-title: Anal Chem. doi: 10.1021/ac00096a002 – volume: 10 year: 2019 ident: B40 article-title: A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer. publication-title: Front Microbiol. doi: 10.3389/fmicb.2019.01883 – volume: 10 year: 2021 ident: B70 article-title: Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis. publication-title: Elife. doi: 10.7554/eLife.64159 – volume: 6 year: 2015 ident: B151 article-title: Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates. publication-title: Front Microbiol. doi: 10.3389/fmicb.2015.00081 – volume: 16 start-page: 2006 year: 2017 ident: B12 article-title: High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer. publication-title: Mol Cell Proteom. doi: 10.1074/mcp.RA117.000023 – volume: 6 year: 2019 ident: B5 article-title: Multiple-stage Precursor Ion Separation and High Resolution Mass Spectrometry toward Structural Characterization of 2,3-Diacyltrehalose Family from Mycobacterium tuberculosis. publication-title: Separations. doi: 10.3390/separations6010004 – volume: 15 start-page: 2456 year: 2001 ident: B51 article-title: 18O labeling: a tool for proteomics. publication-title: Rapid Commun Mass Spectrom. doi: 10.1002/rcm.525 – volume: 81 start-page: 4635 year: 2013 ident: B110 article-title: Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. publication-title: Infect Immun. doi: 10.1128/IAI.00975-13 – volume: 5 start-page: 976 year: 1994 ident: B27 article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. publication-title: J Am Soc Mass Spectrom. doi: 10.1016/1044-0305(94)80016-2 – volume: 101 start-page: 475 year: 2017 ident: B138 article-title: Proteomic-based biomarker discovery for development of next generation diagnostics. publication-title: Appl Microbiol Biotechnol. doi: 10.1007/s00253-016-8029-z – volume: 83 start-page: 2897 year: 2015 ident: B95 article-title: Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells. publication-title: Infect Immun. doi: 10.1128/IAI.02882-14 – volume: 445 start-page: 683 year: 2014 ident: B43 article-title: Top Down proteomics: facts and perspectives. publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.02.041 – volume: 9 year: 2019 ident: B150 article-title: Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. publication-title: Sci Rep. doi: 10.1038/s41598-019-55430-1 – volume: 32 start-page: 1887 year: 2018 ident: B6 article-title: Small- and large-sized iron(II, III) oxide nanoparticles for surface-assisted laser desorption/ionization mass spectrometry of small biomolecules. publication-title: Rapid Commun Mass Spectrom. doi: 10.1002/rcm.8249 – volume: 533 start-page: 120 year: 2016 ident: B129 article-title: Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. publication-title: Nature. doi: 10.1038/nature17657 – volume: 2018 year: 2018 ident: B75 article-title: Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells. publication-title: Int J Med Microbiol. doi: 10.1016/j.ijmm.2018.06.002 – volume: 11 year: 2020 ident: B142 article-title: Analysis of Spatiotemporal Urine Protein Dynamics to Identify New Biomarkers for Sepsis-Induced Acute Kidney Injury. publication-title: Front Physiol. doi: 10.3389/fphys.2020.00139 – volume: 173 start-page: 530 year: 2011 ident: B47 article-title: The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. publication-title: J Struct Biol. doi: 10.1016/j.jsb.2010.10.014 – volume: 13 year: 2021 ident: B41 article-title: Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. publication-title: Viruses. doi: 10.3390/v13040668 – volume: 2020 year: 2020 ident: B141 article-title: New approaches to identify sepsis biomarkers: the importance of model and sample source for mass spectrometry. publication-title: Oxid Med Cell Longev. doi: 10.1155/2020/6681073 – volume: 12 start-page: 615 year: 2013 ident: B19 article-title: pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. publication-title: J Proteome Res. doi: 10.1021/pr3006843 – volume: 304 start-page: 1018 year: 2014 ident: B149 article-title: Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry. publication-title: Int J Med Microbiol. doi: 10.1016/j.ijmm.2014.07.005 – volume: 226 start-page: 1 year: 2018 ident: B132 article-title: First acetyl-proteome profiling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance. publication-title: Vet Microbiol. doi: 10.1016/j.vetmic.2018.09.024 – volume: 7 year: 2016 ident: B68 article-title: Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics. publication-title: Nat Commun. doi: 10.1038/ncomms10261 – volume: 8 start-page: 1594 year: 2009 ident: B112 article-title: Intracellular adaptation of Brucella abortus. publication-title: J Proteome Res. doi: 10.1021/pr800978p – volume: 15 start-page: 2890 year: 2016 ident: B140 article-title: Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis. publication-title: Mol Cell Proteom MCP. doi: 10.1074/mcp.M116.060582 – volume: 24 start-page: 1193 year: 2015 ident: B48 article-title: Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology. publication-title: Protein Sci. doi: 10.1002/pro.2696 – volume: 35 start-page: 86 year: 2017 ident: B9 article-title: Quantitation of biperiden in whole blood by MALDI-QTOF tandem mass spectrometry, and estimation of new metabolites in urine of deceased subjects treated with biperiden antemortem. publication-title: Forens Toxicol. doi: 10.1007/s11419-016-0341-x – volume: 228 year: 2020 ident: B80 article-title: Comparison between the proteome of Escherichia coli single colony and during liquid culture. publication-title: J Proteom. doi: 10.1016/j.jprot.2020.103929 – volume: 6 year: 2016 ident: B2 article-title: Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain. publication-title: Sci Rep. doi: 10.1038/srep25289 – volume: 11 start-page: 12918 year: 2020 ident: B42 article-title: Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. publication-title: Chem Sci. doi: 10.1039/d0sc04392c – volume: 13 start-page: 2513 year: 2014 ident: B57 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M113.031591 – volume: 1156 start-page: 295 year: 2014 ident: B60 article-title: Biomarker verification using selected reaction monitoring and shotgun proteomics. publication-title: Methods Mol Biol. doi: 10.1007/978-1-4939-0685-7_20 – volume: 108 start-page: 21212 year: 2011 ident: B127 article-title: Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1114023109 – volume: 9 year: 2021 ident: B3 article-title: Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. publication-title: Front Chem. doi: 10.3389/fchem.2021.813359 – volume: 21 year: 2016 ident: B147 article-title: Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases. publication-title: Molecules. doi: 10.3390/molecules21070867 – volume: 38 start-page: 246 year: 2015 ident: B139 article-title: Proteotyping: proteomic characterization, classification and identification of microorganisms–a prospectus. publication-title: Syst Appl Microbiol. doi: 10.1016/j.syapm.2015.03.006 – volume: 12 year: 2021 ident: B137 article-title: Untargeted metabolomic profiling of the correlation between prognosis differences and PD-1 expression in sepsis: a preliminary study. publication-title: Front Immunol. doi: 10.3389/fimmu.2021.594270 – volume: 9 year: 2019 ident: B101 article-title: Computational Health engineering applied to model infectious diseases and antimicrobial resistance spread. publication-title: Appl Sci. doi: 10.3390/app9122486 – volume: 19 start-page: 954 year: 2018 ident: B22 article-title: Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? publication-title: Brief Bioinform. doi: 10.1093/bib/bbx033 – volume: 3 year: 2020 ident: B122 article-title: Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium. publication-title: Commun Biol. doi: 10.1038/s42003-020-1005-2 – volume: 12 start-page: 10240 year: 2020 ident: B136 article-title: Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. publication-title: Nanoscale. doi: 10.1039/d0nr02788j – volume: 27 start-page: 942 year: 1973 ident: B18 article-title: Automated Edman degradation: the protein sequenator. publication-title: Methods Enzymol. doi: 10.1016/s0076-6879(73)27039-8 – volume: 26 start-page: 1367 year: 2008 ident: B58 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. publication-title: Nat Biotechnol. doi: 10.1038/nbt.1511 – volume: 8 start-page: 852 year: 2008 ident: B73 article-title: Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. publication-title: Proteomics. doi: 10.1002/pmic.200700664 – volume: 8 year: 2019 ident: B37 article-title: The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates. publication-title: Cells. doi: 10.3390/cells8101129 – volume: 6 year: 2016 ident: B39 article-title: Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. publication-title: Sci Rep. doi: 10.1038/srep25773 – volume: 10 start-page: 1246 year: 2013 ident: B82 article-title: Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. publication-title: Nat Methods. doi: 10.1038/nmeth.2703 – volume: 4 year: 2018 ident: B130 article-title: Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. publication-title: Cell Discov. doi: 10.1038/s41421-018-0055-9 – volume: 180 start-page: 1 year: 2017 ident: B133 article-title: Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis. publication-title: J Proteom. doi: 10.1016/j.jprot.2017.10.006 |
SSID | ssj0001325413 |
Score | 2.2242672 |
SecondaryResourceType | review_article |
Snippet | The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 850374 |
SubjectTerms | antibiotic resistance host-pathogen interactions mass spectometry Medicine PTMs (post-translational modifications) SWATH-MS system biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLCF48VDdN0jbHVRQVFBEXvIU0maKgrdj1_zvT1mVXRC-eCu0kDfNNki-vL4wdAm0uToKORZaVsVLexEZCFgfjSqQHAh-t2udtejlS14_6ceqqL9oT1skDd447wYjTgBzDkVAKcnUXtBl4bQQIAS4pqfXFPm9qMNXOrmAqbJ67dUkchRmECUgYNEmOc01ZzfRDrVz_Txzz-1bJqb7nYpkt9aSRD7vCrrA5qFbZwk2_LL7GXu9IbYHOF_NhrxEODR_XfFTR7UIv_AbogO9z89rwuuTDig6K1JgZv4eGCCQiz10V-BWdFgGO9Jom0cj2tFNzxr_fIVesMdyadTa6OH84u4z7exRij-xnHHtfSKEL55AqubyArPBKlgIkOgpCCDhMLUkz0qCfIU_L3HuR-3SgglMaUik32HxVV7DFuMP-LBiZyiKXCm0MlIUWLiWVmywb-IidfHnV-l5knO66eLE42CAcLOFgCQfb4RCxo0mKt05g4xfbUwJqYkfS2O0LDBjbB4z9K2AidvAFs8WqROsjroL6o7HIVUi2WcosYpsd7JNfkQp9ilEdsWwmIGbKMvulen5q5bqRkOVKme3_KPwOWyR_tDsuk102P37_gD1kReNiv60An6TFCeU priority: 102 providerName: Directory of Open Access Journals |
Title | Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35586072 https://www.proquest.com/docview/2666906337 https://pubmed.ncbi.nlm.nih.gov/PMC9108449 https://doaj.org/article/8325e326a0374259ad590c591e11ea2f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifttTjwi--NBz0zRfDyJ74nEKK4e4sG8lTabnwV7rbfdA_3tn0t7qyiL4VNomaZuZdH6TZH7D2CugzcVFVLkwpsnLMrjcSTB5dL5BeCDwkNg-P-uTeflpoRa_w6PHDux3unaUT2q-Wh7-uPz5Dgf8W_I40d6iBIA4P4vi0CqiU7nJbqFdMpTPYDaC_TTjItEZSvmSi8Lp3Cq7GNYtdzayZacSnf8uDPr3Vso_bNPxPXZ3BJV8OmjBfXYD2gfs9mxcNn_ILk6JjYHij_l05BCHnq87Pm8p-9CSz4ACgM_7i553DZ-2FEjSYWP8C_QEMFEzuG8j_0jRJMARftMkG5U9Gtie8emniCU7VMf-EZsff_j6_iQf8yzkAdHROg-hlkLV3iOU8rYGU4dSNgIkdhrEGNGNbYhT0oEswOrGhiBs0JMy-lKBlvIx22u7Fp4y7tHeRSe1rK0ssYyDplbCa2LBMWYSMvbmulerMJKQUy6MZYXOCMmhIjlUJIdqkEPGXm9qfB8IOP5R9ogEtSlH1NnpQrc6q8aRWOEvTOGHaE810PnzUblJUE6AEOCLJmMvr8Vc4VCj9RPfQnfVV4hliNZZSpOxJ4PYN48ilnqNWp8xs6UQW--yfac9_5bovBGw2bJ0-__xoc_YHTpLGy-L52xvvbqCFwiO1vVBmlQ4SJr_CxJeDKw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomic+Approaches+to+Unravel+Mechanisms+of+Antibiotic+Resistance+and+Immune+Evasion+of+Bacterial+Pathogens&rft.jtitle=Frontiers+in+medicine&rft.au=Torres-Sangiao%2C+Eva&rft.au=Giddey%2C+Alexander+Dyason&rft.au=Leal+Rodriguez%2C+Cristina&rft.au=Tang%2C+Zhiheng&rft.date=2022-05-02&rft.issn=2296-858X&rft.eissn=2296-858X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmed.2022.850374&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmed_2022_850374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-858X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-858X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-858X&client=summon |