Age-related Changes in Bone Marrow Mesenchymal Stromal Cells A Potential Impact on Osteoporosis and Osteoarthritis Development
Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has...
Saved in:
Published in | Cell transplantation Vol. 26; no. 9; pp. 1520 - 1529 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA. |
---|---|
AbstractList | Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA. Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA. Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo . This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA. |
Author | Ganguly, Payal Ponchel, Frederique El-Jawhari, Jehan J. Giannoudis, Peter V. Burska, Agata N. Jones, Elena A. |
AuthorAffiliation | 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom 2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom |
AuthorAffiliation_xml | – name: 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom – name: 2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom |
Author_xml | – sequence: 1 givenname: Payal surname: Ganguly fullname: Ganguly, Payal – sequence: 2 givenname: Jehan J. surname: El-Jawhari fullname: El-Jawhari, Jehan J. – sequence: 3 givenname: Peter V. surname: Giannoudis fullname: Giannoudis, Peter V. – sequence: 4 givenname: Agata N. surname: Burska fullname: Burska, Agata N. – sequence: 5 givenname: Frederique surname: Ponchel fullname: Ponchel, Frederique – sequence: 6 givenname: Elena A. surname: Jones fullname: Jones, Elena A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29113463$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrGzEQFiWhcdzeeyp77GUTPXalFZRCYvIChxzSnsWsPLI3rKVUWrfk30eL7dIEktMIvtfom2Ny4INHQr4wesKYUqdUSyEbrfKbM07ZBzJhdV2XotH8gExGuBzxI3Kc0gOlVAlefyRHXDMmKikm5PvZEsuIPQy4KGYr8EtMReeL8xxU3EKM4W9xiwm9XT2toS_uhxjGOcO-T5_IoYM-4efdnJJflxc_Z9fl_O7qZnY2L63QfChbt2gabYUCrpyqFwqAVeBaztumbh3jLUdAEFIK65oWpBOuAm5rVC3kLcWU_Nj6Pm7aNS4s-iFCbx5jt4b4ZAJ05iXiu5VZhj-mlg3Vlc4G33YGMfzeYBrMuks2fwE8hk0yTEvWVLmtKlO__p_1L2RfWSbILcHGkFJEZ2w3wNCFMbrrDaNmvI15fZsspK-Ee-93JOVWkmCJ5iFsos89v81_BlGvnR8 |
CitedBy_id | crossref_primary_10_1007_s40496_018_0193_z crossref_primary_10_1177_0963689720927398 crossref_primary_10_1080_21655979_2022_2061287 crossref_primary_10_1007_s00418_025_02364_7 crossref_primary_10_1111_cpr_12819 crossref_primary_10_14336_AD_2023_1115 crossref_primary_10_3389_fcell_2021_717772 crossref_primary_10_4252_wjsc_v13_i12_1845 crossref_primary_10_1186_s13287_023_03587_y crossref_primary_10_2217_rme_2021_0024 crossref_primary_10_7717_peerj_7024 crossref_primary_10_1016_j_actbio_2021_03_026 crossref_primary_10_1016_j_mad_2024_111929 crossref_primary_10_1038_s41598_023_49751_5 crossref_primary_10_2174_1574888X18666230113144016 crossref_primary_10_18632_aging_102958 crossref_primary_10_1155_2018_8031718 crossref_primary_10_3390_app9173471 crossref_primary_10_1007_s11302_020_09703_4 crossref_primary_10_1007_s10142_023_01116_x crossref_primary_10_3390_app11072932 crossref_primary_10_1186_s40001_023_01328_8 crossref_primary_10_3390_cancers13010068 crossref_primary_10_1007_s00167_021_06494_y crossref_primary_10_1016_j_bone_2021_116154 crossref_primary_10_1016_j_mad_2021_111539 crossref_primary_10_3390_biom12030386 crossref_primary_10_1039_D4BM00848K crossref_primary_10_3390_bioengineering9020057 crossref_primary_10_1039_D1BM00859E crossref_primary_10_1080_20013078_2020_1800971 crossref_primary_10_1002_adbi_202300331 crossref_primary_10_1089_scd_2019_0145 crossref_primary_10_1186_s13287_021_02205_z crossref_primary_10_3390_sports12040105 crossref_primary_10_1186_s12964_023_01143_y crossref_primary_10_51523_2708_6011_2024_21_2_12 crossref_primary_10_1590_fst_48821 crossref_primary_10_1186_s12917_022_03475_2 crossref_primary_10_1016_j_sjbs_2020_03_016 crossref_primary_10_3390_ijms25137411 crossref_primary_10_7554_eLife_92419 crossref_primary_10_3389_fendo_2022_853765 crossref_primary_10_52547_jrdms_7_4_210 crossref_primary_10_1155_2019_5750967 crossref_primary_10_1038_s41419_020_02993_x crossref_primary_10_3389_fcell_2021_747521 crossref_primary_10_3389_fcell_2020_00107 crossref_primary_10_1177_0963689718755404 crossref_primary_10_1007_s00223_019_00656_4 crossref_primary_10_1007_s00411_021_00925_7 crossref_primary_10_5713_ajas_19_0416 crossref_primary_10_1016_j_jcyt_2019_05_001 crossref_primary_10_1007_s00198_019_05071_x crossref_primary_10_34172_apb_2022_059 crossref_primary_10_1038_s41536_021_00145_z crossref_primary_10_3390_cells12070998 crossref_primary_10_1016_j_bonr_2023_101674 crossref_primary_10_3390_ijms242015494 crossref_primary_10_1089_scd_2022_0213 crossref_primary_10_1002_stem_3255 crossref_primary_10_1007_s00264_021_05243_7 crossref_primary_10_1007_s43032_022_01115_6 crossref_primary_10_3390_ijms22083989 crossref_primary_10_4055_cios20111 crossref_primary_10_1093_jbmr_zjae085 crossref_primary_10_1002_jcp_30638 crossref_primary_10_1177_0363546518813915 crossref_primary_10_3389_fbioe_2019_00352 crossref_primary_10_1007_s00264_018_4223_1 crossref_primary_10_1016_j_jcot_2018_09_017 crossref_primary_10_1080_14728222_2019_1702973 crossref_primary_10_3390_applbiosci2040039 crossref_primary_10_1016_j_fcl_2020_08_013 crossref_primary_10_3389_fcell_2021_650431 crossref_primary_10_4252_wjsc_v13_i11_1714 crossref_primary_10_1089_scd_2024_0087 crossref_primary_10_3389_fbioe_2022_870324 crossref_primary_10_1016_j_wneu_2021_04_114 crossref_primary_10_1021_acsami_8b21393 crossref_primary_10_4252_wjsc_v13_i11_1717 crossref_primary_10_1007_s11357_020_00250_9 crossref_primary_10_4252_wjsc_v11_i6_337 crossref_primary_10_3390_biom10020340 crossref_primary_10_1002_jor_25189 crossref_primary_10_3892_etm_2021_10312 crossref_primary_10_1007_s00264_020_04687_7 crossref_primary_10_3390_ijms242417512 crossref_primary_10_5792_ksrr_18_301 crossref_primary_10_1186_s13287_020_02112_9 crossref_primary_10_1016_j_jare_2024_10_029 crossref_primary_10_1186_s10195_019_0528_0 crossref_primary_10_1016_j_foodres_2023_112850 crossref_primary_10_3389_fragi_2023_1148926 crossref_primary_10_3389_fcell_2021_718938 crossref_primary_10_1007_s00259_023_06424_9 crossref_primary_10_1111_resp_13928 crossref_primary_10_3390_ijms24054421 crossref_primary_10_3389_fgene_2021_831420 crossref_primary_10_3390_bioengineering10080987 crossref_primary_10_3390_ijms24043370 crossref_primary_10_3389_fbioe_2021_807679 crossref_primary_10_1038_s41598_019_46682_y crossref_primary_10_3389_fcell_2020_00258 crossref_primary_10_1007_s11926_019_0800_6 crossref_primary_10_1093_workar_waz022 crossref_primary_10_3390_ijms23052490 crossref_primary_10_35366_114161 crossref_primary_10_2217_rme_2021_0174 crossref_primary_10_1007_s00167_020_05859_z crossref_primary_10_1177_09636897221079745 crossref_primary_10_18632_aging_204300 crossref_primary_10_3892_etm_2019_8370 crossref_primary_10_1186_s12951_024_02509_1 crossref_primary_10_1016_j_ijheh_2021_113895 crossref_primary_10_2196_37790 crossref_primary_10_1007_s00795_018_0188_9 crossref_primary_10_1080_03008207_2021_1894140 crossref_primary_10_3390_nu16234012 crossref_primary_10_1016_j_exger_2021_111313 crossref_primary_10_1016_j_jff_2018_09_036 crossref_primary_10_3389_fvets_2019_00474 crossref_primary_10_1002_cbf_3602 crossref_primary_10_1016_j_yexmp_2019_01_012 crossref_primary_10_1038_s41598_025_89234_3 crossref_primary_10_1186_s12979_021_00215_2 crossref_primary_10_3389_fgene_2022_970699 crossref_primary_10_3390_biomedicines11030738 crossref_primary_10_4252_wjsc_v12_i9_966 crossref_primary_10_1155_2021_5582792 crossref_primary_10_1177_0300060520954722 crossref_primary_10_1016_j_addr_2021_113836 crossref_primary_10_3389_fbioe_2019_00142 crossref_primary_10_1039_D1TB02537F crossref_primary_10_1002_sctm_19_0145 crossref_primary_10_3390_ijms241914764 crossref_primary_10_1172_JCI180068 crossref_primary_10_36740_ABal201903107 crossref_primary_10_3390_bioengineering8050069 crossref_primary_10_1021_acsabm_2c00263 crossref_primary_10_1002_ctm2_429 crossref_primary_10_1186_s12967_018_1403_0 crossref_primary_10_1186_s13287_021_02295_9 crossref_primary_10_7554_eLife_92419_2 crossref_primary_10_2174_1574888X14666190123161447 crossref_primary_10_1126_scitranslmed_aaz8697 crossref_primary_10_1016_j_biomaterials_2018_06_026 crossref_primary_10_1186_s13287_019_1405_8 crossref_primary_10_7759_cureus_60844 crossref_primary_10_1002_cbf_3457 crossref_primary_10_1186_s13578_020_0378_8 crossref_primary_10_3390_antiox13121474 crossref_primary_10_1016_j_bbrc_2019_02_039 crossref_primary_10_1177_09636897241226546 crossref_primary_10_3390_ijms22105062 crossref_primary_10_1016_j_biopha_2020_110365 crossref_primary_10_1002_adhm_202002058 crossref_primary_10_1111_jcmm_17201 crossref_primary_10_4062_biomolther_2017_260 crossref_primary_10_1007_s12015_021_10175_1 crossref_primary_10_1186_s12916_024_03734_z crossref_primary_10_3389_fcell_2019_00189 crossref_primary_10_15275_ssmj388 crossref_primary_10_1016_j_fitote_2022_105165 crossref_primary_10_3390_jcm11133891 crossref_primary_10_1177_20417314211056132 |
Cites_doi | 10.1089/ten.tec.2011.0734 10.1242/dev.130633 10.1148/radiology.215.3.r00jn05835 10.1089/scd.2011.0289 10.1371/journal.pone.0045142 10.1073/pnas.1120358109 10.1097/MAJ.0b013e31820865d5 10.1371/journal.pone.0052700 10.1016/j.mad.2007.12.002 10.1002/jcb.1174 10.1111/j.1474-9726.2008.00377.x 10.1002/(SICI)1097-4644(19991201)75:3<414::AID-JCB7>3.0.CO;2-C 10.1177/1535370215591828 10.1007/s00198-007-0394-0 10.1186/1471-2121-7-14 10.1016/j.mce.2016.08.021 10.1001/jama.1941.02820220007002 10.1016/j.lfs.2011.06.007 10.1111/iwj.12491 10.1016/S0736-0266(00)00010-3 10.1089/ten.teb.2009.0825 10.1634/stemcells.22-5-675 10.1007/BF02652556 10.3389/fcell.2014.00010 10.1038/nature13034 10.1089/scd.2016.0169 10.1016/j.bone.2014.10.014 10.3109/14653249.2011.651533 10.1210/en.2006-0459 10.1016/j.berh.2014.01.004 10.1016/j.bone.2005.12.082 10.1002/jcb.21411 10.1016/j.stem.2011.09.010 10.1038/nrrheum.2016.65 10.1007/s00223-001-2059-x 10.1093/rheumatology/kem206 10.1038/ncprheum0070 10.1038/nm.3143 10.1016/j.bcp.2011.09.018 10.1111/j.1474-9726.2009.00535.x 10.1016/j.biomaterials.2003.10.005 10.1186/s40064-016-3091-7 10.1002/art.27451 10.1038/nature02041 10.1038/nrrheum.2016.148 10.1002/stem.302 10.1046/j.1365-2141.1999.01715.x 10.22203/eCM.v031a10 10.1002/art.39622 10.1089/ten.tea.2013.0244 10.1038/nm.2793 10.1159/000445621 10.1080/14653240802716590 10.1101/gad.1467506 10.1182/blood-2010-08-304287 10.1242/jcs.00369 10.1186/1741-7015-11-146 10.1016/j.tem.2010.01.010 10.1359/jbmr.1998.13.5.763 10.1096/fj.10-161497 10.1016/j.cell.2013.05.039 10.1042/cs0940549 10.1111/febs.12221 10.18632/aging.100588 10.1016/j.bbadis.2009.01.008 10.2106/00004623-199711000-00012 10.1002/stem.139 10.1007/s11914-013-0135-6 10.1002/art.34434 10.4236/aar.2016.52005 10.1038/ncb0511-506 10.1186/s12916-014-0202-6 10.1097/00005131-200511101-00002 10.1016/j.bone.2003.07.005 10.1002/jcp.20376 10.1016/j.arr.2005.10.001 10.1038/srep07144 10.1038/nm.3651 10.1371/journal.pone.0002213 10.1038/nature11861 10.1371/journal.pone.0005846 10.1534/genetics.115.178624 10.1093/geronj/11.3.298 10.1007/s40520-015-0346-z 10.1002/emmm.201201606 10.1016/j.mad.2012.03.014 10.1093/abbs/gmr041 10.1097/MOH.0000000000000144 10.1089/scd.2009.0147 10.1210/edrv.23.3.0465 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 The Author(s) 2017 2017 SAGE Publications Inc, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
Copyright_xml | – notice: The Author(s) 2017 – notice: The Author(s) 2017 2017 SAGE Publications Inc, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
DBID | AFRWT AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1177/0963689717721201 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Biology |
EISSN | 1555-3892 |
EndPage | 1529 |
ExternalDocumentID | PMC5680949 29113463 10_1177_0963689717721201 10.1177_0963689717721201 |
Genre | Journal Article |
GroupedDBID | --- --K 0R~ 0VX 1B1 29B 4.4 53G 54M 5GY 7X7 8FI 8FJ AAEDT AAGGD AALRI AAPEO AAQGT AAQXH AAQXK AASGM AAXUO ABDWY ABJIS ABQKF ABQXT ABUWG ABVFX ABWVN ABYTW ACARO ACFMA ACGBL ACLHI ACROE ACRPL ACVFH ADBBV ADCNI ADEIA ADMUD ADNMO ADOGD ADTBJ ADUKL AENEX AEUPX AEWDL AFCOW AFDWT AFKRA AFKRG AFPUW AFRWT AFYCX AGQPQ AJEFB AJMMQ AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APTNG AUTPY AYAKG BAWUL BCNDV BDDNI BENPR BPHCQ BSEHC BVXVI CBRKF CCPQU CORYS CQQTX CS3 DC. DU5 EBS EJD EMOBN F5P FDB FEDTE FGOYB FYUFA GROUPED_DOAJ H13 HMCUK HVGLF HYE HZ~ IHE J8X K.F M41 NQ- OK1 P2P PHGZM PHGZT PIMPY PQQKQ Q1R R2- R9- ROL RPM RPZ SAUOL SCDPB SCNPE SFC UHS UKHRP AAYXX ACHEB CITATION 31X AATBZ ACGZU ACSIQ AEWHI DIK DV7 GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION M4V NPM SFK SFT SGV SPP 7X8 5PM |
ID | FETCH-LOGICAL-c392t-bfd889c37a27f75d7aa14afb22b85bf12b2eaea3663cf8ba6f3f4a2c5e7ba4633 |
IEDL.DBID | AFRWT |
ISSN | 0963-6897 1555-3892 |
IngestDate | Thu Aug 21 14:09:31 EDT 2025 Fri Jul 11 08:31:59 EDT 2025 Wed Feb 19 02:43:18 EST 2025 Tue Jul 01 05:24:10 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 Tue Jun 17 22:32:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | mesenchymal stromal cells (MSCs) in vivo aging bone marrow (BM) in vitro |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-bfd889c37a27f75d7aa14afb22b85bf12b2eaea3663cf8ba6f3f4a2c5e7ba4633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/0963689717721201?utm_source=summon&utm_medium=discovery-provider |
PMID | 29113463 |
PQID | 1961849634 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680949 proquest_miscellaneous_1961849634 pubmed_primary_29113463 crossref_citationtrail_10_1177_0963689717721201 crossref_primary_10_1177_0963689717721201 sage_journals_10_1177_0963689717721201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170900 2017-09-00 2017-Sep 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170900 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Sage CA: Los Angeles, CA |
PublicationTitle | Cell transplantation |
PublicationTitleAlternate | Cell Transplant |
PublicationYear | 2017 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Ghazanfari, Li, Zacharaki, Lim, Scheding 2016; 25 Kim, Kim, Choi, Kim, Park, Suh 2012; 133 Vacanti, Kong, Suzuki, Sato, Canty, Lee 2005; 205 Muschler, Nitto, Boehm, Easley 2001; 19 Jia, O’brien, Stewart, Manolagas, Weinstein 2006; 147 Tang, Koh, Jiang, Schwarz 2013; 5 Lapham, Kvale, Lin, Connell, Croen, Dispensa, Fang, Hesselson, Hoffmann, Iribarren 2015; 200 Duscher, Rennert, Januszyk, Anghel, Maan, Whittam, Perez, Kosaraju, Hu, Walmsley 2014; 4 Harman 1956; 11 Philippart, Meuleman, Stamatopoulos, Najar, Pieters, De Bruyn, Bron, Lagneaux 2013; 20 Wagner, Ho, Zenke 2010; 16 Canalis, Mazziotti, Giustina, Bilezikian 2007; 18 Abdallah, Haack-Sørensen, Fink, Kassem 2006; 39 Stenderup, Justesen, Clausen, Kassem 2003; 33 Rodríguez, Garat, Gajardo, Pino, Seitz 1999; 75 Manolagas, Parfitt 2010; 21 Benisch, Schilling, Klein-Hitpass, Frey, Seefried, Raaijmakers, Krug, Regensburger, Zeck, Schinke 2012; 7 Schultz, Sinclair 2016; 143 Stolzing, Jones, McGonagle, Scutt 2008; 129 Loeser, Collins, Diekman 2016; 12 Tormin, Brune, Olsson, Valcich, Neuman, Olofsson, Jacobsen, Scheding 2009; 11 Yao, Huang, Gao, Xie, Liu, Fu 2015; 13 Broxmeyer, O’Leary, Huang, Mantel 2015; 22 Cooper, Hardy 2011; 2 Xian, Wu, Pang, Lou, Rosen, Qiu, Crane, Frassica, Zhang, Rodriguez 2012; 18 Bonab, Alimoghaddam, Talebian, Ghaffari, Ghavamzadeh, Nikbin 2006; 7 Baker, Boyette, Tuan 2015; 70 Jones, McGonagle 2008; 47 Corotchi, Popa, Simionescu 2016; 57 Seck, Scheppach, Scharla, Diel, Blum, Bismar, Schmid, Krempien, Ziegler, Pfeilschifter 1998; 83 Oh, Lee, Wagers 2014; 20 Goldring, Goldring 2016; 12 Siegel, Kluba, Hermanutz-Klein, Bieback, Northoff, Schäfer 2013; 11 DiGirolamo, Stokes, Colter, Phinney, Class, Prockop 1999; 107 Bork, Pfister, Witt, Horn, Korn, Ho, Wagner 2010; 9 Lee, Yook, Son, Kim, Koo, Han, Cho 2010; 19 Zhou, Greenberger, Epperly, Goff, Adler, LeBoff, Glowacki 2008; 7 Boxall, Jones 2012 2012 Bethel, Chitteti, Srour, Kacena 2013; 11 Gronthos, Zannettino, Hay, Shi, Graves, Kortesidis, Simmons 2003; 116 Sun, Li, Lu, Chen, Ling, Ran, Jilka, Chen 2011; 25 Wang, Zhou, Xie, Zhao, Liu 2016; 5 Fukada, Ma, Uezumi 2014; 2 Wagner, Horn, Castoldi, Diehlmann, Bork, Saffrich, Benes, Blake, Pfister, Eckstein 2008; 3 Baxter, Wynn, Jowitt, Wraith, Fairbairn, Bellantuono 2004; 22 Cuthbert, Boxall, Tan, Giannoudis, McGonagle, Jones 2012; 14 Liu, Xia, Li 2015; 240 Tormin, Li, Brune, Walsh, Schütz, Ehinger, Ditzel, Kassem, Scheding 2011; 117 Campbell, Churchman, Gomez, McGonagle, Conaghan, Ponchel, Jones 2016; 68 Geißler, Textor, Kühnisch, Könnig, Klein, Ode, Pfitzner, Adjaye, Kasper, Duda 2012; 7 Oreffo, Bord, Triffitt 1998; 94 Singha, Jiang, Yu, Luo, Lu, Zhang, Xiao 2008; 103 Peffers, Collins, Fang, Goljanek-Whysall, Rushton, Loughlin, Proctor, Clegg 2016; 31 Kanda, Hinata, Kang, Watanabe 2011; 89 Justesen, Stenderup, Eriksen, Kassem 2002; 71 Riggs, Khosla, Melton 1998; 13 You, Pan, Chen, Gu, Chen 2016; 39 Xiang, Zhao, Xu, Li, Zhang 2011; 43 Bellotti, Capanni, Lattanzi, Donati, Lucarelli, Duchi 2016; 5 Bieback, Hecker, Kocaömer, Lannert, Schallmoser, Strunk, Klüter 2009; 27 Pattappa, Thorpe, Jegard, Heywood, de Bruijn, Lee 2012; 19 Zhou, Gao, Liu, Tao 2015; 27 Simic, Zainabadi, Bell, Sykes, Saez, Lotinun, Baron, Scadden, Schipani, Guarente 2013; 5 Rosen, Bouxsein 2006; 2 Tan, Giannoudis, Boxall, McGonagle, Jones 2015; 13 Kassem, Ankersen, Eriksen, Clark, Rattan 1997; 7 Jones, English, Churchman, Kouroupis, Boxall, Kinsey, Giannoudis, Emery, McGonagle 2010; 62 García-Prat, Sousa-Victor, Muñoz-Cánoves 2013; 280 Mauney, Kaplan, Volloch 2004; 25 Johnson, Hunter 2014; 28 Riggs, Khosla, Melton 2002; 23 Zanetti, Bruder, Romero, Hodler 2000; 215 Johnson, Rabinovitch, Kaeberlein 2013; 493 Jones, Rando 2011; 13 Suda, Takubo, Semenza 2011; 9 Mueller, Glowacki 2001; 82 Einhorn 2005; 19 Castañeda, Roman-Blas, Largo, Herrero-Beaumont 2012; 83 Song, Cha, Song, Kim, Chang, Lim, Choi, Ham, Lee, Chung 2010; 28 Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao 2013; 19 Muschler, Boehm, Easley 1997; 79 Spencer, Ferraro, Roussakis, Klein, Wu, Runnels, Zaher, Mortensen, Alt, Turcotte 2014; 508 Churchman, Ponchel, Boxall, Cuthbert, Kouroupis, Roshdy, Giannoudis, Emery, McGonagle, Jones 2012; 64 Bellantuono, Aldahmash, Kassem 2009; 1792 García-Prat, Muñoz-Cánoves 2017; 445 López-Otín, Blasco, Partridge, Serrano, Kroemer 2013; 153 Sethe, Scutt, Stolzing 2006; 5 Zhao, Gao, Mei, Li, Wang 2011; 341 Stubbs, Hsiao, Peshavariya, Lim, Dusting, Dilley 2011; 21 Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng 2003; 425 Albright, Smith, Richardson 1941; 116 Ishikawa, Gonzalez-Nieto, Ghiaur, Dunn, Ficker, Murali, Madhu, Gutstein, Fishman, Barrio 2012; 109 Wagner, Bork, Horn, Krunic, Walenda, Diehlmann, Benes, Blake, Huber, Eckstein 2009; 4 Haigis, Guarente 2006; 20 bibr22-0963689717721201 bibr48-0963689717721201 bibr30-0963689717721201 bibr73-0963689717721201 bibr49-0963689717721201 bibr57-0963689717721201 bibr64-0963689717721201 bibr90-0963689717721201 bibr21-0963689717721201 bibr81-0963689717721201 bibr1-0963689717721201 bibr23-0963689717721201 bibr66-0963689717721201 bibr15-0963689717721201 bibr58-0963689717721201 bibr2-0963689717721201 bibr20-0963689717721201 bibr63-0963689717721201 bibr80-0963689717721201 bibr24-0963689717721201 bibr67-0963689717721201 bibr16-0963689717721201 bibr54-0963689717721201 bibr29-0963689717721201 bibr41-0963689717721201 bibr89-0963689717721201 bibr70-0963689717721201 bibr83-0963689717721201 bibr62-0963689717721201 bibr55-0963689717721201 bibr96-0963689717721201 bibr68-0963689717721201 bibr3-0963689717721201 bibr10-0963689717721201 bibr47-0963689717721201 bibr34-0963689717721201 bibr91-0963689717721201 bibr31-0963689717721201 Jones E (bibr44-0963689717721201) 2010; 62 bibr8-0963689717721201 bibr13-0963689717721201 Song H (bibr19-0963689717721201) 2010; 28 bibr26-0963689717721201 bibr65-0963689717721201 bibr39-0963689717721201 bibr52-0963689717721201 bibr5-0963689717721201 bibr60-0963689717721201 bibr35-0963689717721201 bibr78-0963689717721201 Cooper MS (bibr75-0963689717721201) 2011; 2 bibr43-0963689717721201 bibr86-0963689717721201 bibr18-0963689717721201 bibr51-0963689717721201 bibr36-0963689717721201 bibr27-0963689717721201 bibr94-0963689717721201 bibr28-0963689717721201 bibr85-0963689717721201 Corotchi MC (bibr72-0963689717721201) 2016; 57 bibr42-0963689717721201 bibr79-0963689717721201 bibr45-0963689717721201 bibr88-0963689717721201 bibr37-0963689717721201 bibr6-0963689717721201 bibr93-0963689717721201 bibr50-0963689717721201 Medawar PB (bibr14-0963689717721201) 1952 bibr59-0963689717721201 bibr92-0963689717721201 bibr84-0963689717721201 bibr33-0963689717721201 bibr71-0963689717721201 bibr46-0963689717721201 bibr25-0963689717721201 bibr32-0963689717721201 bibr7-0963689717721201 bibr40-0963689717721201 bibr38-0963689717721201 bibr53-0963689717721201 bibr61-0963689717721201 bibr9-0963689717721201 bibr17-0963689717721201 bibr74-0963689717721201 bibr77-0963689717721201 bibr87-0963689717721201 bibr69-0963689717721201 bibr82-0963689717721201 Boxall SA (bibr12-0963689717721201) 2012 bibr56-0963689717721201 Seck T (bibr76-0963689717721201) 1998; 83 bibr4-0963689717721201 bibr95-0963689717721201 |
References_xml | – volume: 28 start-page: 555 issue: 3 year: 2010 end-page: 563 article-title: Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex publication-title: Stem Cells – volume: 33 start-page: 919 issue: 6 year: 2003 end-page: 926 article-title: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells publication-title: Bone – volume: 5 start-page: 643 issue: 9 year: 2013 end-page: 652 article-title: CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging publication-title: Aging (Albany NY) – volume: 7 start-page: 1 issue: 1 year: 2006 article-title: Aging of mesenchymal stem cell in vitro publication-title: BMC Cell Biol – volume: 71 start-page: 36 issue: 1 year: 2002 end-page: 44 article-title: Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures publication-title: Calcif Tissue Int – volume: 20 start-page: 160 issue: 1–2 year: 2013 end-page: 170 article-title: In vivo production of mesenchymal stromal cells after injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor in the bone marrow of healthy volunteers publication-title: Tissue Eng Part A – volume: 79 start-page: 1699 issue: 11 year: 1997 end-page: 1709 article-title: Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume publication-title: J Bone Joint Surg Am – volume: 147 start-page: 5592 issue: 12 year: 2006 end-page: 5599 article-title: Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density publication-title: Endocrinology – volume: 18 start-page: 1095 issue: 7 year: 2012 end-page: 1101 article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells publication-title: Nat Med – volume: 9 start-page: 54 issue: 1 year: 2010 end-page: 63 article-title: DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells publication-title: Aging Cell – volume: 62 start-page: 1944 issue: 7 year: 2010 end-page: 1954 article-title: Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells publication-title: Arthritis Rheum – volume: 7 start-page: 335 issue: 3 year: 2008 end-page: 343 article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts publication-title: Aging Cell – volume: 27 start-page: 2331 issue: 9 year: 2009 end-page: 2341 article-title: Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow publication-title: Stem Cells – volume: 57 start-page: 75 issue: 1 year: 2016 end-page: 80 article-title: Testosterone stimulates proliferation and preserves stemness of human adult mesenchymal stem cells and endothelial progenitor cells publication-title: Rom J Morphol Embryol – volume: 75 start-page: 414 issue: 3 year: 1999 end-page: 423 article-title: Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics publication-title: J Cell Biochem – volume: 14 start-page: 431 issue: 4 year: 2012 end-page: 440 article-title: Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use publication-title: Cytotherapy – volume: 19 start-page: S4 issue: 10 year: 2005 end-page: S6 article-title: The science of fracture healing publication-title: J Orthop Trauma – volume: 493 start-page: 338 issue: 7432 year: 2013 end-page: 345 article-title: mTOR is a key modulator of ageing and age-related disease publication-title: Nature – volume: 22 start-page: 675 issue: 5 year: 2004 end-page: 682 article-title: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion publication-title: Stem Cells – volume: 31 start-page: 136 year: 2016 end-page: 159 article-title: Age-related changes in mesenchymal stem cells identified using a multi-omics approach publication-title: Eur Cell Mater – volume: 43 start-page: 501 issue: 7 year: 2011 end-page: 510 article-title: mTOR and the differentiation of mesenchymal stem cells publication-title: Acta Biochim Biophys Sin (Shanghai) – volume: 4 start-page: 7144 year: 2014 article-title: Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells publication-title: Sci Rep – volume: 13 start-page: 763 issue: 5 year: 1998 end-page: 773 article-title: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men publication-title: J Bone Miner Res – volume: 5 start-page: 49 issue: 02 year: 2016 article-title: Research progress on aging mechanisms publication-title: Adv Aging Res – volume: 89 start-page: 250 issue: 7 year: 2011 end-page: 258 article-title: Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells publication-title: Life Sci – volume: 21 start-page: 369 issue: 6 year: 2010 end-page: 374 article-title: What old means to bone publication-title: Trends Endocrinol Metab – volume: 5 start-page: 430 issue: 3 year: 2013 end-page: 440 article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin publication-title: EMBO Mol Med – volume: 2 start-page: 35 issue: 1 year: 2006 end-page: 43 article-title: Mechanisms of disease: is osteoporosis the obesity of bone? publication-title: Nat Clin Pract Rheumatol – volume: 68 start-page: 1648 issue: 7 year: 2016 end-page: 1659 article-title: Mesenchymal stem cell alterations in bone marrow lesions in hip osteoarthritis publication-title: Arthritis Rheumatol – volume: 11 start-page: 146 year: 2013 article-title: Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells publication-title: BMC Med – volume: 47 start-page: 126 issue: 2 year: 2008 end-page: 131 article-title: Human bone marrow mesenchymal stem cells in vivo publication-title: Rheumatology (Oxford) – start-page: 975871 year: 2012 2012 article-title: Markers for characterization of bone marrow multipotential stromal cells publication-title: Stem Cells Int – volume: 341 start-page: 460 issue: 6 year: 2011 end-page: 468 article-title: Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation publication-title: American J Med Sci – volume: 109 start-page: 9071 issue: 23 year: 2012 end-page: 9076 article-title: Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e52700 issue: 12 year: 2012 article-title: Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells publication-title: PLoS One – volume: 129 start-page: 163 issue: 3 year: 2008 end-page: 173 article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies publication-title: Mech Ageing Dev – volume: 11 start-page: 298 issue: 3 year: 1956 end-page: 300 article-title: Aging: a theory based on free radical and radiation chemistry publication-title: J Gerontol – volume: 82 start-page: 583 issue: 4 year: 2001 end-page: 590 article-title: Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges publication-title: J Cell Biochem – volume: 143 start-page: 3 issue: 1 year: 2016 end-page: 14 article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging publication-title: Development – volume: 215 start-page: 835 issue: 3 year: 2000 end-page: 840 article-title: Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings publication-title: Radiology – volume: 19 start-page: 117 issue: 1 year: 2001 end-page: 125 article-title: Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors publication-title: J Orthop Res – volume: 39 start-page: 181 issue: 1 year: 2006 end-page: 188 article-title: Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females publication-title: Bone – volume: 5 start-page: 91 issue: 1 year: 2006 end-page: 116 article-title: Aging of mesenchymal stem cells publication-title: Ageing Res Rev – volume: 9 start-page: 298 issue: 4 year: 2011 end-page: 310 article-title: Metabolic regulation of hematopoietic stem cells in the hypoxic niche publication-title: Cell Stem Cell – volume: 20 start-page: 2913 issue: 21 year: 2006 end-page: 2921 article-title: Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction publication-title: Genes Dev – volume: 28 start-page: 5 issue: 1 year: 2014 end-page: 15 article-title: The epidemiology of osteoarthritis publication-title: Best Pract Res Clin Rheumatol – volume: 83 start-page: 315 issue: 3 year: 2012 end-page: 323 article-title: Subchondral bone as a key target for osteoarthritis treatment publication-title: Biochem Pharmacol – volume: 3 start-page: e2213 issue: 5 year: 2008 article-title: Replicative senescence of mesenchymal stem cells: a continuous and organized process publication-title: PLoS One – volume: 12 start-page: 632 issue: 11 year: 2016 end-page: 644 article-title: Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk publication-title: Nat Rev Rheumatol – volume: 39 start-page: 253 issue: 1 year: 2016 end-page: 265 article-title: MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis publication-title: Cell Physiol Biochem – volume: 4 start-page: e5846 issue: 6 year: 2009 article-title: Aging and replicative senescence have related effects on human stem and progenitor cells publication-title: PloS One – volume: 19 start-page: 68 issue: 1 year: 2012 end-page: 79 article-title: Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells publication-title: Tissue Eng Part C Methods – volume: 508 start-page: 269 issue: 7495 year: 2014 article-title: Direct measurement of local oxygen concentration in the bone marrow of live animals publication-title: Nature – volume: 23 start-page: 279 issue: 3 year: 2002 end-page: 302 article-title: Sex steroids and the construction and conservation of the adult skeleton publication-title: Endocr Rev – volume: 205 start-page: 194 issue: 2 year: 2005 end-page: 201 article-title: Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture publication-title: J Cell Physiol – volume: 21 start-page: 1887 issue: 11 year: 2011 end-page: 1896 article-title: Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro publication-title: Stem Cells Dev – volume: 153 start-page: 1194 issue: 6 year: 2013 end-page: 1217 article-title: The hallmarks of aging publication-title: Cell – volume: 7 start-page: 514 issue: 6 year: 1997 end-page: 524 article-title: Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts publication-title: Osteoporosis Int – volume: 13 start-page: 6 year: 2015 article-title: The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients publication-title: BMC Med – volume: 12 start-page: 412 issue: 7 year: 2016 end-page: 420 article-title: Ageing and the pathogenesis of osteoarthritis publication-title: Nature Rev Rheumatol – volume: 25 start-page: 1652 issue: 21 year: 2016 end-page: 1658 article-title: Human non-hematopoietic CD271pos/CD140alow/neg bone marrow stroma cells fulfill stringent stem cell criteria in serial transplantations publication-title: Stem Cells Dev – volume: 200 start-page: 1061 issue: 4 year: 2015 end-page: 1072 article-title: Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort publication-title: Genetics – volume: 11 start-page: 114 issue: 2 year: 2009 end-page: 128 article-title: Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets publication-title: Cytotherapy – volume: 5 start-page: 1427 issue: 1 year: 2016 article-title: Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level publication-title: Springerplus – volume: 2 start-page: 24 year: 2011 article-title: Glucocorticoid-induced osteoporosis—a disorder of mesenchymal stromal cells? publication-title: Front Endocrinol (Lausanne) – volume: 107 start-page: 275 issue: 2 year: 1999 end-page: 281 article-title: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate publication-title: Br J of Haematol – volume: 19 start-page: 557 issue: 4 year: 2010 end-page: 568 article-title: Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway publication-title: Stem Cells Dev – volume: 70 start-page: 37 year: 2015 end-page: 47 article-title: Characterization of bone marrow-derived mesenchymal stem cells in aging publication-title: Bone – volume: 280 start-page: 4051 issue: 17 year: 2013 end-page: 4062 article-title: Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells publication-title: FEBS J – volume: 1792 start-page: 364 issue: 4 year: 2009 end-page: 370 article-title: Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss publication-title: Biochim Biophys Acta – volume: 18 start-page: 1319 issue: 10 year: 2007 end-page: 1328 article-title: Glucocorticoid-induced osteoporosis: pathophysiology and therapy publication-title: Osteoporos Int – volume: 94 start-page: 549 issue: 5 year: 1998 end-page: 555 article-title: Skeletal progenitor cells and ageing human populations publication-title: Clin Sci (Lond) – volume: 2 start-page: 10 year: 2014 article-title: Adult stem cell and mesenchymal progenitor theories of aging publication-title: Front Cell Dev Biol – volume: 27 start-page: 595 issue: 5 year: 2015 end-page: 601 article-title: Comprehensive transcriptome analysis of mesenchymal stem cells in elderly patients with osteoporosis publication-title: Aging Clin Exp Res – volume: 19 start-page: 704 issue: 6 year: 2013 end-page: 712 article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat Med – volume: 116 start-page: 2465 issue: 22 year: 1941 end-page: 2474 article-title: Postmenopausal osteoporosis: its clinical features publication-title: JAMA – volume: 117 start-page: 5067 issue: 19 year: 2011 end-page: 5077 article-title: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization publication-title: Blood – volume: 83 start-page: 2331 issue: 7 year: 1998 end-page: 2337 article-title: Concentration of insulin-like growth factor (IGF)-I and-II in iliac crest bone matrix from pre-and postmenopausal women: relationship to age, menopause, bone turnover, bone volume, and circulating IGFs 1 publication-title: J Clin Endocrinol Metab – volume: 22 start-page: 273 issue: 4 year: 2015 article-title: The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex-vivo publication-title: Curr Opin Hematol – volume: 103 start-page: 434 issue: 2 year: 2008 end-page: 446 article-title: Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells publication-title: J Cell Biochem – volume: 133 start-page: 215 issue: 5 year: 2012 end-page: 225 article-title: Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects publication-title: Mech Ageing Dev – volume: 16 start-page: 445 issue: 4 year: 2010 end-page: 453 article-title: Different facets of aging in human mesenchymal stem cells publication-title: Tissue Eng Part B Rev – volume: 13 start-page: 506 issue: 5 year: 2011 end-page: 512 article-title: Emerging models and paradigms for stem cell ageing publication-title: Nat Cell Biol – volume: 240 start-page: 1099 issue: 8 year: 2015 end-page: 1106 article-title: Mesenchymal stem cell aging: mechanisms and influences on skeletal and non-skeletal tissues publication-title: Exp Biol Med (Maywood) – volume: 7 start-page: e45142 issue: 9 year: 2012 article-title: The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors publication-title: PLoS One – volume: 20 start-page: 870 issue: 8 year: 2014 end-page: 880 article-title: Stem cell aging: mechanisms, regulators and therapeutic opportunities publication-title: Nat Med – volume: 425 start-page: 836 issue: 6960 year: 2003 end-page: 841 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature – volume: 11 start-page: 99 issue: 2 year: 2013 end-page: 106 article-title: The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis publication-title: Curr Osteoporos Rep – volume: 445 start-page: 109 year: 2017 end-page: 117 article-title: Aging, metabolism and stem cells: spotlight on muscle stem cells publication-title: Mol Cell Endocrinol – volume: 116 start-page: 1827 issue: 9 year: 2003 end-page: 1835 article-title: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow publication-title: J Cell Sci – volume: 25 start-page: 1474 issue: 5 year: 2011 end-page: 1485 article-title: Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix publication-title: FASEB J – volume: 64 start-page: 2632 issue: 8 year: 2012 end-page: 2643 article-title: Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity publication-title: Arthritis Rheum – volume: 13 start-page: 1252 issue: 6 year: 2015 end-page: 1259 article-title: Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair publication-title: Int Wound J – volume: 25 start-page: 3233 issue: 16 year: 2004 end-page: 3243 article-title: Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion publication-title: Biomaterials – ident: bibr35-0963689717721201 doi: 10.1089/ten.tec.2011.0734 – ident: bibr15-0963689717721201 doi: 10.1242/dev.130633 – ident: bibr85-0963689717721201 doi: 10.1148/radiology.215.3.r00jn05835 – ident: bibr79-0963689717721201 doi: 10.1089/scd.2011.0289 – ident: bibr82-0963689717721201 doi: 10.1371/journal.pone.0045142 – start-page: 975871 year: 2012 ident: bibr12-0963689717721201 publication-title: Stem Cells Int – ident: bibr57-0963689717721201 doi: 10.1073/pnas.1120358109 – ident: bibr71-0963689717721201 doi: 10.1097/MAJ.0b013e31820865d5 – ident: bibr68-0963689717721201 doi: 10.1371/journal.pone.0052700 – ident: bibr31-0963689717721201 doi: 10.1016/j.mad.2007.12.002 – ident: bibr8-0963689717721201 doi: 10.1002/jcb.1174 – ident: bibr55-0963689717721201 doi: 10.1111/j.1474-9726.2008.00377.x – ident: bibr81-0963689717721201 doi: 10.1002/(SICI)1097-4644(19991201)75:3<414::AID-JCB7>3.0.CO;2-C – ident: bibr9-0963689717721201 doi: 10.1177/1535370215591828 – ident: bibr74-0963689717721201 doi: 10.1007/s00198-007-0394-0 – ident: bibr23-0963689717721201 doi: 10.1186/1471-2121-7-14 – ident: bibr28-0963689717721201 doi: 10.1016/j.mce.2016.08.021 – volume: 2 start-page: 24 year: 2011 ident: bibr75-0963689717721201 publication-title: Front Endocrinol (Lausanne) – ident: bibr1-0963689717721201 doi: 10.1001/jama.1941.02820220007002 – ident: bibr20-0963689717721201 doi: 10.1016/j.lfs.2011.06.007 – ident: bibr33-0963689717721201 doi: 10.1111/iwj.12491 – ident: bibr73-0963689717721201 doi: 10.1016/S0736-0266(00)00010-3 – ident: bibr16-0963689717721201 doi: 10.1089/ten.teb.2009.0825 – ident: bibr21-0963689717721201 doi: 10.1634/stemcells.22-5-675 – ident: bibr41-0963689717721201 doi: 10.1007/BF02652556 – volume-title: An Unsolved Problem of Biology year: 1952 ident: bibr14-0963689717721201 – ident: bibr18-0963689717721201 doi: 10.3389/fcell.2014.00010 – ident: bibr67-0963689717721201 doi: 10.1038/nature13034 – ident: bibr27-0963689717721201 doi: 10.1089/scd.2016.0169 – ident: bibr48-0963689717721201 doi: 10.1016/j.bone.2014.10.014 – ident: bibr52-0963689717721201 doi: 10.3109/14653249.2011.651533 – ident: bibr70-0963689717721201 doi: 10.1210/en.2006-0459 – ident: bibr3-0963689717721201 doi: 10.1016/j.berh.2014.01.004 – ident: bibr87-0963689717721201 doi: 10.1016/j.bone.2005.12.082 – volume: 57 start-page: 75 issue: 1 year: 2016 ident: bibr72-0963689717721201 publication-title: Rom J Morphol Embryol – ident: bibr92-0963689717721201 doi: 10.1002/jcb.21411 – ident: bibr66-0963689717721201 doi: 10.1016/j.stem.2011.09.010 – ident: bibr4-0963689717721201 doi: 10.1038/nrrheum.2016.65 – ident: bibr38-0963689717721201 doi: 10.1007/s00223-001-2059-x – ident: bibr65-0963689717721201 doi: 10.1093/rheumatology/kem206 – ident: bibr53-0963689717721201 doi: 10.1038/ncprheum0070 – ident: bibr86-0963689717721201 doi: 10.1038/nm.3143 – ident: bibr6-0963689717721201 doi: 10.1016/j.bcp.2011.09.018 – ident: bibr46-0963689717721201 doi: 10.1111/j.1474-9726.2009.00535.x – ident: bibr40-0963689717721201 doi: 10.1016/j.biomaterials.2003.10.005 – ident: bibr95-0963689717721201 doi: 10.1186/s40064-016-3091-7 – volume: 62 start-page: 1944 issue: 7 year: 2010 ident: bibr44-0963689717721201 publication-title: Arthritis Rheum doi: 10.1002/art.27451 – ident: bibr63-0963689717721201 doi: 10.1038/nature02041 – ident: bibr5-0963689717721201 doi: 10.1038/nrrheum.2016.148 – volume: 28 start-page: 555 issue: 3 year: 2010 ident: bibr19-0963689717721201 publication-title: Stem Cells doi: 10.1002/stem.302 – ident: bibr30-0963689717721201 doi: 10.1046/j.1365-2141.1999.01715.x – ident: bibr37-0963689717721201 doi: 10.22203/eCM.v031a10 – ident: bibr84-0963689717721201 doi: 10.1002/art.39622 – ident: bibr61-0963689717721201 doi: 10.1089/ten.tea.2013.0244 – ident: bibr77-0963689717721201 doi: 10.1038/nm.2793 – ident: bibr54-0963689717721201 doi: 10.1159/000445621 – ident: bibr45-0963689717721201 doi: 10.1080/14653240802716590 – ident: bibr93-0963689717721201 doi: 10.1101/gad.1467506 – ident: bibr64-0963689717721201 doi: 10.1182/blood-2010-08-304287 – ident: bibr58-0963689717721201 doi: 10.1242/jcs.00369 – ident: bibr43-0963689717721201 doi: 10.1186/1741-7015-11-146 – ident: bibr59-0963689717721201 doi: 10.1016/j.tem.2010.01.010 – ident: bibr2-0963689717721201 doi: 10.1359/jbmr.1998.13.5.763 – ident: bibr88-0963689717721201 doi: 10.1096/fj.10-161497 – ident: bibr24-0963689717721201 doi: 10.1016/j.cell.2013.05.039 – ident: bibr80-0963689717721201 doi: 10.1042/cs0940549 – ident: bibr49-0963689717721201 doi: 10.1111/febs.12221 – ident: bibr78-0963689717721201 doi: 10.18632/aging.100588 – ident: bibr47-0963689717721201 doi: 10.1016/j.bbadis.2009.01.008 – ident: bibr51-0963689717721201 doi: 10.2106/00004623-199711000-00012 – ident: bibr56-0963689717721201 doi: 10.1002/stem.139 – ident: bibr7-0963689717721201 doi: 10.1007/s11914-013-0135-6 – ident: bibr96-0963689717721201 doi: 10.1002/art.34434 – ident: bibr13-0963689717721201 doi: 10.4236/aar.2016.52005 – ident: bibr26-0963689717721201 doi: 10.1038/ncb0511-506 – ident: bibr62-0963689717721201 doi: 10.1186/s12916-014-0202-6 – ident: bibr60-0963689717721201 doi: 10.1097/00005131-200511101-00002 – ident: bibr29-0963689717721201 doi: 10.1016/j.bone.2003.07.005 – ident: bibr32-0963689717721201 doi: 10.1002/jcp.20376 – ident: bibr42-0963689717721201 doi: 10.1016/j.arr.2005.10.001 – ident: bibr36-0963689717721201 doi: 10.1038/srep07144 – ident: bibr25-0963689717721201 doi: 10.1038/nm.3651 – ident: bibr39-0963689717721201 doi: 10.1371/journal.pone.0002213 – ident: bibr89-0963689717721201 doi: 10.1038/nature11861 – ident: bibr50-0963689717721201 doi: 10.1371/journal.pone.0005846 – ident: bibr22-0963689717721201 doi: 10.1534/genetics.115.178624 – ident: bibr17-0963689717721201 doi: 10.1093/geronj/11.3.298 – ident: bibr83-0963689717721201 doi: 10.1007/s40520-015-0346-z – ident: bibr94-0963689717721201 doi: 10.1002/emmm.201201606 – ident: bibr10-0963689717721201 doi: 10.1016/j.mad.2012.03.014 – ident: bibr90-0963689717721201 doi: 10.1093/abbs/gmr041 – ident: bibr34-0963689717721201 doi: 10.1097/MOH.0000000000000144 – ident: bibr91-0963689717721201 doi: 10.1089/scd.2009.0147 – volume: 83 start-page: 2331 issue: 7 year: 1998 ident: bibr76-0963689717721201 publication-title: J Clin Endocrinol Metab – ident: bibr69-0963689717721201 doi: 10.1210/edrv.23.3.0465 |
SSID | ssj0007325 |
Score | 2.5692525 |
SecondaryResourceType | review_article |
Snippet | Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1520 |
SubjectTerms | Original |
Subtitle | A Potential Impact on Osteoporosis and Osteoarthritis Development |
Title | Age-related Changes in Bone Marrow Mesenchymal Stromal Cells |
URI | https://journals.sagepub.com/doi/full/10.1177/0963689717721201 https://www.ncbi.nlm.nih.gov/pubmed/29113463 https://www.proquest.com/docview/1961849634 https://pubmed.ncbi.nlm.nih.gov/PMC5680949 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9sw8OgHg-1hbO0-so-gwSjsQUsi2ZINg5GUhjJIGV3L8mYkW1oLiTMa5yH_fneynTULG3uSsc-WrDvpTvcJ8D73aaIKb7nRzvIoThWnag7c2AIpRBnV96TQn1yo8-voyzSe7kHZxsI0M7j8SG5VOKKwWdPqJm10rzEy9lDulipJ8SiCBxhkYZ9X1Tyrtd1tUQ26Q-bp1Zws2zn5Q655G922D4dCqxgX8uFwfPn9arN3axnKtNL3OXXw27C50-c2I9uRTnedLO95igXmNX4Cjxupkw1rMnkKe648guNhiSfu-ZqdsOAHGhTsR_Bg1F49upes8Bg-DX84HkJfXMHqoIQluy3ZaFE6Ngm5HNmEYpnym_UcO_tW3S2oPXWz2fIZXI_Prk7PeVN7gecoMVXc-iJJ0lxqI7TXcaGNGUTGWyFsEls_EFY444xEgSX3iTXKSx8ZkcdOWxMpKZ_DQYn9vwRmtU9kv19IoU3kfGGtya3TJJsiDnTUgV47kVneJCan-hizbNDmIv9j6jvwYfPGzzopxz9g37W4yXDlkDnElG6xWmaDUOwGwXEEL2pcbb4mkAdI_I0O6C0sbgAoK_f2k_L2JmTnjlWCR-a0AyeE76wl6L8O8NX_Ar6Gh4JkiuDg9gYOqruVe4sSUWW7sK-nutsQM7ajs4uvl92gX_gFmCgHjw |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6hIrTLYcVrocvLSCskDobWTuxE4lIQVXmUw27RcovsxKZIJV3RcuDf79hNQku1iFMiZfyIZ2zP2DPfAPxMbRyJzGqqpNE0CGNBXTYHqnSGEiKUaFh3oN-9FZ274Oo-vJ9K9VWM4OjYuVVhj_xiXc1uh5SEEiOiGK0QtF2Yi9xaDNymVYPFVvvXn161DEvuM646euoKvN1RztUxuyfNKZrz_pJTTl9-H2qvwLdCgSStCcdXYcHka7DeytF4fnolh8S7dPqz8jVYOivflqdwB9fhtPVgqI9iMRmZxBeMyGNOzoa5IV0Py0i6Liwp7b8-YWO_x89D9zw3g8FoA-7aF73zDi3SKNAUlZ8x1TaLojjlUjFpZZhJpZqBspoxHYXaNplmRhnFUfdIbaSVsNwGiqWhkVoFgvPvUMux_S0gWtqINxoZZ1IFxmZaq1Qb6dRMKUIZ1OGkHMgkLTDGXaqLQdIsYcXfDX0djqoSfyf4Gh_QHpS8SXASuJsNlZvhyyhp-rw1SI492JzwqqqN4XLO8TfqIGe4WBE4gO3ZL_lj3wNthyJC6zeuw6Hjd1LK5n87-OOzhPvwpdPr3iQ3l7fX2_CVOVXB-63tQG38_GJ2UdEZ671CpP8BwIDxcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-hIhB7QBsMVsY2IyGkPZi2tmMnEi-FrWJAEeJD8BbZiU2RSopoeeC_39lNOkoF2lMi5WxffP74nX0fANuZS2KZO0O1soaKKJHUZ3Og2uQ4QqSWTecP9Lun8vBKHN1EN6VtjveFKXtwuOvNqpCjsFj72f2Qu0Z5x9hA2M1lnKAmgvoL895b80Lg1liD-Xbn_PpyshQrHrKuenrqC_y7p5ypY3pfmgGbszaTLwy_wl7U-QjLJYgk7bHUP8GcLVZgtV2gAn3_THZIMOsM5-UrsLBfvX14EXtwFfbat5YGTxabk7GPwZDcFWR_UFjSDaEZSde7JmW953ts7GL0OPDPA9vvDz_DVef35cEhLVMp0AwB0Igal8dxknGlmXIqypXWLaGdYczEkXEtZpjVVnPEH5mLjZaOO6FZFllltJCcr0GtwPa_ADHKxbzZzDlTWliXG6MzY5WHmkpGStShUXVkmpVxxn26i37aqkKLv-r6OvyclHgYx9h4h3arkk2KE8HfbujCDp6GaSvkrkFy5GB9LKtJbQyXdI6_UQc1JcUJgQ-yPf2luOuFYNuRjFEDTuqw4-WdVuPzTQY3_pfwByye_eqkJ39Oj7_CEvNoIZiubUJt9PhkvyHWGZnv5Yj-C27t8oM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+Changes+in+Bone+Marrow+Mesenchymal+Stromal+Cells%3A+A+Potential+Impact+on+Osteoporosis+and+Osteoarthritis+Development&rft.jtitle=Cell+transplantation&rft.au=Ganguly%2C+Payal&rft.au=El-Jawhari%2C+Jehan+J&rft.au=Giannoudis%2C+Peter+V&rft.au=Burska%2C+Agata+N&rft.date=2017-09-01&rft.eissn=1555-3892&rft.volume=26&rft.issue=9&rft.spage=1520&rft_id=info:doi/10.1177%2F0963689717721201&rft_id=info%3Apmid%2F29113463&rft.externalDocID=29113463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-6897&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-6897&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-6897&client=summon |