Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens

The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death w...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in medicine Vol. 9; p. 850374
Main Authors Torres-Sangiao, Eva, Giddey, Alexander Dyason, Leal Rodriguez, Cristina, Tang, Zhiheng, Liu, Xiaoyun, Soares, Nelson C.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 02.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
AbstractList The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic "Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens," this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Author Giddey, Alexander Dyason
Torres-Sangiao, Eva
Soares, Nelson C.
Leal Rodriguez, Cristina
Tang, Zhiheng
Liu, Xiaoyun
AuthorAffiliation 5 Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
2 Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL) , Santander , Spain
3 Sharjah Institute of Medical Research, University of Sharjah , Sharjah , United Arab Emirates
4 Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah , Sharjah , United Arab Emirates
7 Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing , China
6 Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital , Herlev-Gentofte , Denmark
1 Clinical Microbiology Lab, University Hospital Marqués de Valdecilla , Santander , Spain
AuthorAffiliation_xml – name: 2 Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL) , Santander , Spain
– name: 5 Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa
– name: 4 Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah , Sharjah , United Arab Emirates
– name: 7 Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing , China
– name: 1 Clinical Microbiology Lab, University Hospital Marqués de Valdecilla , Santander , Spain
– name: 3 Sharjah Institute of Medical Research, University of Sharjah , Sharjah , United Arab Emirates
– name: 6 Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital , Herlev-Gentofte , Denmark
Author_xml – sequence: 1
  givenname: Eva
  surname: Torres-Sangiao
  fullname: Torres-Sangiao, Eva
– sequence: 2
  givenname: Alexander Dyason
  surname: Giddey
  fullname: Giddey, Alexander Dyason
– sequence: 3
  givenname: Cristina
  surname: Leal Rodriguez
  fullname: Leal Rodriguez, Cristina
– sequence: 4
  givenname: Zhiheng
  surname: Tang
  fullname: Tang, Zhiheng
– sequence: 5
  givenname: Xiaoyun
  surname: Liu
  fullname: Liu, Xiaoyun
– sequence: 6
  givenname: Nelson C.
  surname: Soares
  fullname: Soares, Nelson C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35586072$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9rFDEUx4NUbK29e5IcveyaHzOZzEVYS9WFikUseAtvMm92U2aSNcku-N-bcVtpBU8Jyfd9Xt4335fkxAePhLzmbCmlbt8NE_ZLwYRY6prJpnpGzoRo1ULX-sfJo_0puUjpjjHGpagrLl-QU1nXWrFGnJHpJoaMYXKWrna7GMBuMdEc6K2PcMCRfkG7Be_SlGgY6Mpn17mQi_wbJpcyeIsUfE_X07T3SK8OkFzws_YD2IzRwUhvIG_DBn16RZ4PMCa8uF_Pye3Hq--XnxfXXz-tL1fXCytbkRfWdpLXHYDiDHSHTWcrOXCUZQjs-55LOVRNGRClQK0GbS3XVrGqh6pGJeU5WR-5fYA7s4tugvjLBHDmz0GIGwOxDDGi0cWUglEwWyjqFvq6ZbZuOXKOIIbCen9k7fZdcdyizxHGJ9CnN95tzSYcTMuZrqq2AN7eA2L4uceUzeSSxXEEj2GfjFBKtay8uinSN497_W3y8F9FoI4CG0NKEQdjXYZcHC-t3Wg4M3M2zJwNM2fDHLNRCtk_hQ_s_5b8Br2vvis
CitedBy_id crossref_primary_10_3390_biom14081018
crossref_primary_10_1021_acs_jproteome_4c00286
crossref_primary_10_1093_jambio_lxae143
crossref_primary_10_1007_s11274_024_04106_8
crossref_primary_10_3390_pharmaceutics15010152
crossref_primary_10_1039_D3CB00135K
Cites_doi 10.1002/prca.201400117
10.1073/pnas.2024144118
10.1016/bs.aivir.2019.07.003
10.1002/pmic.201100158
10.1021/pr0255708
10.1038/s42256-021-00304-3
10.1080/10408347.2021.1871844
10.1007/978-3-662-25813-2_14
10.1007/s13238-015-0136-6
10.1371/journal.ppat.1007741
10.1016/j.virol.2021.03.003
10.1155/2015/782798
10.1038/s41589-021-00894-4
10.1002/pmic.201700092
10.1038/s41564-019-0518-2
10.1038/msb4100024
10.1021/pr101065j
10.1016/j.aca.2017.01.059
10.3390/microorganisms9071539
10.1074/mcp.M112.026161
10.1021/pr800127y
10.1002/pmic.201100088
10.1021/acs.jproteome.7b00593
10.1021/pr060271u
10.1080/14789450.2019.1559062
10.1128/mSystems.00215-21
10.1038/s41467-019-10583-5
10.1021/pr900080y
10.1007/s13361-015-1204-0
10.3389/fimmu.2020.608466
10.1038/nature19949
10.1111/jam.14507
10.1016/j.mib.2017.09.013
10.3390/pathogens9070581
10.1021/acs.jproteome.6b00793
10.1093/chromsci/bmw167
10.1038/s41564-020-0736-7
10.1074/mcp.RA118.001093
10.15252/msb.20178126
10.1016/j.foodchem.2021.130008
10.1074/mcp.M116.063966
10.1016/j.jpeds.2013.10.091
10.1016/j.ijid.2020.02.026
10.1016/j.bbapap.2013.07.017
10.1074/jbc.M604640200
10.3389/fmicb.2014.00392
10.1021/ac048788h
10.1038/s12276-019-0281-8
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1002/mas.20278
10.1126/science.1179687
10.1021/acs.analchem.1c01246
10.1038/s41596-019-0181-3
10.3390/proteomes4010011
10.1126/scisignal.2001668
10.1046/j.1462-5822.2003.00272.x
10.1039/c6mb00656f
10.1016/j.mcpro.2021.100080
10.1038/nature10307
10.1038/s41598-018-21984-9
10.1016/j.molcel.2016.04.015
10.5492/wjccm.v3.i2.45
10.1002/pmic.201500433
10.1016/j.mex.2021.101277
10.15252/msb.20167062
10.1038/nprot.2009.21
10.1128/IAI.00063-09
10.1038/nature01511
10.1074/jbc.M111.267674
10.1074/mcp.M117.068296
10.1016/j.jprot.2018.02.019
10.1371/journal.pcbi.1008169
10.1074/mcp.m200025-mcp200
10.1016/j.ymeth.2018.04.002
10.1039/c3mb70555b
10.1074/mcp.RA118.001138
10.1016/j.jprot.2016.02.002
10.1002/pmic.201600203
10.1038/s41586-021-04020-1
10.1016/j.str.2020.09.011
10.1128/mSystems.00314-18
10.1080/14786419.2019.1577837
10.1371/journal.ppat.1002562
10.1038/s41598-020-80120-8
10.1074/mcp.TIR118.000918
10.1038/nature10335
10.1126/science.1192276
10.15252/msb.20199356
10.1074/mcp.M116.064527
10.3389/fgene.2020.612475
10.1016/j.foodchem.2021.130042
10.1002/rcm.1196
10.1038/nature04616
10.1126/science.1207193
10.1016/j.str.2018.04.016
10.1111/nph.17423
10.3389/fimmu.2021.781100
10.1021/ac00096a002
10.3389/fmicb.2019.01883
10.7554/eLife.64159
10.3389/fmicb.2015.00081
10.1074/mcp.RA117.000023
10.3390/separations6010004
10.1002/rcm.525
10.1128/IAI.00975-13
10.1016/1044-0305(94)80016-2
10.1007/s00253-016-8029-z
10.1128/IAI.02882-14
10.1016/j.bbrc.2014.02.041
10.1038/s41598-019-55430-1
10.1002/rcm.8249
10.1038/nature17657
10.1016/j.ijmm.2018.06.002
10.3389/fphys.2020.00139
10.1016/j.jsb.2010.10.014
10.3390/v13040668
10.1155/2020/6681073
10.1021/pr3006843
10.1016/j.ijmm.2014.07.005
10.1016/j.vetmic.2018.09.024
10.1038/ncomms10261
10.1021/pr800978p
10.1074/mcp.M116.060582
10.1002/pro.2696
10.1007/s11419-016-0341-x
10.1016/j.jprot.2020.103929
10.1038/srep25289
10.1039/d0sc04392c
10.1074/mcp.M113.031591
10.1007/978-1-4939-0685-7_20
10.1073/pnas.1114023109
10.3389/fchem.2021.813359
10.3390/molecules21070867
10.1016/j.syapm.2015.03.006
10.3389/fimmu.2021.594270
10.3390/app9122486
10.1093/bib/bbx033
10.1038/s42003-020-1005-2
10.1039/d0nr02788j
10.1016/s0076-6879(73)27039-8
10.1038/nbt.1511
10.1002/pmic.200700664
10.3390/cells8101129
10.1038/srep25773
10.1038/nmeth.2703
10.1038/s41421-018-0055-9
10.1016/j.jprot.2017.10.006
ContentType Journal Article
Copyright Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares.
Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares
Copyright_xml – notice: Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares.
– notice: Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares. 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmed.2022.850374
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2296-858X
ExternalDocumentID oai_doaj_org_article_8325e326a0374259ad590c591e11ea2f
PMC9108449
35586072
10_3389_fmed_2022_850374
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c392t-ccb315baa610a8be7bc43f1e3000eddd133f47229e32e86f8cc18c604da45e633
IEDL.DBID M48
ISSN 2296-858X
IngestDate Wed Aug 27 01:06:56 EDT 2025
Thu Aug 21 14:40:09 EDT 2025
Fri Jul 11 15:06:12 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 04:05:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SWATH-MS
host-pathogen interactions
system biology
antibiotic resistance
mass spectometry
PTMs (post-translational modifications)
Language English
License Copyright © 2022 Torres-Sangiao, Giddey, Leal Rodriguez, Tang, Liu and Soares.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-ccb315baa610a8be7bc43f1e3000eddd133f47229e32e86f8cc18c604da45e633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Mattias Collin, Lund University, Sweden
Reviewed by: Christofer Karlsson, Lund University, Sweden; Jennifer Geddes-McAlister, University of Guelph, Canada
These authors have contributed equally to this work
This article was submitted to Infectious Diseases – Surveillance, Prevention and Treatment, a section of the journal Frontiers in Medicine
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmed.2022.850374
PMID 35586072
PQID 2666906337
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8325e326a0374259ad590c591e11ea2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9108449
proquest_miscellaneous_2666906337
pubmed_primary_35586072
crossref_citationtrail_10_3389_fmed_2022_850374
crossref_primary_10_3389_fmed_2022_850374
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-02
PublicationDateYYYYMMDD 2022-05-02
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in medicine
PublicationTitleAlternate Front Med (Lausanne)
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Erdmann (B37) 2019; 8
Snipsoyr (B145) 2020; 96
Aebersold (B65) 2016; 16
Malmstrom (B68) 2016; 7
Keller (B30) 2005; 1
Cox (B57) 2014; 13
Perkins (B28) 1999; 20
Ma (B21) 2015; 26
Mukherjee (B128) 2011; 477
Papafilippou (B136) 2020; 12
Sjoholm (B100) 2017; 16
Chavez (B105) 2019; 14
Qi (B115) 2017; 17
Zhang (B91) 2020; 9
Pettersen (B76) 2018; 17
Collins (B82) 2013; 10
Sylvester (B146) 2014; 164
Zoued (B87) 2021; 17
Megger (B55) 2014; 1844
Fiskin (B120) 2016; 62
Pettersen (B140) 2016; 15
Bakochi (B70) 2021; 10
Zhang (B2) 2016; 6
Ong (B54) 2003; 2
Surmann (B75) 2018; 2018
Wehr (B44) 2006; 24
Pflieger (B72) 2011; 30
Mónica Cartelle Gestal (B101) 2019; 9
Banaei-Esfahani (B84) 2017; 39
Cox (B58) 2008; 26
Tan (B127) 2011; 108
Sjoholm (B99) 2014; 10
Catherman (B43) 2014; 445
Sajic (B64) 2015; 9
Edman (B17) 1949; 22
Nakamura (B66) 2016; 16
Ludwig (B135) 2017; 13
Staali (B97) 2003; 5
Aebersold (B13) 2003; 422
Vidova (B59) 2017; 964
Qiao (B24) 2021; 3
Liu (B96) 2017; 16
Li (B3) 2021; 9
Ludwig (B63) 2018; 14
Qiu (B129) 2016; 533
Flores-Trevino (B150) 2019; 9
Park (B35) 2020; 10
Suhre (B88) 2022; 12
Eng (B27) 1994; 5
Patel (B56) 2009; 8
Minakata (B9) 2017; 35
Jean Beltran (B79) 2017; 13
Rappsilber (B47) 2011; 173
Sinz (B48) 2015; 24
Liu (B95) 2015; 83
Lamontagne (B112) 2009; 8
Bullock (B49) 2018; 26
Palma Medina (B113) 2019; 18
Liu (B109) 2017; 16
Aslam (B14) 2017; 55
Selkrig (B116) 2020; 5
Cox (B31) 2011; 10
Olaitan (B6) 2018; 32
Li (B123) 2021; 599
Frank (B23) 2007; 6
Niall (B18) 1973; 27
Happonen (B83) 2019; 10
Ling (B10) 2020; 34
Li (B107) 2019; 4
Yang (B90) 2015; 6
Ooi (B50) 2019; 4
Wang (B130) 2018; 4
Bu (B137) 2021; 12
Dülfer (B45) 2019; 105
Becker (B93) 2006; 440
Karlsson (B139) 2015; 38
Sidjabat (B69) 2018; 8
Torres-Sangiao (B147) 2016; 21
Charretier (B151) 2015; 6
Li (B142) 2020; 11
Simanjuntak (B41) 2021; 13
Schmidt (B92) 2011; 11
Liu (B94) 2012; 8
Shi (B106) 2006; 281
Boersema (B52) 2009; 4
Birk (B85) 2021; 6
Edman (B16) 1967; 1
Hristova (B61) 2019; 16
Tan (B126) 2011; 475
Hermann (B86) 2019; 191
Blangy-Letheule (B141) 2020; 2020
Yang (B25) 2019; 18
Noster (B108) 2019; 15
Pak (B62) 2021; 20
Albeldas (B133) 2017; 180
Fortuin (B80) 2020; 228
Fasih Ramandi (B7) 2021; 2021
Hahn (B119) 2021; 118
Li (B132) 2018; 226
Frankfater (B5) 2019; 6
Stewart (B51) 2001; 15
Malmstrom (B98) 2012; 287
Zampieri (B39) 2016; 6
Zhou (B42) 2020; 11
Meng (B122) 2020; 3
Imami (B118) 2013; 12
Rogers (B117) 2011; 4
Torres-Sangiao (B1) 2021; 9
Cifani (B12) 2017; 16
Baros-Steyl (B38) 2021; 2021
Malmstrom (B71) 2011; 11
Coiras (B73) 2008; 8
Wang (B131) 2010; 327
Chi (B19) 2013; 12
Neunuebel (B125) 2011; 333
Josten (B149) 2014; 304
Kalantari (B34) 2015; 2015
Frank (B33) 2005; 77
Ma (B32) 2003; 17
Holtfreter (B78) 2016; 4
Leitner (B104) 2020; 28
Castro-Gamero (B60) 2014; 1156
Khalilpour (B138) 2017; 101
Muth (B22) 2018; 19
Jo (B89) 2019; 51
Pravda (B143) 2014; 3
Kosma (B11) 2021; 360
Bader (B36) 2020; 16
Jadot (B15) 2017; 16
Mann (B26) 1994; 66
Surmann (B77) 2014; 5
Lamberti (B111) 2016; 136
Limpikirati (B46) 2018; 144
Spät (B134) 2021; 231
(B20) 2004; 2
Ong (B53) 2002; 1
Yuan (B8) 2021; 360
Newson (B121) 2019; 18
Heyer (B40) 2019; 10
Muller (B124) 2010; 329
Maus (B148) 2020; 128
Park (B29) 2008; 7
Belshan (B67) 2021; 558
Fortuin (B81) 2021; 8
Khakzad (B102) 2021; 17
Aebersold (B74) 2016; 537
Shi (B114) 2009; 77
Pieper (B110) 2013; 81
Xue (B4) 2021; 93
Khakzad (B103) 2020; 11
Caval (B144) 2020; 11
References_xml – volume: 9
  start-page: 307
  year: 2015
  ident: B64
  article-title: Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.
  publication-title: Proteomics Clin Appl.
  doi: 10.1002/prca.201400117
– volume: 118
  year: 2021
  ident: B119
  article-title: SIK2 orchestrates actin-dependent host response upon Salmonella infection.
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.2024144118
– volume: 105
  start-page: 189
  year: 2019
  ident: B45
  article-title: Structural mass spectrometry goes viral.
  publication-title: Adv Virus Res.
  doi: 10.1016/bs.aivir.2019.07.003
– volume: 11
  start-page: 3203
  year: 2011
  ident: B92
  article-title: Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment.
  publication-title: Proteomics.
  doi: 10.1002/pmic.201100158
– volume: 2
  start-page: 173
  year: 2003
  ident: B54
  article-title: Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC).
  publication-title: J Proteome Res.
  doi: 10.1021/pr0255708
– volume: 3
  start-page: 420
  year: 2021
  ident: B24
  article-title: Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices.
  publication-title: Nat Machine Intellig.
  doi: 10.1038/s42256-021-00304-3
– volume: 2021
  start-page: 1
  year: 2021
  ident: B7
  article-title: Mass spectrometry: a powerful method for monitoring various type of leukemia, especially MALDI-TOF in leukemia’s proteomics studies review.
  publication-title: Crit Rev Anal Chem.
  doi: 10.1080/10408347.2021.1871844
– volume: 1
  start-page: 80
  year: 1967
  ident: B16
  article-title: A protein sequenator.
  publication-title: Eur J Biochem.
  doi: 10.1007/978-3-662-25813-2_14
– volume: 6
  start-page: 265
  year: 2015
  ident: B90
  article-title: Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions.
  publication-title: Protein Cell.
  doi: 10.1007/s13238-015-0136-6
– volume: 15
  year: 2019
  ident: B108
  article-title: Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007741
– volume: 22
  year: 1949
  ident: B17
  article-title: A method for the determination of amino acid sequence in peptides.
  publication-title: Arch Biochem.
– volume: 2021
  year: 2021
  ident: B38
  article-title: Phosphoproteomics reveals new insights into the role of PknG during the persistence of pathogenic mycobacteria in host macrophages.
  publication-title: bioRxiv.
– volume: 558
  start-page: 86
  year: 2021
  ident: B67
  article-title: Discovery of candidate HIV-1 latency biomarkers using an OMICs approach.
  publication-title: Virology.
  doi: 10.1016/j.virol.2021.03.003
– volume: 2015
  year: 2015
  ident: B34
  article-title: Human urine proteomics: analytical techniques and clinical applications in renal diseases.
  publication-title: Int J Proteomics.
  doi: 10.1155/2015/782798
– volume: 17
  start-page: 1199
  year: 2021
  ident: B87
  article-title: Proteomic analysis of the host-pathogen interface in experimental cholera.
  publication-title: Nat Chem Biol.
  doi: 10.1038/s41589-021-00894-4
– volume: 17
  year: 2017
  ident: B115
  article-title: Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium.
  publication-title: Proteomics.
  doi: 10.1002/pmic.201700092
– volume: 4
  start-page: 2369
  year: 2019
  ident: B50
  article-title: An RNA-centric dissection of host complexes controlling flavivirus infection.
  publication-title: Nat Microbiol.
  doi: 10.1038/s41564-019-0518-2
– volume: 1
  year: 2005
  ident: B30
  article-title: A uniform proteomics MS/MS analysis platform utilizing open XML file formats.
  publication-title: Mol Syst Biol.
  doi: 10.1038/msb4100024
– volume: 10
  start-page: 1794
  year: 2011
  ident: B31
  article-title: Andromeda: a peptide search engine integrated into the maxquant environment.
  publication-title: J Proteome Res.
  doi: 10.1021/pr101065j
– volume: 964
  start-page: 7
  year: 2017
  ident: B59
  article-title: A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition.
  publication-title: Anal Chim Acta.
  doi: 10.1016/j.aca.2017.01.059
– volume: 9
  year: 2021
  ident: B1
  article-title: Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories.
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms9071539
– volume: 12
  start-page: 1632
  year: 2013
  ident: B118
  article-title: Global impact of Salmonella pathogenicity island 2-secreted effectors on the host phosphoproteome.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M112.026161
– volume: 7
  start-page: 3022
  year: 2008
  ident: B29
  article-title: Rapid and accurate peptide identification from tandem mass spectra.
  publication-title: J Proteome Res.
  doi: 10.1021/pr800127y
– volume: 11
  start-page: 2947
  year: 2011
  ident: B71
  article-title: Quantitative proteomics of microbes: principles and applications to virulence.
  publication-title: Proteomics.
  doi: 10.1002/pmic.201100088
– volume: 2
  year: 2004
  ident: B20
  article-title: Algorithms for de novo peptide sequencing using tandem mass spectrometry.
  publication-title: Drug Discov Today BIOSILICO.
– volume: 17
  start-page: 325
  year: 2018
  ident: B76
  article-title: Comparative Proteomics of Enterotoxigenic Escherichia coli Reveals Differences in Surface Protein Production and Similarities in Metabolism.
  publication-title: J Proteome Res.
  doi: 10.1021/acs.jproteome.7b00593
– volume: 6
  start-page: 114
  year: 2007
  ident: B23
  article-title: De novo peptide sequencing and identification with precision mass spectrometry.
  publication-title: J Proteome Res.
  doi: 10.1021/pr060271u
– volume: 16
  start-page: 93
  year: 2019
  ident: B61
  article-title: Cancer biomarker discovery and translation: proteomics and beyond.
  publication-title: Expert Rev Proteomics.
  doi: 10.1080/14789450.2019.1559062
– volume: 6
  year: 2021
  ident: B85
  article-title: Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation.
  publication-title: mSystems.
  doi: 10.1128/mSystems.00215-21
– volume: 10
  year: 2019
  ident: B83
  article-title: A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies.
  publication-title: Nat Commun.
  doi: 10.1038/s41467-019-10583-5
– volume: 8
  start-page: 3752
  year: 2009
  ident: B56
  article-title: A comparison of labeling and label-free mass spectrometry-based proteomics approaches.
  publication-title: J Proteome Res.
  doi: 10.1021/pr900080y
– volume: 26
  year: 2015
  ident: B21
  article-title: Novor: real-time peptide de novo sequencing software.
  publication-title: J Am Soc Mass Spectrom.
  doi: 10.1007/s13361-015-1204-0
– volume: 11
  year: 2020
  ident: B144
  article-title: Glycoproteoform Profiles of Individual Patients’ Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2020.608466
– volume: 537
  start-page: 347
  year: 2016
  ident: B74
  article-title: Mass-spectrometric exploration of proteome structure and function.
  publication-title: Nature.
  doi: 10.1038/nature19949
– volume: 128
  start-page: 697
  year: 2020
  ident: B148
  article-title: Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS.
  publication-title: J Appl Microbiol.
  doi: 10.1111/jam.14507
– volume: 39
  start-page: 64
  year: 2017
  ident: B84
  article-title: Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis.
  publication-title: Curr Opin Microbiol.
  doi: 10.1016/j.mib.2017.09.013
– volume: 9
  year: 2020
  ident: B91
  article-title: Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions.
  publication-title: Pathogens.
  doi: 10.3390/pathogens9070581
– volume: 16
  start-page: 788
  year: 2017
  ident: B96
  article-title: Quantitative Proteomics Charts the Landscape of Salmonella Carbon Metabolism within Host Epithelial Cells.
  publication-title: J Proteome Res.
  doi: 10.1021/acs.jproteome.6b00793
– volume: 55
  start-page: 182
  year: 2017
  ident: B14
  article-title: Proteomics: technologies and Their Applications.
  publication-title: J Chromatogr Sci.
  doi: 10.1093/chromsci/bmw167
– volume: 5
  start-page: 1119
  year: 2020
  ident: B116
  article-title: Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection.
  publication-title: Nat Microbiol.
  doi: 10.1038/s41564-020-0736-7
– volume: 18
  start-page: 1138
  year: 2019
  ident: B121
  article-title: Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.RA118.001093
– volume: 14
  year: 2018
  ident: B63
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.
  publication-title: Mol Syst Biol.
  doi: 10.15252/msb.20178126
– volume: 360
  year: 2021
  ident: B11
  article-title: Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS.
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.130008
– volume: 16
  start-page: S29
  year: 2017
  ident: B100
  article-title: Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M116.063966
– volume: 164
  start-page: e1
  year: 2014
  ident: B146
  article-title: Urine protein biomarkers for the diagnosis and prognosis of necrotizing enterocolitis in infants.
  publication-title: J Pediatr.
  doi: 10.1016/j.jpeds.2013.10.091
– volume: 96
  start-page: 73
  year: 2020
  ident: B145
  article-title: Towards identification of novel putative biomarkers for infective endocarditis by serum proteomic analysis.
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2020.02.026
– volume: 1844
  start-page: 967
  year: 2014
  ident: B55
  article-title: Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines.
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbapap.2013.07.017
– volume: 281
  start-page: 29131
  year: 2006
  ident: B106
  article-title: Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages.
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M604640200
– volume: 5
  year: 2014
  ident: B77
  article-title: Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells.
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2014.00392
– volume: 77
  start-page: 964
  year: 2005
  ident: B33
  article-title: PepNovo: de novo peptide sequencing via probabilistic network modeling.
  publication-title: Anal Chem.
  doi: 10.1021/ac048788h
– volume: 51
  start-page: 1
  year: 2019
  ident: B89
  article-title: Interplay between host and pathogen: immune defense and beyond.
  publication-title: Exp Mol Med.
  doi: 10.1038/s12276-019-0281-8
– volume: 20
  start-page: 3551
  year: 1999
  ident: B28
  article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data.
  publication-title: Electrophoresis.
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 30
  start-page: 268
  year: 2011
  ident: B72
  article-title: Linking the proteins–elucidation of proteome-scale networks using mass spectrometry.
  publication-title: Mass Spectrom Rev.
  doi: 10.1002/mas.20278
– volume: 327
  start-page: 1004
  year: 2010
  ident: B131
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux.
  publication-title: Science.
  doi: 10.1126/science.1179687
– volume: 93
  start-page: 10879
  year: 2021
  ident: B4
  article-title: Single quadrupole multiple fragment ion monitoring quantitative mass spectrometry.
  publication-title: Anal Chem.
  doi: 10.1021/acs.analchem.1c01246
– volume: 14
  start-page: 2318
  year: 2019
  ident: B105
  article-title: Systems structural biology measurements by in vivo cross-linking with mass spectrometry.
  publication-title: Nat Protoc.
  doi: 10.1038/s41596-019-0181-3
– volume: 4
  year: 2016
  ident: B78
  article-title: Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates.
  publication-title: Proteomes.
  doi: 10.3390/proteomes4010011
– volume: 4
  year: 2011
  ident: B117
  article-title: Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events.
  publication-title: Sci Signal.
  doi: 10.1126/scisignal.2001668
– volume: 5
  start-page: 253
  year: 2003
  ident: B97
  article-title: Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils.
  publication-title: Cell Microbiol.
  doi: 10.1046/j.1462-5822.2003.00272.x
– volume: 13
  start-page: 648
  year: 2017
  ident: B135
  article-title: Mass spectrometry for the discovery of biomarkers of sepsis.
  publication-title: Mol Biosyst.
  doi: 10.1039/c6mb00656f
– volume: 20
  year: 2021
  ident: B62
  article-title: Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
  publication-title: Mol Cell Proteomics.
  doi: 10.1016/j.mcpro.2021.100080
– volume: 475
  start-page: 506
  year: 2011
  ident: B126
  article-title: Legionella pneumophila SidD is a deAMPylase that modifies Rab1.
  publication-title: Nature.
  doi: 10.1038/nature10307
– volume: 8
  year: 2018
  ident: B69
  article-title: The use of SWATH to analyse the dynamic changes of bacterial proteome of carbapanemase-producing Escherichia coli under antibiotic pressure.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-21984-9
– volume: 62
  start-page: 967
  year: 2016
  ident: B120
  article-title: Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection.
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2016.04.015
– volume: 3
  start-page: 45
  year: 2014
  ident: B143
  article-title: Metabolic theory of septic shock.
  publication-title: World J Crit Care Med.
  doi: 10.5492/wjccm.v3.i2.45
– volume: 16
  start-page: 2106
  year: 2016
  ident: B66
  article-title: Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM.
  publication-title: Proteomics.
  doi: 10.1002/pmic.201500433
– volume: 8
  year: 2021
  ident: B81
  article-title: Liquid chromatography mass spectrometry-based proteomics of Escherichia coli single colony.
  publication-title: MethodsX.
  doi: 10.1016/j.mex.2021.101277
– volume: 13
  year: 2017
  ident: B79
  article-title: Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases.
  publication-title: Mol Syst Biol.
  doi: 10.15252/msb.20167062
– volume: 4
  start-page: 484
  year: 2009
  ident: B52
  article-title: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics.
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2009.21
– volume: 77
  start-page: 3227
  year: 2009
  ident: B114
  article-title: Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica.
  publication-title: Infect Immun.
  doi: 10.1128/IAI.00063-09
– volume: 422
  start-page: 198
  year: 2003
  ident: B13
  article-title: Mass spectrometry-based proteomics.
  publication-title: Nature.
  doi: 10.1038/nature01511
– volume: 287
  start-page: 1415
  year: 2012
  ident: B98
  article-title: Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics.
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M111.267674
– volume: 16
  start-page: 1683
  year: 2017
  ident: B109
  article-title: Temporal Regulation of a Salmonella Typhimurium Virulence Factor by the Transcriptional Regulator YdcR.
  publication-title: Mol Cell Proteom.
  doi: 10.1074/mcp.M117.068296
– volume: 191
  start-page: 166
  year: 2019
  ident: B86
  article-title: Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin.
  publication-title: J Proteom.
  doi: 10.1016/j.jprot.2018.02.019
– volume: 17
  year: 2021
  ident: B102
  article-title: Structural determination of Streptococcus pyogenes M1 protein interactions with human immunoglobulin G using integrative structural biology.
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1008169
– volume: 1
  start-page: 376
  year: 2002
  ident: B53
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.m200025-mcp200
– volume: 144
  start-page: 79
  year: 2018
  ident: B46
  article-title: Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions.
  publication-title: Methods.
  doi: 10.1016/j.ymeth.2018.04.002
– volume: 10
  start-page: 1698
  year: 2014
  ident: B99
  article-title: A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network.
  publication-title: Mol Biosyst.
  doi: 10.1039/c3mb70555b
– volume: 18
  start-page: 892
  year: 2019
  ident: B113
  article-title: Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.RA118.001138
– volume: 136
  start-page: 55
  year: 2016
  ident: B111
  article-title: Proteome analysis of Bordetella pertussis isolated from human macrophages.
  publication-title: J Proteomics.
  doi: 10.1016/j.jprot.2016.02.002
– volume: 16
  start-page: 2065
  year: 2016
  ident: B65
  article-title: Applications and developments in targeted proteomics: from SRM to DIA/SWATH.
  publication-title: Proteomics.
  doi: 10.1002/pmic.201600203
– volume: 599
  start-page: 290
  year: 2021
  ident: B123
  article-title: Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11.
  publication-title: Nature.
  doi: 10.1038/s41586-021-04020-1
– volume: 28
  start-page: 1259
  year: 2020
  ident: B104
  article-title: Toward Increased Reliability, Transparency, and Accessibility in Cross-linking Mass Spectrometry.
  publication-title: Structure.
  doi: 10.1016/j.str.2020.09.011
– volume: 4
  start-page: e314
  year: 2019
  ident: B107
  article-title: Salmonella Proteomic Profiling during Infection Distinguishes the Intracellular Environment of Host Cells.
  publication-title: mSystems.
  doi: 10.1128/mSystems.00314-18
– volume: 34
  start-page: 2144
  year: 2020
  ident: B10
  article-title: Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS.
  publication-title: Nat Prod Res.
  doi: 10.1080/14786419.2019.1577837
– volume: 8
  year: 2012
  ident: B94
  article-title: Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002562
– volume: 10
  year: 2020
  ident: B35
  article-title: In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-020-80120-8
– volume: 18
  start-page: 773
  year: 2019
  ident: B25
  article-title: Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.TIR118.000918
– volume: 477
  start-page: 103
  year: 2011
  ident: B128
  article-title: Modulation of Rab GTPase function by a protein phosphocholine transferase.
  publication-title: Nature.
  doi: 10.1038/nature10335
– volume: 329
  start-page: 946
  year: 2010
  ident: B124
  article-title: The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b.
  publication-title: Science.
  doi: 10.1126/science.1192276
– volume: 24
  year: 2006
  ident: B44
  article-title: Top-Down versus Bottom-Up Approaches in Proteomics.
  publication-title: LCGC North Am.
– volume: 16
  year: 2020
  ident: B36
  article-title: Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease.
  publication-title: Mol Syst Biol.
  doi: 10.15252/msb.20199356
– volume: 16
  start-page: 194
  year: 2017
  ident: B15
  article-title: Accounting for protein subcellular localization: a compartmental map of the rat liver proteome.
  publication-title: Mol Cell Proteom.
  doi: 10.1074/mcp.M116.064527
– volume: 11
  year: 2020
  ident: B103
  article-title: In vivo Cross-Linking MS of the Complement System MAC Assembled on Live Gram-Positive Bacteria.
  publication-title: Front Genet.
  doi: 10.3389/fgene.2020.612475
– volume: 360
  year: 2021
  ident: B8
  article-title: Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation.
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.130042
– volume: 17
  start-page: 2337
  year: 2003
  ident: B32
  article-title: PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry.
  publication-title: Rapid Commun Mass Spectrom.
  doi: 10.1002/rcm.1196
– volume: 440
  start-page: 303
  year: 2006
  ident: B93
  article-title: Robust Salmonella metabolism limits possibilities for new antimicrobials.
  publication-title: Nature.
  doi: 10.1038/nature04616
– volume: 333
  start-page: 453
  year: 2011
  ident: B125
  article-title: De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila.
  publication-title: Science.
  doi: 10.1126/science.1207193
– volume: 26
  start-page: 1015.e
  year: 2018
  ident: B49
  article-title: Modeling protein complexes using restraints from crosslinking mass spectrometry.
  publication-title: Structure.
  doi: 10.1016/j.str.2018.04.016
– volume: 231
  start-page: 1123
  year: 2021
  ident: B134
  article-title: Alterations in the CO2 availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803.
  publication-title: New Phytologist.
  doi: 10.1111/nph.17423
– volume: 12
  year: 2022
  ident: B88
  article-title: Identification of Robust Protein Associations With COVID-19 Disease Based on Five Clinical Studies.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2021.781100
– volume: 66
  start-page: 4390
  year: 1994
  ident: B26
  article-title: Error-tolerant identification of peptides in sequence databases by peptide sequence tags.
  publication-title: Anal Chem.
  doi: 10.1021/ac00096a002
– volume: 10
  year: 2019
  ident: B40
  article-title: A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer.
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2019.01883
– volume: 10
  year: 2021
  ident: B70
  article-title: Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis.
  publication-title: Elife.
  doi: 10.7554/eLife.64159
– volume: 6
  year: 2015
  ident: B151
  article-title: Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates.
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2015.00081
– volume: 16
  start-page: 2006
  year: 2017
  ident: B12
  article-title: High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer.
  publication-title: Mol Cell Proteom.
  doi: 10.1074/mcp.RA117.000023
– volume: 6
  year: 2019
  ident: B5
  article-title: Multiple-stage Precursor Ion Separation and High Resolution Mass Spectrometry toward Structural Characterization of 2,3-Diacyltrehalose Family from Mycobacterium tuberculosis.
  publication-title: Separations.
  doi: 10.3390/separations6010004
– volume: 15
  start-page: 2456
  year: 2001
  ident: B51
  article-title: 18O labeling: a tool for proteomics.
  publication-title: Rapid Commun Mass Spectrom.
  doi: 10.1002/rcm.525
– volume: 81
  start-page: 4635
  year: 2013
  ident: B110
  article-title: Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth.
  publication-title: Infect Immun.
  doi: 10.1128/IAI.00975-13
– volume: 5
  start-page: 976
  year: 1994
  ident: B27
  article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
  publication-title: J Am Soc Mass Spectrom.
  doi: 10.1016/1044-0305(94)80016-2
– volume: 101
  start-page: 475
  year: 2017
  ident: B138
  article-title: Proteomic-based biomarker discovery for development of next generation diagnostics.
  publication-title: Appl Microbiol Biotechnol.
  doi: 10.1007/s00253-016-8029-z
– volume: 83
  start-page: 2897
  year: 2015
  ident: B95
  article-title: Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells.
  publication-title: Infect Immun.
  doi: 10.1128/IAI.02882-14
– volume: 445
  start-page: 683
  year: 2014
  ident: B43
  article-title: Top Down proteomics: facts and perspectives.
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2014.02.041
– volume: 9
  year: 2019
  ident: B150
  article-title: Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-55430-1
– volume: 32
  start-page: 1887
  year: 2018
  ident: B6
  article-title: Small- and large-sized iron(II, III) oxide nanoparticles for surface-assisted laser desorption/ionization mass spectrometry of small biomolecules.
  publication-title: Rapid Commun Mass Spectrom.
  doi: 10.1002/rcm.8249
– volume: 533
  start-page: 120
  year: 2016
  ident: B129
  article-title: Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.
  publication-title: Nature.
  doi: 10.1038/nature17657
– volume: 2018
  year: 2018
  ident: B75
  article-title: Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells.
  publication-title: Int J Med Microbiol.
  doi: 10.1016/j.ijmm.2018.06.002
– volume: 11
  year: 2020
  ident: B142
  article-title: Analysis of Spatiotemporal Urine Protein Dynamics to Identify New Biomarkers for Sepsis-Induced Acute Kidney Injury.
  publication-title: Front Physiol.
  doi: 10.3389/fphys.2020.00139
– volume: 173
  start-page: 530
  year: 2011
  ident: B47
  article-title: The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes.
  publication-title: J Struct Biol.
  doi: 10.1016/j.jsb.2010.10.014
– volume: 13
  year: 2021
  ident: B41
  article-title: Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology.
  publication-title: Viruses.
  doi: 10.3390/v13040668
– volume: 2020
  year: 2020
  ident: B141
  article-title: New approaches to identify sepsis biomarkers: the importance of model and sample source for mass spectrometry.
  publication-title: Oxid Med Cell Longev.
  doi: 10.1155/2020/6681073
– volume: 12
  start-page: 615
  year: 2013
  ident: B19
  article-title: pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra.
  publication-title: J Proteome Res.
  doi: 10.1021/pr3006843
– volume: 304
  start-page: 1018
  year: 2014
  ident: B149
  article-title: Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry.
  publication-title: Int J Med Microbiol.
  doi: 10.1016/j.ijmm.2014.07.005
– volume: 226
  start-page: 1
  year: 2018
  ident: B132
  article-title: First acetyl-proteome profiling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance.
  publication-title: Vet Microbiol.
  doi: 10.1016/j.vetmic.2018.09.024
– volume: 7
  year: 2016
  ident: B68
  article-title: Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.
  publication-title: Nat Commun.
  doi: 10.1038/ncomms10261
– volume: 8
  start-page: 1594
  year: 2009
  ident: B112
  article-title: Intracellular adaptation of Brucella abortus.
  publication-title: J Proteome Res.
  doi: 10.1021/pr800978p
– volume: 15
  start-page: 2890
  year: 2016
  ident: B140
  article-title: Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis.
  publication-title: Mol Cell Proteom MCP.
  doi: 10.1074/mcp.M116.060582
– volume: 24
  start-page: 1193
  year: 2015
  ident: B48
  article-title: Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology.
  publication-title: Protein Sci.
  doi: 10.1002/pro.2696
– volume: 35
  start-page: 86
  year: 2017
  ident: B9
  article-title: Quantitation of biperiden in whole blood by MALDI-QTOF tandem mass spectrometry, and estimation of new metabolites in urine of deceased subjects treated with biperiden antemortem.
  publication-title: Forens Toxicol.
  doi: 10.1007/s11419-016-0341-x
– volume: 228
  year: 2020
  ident: B80
  article-title: Comparison between the proteome of Escherichia coli single colony and during liquid culture.
  publication-title: J Proteom.
  doi: 10.1016/j.jprot.2020.103929
– volume: 6
  year: 2016
  ident: B2
  article-title: Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain.
  publication-title: Sci Rep.
  doi: 10.1038/srep25289
– volume: 11
  start-page: 12918
  year: 2020
  ident: B42
  article-title: Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry.
  publication-title: Chem Sci.
  doi: 10.1039/d0sc04392c
– volume: 13
  start-page: 2513
  year: 2014
  ident: B57
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M113.031591
– volume: 1156
  start-page: 295
  year: 2014
  ident: B60
  article-title: Biomarker verification using selected reaction monitoring and shotgun proteomics.
  publication-title: Methods Mol Biol.
  doi: 10.1007/978-1-4939-0685-7_20
– volume: 108
  start-page: 21212
  year: 2011
  ident: B127
  article-title: Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination.
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1114023109
– volume: 9
  year: 2021
  ident: B3
  article-title: Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers.
  publication-title: Front Chem.
  doi: 10.3389/fchem.2021.813359
– volume: 21
  year: 2016
  ident: B147
  article-title: Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases.
  publication-title: Molecules.
  doi: 10.3390/molecules21070867
– volume: 38
  start-page: 246
  year: 2015
  ident: B139
  article-title: Proteotyping: proteomic characterization, classification and identification of microorganisms–a prospectus.
  publication-title: Syst Appl Microbiol.
  doi: 10.1016/j.syapm.2015.03.006
– volume: 12
  year: 2021
  ident: B137
  article-title: Untargeted metabolomic profiling of the correlation between prognosis differences and PD-1 expression in sepsis: a preliminary study.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2021.594270
– volume: 9
  year: 2019
  ident: B101
  article-title: Computational Health engineering applied to model infectious diseases and antimicrobial resistance spread.
  publication-title: Appl Sci.
  doi: 10.3390/app9122486
– volume: 19
  start-page: 954
  year: 2018
  ident: B22
  article-title: Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbx033
– volume: 3
  year: 2020
  ident: B122
  article-title: Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium.
  publication-title: Commun Biol.
  doi: 10.1038/s42003-020-1005-2
– volume: 12
  start-page: 10240
  year: 2020
  ident: B136
  article-title: Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation.
  publication-title: Nanoscale.
  doi: 10.1039/d0nr02788j
– volume: 27
  start-page: 942
  year: 1973
  ident: B18
  article-title: Automated Edman degradation: the protein sequenator.
  publication-title: Methods Enzymol.
  doi: 10.1016/s0076-6879(73)27039-8
– volume: 26
  start-page: 1367
  year: 2008
  ident: B58
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 8
  start-page: 852
  year: 2008
  ident: B73
  article-title: Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents.
  publication-title: Proteomics.
  doi: 10.1002/pmic.200700664
– volume: 8
  year: 2019
  ident: B37
  article-title: The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates.
  publication-title: Cells.
  doi: 10.3390/cells8101129
– volume: 6
  year: 2016
  ident: B39
  article-title: Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles.
  publication-title: Sci Rep.
  doi: 10.1038/srep25773
– volume: 10
  start-page: 1246
  year: 2013
  ident: B82
  article-title: Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system.
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2703
– volume: 4
  year: 2018
  ident: B130
  article-title: Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase.
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0055-9
– volume: 180
  start-page: 1
  year: 2017
  ident: B133
  article-title: Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis.
  publication-title: J Proteom.
  doi: 10.1016/j.jprot.2017.10.006
SSID ssj0001325413
Score 2.2242672
SecondaryResourceType review_article
Snippet The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 850374
SubjectTerms antibiotic resistance
host-pathogen interactions
mass spectometry
Medicine
PTMs (post-translational modifications)
SWATH-MS
system biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLCF48VDdN0jbHVRQVFBEXvIU0maKgrdj1_zvT1mVXRC-eCu0kDfNNki-vL4wdAm0uToKORZaVsVLexEZCFgfjSqQHAh-t2udtejlS14_6ceqqL9oT1skDd447wYjTgBzDkVAKcnUXtBl4bQQIAS4pqfXFPm9qMNXOrmAqbJ67dUkchRmECUgYNEmOc01ZzfRDrVz_Txzz-1bJqb7nYpkt9aSRD7vCrrA5qFbZwk2_LL7GXu9IbYHOF_NhrxEODR_XfFTR7UIv_AbogO9z89rwuuTDig6K1JgZv4eGCCQiz10V-BWdFgGO9Jom0cj2tFNzxr_fIVesMdyadTa6OH84u4z7exRij-xnHHtfSKEL55AqubyArPBKlgIkOgpCCDhMLUkz0qCfIU_L3HuR-3SgglMaUik32HxVV7DFuMP-LBiZyiKXCm0MlIUWLiWVmywb-IidfHnV-l5knO66eLE42CAcLOFgCQfb4RCxo0mKt05g4xfbUwJqYkfS2O0LDBjbB4z9K2AidvAFs8WqROsjroL6o7HIVUi2WcosYpsd7JNfkQp9ilEdsWwmIGbKMvulen5q5bqRkOVKme3_KPwOWyR_tDsuk102P37_gD1kReNiv60An6TFCeU
  priority: 102
  providerName: Directory of Open Access Journals
Title Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens
URI https://www.ncbi.nlm.nih.gov/pubmed/35586072
https://www.proquest.com/docview/2666906337
https://pubmed.ncbi.nlm.nih.gov/PMC9108449
https://doaj.org/article/8325e326a0374259ad590c591e11ea2f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifttTjwi--NBz0zRfDyJ74nEKK4e4sG8lTabnwV7rbfdA_3tn0t7qyiL4VNomaZuZdH6TZH7D2CugzcVFVLkwpsnLMrjcSTB5dL5BeCDwkNg-P-uTeflpoRa_w6PHDux3unaUT2q-Wh7-uPz5Dgf8W_I40d6iBIA4P4vi0CqiU7nJbqFdMpTPYDaC_TTjItEZSvmSi8Lp3Cq7GNYtdzayZacSnf8uDPr3Vso_bNPxPXZ3BJV8OmjBfXYD2gfs9mxcNn_ILk6JjYHij_l05BCHnq87Pm8p-9CSz4ACgM_7i553DZ-2FEjSYWP8C_QEMFEzuG8j_0jRJMARftMkG5U9Gtie8emniCU7VMf-EZsff_j6_iQf8yzkAdHROg-hlkLV3iOU8rYGU4dSNgIkdhrEGNGNbYhT0oEswOrGhiBs0JMy-lKBlvIx22u7Fp4y7tHeRSe1rK0ssYyDplbCa2LBMWYSMvbmulerMJKQUy6MZYXOCMmhIjlUJIdqkEPGXm9qfB8IOP5R9ogEtSlH1NnpQrc6q8aRWOEvTOGHaE810PnzUblJUE6AEOCLJmMvr8Vc4VCj9RPfQnfVV4hliNZZSpOxJ4PYN48ilnqNWp8xs6UQW--yfac9_5bovBGw2bJ0-__xoc_YHTpLGy-L52xvvbqCFwiO1vVBmlQ4SJr_CxJeDKw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomic+Approaches+to+Unravel+Mechanisms+of+Antibiotic+Resistance+and+Immune+Evasion+of+Bacterial+Pathogens&rft.jtitle=Frontiers+in+medicine&rft.au=Torres-Sangiao%2C+Eva&rft.au=Giddey%2C+Alexander+Dyason&rft.au=Leal+Rodriguez%2C+Cristina&rft.au=Tang%2C+Zhiheng&rft.date=2022-05-02&rft.issn=2296-858X&rft.eissn=2296-858X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmed.2022.850374&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmed_2022_850374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-858X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-858X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-858X&client=summon