Age-related Changes in Bone Marrow Mesenchymal Stromal Cells A Potential Impact on Osteoporosis and Osteoarthritis Development

Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has...

Full description

Saved in:
Bibliographic Details
Published inCell transplantation Vol. 26; no. 9; pp. 1520 - 1529
Main Authors Ganguly, Payal, El-Jawhari, Jehan J., Giannoudis, Peter V., Burska, Agata N., Ponchel, Frederique, Jones, Elena A.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
AbstractList Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo . This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
Author Ganguly, Payal
Ponchel, Frederique
El-Jawhari, Jehan J.
Giannoudis, Peter V.
Burska, Agata N.
Jones, Elena A.
AuthorAffiliation 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
AuthorAffiliation_xml – name: 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
– name: 2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
Author_xml – sequence: 1
  givenname: Payal
  surname: Ganguly
  fullname: Ganguly, Payal
– sequence: 2
  givenname: Jehan J.
  surname: El-Jawhari
  fullname: El-Jawhari, Jehan J.
– sequence: 3
  givenname: Peter V.
  surname: Giannoudis
  fullname: Giannoudis, Peter V.
– sequence: 4
  givenname: Agata N.
  surname: Burska
  fullname: Burska, Agata N.
– sequence: 5
  givenname: Frederique
  surname: Ponchel
  fullname: Ponchel, Frederique
– sequence: 6
  givenname: Elena A.
  surname: Jones
  fullname: Jones, Elena A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29113463$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrGzEQFiWhcdzeeyp77GUTPXalFZRCYvIChxzSnsWsPLI3rKVUWrfk30eL7dIEktMIvtfom2Ny4INHQr4wesKYUqdUSyEbrfKbM07ZBzJhdV2XotH8gExGuBzxI3Kc0gOlVAlefyRHXDMmKikm5PvZEsuIPQy4KGYr8EtMReeL8xxU3EKM4W9xiwm9XT2toS_uhxjGOcO-T5_IoYM-4efdnJJflxc_Z9fl_O7qZnY2L63QfChbt2gabYUCrpyqFwqAVeBaztumbh3jLUdAEFIK65oWpBOuAm5rVC3kLcWU_Nj6Pm7aNS4s-iFCbx5jt4b4ZAJ05iXiu5VZhj-mlg3Vlc4G33YGMfzeYBrMuks2fwE8hk0yTEvWVLmtKlO__p_1L2RfWSbILcHGkFJEZ2w3wNCFMbrrDaNmvI15fZsspK-Ee-93JOVWkmCJ5iFsos89v81_BlGvnR8
CitedBy_id crossref_primary_10_1007_s40496_018_0193_z
crossref_primary_10_1177_0963689720927398
crossref_primary_10_1080_21655979_2022_2061287
crossref_primary_10_1007_s00418_025_02364_7
crossref_primary_10_1111_cpr_12819
crossref_primary_10_14336_AD_2023_1115
crossref_primary_10_3389_fcell_2021_717772
crossref_primary_10_4252_wjsc_v13_i12_1845
crossref_primary_10_1186_s13287_023_03587_y
crossref_primary_10_2217_rme_2021_0024
crossref_primary_10_7717_peerj_7024
crossref_primary_10_1016_j_actbio_2021_03_026
crossref_primary_10_1016_j_mad_2024_111929
crossref_primary_10_1038_s41598_023_49751_5
crossref_primary_10_2174_1574888X18666230113144016
crossref_primary_10_18632_aging_102958
crossref_primary_10_1155_2018_8031718
crossref_primary_10_3390_app9173471
crossref_primary_10_1007_s11302_020_09703_4
crossref_primary_10_1007_s10142_023_01116_x
crossref_primary_10_3390_app11072932
crossref_primary_10_1186_s40001_023_01328_8
crossref_primary_10_3390_cancers13010068
crossref_primary_10_1007_s00167_021_06494_y
crossref_primary_10_1016_j_bone_2021_116154
crossref_primary_10_1016_j_mad_2021_111539
crossref_primary_10_3390_biom12030386
crossref_primary_10_1039_D4BM00848K
crossref_primary_10_3390_bioengineering9020057
crossref_primary_10_1039_D1BM00859E
crossref_primary_10_1080_20013078_2020_1800971
crossref_primary_10_1002_adbi_202300331
crossref_primary_10_1089_scd_2019_0145
crossref_primary_10_1186_s13287_021_02205_z
crossref_primary_10_3390_sports12040105
crossref_primary_10_1186_s12964_023_01143_y
crossref_primary_10_51523_2708_6011_2024_21_2_12
crossref_primary_10_1590_fst_48821
crossref_primary_10_1186_s12917_022_03475_2
crossref_primary_10_1016_j_sjbs_2020_03_016
crossref_primary_10_3390_ijms25137411
crossref_primary_10_7554_eLife_92419
crossref_primary_10_3389_fendo_2022_853765
crossref_primary_10_52547_jrdms_7_4_210
crossref_primary_10_1155_2019_5750967
crossref_primary_10_1038_s41419_020_02993_x
crossref_primary_10_3389_fcell_2021_747521
crossref_primary_10_3389_fcell_2020_00107
crossref_primary_10_1177_0963689718755404
crossref_primary_10_1007_s00223_019_00656_4
crossref_primary_10_1007_s00411_021_00925_7
crossref_primary_10_5713_ajas_19_0416
crossref_primary_10_1016_j_jcyt_2019_05_001
crossref_primary_10_1007_s00198_019_05071_x
crossref_primary_10_34172_apb_2022_059
crossref_primary_10_1038_s41536_021_00145_z
crossref_primary_10_3390_cells12070998
crossref_primary_10_1016_j_bonr_2023_101674
crossref_primary_10_3390_ijms242015494
crossref_primary_10_1089_scd_2022_0213
crossref_primary_10_1002_stem_3255
crossref_primary_10_1007_s00264_021_05243_7
crossref_primary_10_1007_s43032_022_01115_6
crossref_primary_10_3390_ijms22083989
crossref_primary_10_4055_cios20111
crossref_primary_10_1093_jbmr_zjae085
crossref_primary_10_1002_jcp_30638
crossref_primary_10_1177_0363546518813915
crossref_primary_10_3389_fbioe_2019_00352
crossref_primary_10_1007_s00264_018_4223_1
crossref_primary_10_1016_j_jcot_2018_09_017
crossref_primary_10_1080_14728222_2019_1702973
crossref_primary_10_3390_applbiosci2040039
crossref_primary_10_1016_j_fcl_2020_08_013
crossref_primary_10_3389_fcell_2021_650431
crossref_primary_10_4252_wjsc_v13_i11_1714
crossref_primary_10_1089_scd_2024_0087
crossref_primary_10_3389_fbioe_2022_870324
crossref_primary_10_1016_j_wneu_2021_04_114
crossref_primary_10_1021_acsami_8b21393
crossref_primary_10_4252_wjsc_v13_i11_1717
crossref_primary_10_1007_s11357_020_00250_9
crossref_primary_10_4252_wjsc_v11_i6_337
crossref_primary_10_3390_biom10020340
crossref_primary_10_1002_jor_25189
crossref_primary_10_3892_etm_2021_10312
crossref_primary_10_1007_s00264_020_04687_7
crossref_primary_10_3390_ijms242417512
crossref_primary_10_5792_ksrr_18_301
crossref_primary_10_1186_s13287_020_02112_9
crossref_primary_10_1016_j_jare_2024_10_029
crossref_primary_10_1186_s10195_019_0528_0
crossref_primary_10_1016_j_foodres_2023_112850
crossref_primary_10_3389_fragi_2023_1148926
crossref_primary_10_3389_fcell_2021_718938
crossref_primary_10_1007_s00259_023_06424_9
crossref_primary_10_1111_resp_13928
crossref_primary_10_3390_ijms24054421
crossref_primary_10_3389_fgene_2021_831420
crossref_primary_10_3390_bioengineering10080987
crossref_primary_10_3390_ijms24043370
crossref_primary_10_3389_fbioe_2021_807679
crossref_primary_10_1038_s41598_019_46682_y
crossref_primary_10_3389_fcell_2020_00258
crossref_primary_10_1007_s11926_019_0800_6
crossref_primary_10_1093_workar_waz022
crossref_primary_10_3390_ijms23052490
crossref_primary_10_35366_114161
crossref_primary_10_2217_rme_2021_0174
crossref_primary_10_1007_s00167_020_05859_z
crossref_primary_10_1177_09636897221079745
crossref_primary_10_18632_aging_204300
crossref_primary_10_3892_etm_2019_8370
crossref_primary_10_1186_s12951_024_02509_1
crossref_primary_10_1016_j_ijheh_2021_113895
crossref_primary_10_2196_37790
crossref_primary_10_1007_s00795_018_0188_9
crossref_primary_10_1080_03008207_2021_1894140
crossref_primary_10_3390_nu16234012
crossref_primary_10_1016_j_exger_2021_111313
crossref_primary_10_1016_j_jff_2018_09_036
crossref_primary_10_3389_fvets_2019_00474
crossref_primary_10_1002_cbf_3602
crossref_primary_10_1016_j_yexmp_2019_01_012
crossref_primary_10_1038_s41598_025_89234_3
crossref_primary_10_1186_s12979_021_00215_2
crossref_primary_10_3389_fgene_2022_970699
crossref_primary_10_3390_biomedicines11030738
crossref_primary_10_4252_wjsc_v12_i9_966
crossref_primary_10_1155_2021_5582792
crossref_primary_10_1177_0300060520954722
crossref_primary_10_1016_j_addr_2021_113836
crossref_primary_10_3389_fbioe_2019_00142
crossref_primary_10_1039_D1TB02537F
crossref_primary_10_1002_sctm_19_0145
crossref_primary_10_3390_ijms241914764
crossref_primary_10_1172_JCI180068
crossref_primary_10_36740_ABal201903107
crossref_primary_10_3390_bioengineering8050069
crossref_primary_10_1021_acsabm_2c00263
crossref_primary_10_1002_ctm2_429
crossref_primary_10_1186_s12967_018_1403_0
crossref_primary_10_1186_s13287_021_02295_9
crossref_primary_10_7554_eLife_92419_2
crossref_primary_10_2174_1574888X14666190123161447
crossref_primary_10_1126_scitranslmed_aaz8697
crossref_primary_10_1016_j_biomaterials_2018_06_026
crossref_primary_10_1186_s13287_019_1405_8
crossref_primary_10_7759_cureus_60844
crossref_primary_10_1002_cbf_3457
crossref_primary_10_1186_s13578_020_0378_8
crossref_primary_10_3390_antiox13121474
crossref_primary_10_1016_j_bbrc_2019_02_039
crossref_primary_10_1177_09636897241226546
crossref_primary_10_3390_ijms22105062
crossref_primary_10_1016_j_biopha_2020_110365
crossref_primary_10_1002_adhm_202002058
crossref_primary_10_1111_jcmm_17201
crossref_primary_10_4062_biomolther_2017_260
crossref_primary_10_1007_s12015_021_10175_1
crossref_primary_10_1186_s12916_024_03734_z
crossref_primary_10_3389_fcell_2019_00189
crossref_primary_10_15275_ssmj388
crossref_primary_10_1016_j_fitote_2022_105165
crossref_primary_10_3390_jcm11133891
crossref_primary_10_1177_20417314211056132
Cites_doi 10.1089/ten.tec.2011.0734
10.1242/dev.130633
10.1148/radiology.215.3.r00jn05835
10.1089/scd.2011.0289
10.1371/journal.pone.0045142
10.1073/pnas.1120358109
10.1097/MAJ.0b013e31820865d5
10.1371/journal.pone.0052700
10.1016/j.mad.2007.12.002
10.1002/jcb.1174
10.1111/j.1474-9726.2008.00377.x
10.1002/(SICI)1097-4644(19991201)75:3<414::AID-JCB7>3.0.CO;2-C
10.1177/1535370215591828
10.1007/s00198-007-0394-0
10.1186/1471-2121-7-14
10.1016/j.mce.2016.08.021
10.1001/jama.1941.02820220007002
10.1016/j.lfs.2011.06.007
10.1111/iwj.12491
10.1016/S0736-0266(00)00010-3
10.1089/ten.teb.2009.0825
10.1634/stemcells.22-5-675
10.1007/BF02652556
10.3389/fcell.2014.00010
10.1038/nature13034
10.1089/scd.2016.0169
10.1016/j.bone.2014.10.014
10.3109/14653249.2011.651533
10.1210/en.2006-0459
10.1016/j.berh.2014.01.004
10.1016/j.bone.2005.12.082
10.1002/jcb.21411
10.1016/j.stem.2011.09.010
10.1038/nrrheum.2016.65
10.1007/s00223-001-2059-x
10.1093/rheumatology/kem206
10.1038/ncprheum0070
10.1038/nm.3143
10.1016/j.bcp.2011.09.018
10.1111/j.1474-9726.2009.00535.x
10.1016/j.biomaterials.2003.10.005
10.1186/s40064-016-3091-7
10.1002/art.27451
10.1038/nature02041
10.1038/nrrheum.2016.148
10.1002/stem.302
10.1046/j.1365-2141.1999.01715.x
10.22203/eCM.v031a10
10.1002/art.39622
10.1089/ten.tea.2013.0244
10.1038/nm.2793
10.1159/000445621
10.1080/14653240802716590
10.1101/gad.1467506
10.1182/blood-2010-08-304287
10.1242/jcs.00369
10.1186/1741-7015-11-146
10.1016/j.tem.2010.01.010
10.1359/jbmr.1998.13.5.763
10.1096/fj.10-161497
10.1016/j.cell.2013.05.039
10.1042/cs0940549
10.1111/febs.12221
10.18632/aging.100588
10.1016/j.bbadis.2009.01.008
10.2106/00004623-199711000-00012
10.1002/stem.139
10.1007/s11914-013-0135-6
10.1002/art.34434
10.4236/aar.2016.52005
10.1038/ncb0511-506
10.1186/s12916-014-0202-6
10.1097/00005131-200511101-00002
10.1016/j.bone.2003.07.005
10.1002/jcp.20376
10.1016/j.arr.2005.10.001
10.1038/srep07144
10.1038/nm.3651
10.1371/journal.pone.0002213
10.1038/nature11861
10.1371/journal.pone.0005846
10.1534/genetics.115.178624
10.1093/geronj/11.3.298
10.1007/s40520-015-0346-z
10.1002/emmm.201201606
10.1016/j.mad.2012.03.014
10.1093/abbs/gmr041
10.1097/MOH.0000000000000144
10.1089/scd.2009.0147
10.1210/edrv.23.3.0465
ContentType Journal Article
Copyright The Author(s) 2017
The Author(s) 2017 2017 SAGE Publications Inc, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
Copyright_xml – notice: The Author(s) 2017
– notice: The Author(s) 2017 2017 SAGE Publications Inc, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
DBID AFRWT
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1177/0963689717721201
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1555-3892
EndPage 1529
ExternalDocumentID PMC5680949
29113463
10_1177_0963689717721201
10.1177_0963689717721201
Genre Journal Article
GroupedDBID ---
--K
0R~
0VX
1B1
29B
4.4
53G
54M
5GY
7X7
8FI
8FJ
AAEDT
AAGGD
AALRI
AAPEO
AAQGT
AAQXH
AAQXK
AASGM
AAXUO
ABDWY
ABJIS
ABQKF
ABQXT
ABUWG
ABVFX
ABWVN
ABYTW
ACARO
ACFMA
ACGBL
ACLHI
ACROE
ACRPL
ACVFH
ADBBV
ADCNI
ADEIA
ADMUD
ADNMO
ADOGD
ADTBJ
ADUKL
AENEX
AEUPX
AEWDL
AFCOW
AFDWT
AFKRA
AFKRG
AFPUW
AFRWT
AFYCX
AGQPQ
AJEFB
AJMMQ
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APTNG
AUTPY
AYAKG
BAWUL
BCNDV
BDDNI
BENPR
BPHCQ
BSEHC
BVXVI
CBRKF
CCPQU
CORYS
CQQTX
CS3
DC.
DU5
EBS
EJD
EMOBN
F5P
FDB
FEDTE
FGOYB
FYUFA
GROUPED_DOAJ
H13
HMCUK
HVGLF
HYE
HZ~
IHE
J8X
K.F
M41
NQ-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
Q1R
R2-
R9-
ROL
RPM
RPZ
SAUOL
SCDPB
SCNPE
SFC
UHS
UKHRP
AAYXX
ACHEB
CITATION
31X
AATBZ
ACGZU
ACSIQ
AEWHI
DIK
DV7
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
M4V
NPM
SFK
SFT
SGV
SPP
7X8
5PM
ID FETCH-LOGICAL-c392t-bfd889c37a27f75d7aa14afb22b85bf12b2eaea3663cf8ba6f3f4a2c5e7ba4633
IEDL.DBID AFRWT
ISSN 0963-6897
1555-3892
IngestDate Thu Aug 21 14:09:31 EDT 2025
Fri Jul 11 08:31:59 EDT 2025
Wed Feb 19 02:43:18 EST 2025
Tue Jul 01 05:24:10 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Jun 17 22:32:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords mesenchymal stromal cells (MSCs)
in vivo
aging
bone marrow (BM)
in vitro
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-bfd889c37a27f75d7aa14afb22b85bf12b2eaea3663cf8ba6f3f4a2c5e7ba4633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/0963689717721201?utm_source=summon&utm_medium=discovery-provider
PMID 29113463
PQID 1961849634
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680949
proquest_miscellaneous_1961849634
pubmed_primary_29113463
crossref_citationtrail_10_1177_0963689717721201
crossref_primary_10_1177_0963689717721201
sage_journals_10_1177_0963689717721201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170900
2017-09-00
2017-Sep
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170900
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Cell transplantation
PublicationTitleAlternate Cell Transplant
PublicationYear 2017
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Ghazanfari, Li, Zacharaki, Lim, Scheding 2016; 25
Kim, Kim, Choi, Kim, Park, Suh 2012; 133
Vacanti, Kong, Suzuki, Sato, Canty, Lee 2005; 205
Muschler, Nitto, Boehm, Easley 2001; 19
Jia, O’brien, Stewart, Manolagas, Weinstein 2006; 147
Tang, Koh, Jiang, Schwarz 2013; 5
Lapham, Kvale, Lin, Connell, Croen, Dispensa, Fang, Hesselson, Hoffmann, Iribarren 2015; 200
Duscher, Rennert, Januszyk, Anghel, Maan, Whittam, Perez, Kosaraju, Hu, Walmsley 2014; 4
Harman 1956; 11
Philippart, Meuleman, Stamatopoulos, Najar, Pieters, De Bruyn, Bron, Lagneaux 2013; 20
Wagner, Ho, Zenke 2010; 16
Canalis, Mazziotti, Giustina, Bilezikian 2007; 18
Abdallah, Haack-Sørensen, Fink, Kassem 2006; 39
Stenderup, Justesen, Clausen, Kassem 2003; 33
Rodríguez, Garat, Gajardo, Pino, Seitz 1999; 75
Manolagas, Parfitt 2010; 21
Benisch, Schilling, Klein-Hitpass, Frey, Seefried, Raaijmakers, Krug, Regensburger, Zeck, Schinke 2012; 7
Schultz, Sinclair 2016; 143
Stolzing, Jones, McGonagle, Scutt 2008; 129
Loeser, Collins, Diekman 2016; 12
Tormin, Brune, Olsson, Valcich, Neuman, Olofsson, Jacobsen, Scheding 2009; 11
Yao, Huang, Gao, Xie, Liu, Fu 2015; 13
Broxmeyer, O’Leary, Huang, Mantel 2015; 22
Cooper, Hardy 2011; 2
Xian, Wu, Pang, Lou, Rosen, Qiu, Crane, Frassica, Zhang, Rodriguez 2012; 18
Bonab, Alimoghaddam, Talebian, Ghaffari, Ghavamzadeh, Nikbin 2006; 7
Baker, Boyette, Tuan 2015; 70
Jones, McGonagle 2008; 47
Corotchi, Popa, Simionescu 2016; 57
Seck, Scheppach, Scharla, Diel, Blum, Bismar, Schmid, Krempien, Ziegler, Pfeilschifter 1998; 83
Oh, Lee, Wagers 2014; 20
Goldring, Goldring 2016; 12
Siegel, Kluba, Hermanutz-Klein, Bieback, Northoff, Schäfer 2013; 11
DiGirolamo, Stokes, Colter, Phinney, Class, Prockop 1999; 107
Bork, Pfister, Witt, Horn, Korn, Ho, Wagner 2010; 9
Lee, Yook, Son, Kim, Koo, Han, Cho 2010; 19
Zhou, Greenberger, Epperly, Goff, Adler, LeBoff, Glowacki 2008; 7
Boxall, Jones 2012 2012
Bethel, Chitteti, Srour, Kacena 2013; 11
Gronthos, Zannettino, Hay, Shi, Graves, Kortesidis, Simmons 2003; 116
Sun, Li, Lu, Chen, Ling, Ran, Jilka, Chen 2011; 25
Wang, Zhou, Xie, Zhao, Liu 2016; 5
Fukada, Ma, Uezumi 2014; 2
Wagner, Horn, Castoldi, Diehlmann, Bork, Saffrich, Benes, Blake, Pfister, Eckstein 2008; 3
Baxter, Wynn, Jowitt, Wraith, Fairbairn, Bellantuono 2004; 22
Cuthbert, Boxall, Tan, Giannoudis, McGonagle, Jones 2012; 14
Liu, Xia, Li 2015; 240
Tormin, Li, Brune, Walsh, Schütz, Ehinger, Ditzel, Kassem, Scheding 2011; 117
Campbell, Churchman, Gomez, McGonagle, Conaghan, Ponchel, Jones 2016; 68
Geißler, Textor, Kühnisch, Könnig, Klein, Ode, Pfitzner, Adjaye, Kasper, Duda 2012; 7
Oreffo, Bord, Triffitt 1998; 94
Singha, Jiang, Yu, Luo, Lu, Zhang, Xiao 2008; 103
Peffers, Collins, Fang, Goljanek-Whysall, Rushton, Loughlin, Proctor, Clegg 2016; 31
Kanda, Hinata, Kang, Watanabe 2011; 89
Justesen, Stenderup, Eriksen, Kassem 2002; 71
Riggs, Khosla, Melton 1998; 13
You, Pan, Chen, Gu, Chen 2016; 39
Xiang, Zhao, Xu, Li, Zhang 2011; 43
Bellotti, Capanni, Lattanzi, Donati, Lucarelli, Duchi 2016; 5
Bieback, Hecker, Kocaömer, Lannert, Schallmoser, Strunk, Klüter 2009; 27
Pattappa, Thorpe, Jegard, Heywood, de Bruijn, Lee 2012; 19
Zhou, Gao, Liu, Tao 2015; 27
Simic, Zainabadi, Bell, Sykes, Saez, Lotinun, Baron, Scadden, Schipani, Guarente 2013; 5
Rosen, Bouxsein 2006; 2
Tan, Giannoudis, Boxall, McGonagle, Jones 2015; 13
Kassem, Ankersen, Eriksen, Clark, Rattan 1997; 7
Jones, English, Churchman, Kouroupis, Boxall, Kinsey, Giannoudis, Emery, McGonagle 2010; 62
García-Prat, Sousa-Victor, Muñoz-Cánoves 2013; 280
Mauney, Kaplan, Volloch 2004; 25
Johnson, Hunter 2014; 28
Riggs, Khosla, Melton 2002; 23
Zanetti, Bruder, Romero, Hodler 2000; 215
Johnson, Rabinovitch, Kaeberlein 2013; 493
Jones, Rando 2011; 13
Suda, Takubo, Semenza 2011; 9
Mueller, Glowacki 2001; 82
Einhorn 2005; 19
Castañeda, Roman-Blas, Largo, Herrero-Beaumont 2012; 83
Song, Cha, Song, Kim, Chang, Lim, Choi, Ham, Lee, Chung 2010; 28
Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao 2013; 19
Muschler, Boehm, Easley 1997; 79
Spencer, Ferraro, Roussakis, Klein, Wu, Runnels, Zaher, Mortensen, Alt, Turcotte 2014; 508
Churchman, Ponchel, Boxall, Cuthbert, Kouroupis, Roshdy, Giannoudis, Emery, McGonagle, Jones 2012; 64
Bellantuono, Aldahmash, Kassem 2009; 1792
García-Prat, Muñoz-Cánoves 2017; 445
López-Otín, Blasco, Partridge, Serrano, Kroemer 2013; 153
Sethe, Scutt, Stolzing 2006; 5
Zhao, Gao, Mei, Li, Wang 2011; 341
Stubbs, Hsiao, Peshavariya, Lim, Dusting, Dilley 2011; 21
Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng 2003; 425
Albright, Smith, Richardson 1941; 116
Ishikawa, Gonzalez-Nieto, Ghiaur, Dunn, Ficker, Murali, Madhu, Gutstein, Fishman, Barrio 2012; 109
Wagner, Bork, Horn, Krunic, Walenda, Diehlmann, Benes, Blake, Huber, Eckstein 2009; 4
Haigis, Guarente 2006; 20
bibr22-0963689717721201
bibr48-0963689717721201
bibr30-0963689717721201
bibr73-0963689717721201
bibr49-0963689717721201
bibr57-0963689717721201
bibr64-0963689717721201
bibr90-0963689717721201
bibr21-0963689717721201
bibr81-0963689717721201
bibr1-0963689717721201
bibr23-0963689717721201
bibr66-0963689717721201
bibr15-0963689717721201
bibr58-0963689717721201
bibr2-0963689717721201
bibr20-0963689717721201
bibr63-0963689717721201
bibr80-0963689717721201
bibr24-0963689717721201
bibr67-0963689717721201
bibr16-0963689717721201
bibr54-0963689717721201
bibr29-0963689717721201
bibr41-0963689717721201
bibr89-0963689717721201
bibr70-0963689717721201
bibr83-0963689717721201
bibr62-0963689717721201
bibr55-0963689717721201
bibr96-0963689717721201
bibr68-0963689717721201
bibr3-0963689717721201
bibr10-0963689717721201
bibr47-0963689717721201
bibr34-0963689717721201
bibr91-0963689717721201
bibr31-0963689717721201
Jones E (bibr44-0963689717721201) 2010; 62
bibr8-0963689717721201
bibr13-0963689717721201
Song H (bibr19-0963689717721201) 2010; 28
bibr26-0963689717721201
bibr65-0963689717721201
bibr39-0963689717721201
bibr52-0963689717721201
bibr5-0963689717721201
bibr60-0963689717721201
bibr35-0963689717721201
bibr78-0963689717721201
Cooper MS (bibr75-0963689717721201) 2011; 2
bibr43-0963689717721201
bibr86-0963689717721201
bibr18-0963689717721201
bibr51-0963689717721201
bibr36-0963689717721201
bibr27-0963689717721201
bibr94-0963689717721201
bibr28-0963689717721201
bibr85-0963689717721201
Corotchi MC (bibr72-0963689717721201) 2016; 57
bibr42-0963689717721201
bibr79-0963689717721201
bibr45-0963689717721201
bibr88-0963689717721201
bibr37-0963689717721201
bibr6-0963689717721201
bibr93-0963689717721201
bibr50-0963689717721201
Medawar PB (bibr14-0963689717721201) 1952
bibr59-0963689717721201
bibr92-0963689717721201
bibr84-0963689717721201
bibr33-0963689717721201
bibr71-0963689717721201
bibr46-0963689717721201
bibr25-0963689717721201
bibr32-0963689717721201
bibr7-0963689717721201
bibr40-0963689717721201
bibr38-0963689717721201
bibr53-0963689717721201
bibr61-0963689717721201
bibr9-0963689717721201
bibr17-0963689717721201
bibr74-0963689717721201
bibr77-0963689717721201
bibr87-0963689717721201
bibr69-0963689717721201
bibr82-0963689717721201
Boxall SA (bibr12-0963689717721201) 2012
bibr56-0963689717721201
Seck T (bibr76-0963689717721201) 1998; 83
bibr4-0963689717721201
bibr95-0963689717721201
References_xml – volume: 28
  start-page: 555
  issue: 3
  year: 2010
  end-page: 563
  article-title: Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex
  publication-title: Stem Cells
– volume: 33
  start-page: 919
  issue: 6
  year: 2003
  end-page: 926
  article-title: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells
  publication-title: Bone
– volume: 5
  start-page: 643
  issue: 9
  year: 2013
  end-page: 652
  article-title: CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging
  publication-title: Aging (Albany NY)
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  article-title: Aging of mesenchymal stem cell in vitro
  publication-title: BMC Cell Biol
– volume: 71
  start-page: 36
  issue: 1
  year: 2002
  end-page: 44
  article-title: Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures
  publication-title: Calcif Tissue Int
– volume: 20
  start-page: 160
  issue: 1–2
  year: 2013
  end-page: 170
  article-title: In vivo production of mesenchymal stromal cells after injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor in the bone marrow of healthy volunteers
  publication-title: Tissue Eng Part A
– volume: 79
  start-page: 1699
  issue: 11
  year: 1997
  end-page: 1709
  article-title: Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume
  publication-title: J Bone Joint Surg Am
– volume: 147
  start-page: 5592
  issue: 12
  year: 2006
  end-page: 5599
  article-title: Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density
  publication-title: Endocrinology
– volume: 18
  start-page: 1095
  issue: 7
  year: 2012
  end-page: 1101
  article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
  publication-title: Nat Med
– volume: 9
  start-page: 54
  issue: 1
  year: 2010
  end-page: 63
  article-title: DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells
  publication-title: Aging Cell
– volume: 62
  start-page: 1944
  issue: 7
  year: 2010
  end-page: 1954
  article-title: Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells
  publication-title: Arthritis Rheum
– volume: 7
  start-page: 335
  issue: 3
  year: 2008
  end-page: 343
  article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts
  publication-title: Aging Cell
– volume: 27
  start-page: 2331
  issue: 9
  year: 2009
  end-page: 2341
  article-title: Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow
  publication-title: Stem Cells
– volume: 57
  start-page: 75
  issue: 1
  year: 2016
  end-page: 80
  article-title: Testosterone stimulates proliferation and preserves stemness of human adult mesenchymal stem cells and endothelial progenitor cells
  publication-title: Rom J Morphol Embryol
– volume: 75
  start-page: 414
  issue: 3
  year: 1999
  end-page: 423
  article-title: Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics
  publication-title: J Cell Biochem
– volume: 14
  start-page: 431
  issue: 4
  year: 2012
  end-page: 440
  article-title: Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use
  publication-title: Cytotherapy
– volume: 19
  start-page: S4
  issue: 10
  year: 2005
  end-page: S6
  article-title: The science of fracture healing
  publication-title: J Orthop Trauma
– volume: 493
  start-page: 338
  issue: 7432
  year: 2013
  end-page: 345
  article-title: mTOR is a key modulator of ageing and age-related disease
  publication-title: Nature
– volume: 22
  start-page: 675
  issue: 5
  year: 2004
  end-page: 682
  article-title: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion
  publication-title: Stem Cells
– volume: 31
  start-page: 136
  year: 2016
  end-page: 159
  article-title: Age-related changes in mesenchymal stem cells identified using a multi-omics approach
  publication-title: Eur Cell Mater
– volume: 43
  start-page: 501
  issue: 7
  year: 2011
  end-page: 510
  article-title: mTOR and the differentiation of mesenchymal stem cells
  publication-title: Acta Biochim Biophys Sin (Shanghai)
– volume: 4
  start-page: 7144
  year: 2014
  article-title: Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells
  publication-title: Sci Rep
– volume: 13
  start-page: 763
  issue: 5
  year: 1998
  end-page: 773
  article-title: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men
  publication-title: J Bone Miner Res
– volume: 5
  start-page: 49
  issue: 02
  year: 2016
  article-title: Research progress on aging mechanisms
  publication-title: Adv Aging Res
– volume: 89
  start-page: 250
  issue: 7
  year: 2011
  end-page: 258
  article-title: Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells
  publication-title: Life Sci
– volume: 21
  start-page: 369
  issue: 6
  year: 2010
  end-page: 374
  article-title: What old means to bone
  publication-title: Trends Endocrinol Metab
– volume: 5
  start-page: 430
  issue: 3
  year: 2013
  end-page: 440
  article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin
  publication-title: EMBO Mol Med
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  end-page: 43
  article-title: Mechanisms of disease: is osteoporosis the obesity of bone?
  publication-title: Nat Clin Pract Rheumatol
– volume: 68
  start-page: 1648
  issue: 7
  year: 2016
  end-page: 1659
  article-title: Mesenchymal stem cell alterations in bone marrow lesions in hip osteoarthritis
  publication-title: Arthritis Rheumatol
– volume: 11
  start-page: 146
  year: 2013
  article-title: Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells
  publication-title: BMC Med
– volume: 47
  start-page: 126
  issue: 2
  year: 2008
  end-page: 131
  article-title: Human bone marrow mesenchymal stem cells in vivo
  publication-title: Rheumatology (Oxford)
– start-page: 975871
  year: 2012 2012
  article-title: Markers for characterization of bone marrow multipotential stromal cells
  publication-title: Stem Cells Int
– volume: 341
  start-page: 460
  issue: 6
  year: 2011
  end-page: 468
  article-title: Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation
  publication-title: American J Med Sci
– volume: 109
  start-page: 9071
  issue: 23
  year: 2012
  end-page: 9076
  article-title: Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e52700
  issue: 12
  year: 2012
  article-title: Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells
  publication-title: PLoS One
– volume: 129
  start-page: 163
  issue: 3
  year: 2008
  end-page: 173
  article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies
  publication-title: Mech Ageing Dev
– volume: 11
  start-page: 298
  issue: 3
  year: 1956
  end-page: 300
  article-title: Aging: a theory based on free radical and radiation chemistry
  publication-title: J Gerontol
– volume: 82
  start-page: 583
  issue: 4
  year: 2001
  end-page: 590
  article-title: Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges
  publication-title: J Cell Biochem
– volume: 143
  start-page: 3
  issue: 1
  year: 2016
  end-page: 14
  article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging
  publication-title: Development
– volume: 215
  start-page: 835
  issue: 3
  year: 2000
  end-page: 840
  article-title: Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings
  publication-title: Radiology
– volume: 19
  start-page: 117
  issue: 1
  year: 2001
  end-page: 125
  article-title: Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors
  publication-title: J Orthop Res
– volume: 39
  start-page: 181
  issue: 1
  year: 2006
  end-page: 188
  article-title: Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females
  publication-title: Bone
– volume: 5
  start-page: 91
  issue: 1
  year: 2006
  end-page: 116
  article-title: Aging of mesenchymal stem cells
  publication-title: Ageing Res Rev
– volume: 9
  start-page: 298
  issue: 4
  year: 2011
  end-page: 310
  article-title: Metabolic regulation of hematopoietic stem cells in the hypoxic niche
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 2913
  issue: 21
  year: 2006
  end-page: 2921
  article-title: Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction
  publication-title: Genes Dev
– volume: 28
  start-page: 5
  issue: 1
  year: 2014
  end-page: 15
  article-title: The epidemiology of osteoarthritis
  publication-title: Best Pract Res Clin Rheumatol
– volume: 83
  start-page: 315
  issue: 3
  year: 2012
  end-page: 323
  article-title: Subchondral bone as a key target for osteoarthritis treatment
  publication-title: Biochem Pharmacol
– volume: 3
  start-page: e2213
  issue: 5
  year: 2008
  article-title: Replicative senescence of mesenchymal stem cells: a continuous and organized process
  publication-title: PLoS One
– volume: 12
  start-page: 632
  issue: 11
  year: 2016
  end-page: 644
  article-title: Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk
  publication-title: Nat Rev Rheumatol
– volume: 39
  start-page: 253
  issue: 1
  year: 2016
  end-page: 265
  article-title: MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis
  publication-title: Cell Physiol Biochem
– volume: 4
  start-page: e5846
  issue: 6
  year: 2009
  article-title: Aging and replicative senescence have related effects on human stem and progenitor cells
  publication-title: PloS One
– volume: 19
  start-page: 68
  issue: 1
  year: 2012
  end-page: 79
  article-title: Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells
  publication-title: Tissue Eng Part C Methods
– volume: 508
  start-page: 269
  issue: 7495
  year: 2014
  article-title: Direct measurement of local oxygen concentration in the bone marrow of live animals
  publication-title: Nature
– volume: 23
  start-page: 279
  issue: 3
  year: 2002
  end-page: 302
  article-title: Sex steroids and the construction and conservation of the adult skeleton
  publication-title: Endocr Rev
– volume: 205
  start-page: 194
  issue: 2
  year: 2005
  end-page: 201
  article-title: Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture
  publication-title: J Cell Physiol
– volume: 21
  start-page: 1887
  issue: 11
  year: 2011
  end-page: 1896
  article-title: Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro
  publication-title: Stem Cells Dev
– volume: 153
  start-page: 1194
  issue: 6
  year: 2013
  end-page: 1217
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 7
  start-page: 514
  issue: 6
  year: 1997
  end-page: 524
  article-title: Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts
  publication-title: Osteoporosis Int
– volume: 13
  start-page: 6
  year: 2015
  article-title: The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients
  publication-title: BMC Med
– volume: 12
  start-page: 412
  issue: 7
  year: 2016
  end-page: 420
  article-title: Ageing and the pathogenesis of osteoarthritis
  publication-title: Nature Rev Rheumatol
– volume: 25
  start-page: 1652
  issue: 21
  year: 2016
  end-page: 1658
  article-title: Human non-hematopoietic CD271pos/CD140alow/neg bone marrow stroma cells fulfill stringent stem cell criteria in serial transplantations
  publication-title: Stem Cells Dev
– volume: 200
  start-page: 1061
  issue: 4
  year: 2015
  end-page: 1072
  article-title: Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort
  publication-title: Genetics
– volume: 11
  start-page: 114
  issue: 2
  year: 2009
  end-page: 128
  article-title: Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets
  publication-title: Cytotherapy
– volume: 5
  start-page: 1427
  issue: 1
  year: 2016
  article-title: Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level
  publication-title: Springerplus
– volume: 2
  start-page: 24
  year: 2011
  article-title: Glucocorticoid-induced osteoporosis—a disorder of mesenchymal stromal cells?
  publication-title: Front Endocrinol (Lausanne)
– volume: 107
  start-page: 275
  issue: 2
  year: 1999
  end-page: 281
  article-title: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate
  publication-title: Br J of Haematol
– volume: 19
  start-page: 557
  issue: 4
  year: 2010
  end-page: 568
  article-title: Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway
  publication-title: Stem Cells Dev
– volume: 70
  start-page: 37
  year: 2015
  end-page: 47
  article-title: Characterization of bone marrow-derived mesenchymal stem cells in aging
  publication-title: Bone
– volume: 280
  start-page: 4051
  issue: 17
  year: 2013
  end-page: 4062
  article-title: Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells
  publication-title: FEBS J
– volume: 1792
  start-page: 364
  issue: 4
  year: 2009
  end-page: 370
  article-title: Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss
  publication-title: Biochim Biophys Acta
– volume: 18
  start-page: 1319
  issue: 10
  year: 2007
  end-page: 1328
  article-title: Glucocorticoid-induced osteoporosis: pathophysiology and therapy
  publication-title: Osteoporos Int
– volume: 94
  start-page: 549
  issue: 5
  year: 1998
  end-page: 555
  article-title: Skeletal progenitor cells and ageing human populations
  publication-title: Clin Sci (Lond)
– volume: 2
  start-page: 10
  year: 2014
  article-title: Adult stem cell and mesenchymal progenitor theories of aging
  publication-title: Front Cell Dev Biol
– volume: 27
  start-page: 595
  issue: 5
  year: 2015
  end-page: 601
  article-title: Comprehensive transcriptome analysis of mesenchymal stem cells in elderly patients with osteoporosis
  publication-title: Aging Clin Exp Res
– volume: 19
  start-page: 704
  issue: 6
  year: 2013
  end-page: 712
  article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat Med
– volume: 116
  start-page: 2465
  issue: 22
  year: 1941
  end-page: 2474
  article-title: Postmenopausal osteoporosis: its clinical features
  publication-title: JAMA
– volume: 117
  start-page: 5067
  issue: 19
  year: 2011
  end-page: 5077
  article-title: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization
  publication-title: Blood
– volume: 83
  start-page: 2331
  issue: 7
  year: 1998
  end-page: 2337
  article-title: Concentration of insulin-like growth factor (IGF)-I and-II in iliac crest bone matrix from pre-and postmenopausal women: relationship to age, menopause, bone turnover, bone volume, and circulating IGFs 1
  publication-title: J Clin Endocrinol Metab
– volume: 22
  start-page: 273
  issue: 4
  year: 2015
  article-title: The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex-vivo
  publication-title: Curr Opin Hematol
– volume: 103
  start-page: 434
  issue: 2
  year: 2008
  end-page: 446
  article-title: Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells
  publication-title: J Cell Biochem
– volume: 133
  start-page: 215
  issue: 5
  year: 2012
  end-page: 225
  article-title: Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects
  publication-title: Mech Ageing Dev
– volume: 16
  start-page: 445
  issue: 4
  year: 2010
  end-page: 453
  article-title: Different facets of aging in human mesenchymal stem cells
  publication-title: Tissue Eng Part B Rev
– volume: 13
  start-page: 506
  issue: 5
  year: 2011
  end-page: 512
  article-title: Emerging models and paradigms for stem cell ageing
  publication-title: Nat Cell Biol
– volume: 240
  start-page: 1099
  issue: 8
  year: 2015
  end-page: 1106
  article-title: Mesenchymal stem cell aging: mechanisms and influences on skeletal and non-skeletal tissues
  publication-title: Exp Biol Med (Maywood)
– volume: 7
  start-page: e45142
  issue: 9
  year: 2012
  article-title: The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors
  publication-title: PLoS One
– volume: 20
  start-page: 870
  issue: 8
  year: 2014
  end-page: 880
  article-title: Stem cell aging: mechanisms, regulators and therapeutic opportunities
  publication-title: Nat Med
– volume: 425
  start-page: 836
  issue: 6960
  year: 2003
  end-page: 841
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
– volume: 11
  start-page: 99
  issue: 2
  year: 2013
  end-page: 106
  article-title: The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis
  publication-title: Curr Osteoporos Rep
– volume: 445
  start-page: 109
  year: 2017
  end-page: 117
  article-title: Aging, metabolism and stem cells: spotlight on muscle stem cells
  publication-title: Mol Cell Endocrinol
– volume: 116
  start-page: 1827
  issue: 9
  year: 2003
  end-page: 1835
  article-title: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow
  publication-title: J Cell Sci
– volume: 25
  start-page: 1474
  issue: 5
  year: 2011
  end-page: 1485
  article-title: Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix
  publication-title: FASEB J
– volume: 64
  start-page: 2632
  issue: 8
  year: 2012
  end-page: 2643
  article-title: Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity
  publication-title: Arthritis Rheum
– volume: 13
  start-page: 1252
  issue: 6
  year: 2015
  end-page: 1259
  article-title: Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair
  publication-title: Int Wound J
– volume: 25
  start-page: 3233
  issue: 16
  year: 2004
  end-page: 3243
  article-title: Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion
  publication-title: Biomaterials
– ident: bibr35-0963689717721201
  doi: 10.1089/ten.tec.2011.0734
– ident: bibr15-0963689717721201
  doi: 10.1242/dev.130633
– ident: bibr85-0963689717721201
  doi: 10.1148/radiology.215.3.r00jn05835
– ident: bibr79-0963689717721201
  doi: 10.1089/scd.2011.0289
– ident: bibr82-0963689717721201
  doi: 10.1371/journal.pone.0045142
– start-page: 975871
  year: 2012
  ident: bibr12-0963689717721201
  publication-title: Stem Cells Int
– ident: bibr57-0963689717721201
  doi: 10.1073/pnas.1120358109
– ident: bibr71-0963689717721201
  doi: 10.1097/MAJ.0b013e31820865d5
– ident: bibr68-0963689717721201
  doi: 10.1371/journal.pone.0052700
– ident: bibr31-0963689717721201
  doi: 10.1016/j.mad.2007.12.002
– ident: bibr8-0963689717721201
  doi: 10.1002/jcb.1174
– ident: bibr55-0963689717721201
  doi: 10.1111/j.1474-9726.2008.00377.x
– ident: bibr81-0963689717721201
  doi: 10.1002/(SICI)1097-4644(19991201)75:3<414::AID-JCB7>3.0.CO;2-C
– ident: bibr9-0963689717721201
  doi: 10.1177/1535370215591828
– ident: bibr74-0963689717721201
  doi: 10.1007/s00198-007-0394-0
– ident: bibr23-0963689717721201
  doi: 10.1186/1471-2121-7-14
– ident: bibr28-0963689717721201
  doi: 10.1016/j.mce.2016.08.021
– volume: 2
  start-page: 24
  year: 2011
  ident: bibr75-0963689717721201
  publication-title: Front Endocrinol (Lausanne)
– ident: bibr1-0963689717721201
  doi: 10.1001/jama.1941.02820220007002
– ident: bibr20-0963689717721201
  doi: 10.1016/j.lfs.2011.06.007
– ident: bibr33-0963689717721201
  doi: 10.1111/iwj.12491
– ident: bibr73-0963689717721201
  doi: 10.1016/S0736-0266(00)00010-3
– ident: bibr16-0963689717721201
  doi: 10.1089/ten.teb.2009.0825
– ident: bibr21-0963689717721201
  doi: 10.1634/stemcells.22-5-675
– ident: bibr41-0963689717721201
  doi: 10.1007/BF02652556
– volume-title: An Unsolved Problem of Biology
  year: 1952
  ident: bibr14-0963689717721201
– ident: bibr18-0963689717721201
  doi: 10.3389/fcell.2014.00010
– ident: bibr67-0963689717721201
  doi: 10.1038/nature13034
– ident: bibr27-0963689717721201
  doi: 10.1089/scd.2016.0169
– ident: bibr48-0963689717721201
  doi: 10.1016/j.bone.2014.10.014
– ident: bibr52-0963689717721201
  doi: 10.3109/14653249.2011.651533
– ident: bibr70-0963689717721201
  doi: 10.1210/en.2006-0459
– ident: bibr3-0963689717721201
  doi: 10.1016/j.berh.2014.01.004
– ident: bibr87-0963689717721201
  doi: 10.1016/j.bone.2005.12.082
– volume: 57
  start-page: 75
  issue: 1
  year: 2016
  ident: bibr72-0963689717721201
  publication-title: Rom J Morphol Embryol
– ident: bibr92-0963689717721201
  doi: 10.1002/jcb.21411
– ident: bibr66-0963689717721201
  doi: 10.1016/j.stem.2011.09.010
– ident: bibr4-0963689717721201
  doi: 10.1038/nrrheum.2016.65
– ident: bibr38-0963689717721201
  doi: 10.1007/s00223-001-2059-x
– ident: bibr65-0963689717721201
  doi: 10.1093/rheumatology/kem206
– ident: bibr53-0963689717721201
  doi: 10.1038/ncprheum0070
– ident: bibr86-0963689717721201
  doi: 10.1038/nm.3143
– ident: bibr6-0963689717721201
  doi: 10.1016/j.bcp.2011.09.018
– ident: bibr46-0963689717721201
  doi: 10.1111/j.1474-9726.2009.00535.x
– ident: bibr40-0963689717721201
  doi: 10.1016/j.biomaterials.2003.10.005
– ident: bibr95-0963689717721201
  doi: 10.1186/s40064-016-3091-7
– volume: 62
  start-page: 1944
  issue: 7
  year: 2010
  ident: bibr44-0963689717721201
  publication-title: Arthritis Rheum
  doi: 10.1002/art.27451
– ident: bibr63-0963689717721201
  doi: 10.1038/nature02041
– ident: bibr5-0963689717721201
  doi: 10.1038/nrrheum.2016.148
– volume: 28
  start-page: 555
  issue: 3
  year: 2010
  ident: bibr19-0963689717721201
  publication-title: Stem Cells
  doi: 10.1002/stem.302
– ident: bibr30-0963689717721201
  doi: 10.1046/j.1365-2141.1999.01715.x
– ident: bibr37-0963689717721201
  doi: 10.22203/eCM.v031a10
– ident: bibr84-0963689717721201
  doi: 10.1002/art.39622
– ident: bibr61-0963689717721201
  doi: 10.1089/ten.tea.2013.0244
– ident: bibr77-0963689717721201
  doi: 10.1038/nm.2793
– ident: bibr54-0963689717721201
  doi: 10.1159/000445621
– ident: bibr45-0963689717721201
  doi: 10.1080/14653240802716590
– ident: bibr93-0963689717721201
  doi: 10.1101/gad.1467506
– ident: bibr64-0963689717721201
  doi: 10.1182/blood-2010-08-304287
– ident: bibr58-0963689717721201
  doi: 10.1242/jcs.00369
– ident: bibr43-0963689717721201
  doi: 10.1186/1741-7015-11-146
– ident: bibr59-0963689717721201
  doi: 10.1016/j.tem.2010.01.010
– ident: bibr2-0963689717721201
  doi: 10.1359/jbmr.1998.13.5.763
– ident: bibr88-0963689717721201
  doi: 10.1096/fj.10-161497
– ident: bibr24-0963689717721201
  doi: 10.1016/j.cell.2013.05.039
– ident: bibr80-0963689717721201
  doi: 10.1042/cs0940549
– ident: bibr49-0963689717721201
  doi: 10.1111/febs.12221
– ident: bibr78-0963689717721201
  doi: 10.18632/aging.100588
– ident: bibr47-0963689717721201
  doi: 10.1016/j.bbadis.2009.01.008
– ident: bibr51-0963689717721201
  doi: 10.2106/00004623-199711000-00012
– ident: bibr56-0963689717721201
  doi: 10.1002/stem.139
– ident: bibr7-0963689717721201
  doi: 10.1007/s11914-013-0135-6
– ident: bibr96-0963689717721201
  doi: 10.1002/art.34434
– ident: bibr13-0963689717721201
  doi: 10.4236/aar.2016.52005
– ident: bibr26-0963689717721201
  doi: 10.1038/ncb0511-506
– ident: bibr62-0963689717721201
  doi: 10.1186/s12916-014-0202-6
– ident: bibr60-0963689717721201
  doi: 10.1097/00005131-200511101-00002
– ident: bibr29-0963689717721201
  doi: 10.1016/j.bone.2003.07.005
– ident: bibr32-0963689717721201
  doi: 10.1002/jcp.20376
– ident: bibr42-0963689717721201
  doi: 10.1016/j.arr.2005.10.001
– ident: bibr36-0963689717721201
  doi: 10.1038/srep07144
– ident: bibr25-0963689717721201
  doi: 10.1038/nm.3651
– ident: bibr39-0963689717721201
  doi: 10.1371/journal.pone.0002213
– ident: bibr89-0963689717721201
  doi: 10.1038/nature11861
– ident: bibr50-0963689717721201
  doi: 10.1371/journal.pone.0005846
– ident: bibr22-0963689717721201
  doi: 10.1534/genetics.115.178624
– ident: bibr17-0963689717721201
  doi: 10.1093/geronj/11.3.298
– ident: bibr83-0963689717721201
  doi: 10.1007/s40520-015-0346-z
– ident: bibr94-0963689717721201
  doi: 10.1002/emmm.201201606
– ident: bibr10-0963689717721201
  doi: 10.1016/j.mad.2012.03.014
– ident: bibr90-0963689717721201
  doi: 10.1093/abbs/gmr041
– ident: bibr34-0963689717721201
  doi: 10.1097/MOH.0000000000000144
– ident: bibr91-0963689717721201
  doi: 10.1089/scd.2009.0147
– volume: 83
  start-page: 2331
  issue: 7
  year: 1998
  ident: bibr76-0963689717721201
  publication-title: J Clin Endocrinol Metab
– ident: bibr69-0963689717721201
  doi: 10.1210/edrv.23.3.0465
SSID ssj0007325
Score 2.5692525
SecondaryResourceType review_article
Snippet Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1520
SubjectTerms Original
Subtitle A Potential Impact on Osteoporosis and Osteoarthritis Development
Title Age-related Changes in Bone Marrow Mesenchymal Stromal Cells
URI https://journals.sagepub.com/doi/full/10.1177/0963689717721201
https://www.ncbi.nlm.nih.gov/pubmed/29113463
https://www.proquest.com/docview/1961849634
https://pubmed.ncbi.nlm.nih.gov/PMC5680949
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9sw8OgHg-1hbO0-so-gwSjsQUsi2ZINg5GUhjJIGV3L8mYkW1oLiTMa5yH_fneynTULG3uSsc-WrDvpTvcJ8D73aaIKb7nRzvIoThWnag7c2AIpRBnV96TQn1yo8-voyzSe7kHZxsI0M7j8SG5VOKKwWdPqJm10rzEy9lDulipJ8SiCBxhkYZ9X1Tyrtd1tUQ26Q-bp1Zws2zn5Q655G922D4dCqxgX8uFwfPn9arN3axnKtNL3OXXw27C50-c2I9uRTnedLO95igXmNX4Cjxupkw1rMnkKe648guNhiSfu-ZqdsOAHGhTsR_Bg1F49upes8Bg-DX84HkJfXMHqoIQluy3ZaFE6Ngm5HNmEYpnym_UcO_tW3S2oPXWz2fIZXI_Prk7PeVN7gecoMVXc-iJJ0lxqI7TXcaGNGUTGWyFsEls_EFY444xEgSX3iTXKSx8ZkcdOWxMpKZ_DQYn9vwRmtU9kv19IoU3kfGGtya3TJJsiDnTUgV47kVneJCan-hizbNDmIv9j6jvwYfPGzzopxz9g37W4yXDlkDnElG6xWmaDUOwGwXEEL2pcbb4mkAdI_I0O6C0sbgAoK_f2k_L2JmTnjlWCR-a0AyeE76wl6L8O8NX_Ar6Gh4JkiuDg9gYOqruVe4sSUWW7sK-nutsQM7ajs4uvl92gX_gFmCgHjw
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6hIrTLYcVrocvLSCskDobWTuxE4lIQVXmUw27RcovsxKZIJV3RcuDf79hNQku1iFMiZfyIZ2zP2DPfAPxMbRyJzGqqpNE0CGNBXTYHqnSGEiKUaFh3oN-9FZ274Oo-vJ9K9VWM4OjYuVVhj_xiXc1uh5SEEiOiGK0QtF2Yi9xaDNymVYPFVvvXn161DEvuM646euoKvN1RztUxuyfNKZrz_pJTTl9-H2qvwLdCgSStCcdXYcHka7DeytF4fnolh8S7dPqz8jVYOivflqdwB9fhtPVgqI9iMRmZxBeMyGNOzoa5IV0Py0i6Liwp7b8-YWO_x89D9zw3g8FoA-7aF73zDi3SKNAUlZ8x1TaLojjlUjFpZZhJpZqBspoxHYXaNplmRhnFUfdIbaSVsNwGiqWhkVoFgvPvUMux_S0gWtqINxoZZ1IFxmZaq1Qb6dRMKUIZ1OGkHMgkLTDGXaqLQdIsYcXfDX0djqoSfyf4Gh_QHpS8SXASuJsNlZvhyyhp-rw1SI492JzwqqqN4XLO8TfqIGe4WBE4gO3ZL_lj3wNthyJC6zeuw6Hjd1LK5n87-OOzhPvwpdPr3iQ3l7fX2_CVOVXB-63tQG38_GJ2UdEZ671CpP8BwIDxcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-hIhB7QBsMVsY2IyGkPZi2tmMnEi-FrWJAEeJD8BbZiU2RSopoeeC_39lNOkoF2lMi5WxffP74nX0fANuZS2KZO0O1soaKKJHUZ3Og2uQ4QqSWTecP9Lun8vBKHN1EN6VtjveFKXtwuOvNqpCjsFj72f2Qu0Z5x9hA2M1lnKAmgvoL895b80Lg1liD-Xbn_PpyshQrHrKuenrqC_y7p5ypY3pfmgGbszaTLwy_wl7U-QjLJYgk7bHUP8GcLVZgtV2gAn3_THZIMOsM5-UrsLBfvX14EXtwFfbat5YGTxabk7GPwZDcFWR_UFjSDaEZSde7JmW953ts7GL0OPDPA9vvDz_DVef35cEhLVMp0AwB0Igal8dxknGlmXIqypXWLaGdYczEkXEtZpjVVnPEH5mLjZaOO6FZFllltJCcr0GtwPa_ADHKxbzZzDlTWliXG6MzY5WHmkpGStShUXVkmpVxxn26i37aqkKLv-r6OvyclHgYx9h4h3arkk2KE8HfbujCDp6GaSvkrkFy5GB9LKtJbQyXdI6_UQc1JcUJgQ-yPf2luOuFYNuRjFEDTuqw4-WdVuPzTQY3_pfwByye_eqkJ39Oj7_CEvNoIZiubUJt9PhkvyHWGZnv5Yj-C27t8oM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+Changes+in+Bone+Marrow+Mesenchymal+Stromal+Cells%3A+A+Potential+Impact+on+Osteoporosis+and+Osteoarthritis+Development&rft.jtitle=Cell+transplantation&rft.au=Ganguly%2C+Payal&rft.au=El-Jawhari%2C+Jehan+J&rft.au=Giannoudis%2C+Peter+V&rft.au=Burska%2C+Agata+N&rft.date=2017-09-01&rft.eissn=1555-3892&rft.volume=26&rft.issue=9&rft.spage=1520&rft_id=info:doi/10.1177%2F0963689717721201&rft_id=info%3Apmid%2F29113463&rft.externalDocID=29113463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-6897&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-6897&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-6897&client=summon