Fall Detection With UWB Radars and CNN-LSTM Architecture
Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of l...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 25; no. 4; pp. 1273 - 1283 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy. |
---|---|
AbstractList | Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy. Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy. |
Author | Maitre, Julien Bouchard, Kevin Gaboury, Sebastien |
Author_xml | – sequence: 1 givenname: Julien orcidid: 0000-0003-3127-1068 surname: Maitre fullname: Maitre, Julien email: julien1_maitre@uqac.ca organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada – sequence: 2 givenname: Kevin surname: Bouchard fullname: Bouchard, Kevin email: kevin_bouchard@uqac.ca organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada – sequence: 3 givenname: Sebastien surname: Gaboury fullname: Gaboury, Sebastien email: sebastien_gaboury@uqac.ca organization: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (LIARA), 555 Boulevard de l'Université, Chicoutimi, Québec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33017299$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PwkAQhjcGI4j8AGNimnjxUtyPfuweEUUwiIlCOG6229lQUlrdbQ_-e9sAHjg4l5lMnnfyZt5L1CnKAhC6JnhICBYPr4_T2ZBiiocM01hE8RnqURJxn1LMO8eZiKCLBs5tcVO8WYnoAnUZwySmQvQQn6g8956gAl1lZeGts2rjrdaP3odKlXWeKlJvvFj488_lmzeyepO1ZG3hCp0blTsYHHofrSbPy_HUn7-_zMajua-ZoJWfGKE4GEV1xLGKk5SlgkUhxhFPRJAAYxASDZrjMOWG0FQxEytulAh1YmLG-uh-f_fLlt81uEruMqchz1UBZe0kDQLOg0jQuEHvTtBtWduicSdpSHDAKKGioW4PVJ3sIJVfNtsp-yOPP2mAeA9oWzpnwUidVar9TmVVlkuCZRuAbAOQbQDyEECjJCfK4_H_NDd7TQYAf7xorIYhZb9Oq4zR |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1016_j_trpro_2025_03_039 crossref_primary_10_3390_app12147124 crossref_primary_10_1109_JSEN_2024_3458068 crossref_primary_10_1109_OJEMB_2024_3397208 crossref_primary_10_1016_j_aei_2025_103178 crossref_primary_10_1016_j_jfranklin_2024_107090 crossref_primary_10_1109_JIOT_2022_3175894 crossref_primary_10_1016_j_bspc_2022_103741 crossref_primary_10_1097_NR9_0000000000000026 crossref_primary_10_1109_JSEN_2021_3139735 crossref_primary_10_3390_s22145449 crossref_primary_10_56977_jicce_2024_22_2_139 crossref_primary_10_1016_j_ijnurstu_2021_104153 crossref_primary_10_1177_20552076241259047 crossref_primary_10_3233_AIS_210462 crossref_primary_10_1007_s11042_024_19830_4 crossref_primary_10_1109_JSEN_2024_3509266 crossref_primary_10_2139_ssrn_4070386 crossref_primary_10_3390_app122111031 crossref_primary_10_3390_jor3040022 crossref_primary_10_1109_MRA_2024_3352851 crossref_primary_10_32604_cmc_2023_034417 crossref_primary_10_1109_JSEN_2022_3184513 crossref_primary_10_3390_s24175592 crossref_primary_10_1109_JSEN_2023_3242660 crossref_primary_10_56294_sctconf2024_1119 crossref_primary_10_1109_JSEN_2021_3082180 crossref_primary_10_3390_s23125632 crossref_primary_10_3390_s23063185 crossref_primary_10_1109_JIOT_2023_3235808 crossref_primary_10_3389_frsip_2021_664232 crossref_primary_10_1007_s00521_024_10845_4 crossref_primary_10_1109_JBHI_2024_3481237 crossref_primary_10_1145_3580835 crossref_primary_10_3390_info14010046 crossref_primary_10_20965_jaciii_2022_p0747 crossref_primary_10_1007_s10489_024_06156_9 crossref_primary_10_1109_TBME_2024_3396650 crossref_primary_10_1007_s10586_022_03818_6 crossref_primary_10_1109_JSEN_2022_3216676 crossref_primary_10_1109_LGRS_2023_3268654 crossref_primary_10_3390_s22166285 crossref_primary_10_3390_s25020556 crossref_primary_10_1109_JBHI_2023_3237077 crossref_primary_10_1109_JSEN_2024_3352425 crossref_primary_10_1109_JERM_2023_3278473 crossref_primary_10_3390_s24030884 crossref_primary_10_1109_JBHI_2023_3339703 crossref_primary_10_1109_JSEN_2024_3448622 crossref_primary_10_1016_j_eswa_2022_117661 crossref_primary_10_1109_JRFID_2024_3393242 crossref_primary_10_1109_JSEN_2022_3177173 crossref_primary_10_1007_s12652_023_04596_8 crossref_primary_10_1155_2022_4363442 crossref_primary_10_3390_s23115212 crossref_primary_10_1109_TMTT_2022_3200097 crossref_primary_10_1109_TNSM_2023_3281133 |
Cites_doi | 10.1016/j.neucom.2017.02.082 10.1109/JSEN.2018.2872894 10.1109/JBHI.2018.2808281 10.1109/TAES.2018.2799758 10.1109/ICASSP.2018.8461512 10.1371/journal.pone.0094811 10.1109/RADAR.2017.7944316 10.1049/iet-rsn.2019.0240 10.1109/ACCESS.2019.2907925 10.1016/j.gaitpost.2006.09.012 10.1109/YAC.2016.7804912 10.4103/jfcm.JFCM_48_17 10.1016/S0140-6736(95)91091-3 10.3233/ICA-190615 10.1109/JSEN.2019.2946095 10.1007/s10916-019-1484-1 10.1109/ACCESS.2019.2906693 10.1109/JBHI.2019.2907498 10.1109/IEMBS.2009.5334521 10.1109/CCECE.2010.5575129 10.1109/UV.2018.8642130 10.1109/TCSII.2019.2904498 10.1088/1755-1315/258/1/012035 10.1109/ICIAS.2012.6306174 10.1109/TNSRE.2015.2460373 10.1109/JETCAS.2017.2789278 10.1109/IE.2016.55 10.1109/LGRS.2012.2190707 10.3233/AIS-160388 10.1371/journal.pone.0140929 10.1109/RADAR41533.2019.171307 10.1016/j.measurement.2019.03.079 10.1162/neco.1997.9.8.1735 10.1109/IEMBS.2004.1403637 10.3390/s150306740 10.1016/j.procs.2018.04.110 10.1016/S0140-6736(12)61263-X 10.1109/IJCNN.2005.1556215 10.1049/cp.2017.0381 10.1109/MSP.2019.2903715 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2020.3027967 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1283 |
ExternalDocumentID | 33017299 10_1109_JBHI_2020_3027967 9212552 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Canadian Foundation for Innovation – fundername: Ministre de lconomie et de lInnovation du Quebec |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 6IL ADZIZ CHZPO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c392t-bf9a8efa2c680a7bd3d93650068b94be33e51cec805d8f12da3f7a8fa95cbf733 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 10:55:42 EDT 2025 Sun Jun 29 15:24:16 EDT 2025 Thu Jan 02 22:57:05 EST 2025 Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 02:59:58 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-bf9a8efa2c680a7bd3d93650068b94be33e51cec805d8f12da3f7a8fa95cbf733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3127-1068 |
OpenAccessLink | https://constellation.uqac.ca/6269/ |
PMID | 33017299 |
PQID | 2510432129 |
PQPubID | 85417 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2448846927 proquest_journals_2510432129 pubmed_primary_33017299 crossref_primary_10_1109_JBHI_2020_3027967 ieee_primary_9212552 crossref_citationtrail_10_1109_JBHI_2020_3027967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 khan (ref26) 2019 ref30 ref33 ref11 ref32 ref10 ref39 ref17 ref38 ref16 ref19 ref18 ritchie (ref1) 2020 bohnert (ref3) 2015 ref46 ref24 ref45 ref23 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref9 gupta (ref25) 2019 ref6 chen (ref31) 0 alshammari (ref4) 2018; 25 ref5 wisesa (ref7) 0; 258 ref40 organization (ref2) 2016 |
References_xml | – ident: ref28 doi: 10.1016/j.neucom.2017.02.082 – ident: ref35 doi: 10.1109/JSEN.2018.2872894 – ident: ref27 doi: 10.1109/JBHI.2018.2808281 – ident: ref39 doi: 10.1109/TAES.2018.2799758 – ident: ref32 doi: 10.1109/ICASSP.2018.8461512 – ident: ref23 doi: 10.1371/journal.pone.0094811 – ident: ref14 doi: 10.1109/RADAR.2017.7944316 – ident: ref41 doi: 10.1049/iet-rsn.2019.0240 – ident: ref38 doi: 10.1109/ACCESS.2019.2907925 – ident: ref21 doi: 10.1016/j.gaitpost.2006.09.012 – start-page: 428 year: 0 ident: ref31 article-title: A fall detection system based on infrared array sensors with tracking capability for the elderly at home publication-title: Proc 17th Int Conf E-health Netw Appl Serv (HealthCom) – ident: ref42 doi: 10.1109/YAC.2016.7804912 – volume: 25 start-page: 29 year: 2018 ident: ref4 article-title: Falls among elderly and its relation with their health problems and surrounding environmental factors in riyadh publication-title: Journal of Family and Community Medicine doi: 10.4103/jfcm.JFCM_48_17 – ident: ref5 doi: 10.1016/S0140-6736(95)91091-3 – ident: ref10 doi: 10.3233/ICA-190615 – year: 2019 ident: ref26 article-title: Spatio-temporal adversarial learning for detecting unseen falls – ident: ref37 doi: 10.1109/JSEN.2019.2946095 – ident: ref11 doi: 10.1007/s10916-019-1484-1 – ident: ref17 doi: 10.1109/ACCESS.2019.2906693 – ident: ref29 doi: 10.1109/JBHI.2019.2907498 – ident: ref30 doi: 10.1109/IEMBS.2009.5334521 – ident: ref24 doi: 10.1109/CCECE.2010.5575129 – ident: ref9 doi: 10.1109/UV.2018.8642130 – ident: ref40 doi: 10.1109/TCSII.2019.2904498 – volume: 258 start-page: 12035 year: 0 ident: ref7 article-title: Fall detection algorithm based on accelerometer and gyroscope sensor data using recurrent neural networks publication-title: IOP Conference Series: Earth and Environmental Science doi: 10.1088/1755-1315/258/1/012035 – ident: ref22 doi: 10.1109/ICIAS.2012.6306174 – ident: ref19 doi: 10.1109/TNSRE.2015.2460373 – ident: ref36 doi: 10.1109/JETCAS.2017.2789278 – ident: ref8 doi: 10.1109/IE.2016.55 – ident: ref43 doi: 10.1109/LGRS.2012.2190707 – ident: ref12 doi: 10.3233/AIS-160388 – ident: ref18 doi: 10.1371/journal.pone.0140929 – year: 2020 ident: ref1 article-title: Age structure publication-title: Our World in Data – ident: ref13 doi: 10.1109/RADAR41533.2019.171307 – ident: ref16 doi: 10.1016/j.measurement.2019.03.079 – ident: ref45 doi: 10.1162/neco.1997.9.8.1735 – ident: ref20 doi: 10.1109/IEMBS.2004.1403637 – ident: ref44 doi: 10.3390/s150306740 – ident: ref6 doi: 10.1016/j.procs.2018.04.110 – year: 2019 ident: ref25 article-title: Compressive sensing based privacy for fall detection – ident: ref15 doi: 10.1016/S0140-6736(12)61263-X – ident: ref46 doi: 10.1109/IJCNN.2005.1556215 – year: 2016 ident: ref2 publication-title: World Health Statistics 2016 Monitoring Health for the Sustainable Development Goals – year: 2015 ident: ref3 publication-title: Population Projections for Canada (2013 to 2063) Provinces and Territories (2013 to 2038) – ident: ref33 doi: 10.1049/cp.2017.0381 – ident: ref34 doi: 10.1109/MSP.2019.2903715 |
SSID | ssj0000816896 |
Score | 2.5448337 |
Snippet | Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1273 |
SubjectTerms | Apartments Artificial neural networks Brain injury Burns Cameras Classification CNN-LSTM Detection End of life Fall Fall detection Falls Feature extraction Hemorrhage Informatics Injuries Leave-one-subject-out Long short-term memory Model testing Neural networks Pain Short term Three-dimensional displays Trauma Ultra wideband radar Ultrawideband |
Title | Fall Detection With UWB Radars and CNN-LSTM Architecture |
URI | https://ieeexplore.ieee.org/document/9212552 https://www.ncbi.nlm.nih.gov/pubmed/33017299 https://www.proquest.com/docview/2510432129 https://www.proquest.com/docview/2448846927 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BD4gL-1I2GYkTIiWJs_nIVhVEewAquEVeBaJKEaQXvp6xkwaEAHGzFNtJZry85xnPABxEwk91qqSXxIZ5USY4TimTeoKmijIdMcXsReH-IOkNo6uH-GEGjpq7MFpr53ymO7bobPlqLCf2qOyY4Tobx7jgziJxq-5qNecpLoGES8cVYsHDiRjVRszAZ8dXp71LJIMhclTkYSyxufeQyePu7YK-fu5ILsXK72jT7TrdRehPv7dyNnnuTErRke_fQjn-94eWYKGGn-SkGi_LMKOLFZjr1wb2Vci6fDQi57p0HloFuX8qH8nw_pTccIUUmPBCkbPBwLu-veuTky9GiDUYdi_uznpenVzBkwiJSk8YxjNteCiTzOepUFQxinDNTzLBIqEp1XEgtcz8WGUmCBWnJuWZ4SyWwqSUrkOrGBd6E4ihMUfRI9XFlj6TPFAp17hWyIBjC9EGfyrgXNaRx20CjFHuGIjPcque3Konr9XThsOmyUsVduOvyqtWtE3FWqpt2JlqMa8n5luOcM4GIUSU04b95jFOKWsn4YUeT7AOUlaEZSzEnjcq7Td9TwfN1s_v3Ib50Dq9ONeeHWiVrxO9i6ilFHtuuH4A-wHizg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8hkMZegMEGHbB50p6mpSRxnMSPfKwq0PQBWsFb5E-BqNJpS1_46zk7aUBom_ZmKbaT3Pl89_Od7wC-JjLMTKZVkDLLgySXAkXKZoGkmabcJFxzd1G4GKfDaXJxy25X4Ht3F8YY44PPTN81vS9fz9XCHZUdcdxnGcMNdw31Poua21rdiYovIeELcsXYCFAUk9aNGYX86OJkeI5wMEaUikiMp676HmJ51N8-7euzTvJFVv5ub3q9M9iEYvnFTbjJQ39Ry756fJXM8X9_aQs2WgOUHDcr5h2smGob3hSti30H8oGYzciZqX2MVkVu7us7Mr05IVdCIwgmotLkdDwORteTghy_cEO8h-ngx-R0GLTlFQKFRlEdSMtFbqyIVZqHIpOaak7RYAvTXPJEGkoNi5RRech0bqNYC2ozkVvBmZI2o_QDrFbzyuwBsZQJJD2CXRwZciUinQmDu4WKBI6QPQiXBC5Vm3vclcCYlR6DhLx07Ckde8qWPT341g352STe-FfnHUfarmNL1R4cLLlYtqL5u0SDzqUhRDunB1-6xyhUzlMiKjNfYB8ErWiY8Rhn3m243829XDQf__zOz7A-nBSjcnQ-vtyHt7ELgfGBPgewWv9amEO0YWr5yS_dJ_5q5hc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+Detection+With+UWB+Radars+and+CNN-LSTM+Architecture&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Maitre%2C+Julien&rft.au=Bouchard%2C+Kevin&rft.au=Gaboury%2C+Sebastien&rft.date=2021-04-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=25&rft.issue=4&rft.spage=1273&rft.epage=1283&rft_id=info:doi/10.1109%2FJBHI.2020.3027967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2020_3027967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |