Fall Detection With UWB Radars and CNN-LSTM Architecture

Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of l...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 4; pp. 1273 - 1283
Main Authors Maitre, Julien, Bouchard, Kevin, Gaboury, Sebastien
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.
AbstractList Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.
Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.
Author Maitre, Julien
Bouchard, Kevin
Gaboury, Sebastien
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0003-3127-1068
  surname: Maitre
  fullname: Maitre, Julien
  email: julien1_maitre@uqac.ca
  organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada
– sequence: 2
  givenname: Kevin
  surname: Bouchard
  fullname: Bouchard, Kevin
  email: kevin_bouchard@uqac.ca
  organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada
– sequence: 3
  givenname: Sebastien
  surname: Gaboury
  fullname: Gaboury, Sebastien
  email: sebastien_gaboury@uqac.ca
  organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33017299$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PwkAQhjcGI4j8AGNimnjxUtyPfuweEUUwiIlCOG6229lQUlrdbQ_-e9sAHjg4l5lMnnfyZt5L1CnKAhC6JnhICBYPr4_T2ZBiiocM01hE8RnqURJxn1LMO8eZiKCLBs5tcVO8WYnoAnUZwySmQvQQn6g8956gAl1lZeGts2rjrdaP3odKlXWeKlJvvFj488_lmzeyepO1ZG3hCp0blTsYHHofrSbPy_HUn7-_zMajua-ZoJWfGKE4GEV1xLGKk5SlgkUhxhFPRJAAYxASDZrjMOWG0FQxEytulAh1YmLG-uh-f_fLlt81uEruMqchz1UBZe0kDQLOg0jQuEHvTtBtWduicSdpSHDAKKGioW4PVJ3sIJVfNtsp-yOPP2mAeA9oWzpnwUidVar9TmVVlkuCZRuAbAOQbQDyEECjJCfK4_H_NDd7TQYAf7xorIYhZb9Oq4zR
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_trpro_2025_03_039
crossref_primary_10_3390_app12147124
crossref_primary_10_1109_JSEN_2024_3458068
crossref_primary_10_1109_OJEMB_2024_3397208
crossref_primary_10_1016_j_aei_2025_103178
crossref_primary_10_1016_j_jfranklin_2024_107090
crossref_primary_10_1109_JIOT_2022_3175894
crossref_primary_10_1016_j_bspc_2022_103741
crossref_primary_10_1097_NR9_0000000000000026
crossref_primary_10_1109_JSEN_2021_3139735
crossref_primary_10_3390_s22145449
crossref_primary_10_56977_jicce_2024_22_2_139
crossref_primary_10_1016_j_ijnurstu_2021_104153
crossref_primary_10_1177_20552076241259047
crossref_primary_10_3233_AIS_210462
crossref_primary_10_1007_s11042_024_19830_4
crossref_primary_10_1109_JSEN_2024_3509266
crossref_primary_10_2139_ssrn_4070386
crossref_primary_10_3390_app122111031
crossref_primary_10_3390_jor3040022
crossref_primary_10_1109_MRA_2024_3352851
crossref_primary_10_32604_cmc_2023_034417
crossref_primary_10_1109_JSEN_2022_3184513
crossref_primary_10_3390_s24175592
crossref_primary_10_1109_JSEN_2023_3242660
crossref_primary_10_56294_sctconf2024_1119
crossref_primary_10_1109_JSEN_2021_3082180
crossref_primary_10_3390_s23125632
crossref_primary_10_3390_s23063185
crossref_primary_10_1109_JIOT_2023_3235808
crossref_primary_10_3389_frsip_2021_664232
crossref_primary_10_1007_s00521_024_10845_4
crossref_primary_10_1109_JBHI_2024_3481237
crossref_primary_10_1145_3580835
crossref_primary_10_3390_info14010046
crossref_primary_10_20965_jaciii_2022_p0747
crossref_primary_10_1007_s10489_024_06156_9
crossref_primary_10_1109_TBME_2024_3396650
crossref_primary_10_1007_s10586_022_03818_6
crossref_primary_10_1109_JSEN_2022_3216676
crossref_primary_10_1109_LGRS_2023_3268654
crossref_primary_10_3390_s22166285
crossref_primary_10_3390_s25020556
crossref_primary_10_1109_JBHI_2023_3237077
crossref_primary_10_1109_JSEN_2024_3352425
crossref_primary_10_1109_JERM_2023_3278473
crossref_primary_10_3390_s24030884
crossref_primary_10_1109_JBHI_2023_3339703
crossref_primary_10_1109_JSEN_2024_3448622
crossref_primary_10_1016_j_eswa_2022_117661
crossref_primary_10_1109_JRFID_2024_3393242
crossref_primary_10_1109_JSEN_2022_3177173
crossref_primary_10_1007_s12652_023_04596_8
crossref_primary_10_1155_2022_4363442
crossref_primary_10_3390_s23115212
crossref_primary_10_1109_TMTT_2022_3200097
crossref_primary_10_1109_TNSM_2023_3281133
Cites_doi 10.1016/j.neucom.2017.02.082
10.1109/JSEN.2018.2872894
10.1109/JBHI.2018.2808281
10.1109/TAES.2018.2799758
10.1109/ICASSP.2018.8461512
10.1371/journal.pone.0094811
10.1109/RADAR.2017.7944316
10.1049/iet-rsn.2019.0240
10.1109/ACCESS.2019.2907925
10.1016/j.gaitpost.2006.09.012
10.1109/YAC.2016.7804912
10.4103/jfcm.JFCM_48_17
10.1016/S0140-6736(95)91091-3
10.3233/ICA-190615
10.1109/JSEN.2019.2946095
10.1007/s10916-019-1484-1
10.1109/ACCESS.2019.2906693
10.1109/JBHI.2019.2907498
10.1109/IEMBS.2009.5334521
10.1109/CCECE.2010.5575129
10.1109/UV.2018.8642130
10.1109/TCSII.2019.2904498
10.1088/1755-1315/258/1/012035
10.1109/ICIAS.2012.6306174
10.1109/TNSRE.2015.2460373
10.1109/JETCAS.2017.2789278
10.1109/IE.2016.55
10.1109/LGRS.2012.2190707
10.3233/AIS-160388
10.1371/journal.pone.0140929
10.1109/RADAR41533.2019.171307
10.1016/j.measurement.2019.03.079
10.1162/neco.1997.9.8.1735
10.1109/IEMBS.2004.1403637
10.3390/s150306740
10.1016/j.procs.2018.04.110
10.1016/S0140-6736(12)61263-X
10.1109/IJCNN.2005.1556215
10.1049/cp.2017.0381
10.1109/MSP.2019.2903715
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2020.3027967
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1283
ExternalDocumentID 33017299
10_1109_JBHI_2020_3027967
9212552
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Canadian Foundation for Innovation
– fundername: Ministre de lconomie et de lInnovation du Quebec
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c392t-bf9a8efa2c680a7bd3d93650068b94be33e51cec805d8f12da3f7a8fa95cbf733
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 10:55:42 EDT 2025
Sun Jun 29 15:24:16 EDT 2025
Thu Jan 02 22:57:05 EST 2025
Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 02:59:58 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-bf9a8efa2c680a7bd3d93650068b94be33e51cec805d8f12da3f7a8fa95cbf733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3127-1068
OpenAccessLink https://constellation.uqac.ca/6269/
PMID 33017299
PQID 2510432129
PQPubID 85417
PageCount 11
ParticipantIDs proquest_miscellaneous_2448846927
proquest_journals_2510432129
pubmed_primary_33017299
crossref_primary_10_1109_JBHI_2020_3027967
ieee_primary_9212552
crossref_citationtrail_10_1109_JBHI_2020_3027967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
khan (ref26) 2019
ref30
ref33
ref11
ref32
ref10
ref39
ref17
ref38
ref16
ref19
ref18
ritchie (ref1) 2020
bohnert (ref3) 2015
ref46
ref24
ref45
ref23
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref9
gupta (ref25) 2019
ref6
chen (ref31) 0
alshammari (ref4) 2018; 25
ref5
wisesa (ref7) 0; 258
ref40
organization (ref2) 2016
References_xml – ident: ref28
  doi: 10.1016/j.neucom.2017.02.082
– ident: ref35
  doi: 10.1109/JSEN.2018.2872894
– ident: ref27
  doi: 10.1109/JBHI.2018.2808281
– ident: ref39
  doi: 10.1109/TAES.2018.2799758
– ident: ref32
  doi: 10.1109/ICASSP.2018.8461512
– ident: ref23
  doi: 10.1371/journal.pone.0094811
– ident: ref14
  doi: 10.1109/RADAR.2017.7944316
– ident: ref41
  doi: 10.1049/iet-rsn.2019.0240
– ident: ref38
  doi: 10.1109/ACCESS.2019.2907925
– ident: ref21
  doi: 10.1016/j.gaitpost.2006.09.012
– start-page: 428
  year: 0
  ident: ref31
  article-title: A fall detection system based on infrared array sensors with tracking capability for the elderly at home
  publication-title: Proc 17th Int Conf E-health Netw Appl Serv (HealthCom)
– ident: ref42
  doi: 10.1109/YAC.2016.7804912
– volume: 25
  start-page: 29
  year: 2018
  ident: ref4
  article-title: Falls among elderly and its relation with their health problems and surrounding environmental factors in riyadh
  publication-title: Journal of Family and Community Medicine
  doi: 10.4103/jfcm.JFCM_48_17
– ident: ref5
  doi: 10.1016/S0140-6736(95)91091-3
– ident: ref10
  doi: 10.3233/ICA-190615
– year: 2019
  ident: ref26
  article-title: Spatio-temporal adversarial learning for detecting unseen falls
– ident: ref37
  doi: 10.1109/JSEN.2019.2946095
– ident: ref11
  doi: 10.1007/s10916-019-1484-1
– ident: ref17
  doi: 10.1109/ACCESS.2019.2906693
– ident: ref29
  doi: 10.1109/JBHI.2019.2907498
– ident: ref30
  doi: 10.1109/IEMBS.2009.5334521
– ident: ref24
  doi: 10.1109/CCECE.2010.5575129
– ident: ref9
  doi: 10.1109/UV.2018.8642130
– ident: ref40
  doi: 10.1109/TCSII.2019.2904498
– volume: 258
  start-page: 12035
  year: 0
  ident: ref7
  article-title: Fall detection algorithm based on accelerometer and gyroscope sensor data using recurrent neural networks
  publication-title: IOP Conference Series: Earth and Environmental Science
  doi: 10.1088/1755-1315/258/1/012035
– ident: ref22
  doi: 10.1109/ICIAS.2012.6306174
– ident: ref19
  doi: 10.1109/TNSRE.2015.2460373
– ident: ref36
  doi: 10.1109/JETCAS.2017.2789278
– ident: ref8
  doi: 10.1109/IE.2016.55
– ident: ref43
  doi: 10.1109/LGRS.2012.2190707
– ident: ref12
  doi: 10.3233/AIS-160388
– ident: ref18
  doi: 10.1371/journal.pone.0140929
– year: 2020
  ident: ref1
  article-title: Age structure
  publication-title: Our World in Data
– ident: ref13
  doi: 10.1109/RADAR41533.2019.171307
– ident: ref16
  doi: 10.1016/j.measurement.2019.03.079
– ident: ref45
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref20
  doi: 10.1109/IEMBS.2004.1403637
– ident: ref44
  doi: 10.3390/s150306740
– ident: ref6
  doi: 10.1016/j.procs.2018.04.110
– year: 2019
  ident: ref25
  article-title: Compressive sensing based privacy for fall detection
– ident: ref15
  doi: 10.1016/S0140-6736(12)61263-X
– ident: ref46
  doi: 10.1109/IJCNN.2005.1556215
– year: 2016
  ident: ref2
  publication-title: World Health Statistics 2016 Monitoring Health for the Sustainable Development Goals
– year: 2015
  ident: ref3
  publication-title: Population Projections for Canada (2013 to 2063) Provinces and Territories (2013 to 2038)
– ident: ref33
  doi: 10.1049/cp.2017.0381
– ident: ref34
  doi: 10.1109/MSP.2019.2903715
SSID ssj0000816896
Score 2.5448337
Snippet Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1273
SubjectTerms Apartments
Artificial neural networks
Brain injury
Burns
Cameras
Classification
CNN-LSTM
Detection
End of life
Fall
Fall detection
Falls
Feature extraction
Hemorrhage
Informatics
Injuries
Leave-one-subject-out
Long short-term memory
Model testing
Neural networks
Pain
Short term
Three-dimensional displays
Trauma
Ultra wideband radar
Ultrawideband
Title Fall Detection With UWB Radars and CNN-LSTM Architecture
URI https://ieeexplore.ieee.org/document/9212552
https://www.ncbi.nlm.nih.gov/pubmed/33017299
https://www.proquest.com/docview/2510432129
https://www.proquest.com/docview/2448846927
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BD4gL-1I2GYkTIiWJs_nIVhVEewAquEVeBaJKEaQXvp6xkwaEAHGzFNtJZry85xnPABxEwk91qqSXxIZ5USY4TimTeoKmijIdMcXsReH-IOkNo6uH-GEGjpq7MFpr53ymO7bobPlqLCf2qOyY4Tobx7jgziJxq-5qNecpLoGES8cVYsHDiRjVRszAZ8dXp71LJIMhclTkYSyxufeQyePu7YK-fu5ILsXK72jT7TrdRehPv7dyNnnuTErRke_fQjn-94eWYKGGn-SkGi_LMKOLFZjr1wb2Vci6fDQi57p0HloFuX8qH8nw_pTccIUUmPBCkbPBwLu-veuTky9GiDUYdi_uznpenVzBkwiJSk8YxjNteCiTzOepUFQxinDNTzLBIqEp1XEgtcz8WGUmCBWnJuWZ4SyWwqSUrkOrGBd6E4ihMUfRI9XFlj6TPFAp17hWyIBjC9EGfyrgXNaRx20CjFHuGIjPcque3Konr9XThsOmyUsVduOvyqtWtE3FWqpt2JlqMa8n5luOcM4GIUSU04b95jFOKWsn4YUeT7AOUlaEZSzEnjcq7Td9TwfN1s_v3Ib50Dq9ONeeHWiVrxO9i6ilFHtuuH4A-wHizg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8hkMZegMEGHbB50p6mpSRxnMSPfKwq0PQBWsFb5E-BqNJpS1_46zk7aUBom_ZmKbaT3Pl89_Od7wC-JjLMTKZVkDLLgySXAkXKZoGkmabcJFxzd1G4GKfDaXJxy25X4Ht3F8YY44PPTN81vS9fz9XCHZUdcdxnGcMNdw31Poua21rdiYovIeELcsXYCFAUk9aNGYX86OJkeI5wMEaUikiMp676HmJ51N8-7euzTvJFVv5ub3q9M9iEYvnFTbjJQ39Ry756fJXM8X9_aQs2WgOUHDcr5h2smGob3hSti30H8oGYzciZqX2MVkVu7us7Mr05IVdCIwgmotLkdDwORteTghy_cEO8h-ngx-R0GLTlFQKFRlEdSMtFbqyIVZqHIpOaak7RYAvTXPJEGkoNi5RRech0bqNYC2ozkVvBmZI2o_QDrFbzyuwBsZQJJD2CXRwZciUinQmDu4WKBI6QPQiXBC5Vm3vclcCYlR6DhLx07Ckde8qWPT341g352STe-FfnHUfarmNL1R4cLLlYtqL5u0SDzqUhRDunB1-6xyhUzlMiKjNfYB8ErWiY8Rhn3m243829XDQf__zOz7A-nBSjcnQ-vtyHt7ELgfGBPgewWv9amEO0YWr5yS_dJ_5q5hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+Detection+With+UWB+Radars+and+CNN-LSTM+Architecture&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Maitre%2C+Julien&rft.au=Bouchard%2C+Kevin&rft.au=Gaboury%2C+Sebastien&rft.date=2021-04-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=25&rft.issue=4&rft.spage=1273&rft.epage=1283&rft_id=info:doi/10.1109%2FJBHI.2020.3027967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2020_3027967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon