A model for proppant dynamics in a perforated wellbore
This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle di...
Saved in:
Published in | International journal of multiphase flow Vol. 167; p. 104552 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle distribution within the wellbore’s cross-section and how it changes along the flow. The second phenomenon is related to the ability of particles to turn from the wellbore to a perforation. Consequently, the paper considers both of these phenomena independently at first, and then they are combined to address the whole problem of flow in a perforated wellbore. A mathematical model for calculating the particle and velocity profiles within the wellbore is developed. The model is calibrated against available laboratory data for various flow velocities, particle diameters, pipe diameters, and particle volume fractions. It predicts a steady-state solution for the particle and velocity profiles, as well as it captures the transition in time from a given state to the steady-state solution. The key dimensionless parameter that quantifies the latter solution is identified and is called dimensionless gravity. When it is small, the particles are fully suspended and the solution is uniform. At the same time, when the aforementioned parameter is large, then the solution is strongly non-uniform and resembles a flowing bed state. A mathematical model for the problem of particle turning is developed and is calibrated against available experimental and computational data. The key parameter affecting the result is called turning efficiency. When the efficiency is close to one, then most of the particles that follow the fluid streamlines going into the perforation are able enter the hole. At the same time, zero efficiency corresponds to the case of no particles entering the perforation. Solutions for the both sub-problems are combined to develop a model for the perforated wellbore. Results are compared (not calibrated) to a series of laboratory and field scale experiments for perforated wellbores. Comparison with the available computational results is presented as well. In addition, the comparison is presented in view of the parametric space defined by the dimensionless gravity and turning efficiency. Such a description allows to explain seemingly contradictory results observed in different tests and also allows to highlight parameters for which perforation orientation plays a significant role.
•A model for particle dynamics in a perforated pipe is developed.•Solution for particle distribution in a turbulent slurry flow is constructed.•Higher particle concentration is predicted at the bottom of the pipe.•The problem of particles missing the perforation is solved.•The developments are validated against numerous experimental observations. |
---|---|
AbstractList | This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle distribution within the wellbore’s cross-section and how it changes along the flow. The second phenomenon is related to the ability of particles to turn from the wellbore to a perforation. Consequently, the paper considers both of these phenomena independently at first, and then they are combined to address the whole problem of flow in a perforated wellbore. A mathematical model for calculating the particle and velocity profiles within the wellbore is developed. The model is calibrated against available laboratory data for various flow velocities, particle diameters, pipe diameters, and particle volume fractions. It predicts a steady-state solution for the particle and velocity profiles, as well as it captures the transition in time from a given state to the steady-state solution. The key dimensionless parameter that quantifies the latter solution is identified and is called dimensionless gravity. When it is small, the particles are fully suspended and the solution is uniform. At the same time, when the aforementioned parameter is large, then the solution is strongly non-uniform and resembles a flowing bed state. A mathematical model for the problem of particle turning is developed and is calibrated against available experimental and computational data. The key parameter affecting the result is called turning efficiency. When the efficiency is close to one, then most of the particles that follow the fluid streamlines going into the perforation are able enter the hole. At the same time, zero efficiency corresponds to the case of no particles entering the perforation. Solutions for the both sub-problems are combined to develop a model for the perforated wellbore. Results are compared (not calibrated) to a series of laboratory and field scale experiments for perforated wellbores. Comparison with the available computational results is presented as well. In addition, the comparison is presented in view of the parametric space defined by the dimensionless gravity and turning efficiency. Such a description allows to explain seemingly contradictory results observed in different tests and also allows to highlight parameters for which perforation orientation plays a significant role.
•A model for particle dynamics in a perforated pipe is developed.•Solution for particle distribution in a turbulent slurry flow is constructed.•Higher particle concentration is predicted at the bottom of the pipe.•The problem of particles missing the perforation is solved.•The developments are validated against numerous experimental observations. |
ArticleNumber | 104552 |
Author | Dontsov, E.V. |
Author_xml | – sequence: 1 givenname: E.V. orcidid: 0000-0002-0437-4910 surname: Dontsov fullname: Dontsov, E.V. email: egor@resfrac.com organization: ResFrac Corporation, Palo Alto, USA |
BookMark | eNqNkE1LAzEURYNUsK3-h6zcTc1nZ7IRSlErFNzoOqQvbzDDzGRIRkv_vVPqypWrC_fC4XIWZNbHHgm552zFGV8_NKvQdF_tGIZPl7Fu43ElmJDTqLQWV2TOq9IUUks5I3MmGS-MFOKGLHJuGGO6VHJO1hvaRY8trWOiQ4rD4PqR-lPvugCZhp46OmCaVjeip0ds20NMeEuua9dmvPvNJfl4fnrf7or928vrdrMvQBoxFuC8YfzgmKq5UlDpsjRGQq01lMwZV1VOVRWCArc2gnntQZQaDlPlauNRLsnjhQsp5pywtkMKnUsny5k9W7CN_WvBni3Yi4UJsLsAcHr5HTDZDAF7QB8Swmh9DP9F_QA5AXM2 |
CitedBy_id | crossref_primary_10_1021_acsomega_3c06257 crossref_primary_10_1016_j_partic_2024_06_012 crossref_primary_10_1007_s00603_024_03872_z |
Cites_doi | 10.15530/urtec-2019-298 10.2118/7006-PA 10.2118/209178-MS 10.15530/urtec-2022-3720345 10.2118/199727-MS 10.2118/163856-MS 10.2118/184841-MS 10.2118/208613-PA 10.2118/194379-MS 10.1016/0301-9322(89)90059-1 10.2118/179117-MS 10.1002/cjce.5450780413 10.2118/204207-MS 10.2118/209141-MS 10.1103/PhysRevLett.107.188301 10.15530/urtec-2019-414 10.15530/urtec-2021-5298 10.1017/jfm.2014.606 10.2118/171581-MS 10.2118/179117-PA 10.1002/cjce.5450820523 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2023.104552 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2023_104552 S0301932223001738 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c392t-cad901ba04f144c8577993cf55c70a9a88a488ec4ca6920d5dc275cb8ecaf9de3 |
IEDL.DBID | AIKHN |
ISSN | 0301-9322 |
IngestDate | Thu Sep 26 16:18:58 EDT 2024 Fri Feb 23 02:35:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Perforated wellbore Model Turbulent flow Proppant transport |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-cad901ba04f144c8577993cf55c70a9a88a488ec4ca6920d5dc275cb8ecaf9de3 |
ORCID | 0000-0002-0437-4910 |
OpenAccessLink | https://doi.org/10.1016/j.ijmultiphaseflow.2023.104552 |
ParticipantIDs | crossref_primary_10_1016_j_ijmultiphaseflow_2023_104552 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2023_104552 |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Snider, P., Baumgartner, S., Mayerhofer, M., Woltz, M., 2022. Execution and learnings from the first two surface tests replicating unconventional fracturing and proppant transport. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 1–3 February 2022, Houston, Texas, USA, SPE-209141-MS. Kolle, J., Mueller, A., Baumgartner, S., Cuthill, D., 2022. Modeling proppant transport in casing and perforations based on proppant transport surface tests. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 1–3 February 2022, Houston, Texas, USA, SPE-209178-MS. Nasr-El-Din, Afacan, Masliyah (b21) 1989; 15 Ahmad, F.A., Miskimins, J.L., 2019a. An experimental investigation of proppant transport in high loading friction-reduced systems utilizing a horizontal wellbore apparatus. In: Proceedings of Unconventional Resources Technology Conference. Denver, Colorado, USA, 22–24 July, URTEC-2019-414-MS. Dontsov, Peirce (b11) 2014; 760 (b19) 2017 Gillies (b12) 1993 Sinkov, K., Weng, X., Kresse, O., 2021. Modeling of proppant distribution during fracturing of multiple perforation clusters in horizontal wells. In: Proceedings of SPE Hydraulic Fracturing Technology Conference and Exhibition. 204207-MS. Ahmad, F.A., Miskimins, J.L., 2019b. Proppant transport and behavior in horizontal wellbores using low viscosity fluids. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 5–7 February 2019, Houston, Texas, USA, SPE-194379-MS. Hoerner (b16) 1965 Wang, Singh, Liu, Rijken, Tan, Naik (b27) 2022; 27 Ngameni, K.L., Miskimins, J.L., Abass adn B. Cherrian, H.H., 2017. Experimental study of proppant transport in horizontal wellbore using fresh water. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 24–26 January 2017, Houston, Texas, USA, SPE-184841-MS. Wu, C.-H., Sharma, M.M., 2016. Effect of perforation geometry and orientation on proppant placement in perforation clusters in a horizontal well. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 9–11 February2016, Houston, Texas, USA, SPE-179117-MS. Moody (b20) 1944; 66 Ngameni (b22) 2016 Zhang, M., Wu, C.H., Sharma, M., 2019. Proppant placement in perforation clusters in deviated wellbores. In: Proceedings of SPE/AAPG/SEG Unconventional Resources Technology Conference. urtec-2019-298. Gillies, Shook, Xu (b14) 2004; 82 Gillies, Shook (b13) 2000; 78 Wu, Yi, Sharma (b31) 2018; 33 Gruesbeck, Collins (b15) 1982; 22 Crespo, F., Aven, N.K., Cortez, J., Soliman, M.Y., Bokane, A., Jain, S., Deshpande, Y., 2013. Proppant distribution in multistage hydraulic fractured wells: A large-scale inside-casing investigation. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 4–6 February 2013, Houston, Texas, USA, SPE-163856-MS. Benish, T., Brito, R., Brown, J.S., Liu, Y., Long, T., Spiecker, M., Stojkovic, D., Hehmeyer, O., 2022. Computational fluid dynamics (CFD) guided stage design optimization for hydraulic fracturing. In: Proceedings of Unconventional Resources Technology Conference. 20–22 June 2022, Houston, Texas, USA, URTeC: 3720345. Snider, Baumgartner (b25) 2022 Ahmad (b1) 2020 Almulhim, A., Kebert, B., Miskimins, J.L., Hunter, W., Soehner, G., 2020. Field-scale computational fluid dynamics cfd modeling of proppant transport and distribution within a horizontal hydraulic fracturing stage. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 4–6 February 2020, Houston, Texas, USA, SPE-194379-MS. Ahmad, F.A., Miskimins, J.L., Liu, X., Singh, A., Wang, J., 2021. Experimental investigation of proppant placement in multiple perforation clusters for horizontal fracturing applications. In: Proceedings of Unconventional Resources Technology Conference. Houston, Texas, USA, 26–28 July, URTEC-2021-5298-MS. (b10) 1998 Boyer, Guazzelli, Pouliquen (b8) 2011; 107 Liu, Wang, Singh, Rijken, Wehunt, Chrusch, Ahmad, Miskimins (b18) 2021; 36 Wu, Sharma (b30) 2019; 2 Bokane, A.B., Jain, S., Crespo, F., 2014. Evaluation and optimization of proppant distribution in multistage fractured horizontal wells: A simulation approach. In: Proceedings of SPE/CSUR Unconventional Resources Conference. Canada, Calgary, Alberta, Canada, 30 September-2 October, SPE-171581-MS. Wu (b28) 2018 10.1016/j.ijmultiphaseflow.2023.104552_b5 10.1016/j.ijmultiphaseflow.2023.104552_b4 Hoerner (10.1016/j.ijmultiphaseflow.2023.104552_b16) 1965 10.1016/j.ijmultiphaseflow.2023.104552_b24 Wang (10.1016/j.ijmultiphaseflow.2023.104552_b27) 2022; 27 10.1016/j.ijmultiphaseflow.2023.104552_b3 Gruesbeck (10.1016/j.ijmultiphaseflow.2023.104552_b15) 1982; 22 10.1016/j.ijmultiphaseflow.2023.104552_b2 10.1016/j.ijmultiphaseflow.2023.104552_b26 10.1016/j.ijmultiphaseflow.2023.104552_b9 10.1016/j.ijmultiphaseflow.2023.104552_b7 10.1016/j.ijmultiphaseflow.2023.104552_b23 10.1016/j.ijmultiphaseflow.2023.104552_b6 Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b12) 1993 10.1016/j.ijmultiphaseflow.2023.104552_b29 Nasr-El-Din (10.1016/j.ijmultiphaseflow.2023.104552_b21) 1989; 15 Wu (10.1016/j.ijmultiphaseflow.2023.104552_b28) 2018 Snider (10.1016/j.ijmultiphaseflow.2023.104552_b25) 2022 Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b13) 2000; 78 Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b14) 2004; 82 (10.1016/j.ijmultiphaseflow.2023.104552_b10) 1998 10.1016/j.ijmultiphaseflow.2023.104552_b32 Boyer (10.1016/j.ijmultiphaseflow.2023.104552_b8) 2011; 107 10.1016/j.ijmultiphaseflow.2023.104552_b17 Ngameni (10.1016/j.ijmultiphaseflow.2023.104552_b22) 2016 Liu (10.1016/j.ijmultiphaseflow.2023.104552_b18) 2021; 36 Wu (10.1016/j.ijmultiphaseflow.2023.104552_b31) 2018; 33 Ahmad (10.1016/j.ijmultiphaseflow.2023.104552_b1) 2020 Dontsov (10.1016/j.ijmultiphaseflow.2023.104552_b11) 2014; 760 (10.1016/j.ijmultiphaseflow.2023.104552_b19) 2017 Moody (10.1016/j.ijmultiphaseflow.2023.104552_b20) 1944; 66 Wu (10.1016/j.ijmultiphaseflow.2023.104552_b30) 2019; 2 |
References_xml | – year: 2022 ident: b25 article-title: Full scale proppant transport surface tests, learnings, and path forward contributor: fullname: Baumgartner – year: 2018 ident: b28 article-title: Modeling Particulate Flows in Conduits and Porous Media contributor: fullname: Wu – year: 1998 ident: b10 article-title: Multiphase Flows with Droplets and Particles – year: 2017 ident: b19 publication-title: Slurry Transport: Fundamentals, a Historical Overview and the Delft Head Loss & Limit Deposit Velocity Framework – volume: 82 start-page: 1060 year: 2004 end-page: 1065 ident: b14 article-title: Modelling heterogeneous slurry flows at high velocities publication-title: Can. J. Chem. Eng. contributor: fullname: Xu – volume: 760 start-page: 567 year: 2014 end-page: 590 ident: b11 article-title: Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures publication-title: J. Fluid Mech. contributor: fullname: Peirce – volume: 66 start-page: 671 year: 1944 end-page: 684 ident: b20 article-title: Friction factors for pipe flow publication-title: Trans. ASME contributor: fullname: Moody – volume: 36 start-page: 926 year: 2021 end-page: 945 ident: b18 article-title: Achieving near-uniform fluid and proppant placement in multistage fractured horizontal wells: a computational fluid dynamics modeling approach publication-title: SPE Prod. Oper. contributor: fullname: Miskimins – year: 1993 ident: b12 article-title: Pipeline Flow of Coarse Particle Slurries contributor: fullname: Gillies – volume: 15 start-page: 659 year: 1989 end-page: 671 ident: b21 article-title: Solids segregation in slurry flow through a T-junction with a horizontal approach publication-title: Int. J. Multiph. Flow. contributor: fullname: Masliyah – volume: 33 start-page: 654 year: 2018 end-page: 665 ident: b31 publication-title: Proppant Distribution Among Multiple Perforation Clusters in a Horizontal Wellbore contributor: fullname: Sharma – year: 2020 ident: b1 article-title: Experimental Investigation of Proppant Transport and Behavior in Horizontal Wellbores using Low Viscosity Fluids contributor: fullname: Ahmad – volume: 2 start-page: 1777 year: 2019 end-page: 1789 ident: b30 article-title: Modeling proppant transport through perforations in a horizontal wellbore publication-title: SPE J. contributor: fullname: Sharma – volume: 22 start-page: 857 year: 1982 end-page: 865 ident: b15 article-title: Particle transport through perforations publication-title: Soc. Petrol. Eng. J. contributor: fullname: Collins – volume: 78 start-page: 709 year: 2000 end-page: 716 ident: b13 article-title: Modelling high concentration settling slurry flows publication-title: Can. J. Chem. Eng. contributor: fullname: Shook – volume: 27 start-page: 1094 year: 2022 end-page: 1108 ident: b27 article-title: Efficient prediction of proppant placement along a horizontal fracturing stage for perforation design optimization publication-title: SPE J. contributor: fullname: Naik – year: 1965 ident: b16 publication-title: Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance contributor: fullname: Hoerner – volume: 107 year: 2011 ident: b8 article-title: Unifying suspension and granular rheology publication-title: Phys. Rev. Lett. contributor: fullname: Pouliquen – year: 2016 ident: b22 article-title: Proppant Transport in Horizontal Wellbores using Fresh Water contributor: fullname: Ngameni – volume: 66 start-page: 671 year: 1944 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b20 article-title: Friction factors for pipe flow publication-title: Trans. ASME contributor: fullname: Moody – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b32 doi: 10.15530/urtec-2019-298 – year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b1 contributor: fullname: Ahmad – year: 1965 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b16 contributor: fullname: Hoerner – volume: 36 start-page: 926 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b18 article-title: Achieving near-uniform fluid and proppant placement in multistage fractured horizontal wells: a computational fluid dynamics modeling approach publication-title: SPE Prod. Oper. contributor: fullname: Liu – year: 1998 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b10 – volume: 22 start-page: 857 issue: 06 year: 1982 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b15 article-title: Particle transport through perforations publication-title: Soc. Petrol. Eng. J. doi: 10.2118/7006-PA contributor: fullname: Gruesbeck – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b17 doi: 10.2118/209178-MS – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b6 doi: 10.15530/urtec-2022-3720345 – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b5 doi: 10.2118/199727-MS – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b9 doi: 10.2118/163856-MS – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b23 doi: 10.2118/184841-MS – year: 1993 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b12 contributor: fullname: Gillies – volume: 27 start-page: 1094 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b27 article-title: Efficient prediction of proppant placement along a horizontal fracturing stage for perforation design optimization publication-title: SPE J. doi: 10.2118/208613-PA contributor: fullname: Wang – volume: 33 start-page: 654 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b31 publication-title: SPE Prod. Oper. contributor: fullname: Wu – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b3 doi: 10.2118/194379-MS – year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b25 contributor: fullname: Snider – year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b28 contributor: fullname: Wu – volume: 15 start-page: 659 issue: 4 year: 1989 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b21 article-title: Solids segregation in slurry flow through a T-junction with a horizontal approach publication-title: Int. J. Multiph. Flow. doi: 10.1016/0301-9322(89)90059-1 contributor: fullname: Nasr-El-Din – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b29 doi: 10.2118/179117-MS – volume: 78 start-page: 709 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b13 article-title: Modelling high concentration settling slurry flows publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450780413 contributor: fullname: Gillies – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b24 doi: 10.2118/204207-MS – year: 2016 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b22 contributor: fullname: Ngameni – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b26 doi: 10.2118/209141-MS – volume: 107 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b8 article-title: Unifying suspension and granular rheology publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.188301 contributor: fullname: Boyer – year: 2017 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b19 – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b2 doi: 10.15530/urtec-2019-414 – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b4 doi: 10.15530/urtec-2021-5298 – volume: 760 start-page: 567 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b11 article-title: Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.606 contributor: fullname: Dontsov – ident: 10.1016/j.ijmultiphaseflow.2023.104552_b7 doi: 10.2118/171581-MS – volume: 2 start-page: 1777 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b30 article-title: Modeling proppant transport through perforations in a horizontal wellbore publication-title: SPE J. doi: 10.2118/179117-PA contributor: fullname: Wu – volume: 82 start-page: 1060 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2023.104552_b14 article-title: Modelling heterogeneous slurry flows at high velocities publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450820523 contributor: fullname: Gillies |
SSID | ssj0005743 |
Score | 2.460047 |
Snippet | This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104552 |
SubjectTerms | Perforated wellbore Proppant transport Turbulent flow |
Title | A model for proppant dynamics in a perforated wellbore |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104552 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFH7Zj2j0YHRqnD-WHow3NsYotEeyuEyNu-iS3UhbILIYRhzGm3-7rxSyaTx48EgDDflov_eVfn0P4HooHDaME9eKaeRZrucxnQPSsyRlOncMxaCjzzs_zrzp3L1f0EUDxvVZGG2rrLjfcHrJ1lXLoEJzkKfp4EmLea43CkaaakesCW0MRw4O7XZw9zCdbZwexmev77f0A7tws7F5pUvj3HvBoJG8rj76up643vmk1Pk9Vm3Fn8khHFTCkQTm3Y6gEWcd2N9KJ9iBndLOqdbH4AWkLHFDUJIS5Mgc53xBIlN9fk3SjAiSl8Z2lJoR0T_wcCzEJzCf3D6Pp1ZVIcFSqGsKS4kI47kUtpvgwkgx6vuoN1RCqfJtwQVjAidorFwlPI6o00g5PlUSm0TCo3h0Cq1slcVnQBiuhamXcOkr25VUCo7CRto-l6iwhop3wa-xCHOTCCOsHWLL8CeKoUYxNCh2IaihC7992hBZ-499nP9DHxewp6-ME-8SWsXbe3yFiqKQPWj2P4e9atx8Aa-NzH4 |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5BjL8ORlEj_uzBeBsMWLv2SIgEFbgICbem7bY4YgaRGW_-7b7uR0TjwYPXrmmWb-33vq5f3wO4aak2b4WR54Q0YI7HGLc5IJmjKbe5YygGHXvfeTRmg6n3MKOzCvTKuzDWVllwf87pGVsXLc0CzeYyjptPVswLe1DQsVTb4Ruw6dl04zipGx9rPo_cZW97O7b7Ntx-mbziee7be8aQEb0s3hu2mrg996S0_XukWos-_QPYL2Qj6eZvdgiVMKnB3loywRpsZWZOszoC1iVZgRuCgpQgQy5xxackyGvPr0icEEWWma0dhWZA7O87nAnhMUz7d5PewCnqIzgGVU3qGBVgNNfK9SLcFhlOfR_VhokoNb6rhOJc4fIMjWcUE4g5DUzbp0Zjk4pEEHZOoJoskvAUCMedMGWR0L5xPU21EihrtOsLjfqqZUQd_BILuczTYMjSHzaXP1GUFkWZo1iHbgmd_PZhJXL2H8c4-4cxrmFnMBkN5fB-_HgOu_ZJ7sm7gGr6-hZeorZI9VU2dz4BiefNVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+proppant+dynamics+in+a+perforated+wellbore&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Dontsov%2C+E.V.&rft.date=2023-10-01&rft.issn=0301-9322&rft.volume=167&rft.spage=104552&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2023.104552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2023_104552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |