A model for proppant dynamics in a perforated wellbore

This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle di...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 167; p. 104552
Main Author Dontsov, E.V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle distribution within the wellbore’s cross-section and how it changes along the flow. The second phenomenon is related to the ability of particles to turn from the wellbore to a perforation. Consequently, the paper considers both of these phenomena independently at first, and then they are combined to address the whole problem of flow in a perforated wellbore. A mathematical model for calculating the particle and velocity profiles within the wellbore is developed. The model is calibrated against available laboratory data for various flow velocities, particle diameters, pipe diameters, and particle volume fractions. It predicts a steady-state solution for the particle and velocity profiles, as well as it captures the transition in time from a given state to the steady-state solution. The key dimensionless parameter that quantifies the latter solution is identified and is called dimensionless gravity. When it is small, the particles are fully suspended and the solution is uniform. At the same time, when the aforementioned parameter is large, then the solution is strongly non-uniform and resembles a flowing bed state. A mathematical model for the problem of particle turning is developed and is calibrated against available experimental and computational data. The key parameter affecting the result is called turning efficiency. When the efficiency is close to one, then most of the particles that follow the fluid streamlines going into the perforation are able enter the hole. At the same time, zero efficiency corresponds to the case of no particles entering the perforation. Solutions for the both sub-problems are combined to develop a model for the perforated wellbore. Results are compared (not calibrated) to a series of laboratory and field scale experiments for perforated wellbores. Comparison with the available computational results is presented as well. In addition, the comparison is presented in view of the parametric space defined by the dimensionless gravity and turning efficiency. Such a description allows to explain seemingly contradictory results observed in different tests and also allows to highlight parameters for which perforation orientation plays a significant role. •A model for particle dynamics in a perforated pipe is developed.•Solution for particle distribution in a turbulent slurry flow is constructed.•Higher particle concentration is predicted at the bottom of the pipe.•The problem of particles missing the perforation is solved.•The developments are validated against numerous experimental observations.
AbstractList This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle distribution between the perforations. There are two primary phenomena that influence the result. The first one is the non-uniform particle distribution within the wellbore’s cross-section and how it changes along the flow. The second phenomenon is related to the ability of particles to turn from the wellbore to a perforation. Consequently, the paper considers both of these phenomena independently at first, and then they are combined to address the whole problem of flow in a perforated wellbore. A mathematical model for calculating the particle and velocity profiles within the wellbore is developed. The model is calibrated against available laboratory data for various flow velocities, particle diameters, pipe diameters, and particle volume fractions. It predicts a steady-state solution for the particle and velocity profiles, as well as it captures the transition in time from a given state to the steady-state solution. The key dimensionless parameter that quantifies the latter solution is identified and is called dimensionless gravity. When it is small, the particles are fully suspended and the solution is uniform. At the same time, when the aforementioned parameter is large, then the solution is strongly non-uniform and resembles a flowing bed state. A mathematical model for the problem of particle turning is developed and is calibrated against available experimental and computational data. The key parameter affecting the result is called turning efficiency. When the efficiency is close to one, then most of the particles that follow the fluid streamlines going into the perforation are able enter the hole. At the same time, zero efficiency corresponds to the case of no particles entering the perforation. Solutions for the both sub-problems are combined to develop a model for the perforated wellbore. Results are compared (not calibrated) to a series of laboratory and field scale experiments for perforated wellbores. Comparison with the available computational results is presented as well. In addition, the comparison is presented in view of the parametric space defined by the dimensionless gravity and turning efficiency. Such a description allows to explain seemingly contradictory results observed in different tests and also allows to highlight parameters for which perforation orientation plays a significant role. •A model for particle dynamics in a perforated pipe is developed.•Solution for particle distribution in a turbulent slurry flow is constructed.•Higher particle concentration is predicted at the bottom of the pipe.•The problem of particles missing the perforation is solved.•The developments are validated against numerous experimental observations.
ArticleNumber 104552
Author Dontsov, E.V.
Author_xml – sequence: 1
  givenname: E.V.
  orcidid: 0000-0002-0437-4910
  surname: Dontsov
  fullname: Dontsov, E.V.
  email: egor@resfrac.com
  organization: ResFrac Corporation, Palo Alto, USA
BookMark eNqNkE1LAzEURYNUsK3-h6zcTc1nZ7IRSlErFNzoOqQvbzDDzGRIRkv_vVPqypWrC_fC4XIWZNbHHgm552zFGV8_NKvQdF_tGIZPl7Fu43ElmJDTqLQWV2TOq9IUUks5I3MmGS-MFOKGLHJuGGO6VHJO1hvaRY8trWOiQ4rD4PqR-lPvugCZhp46OmCaVjeip0ds20NMeEuua9dmvPvNJfl4fnrf7or928vrdrMvQBoxFuC8YfzgmKq5UlDpsjRGQq01lMwZV1VOVRWCArc2gnntQZQaDlPlauNRLsnjhQsp5pywtkMKnUsny5k9W7CN_WvBni3Yi4UJsLsAcHr5HTDZDAF7QB8Swmh9DP9F_QA5AXM2
CitedBy_id crossref_primary_10_1021_acsomega_3c06257
crossref_primary_10_1016_j_partic_2024_06_012
crossref_primary_10_1007_s00603_024_03872_z
Cites_doi 10.15530/urtec-2019-298
10.2118/7006-PA
10.2118/209178-MS
10.15530/urtec-2022-3720345
10.2118/199727-MS
10.2118/163856-MS
10.2118/184841-MS
10.2118/208613-PA
10.2118/194379-MS
10.1016/0301-9322(89)90059-1
10.2118/179117-MS
10.1002/cjce.5450780413
10.2118/204207-MS
10.2118/209141-MS
10.1103/PhysRevLett.107.188301
10.15530/urtec-2019-414
10.15530/urtec-2021-5298
10.1017/jfm.2014.606
10.2118/171581-MS
10.2118/179117-PA
10.1002/cjce.5450820523
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2023.104552
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2023_104552
S0301932223001738
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c392t-cad901ba04f144c8577993cf55c70a9a88a488ec4ca6920d5dc275cb8ecaf9de3
IEDL.DBID AIKHN
ISSN 0301-9322
IngestDate Thu Sep 26 16:18:58 EDT 2024
Fri Feb 23 02:35:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Perforated wellbore
Model
Turbulent flow
Proppant transport
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-cad901ba04f144c8577993cf55c70a9a88a488ec4ca6920d5dc275cb8ecaf9de3
ORCID 0000-0002-0437-4910
OpenAccessLink https://doi.org/10.1016/j.ijmultiphaseflow.2023.104552
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2023_104552
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2023_104552
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Snider, P., Baumgartner, S., Mayerhofer, M., Woltz, M., 2022. Execution and learnings from the first two surface tests replicating unconventional fracturing and proppant transport. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 1–3 February 2022, Houston, Texas, USA, SPE-209141-MS.
Kolle, J., Mueller, A., Baumgartner, S., Cuthill, D., 2022. Modeling proppant transport in casing and perforations based on proppant transport surface tests. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 1–3 February 2022, Houston, Texas, USA, SPE-209178-MS.
Nasr-El-Din, Afacan, Masliyah (b21) 1989; 15
Ahmad, F.A., Miskimins, J.L., 2019a. An experimental investigation of proppant transport in high loading friction-reduced systems utilizing a horizontal wellbore apparatus. In: Proceedings of Unconventional Resources Technology Conference. Denver, Colorado, USA, 22–24 July, URTEC-2019-414-MS.
Dontsov, Peirce (b11) 2014; 760
(b19) 2017
Gillies (b12) 1993
Sinkov, K., Weng, X., Kresse, O., 2021. Modeling of proppant distribution during fracturing of multiple perforation clusters in horizontal wells. In: Proceedings of SPE Hydraulic Fracturing Technology Conference and Exhibition. 204207-MS.
Ahmad, F.A., Miskimins, J.L., 2019b. Proppant transport and behavior in horizontal wellbores using low viscosity fluids. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 5–7 February 2019, Houston, Texas, USA, SPE-194379-MS.
Hoerner (b16) 1965
Wang, Singh, Liu, Rijken, Tan, Naik (b27) 2022; 27
Ngameni, K.L., Miskimins, J.L., Abass adn B. Cherrian, H.H., 2017. Experimental study of proppant transport in horizontal wellbore using fresh water. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 24–26 January 2017, Houston, Texas, USA, SPE-184841-MS.
Wu, C.-H., Sharma, M.M., 2016. Effect of perforation geometry and orientation on proppant placement in perforation clusters in a horizontal well. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 9–11 February2016, Houston, Texas, USA, SPE-179117-MS.
Moody (b20) 1944; 66
Ngameni (b22) 2016
Zhang, M., Wu, C.H., Sharma, M., 2019. Proppant placement in perforation clusters in deviated wellbores. In: Proceedings of SPE/AAPG/SEG Unconventional Resources Technology Conference. urtec-2019-298.
Gillies, Shook, Xu (b14) 2004; 82
Gillies, Shook (b13) 2000; 78
Wu, Yi, Sharma (b31) 2018; 33
Gruesbeck, Collins (b15) 1982; 22
Crespo, F., Aven, N.K., Cortez, J., Soliman, M.Y., Bokane, A., Jain, S., Deshpande, Y., 2013. Proppant distribution in multistage hydraulic fractured wells: A large-scale inside-casing investigation. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 4–6 February 2013, Houston, Texas, USA, SPE-163856-MS.
Benish, T., Brito, R., Brown, J.S., Liu, Y., Long, T., Spiecker, M., Stojkovic, D., Hehmeyer, O., 2022. Computational fluid dynamics (CFD) guided stage design optimization for hydraulic fracturing. In: Proceedings of Unconventional Resources Technology Conference. 20–22 June 2022, Houston, Texas, USA, URTeC: 3720345.
Snider, Baumgartner (b25) 2022
Ahmad (b1) 2020
Almulhim, A., Kebert, B., Miskimins, J.L., Hunter, W., Soehner, G., 2020. Field-scale computational fluid dynamics cfd modeling of proppant transport and distribution within a horizontal hydraulic fracturing stage. In: Proceedings of Hydraulic Fracturing Technology Resources Conference. 4–6 February 2020, Houston, Texas, USA, SPE-194379-MS.
Ahmad, F.A., Miskimins, J.L., Liu, X., Singh, A., Wang, J., 2021. Experimental investigation of proppant placement in multiple perforation clusters for horizontal fracturing applications. In: Proceedings of Unconventional Resources Technology Conference. Houston, Texas, USA, 26–28 July, URTEC-2021-5298-MS.
(b10) 1998
Boyer, Guazzelli, Pouliquen (b8) 2011; 107
Liu, Wang, Singh, Rijken, Wehunt, Chrusch, Ahmad, Miskimins (b18) 2021; 36
Wu, Sharma (b30) 2019; 2
Bokane, A.B., Jain, S., Crespo, F., 2014. Evaluation and optimization of proppant distribution in multistage fractured horizontal wells: A simulation approach. In: Proceedings of SPE/CSUR Unconventional Resources Conference. Canada, Calgary, Alberta, Canada, 30 September-2 October, SPE-171581-MS.
Wu (b28) 2018
10.1016/j.ijmultiphaseflow.2023.104552_b5
10.1016/j.ijmultiphaseflow.2023.104552_b4
Hoerner (10.1016/j.ijmultiphaseflow.2023.104552_b16) 1965
10.1016/j.ijmultiphaseflow.2023.104552_b24
Wang (10.1016/j.ijmultiphaseflow.2023.104552_b27) 2022; 27
10.1016/j.ijmultiphaseflow.2023.104552_b3
Gruesbeck (10.1016/j.ijmultiphaseflow.2023.104552_b15) 1982; 22
10.1016/j.ijmultiphaseflow.2023.104552_b2
10.1016/j.ijmultiphaseflow.2023.104552_b26
10.1016/j.ijmultiphaseflow.2023.104552_b9
10.1016/j.ijmultiphaseflow.2023.104552_b7
10.1016/j.ijmultiphaseflow.2023.104552_b23
10.1016/j.ijmultiphaseflow.2023.104552_b6
Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b12) 1993
10.1016/j.ijmultiphaseflow.2023.104552_b29
Nasr-El-Din (10.1016/j.ijmultiphaseflow.2023.104552_b21) 1989; 15
Wu (10.1016/j.ijmultiphaseflow.2023.104552_b28) 2018
Snider (10.1016/j.ijmultiphaseflow.2023.104552_b25) 2022
Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b13) 2000; 78
Gillies (10.1016/j.ijmultiphaseflow.2023.104552_b14) 2004; 82
(10.1016/j.ijmultiphaseflow.2023.104552_b10) 1998
10.1016/j.ijmultiphaseflow.2023.104552_b32
Boyer (10.1016/j.ijmultiphaseflow.2023.104552_b8) 2011; 107
10.1016/j.ijmultiphaseflow.2023.104552_b17
Ngameni (10.1016/j.ijmultiphaseflow.2023.104552_b22) 2016
Liu (10.1016/j.ijmultiphaseflow.2023.104552_b18) 2021; 36
Wu (10.1016/j.ijmultiphaseflow.2023.104552_b31) 2018; 33
Ahmad (10.1016/j.ijmultiphaseflow.2023.104552_b1) 2020
Dontsov (10.1016/j.ijmultiphaseflow.2023.104552_b11) 2014; 760
(10.1016/j.ijmultiphaseflow.2023.104552_b19) 2017
Moody (10.1016/j.ijmultiphaseflow.2023.104552_b20) 1944; 66
Wu (10.1016/j.ijmultiphaseflow.2023.104552_b30) 2019; 2
References_xml – year: 2022
  ident: b25
  article-title: Full scale proppant transport surface tests, learnings, and path forward
  contributor:
    fullname: Baumgartner
– year: 2018
  ident: b28
  article-title: Modeling Particulate Flows in Conduits and Porous Media
  contributor:
    fullname: Wu
– year: 1998
  ident: b10
  article-title: Multiphase Flows with Droplets and Particles
– year: 2017
  ident: b19
  publication-title: Slurry Transport: Fundamentals, a Historical Overview and the Delft Head Loss & Limit Deposit Velocity Framework
– volume: 82
  start-page: 1060
  year: 2004
  end-page: 1065
  ident: b14
  article-title: Modelling heterogeneous slurry flows at high velocities
  publication-title: Can. J. Chem. Eng.
  contributor:
    fullname: Xu
– volume: 760
  start-page: 567
  year: 2014
  end-page: 590
  ident: b11
  article-title: Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Peirce
– volume: 66
  start-page: 671
  year: 1944
  end-page: 684
  ident: b20
  article-title: Friction factors for pipe flow
  publication-title: Trans. ASME
  contributor:
    fullname: Moody
– volume: 36
  start-page: 926
  year: 2021
  end-page: 945
  ident: b18
  article-title: Achieving near-uniform fluid and proppant placement in multistage fractured horizontal wells: a computational fluid dynamics modeling approach
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Miskimins
– year: 1993
  ident: b12
  article-title: Pipeline Flow of Coarse Particle Slurries
  contributor:
    fullname: Gillies
– volume: 15
  start-page: 659
  year: 1989
  end-page: 671
  ident: b21
  article-title: Solids segregation in slurry flow through a T-junction with a horizontal approach
  publication-title: Int. J. Multiph. Flow.
  contributor:
    fullname: Masliyah
– volume: 33
  start-page: 654
  year: 2018
  end-page: 665
  ident: b31
  publication-title: Proppant Distribution Among Multiple Perforation Clusters in a Horizontal Wellbore
  contributor:
    fullname: Sharma
– year: 2020
  ident: b1
  article-title: Experimental Investigation of Proppant Transport and Behavior in Horizontal Wellbores using Low Viscosity Fluids
  contributor:
    fullname: Ahmad
– volume: 2
  start-page: 1777
  year: 2019
  end-page: 1789
  ident: b30
  article-title: Modeling proppant transport through perforations in a horizontal wellbore
  publication-title: SPE J.
  contributor:
    fullname: Sharma
– volume: 22
  start-page: 857
  year: 1982
  end-page: 865
  ident: b15
  article-title: Particle transport through perforations
  publication-title: Soc. Petrol. Eng. J.
  contributor:
    fullname: Collins
– volume: 78
  start-page: 709
  year: 2000
  end-page: 716
  ident: b13
  article-title: Modelling high concentration settling slurry flows
  publication-title: Can. J. Chem. Eng.
  contributor:
    fullname: Shook
– volume: 27
  start-page: 1094
  year: 2022
  end-page: 1108
  ident: b27
  article-title: Efficient prediction of proppant placement along a horizontal fracturing stage for perforation design optimization
  publication-title: SPE J.
  contributor:
    fullname: Naik
– year: 1965
  ident: b16
  publication-title: Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
  contributor:
    fullname: Hoerner
– volume: 107
  year: 2011
  ident: b8
  article-title: Unifying suspension and granular rheology
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Pouliquen
– year: 2016
  ident: b22
  article-title: Proppant Transport in Horizontal Wellbores using Fresh Water
  contributor:
    fullname: Ngameni
– volume: 66
  start-page: 671
  year: 1944
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b20
  article-title: Friction factors for pipe flow
  publication-title: Trans. ASME
  contributor:
    fullname: Moody
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b32
  doi: 10.15530/urtec-2019-298
– year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b1
  contributor:
    fullname: Ahmad
– year: 1965
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b16
  contributor:
    fullname: Hoerner
– volume: 36
  start-page: 926
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b18
  article-title: Achieving near-uniform fluid and proppant placement in multistage fractured horizontal wells: a computational fluid dynamics modeling approach
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Liu
– year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b10
– volume: 22
  start-page: 857
  issue: 06
  year: 1982
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b15
  article-title: Particle transport through perforations
  publication-title: Soc. Petrol. Eng. J.
  doi: 10.2118/7006-PA
  contributor:
    fullname: Gruesbeck
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b17
  doi: 10.2118/209178-MS
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b6
  doi: 10.15530/urtec-2022-3720345
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b5
  doi: 10.2118/199727-MS
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b9
  doi: 10.2118/163856-MS
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b23
  doi: 10.2118/184841-MS
– year: 1993
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b12
  contributor:
    fullname: Gillies
– volume: 27
  start-page: 1094
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b27
  article-title: Efficient prediction of proppant placement along a horizontal fracturing stage for perforation design optimization
  publication-title: SPE J.
  doi: 10.2118/208613-PA
  contributor:
    fullname: Wang
– volume: 33
  start-page: 654
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b31
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Wu
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b3
  doi: 10.2118/194379-MS
– year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b25
  contributor:
    fullname: Snider
– year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b28
  contributor:
    fullname: Wu
– volume: 15
  start-page: 659
  issue: 4
  year: 1989
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b21
  article-title: Solids segregation in slurry flow through a T-junction with a horizontal approach
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/0301-9322(89)90059-1
  contributor:
    fullname: Nasr-El-Din
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b29
  doi: 10.2118/179117-MS
– volume: 78
  start-page: 709
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b13
  article-title: Modelling high concentration settling slurry flows
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450780413
  contributor:
    fullname: Gillies
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b24
  doi: 10.2118/204207-MS
– year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b22
  contributor:
    fullname: Ngameni
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b26
  doi: 10.2118/209141-MS
– volume: 107
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b8
  article-title: Unifying suspension and granular rheology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.188301
  contributor:
    fullname: Boyer
– year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b19
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b2
  doi: 10.15530/urtec-2019-414
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b4
  doi: 10.15530/urtec-2021-5298
– volume: 760
  start-page: 567
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b11
  article-title: Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.606
  contributor:
    fullname: Dontsov
– ident: 10.1016/j.ijmultiphaseflow.2023.104552_b7
  doi: 10.2118/171581-MS
– volume: 2
  start-page: 1777
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b30
  article-title: Modeling proppant transport through perforations in a horizontal wellbore
  publication-title: SPE J.
  doi: 10.2118/179117-PA
  contributor:
    fullname: Wu
– volume: 82
  start-page: 1060
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2023.104552_b14
  article-title: Modelling heterogeneous slurry flows at high velocities
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450820523
  contributor:
    fullname: Gillies
SSID ssj0005743
Score 2.460047
Snippet This paper presents a model to simulate behavior of particle-laden slurry in a horizontal perforated wellbore with the goal of quantifying fluid and particle...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 104552
SubjectTerms Perforated wellbore
Proppant transport
Turbulent flow
Title A model for proppant dynamics in a perforated wellbore
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104552
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFH7Zj2j0YHRqnD-WHow3NsYotEeyuEyNu-iS3UhbILIYRhzGm3-7rxSyaTx48EgDDflov_eVfn0P4HooHDaME9eKaeRZrucxnQPSsyRlOncMxaCjzzs_zrzp3L1f0EUDxvVZGG2rrLjfcHrJ1lXLoEJzkKfp4EmLea43CkaaakesCW0MRw4O7XZw9zCdbZwexmev77f0A7tws7F5pUvj3HvBoJG8rj76up643vmk1Pk9Vm3Fn8khHFTCkQTm3Y6gEWcd2N9KJ9iBndLOqdbH4AWkLHFDUJIS5Mgc53xBIlN9fk3SjAiSl8Z2lJoR0T_wcCzEJzCf3D6Pp1ZVIcFSqGsKS4kI47kUtpvgwkgx6vuoN1RCqfJtwQVjAidorFwlPI6o00g5PlUSm0TCo3h0Cq1slcVnQBiuhamXcOkr25VUCo7CRto-l6iwhop3wa-xCHOTCCOsHWLL8CeKoUYxNCh2IaihC7992hBZ-499nP9DHxewp6-ME-8SWsXbe3yFiqKQPWj2P4e9atx8Aa-NzH4
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5BjL8ORlEj_uzBeBsMWLv2SIgEFbgICbem7bY4YgaRGW_-7b7uR0TjwYPXrmmWb-33vq5f3wO4aak2b4WR54Q0YI7HGLc5IJmjKbe5YygGHXvfeTRmg6n3MKOzCvTKuzDWVllwf87pGVsXLc0CzeYyjptPVswLe1DQsVTb4Ruw6dl04zipGx9rPo_cZW97O7b7Ntx-mbziee7be8aQEb0s3hu2mrg996S0_XukWos-_QPYL2Qj6eZvdgiVMKnB3loywRpsZWZOszoC1iVZgRuCgpQgQy5xxackyGvPr0icEEWWma0dhWZA7O87nAnhMUz7d5PewCnqIzgGVU3qGBVgNNfK9SLcFhlOfR_VhokoNb6rhOJc4fIMjWcUE4g5DUzbp0Zjk4pEEHZOoJoskvAUCMedMGWR0L5xPU21EihrtOsLjfqqZUQd_BILuczTYMjSHzaXP1GUFkWZo1iHbgmd_PZhJXL2H8c4-4cxrmFnMBkN5fB-_HgOu_ZJ7sm7gGr6-hZeorZI9VU2dz4BiefNVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+proppant+dynamics+in+a+perforated+wellbore&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Dontsov%2C+E.V.&rft.date=2023-10-01&rft.issn=0301-9322&rft.volume=167&rft.spage=104552&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2023.104552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2023_104552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon