Fuzzy modeling for chaotic systems via interval type-2 T–S fuzzy model with parametric uncertainty
A motivation for using fuzzy systems stems in part from the fact that they are particularly suitable for processes when the physical systems or qualitative criteria are too complex to model and they have provided an efficient and effective way in the control of complex uncertain nonlinear systems. T...
Saved in:
Published in | Journal of theoretical and applied physics Vol. 8; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1735-9325 2251-7227 2251-7235 |
DOI | 10.1007/s40094-014-0115-y |
Cover
Abstract | A motivation for using fuzzy systems stems in part from the fact that they are particularly suitable for processes when the physical systems or qualitative criteria are too complex to model and they have provided an efficient and effective way in the control of complex uncertain nonlinear systems. To realize a fuzzy model-based design for chaotic systems, it is mostly preferred to represent them by T–S fuzzy models. In this paper, a new fuzzy modeling method has been introduced for chaotic systems via the interval type-2 Takagi–Sugeno (IT2 T–S) fuzzy model. An IT2 fuzzy model is proposed to represent a chaotic system subjected to parametric uncertainty, covered by the lower and upper membership functions of the interval type-2 fuzzy sets. Investigating many well-known chaotic systems, it is obvious that nonlinear terms have a single common variable or they depend only on one variable. If it is taken as the premise variable of fuzzy rules and another premise variable is defined subject to parametric uncertainties, a simple IT2 T–S fuzzy dynamical model can be obtained and will represent many well-known chaotic systems. This IT2 T–S fuzzy model can be used for physical application, chaotic synchronization, etc. The proposed approach is numerically applied to the well-known Lorenz system and Rossler system in MATLAB environment. |
---|---|
AbstractList | A motivation for using fuzzy systems stems in part from the fact that they are particularly suitable for processes when the physical systems or qualitative criteria are too complex to model and they have provided an efficient and effective way in the control of complex uncertain nonlinear systems. To realize a fuzzy model-based design for chaotic systems, it is mostly preferred to represent them by T-S fuzzy models. In this paper, a new fuzzy modeling method has been introduced for chaotic systems via the interval type-2 Takagi-Sugeno (IT2 T-S) fuzzy model. An IT2 fuzzy model is proposed to represent a chaotic system subjected to parametric uncertainty, covered by the lower and upper membership functions of the interval type-2 fuzzy sets. Investigating many well-known chaotic systems, it is obvious that nonlinear terms have a single common variable or they depend only on one variable. If it is taken as the premise variable of fuzzy rules and another premise variable is defined subject to parametric uncertainties, a simple IT2 T-S fuzzy dynamical model can be obtained and will represent many well-known chaotic systems. This IT2 T-S fuzzy model can be used for physical application, chaotic synchronization, etc. The proposed approach is numerically applied to the well-known Lorenz system and Rossler system in MATLAB environment. |
ArticleNumber | 115 |
Author | Gharaveisi, Ali Akbar Vali, Mohammad Ali Hasanifard, Goran |
Author_xml | – sequence: 1 givenname: Goran surname: Hasanifard fullname: Hasanifard, Goran email: goran.hasanifard@iausdj.ac.ir organization: Department of Control Engineering, College of Engineering, Tehran Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Ali Akbar surname: Gharaveisi fullname: Gharaveisi, Ali Akbar organization: Department of Electrical Engineering, Shahid Bahonar University – sequence: 3 givenname: Mohammad Ali surname: Vali fullname: Vali, Mohammad Ali organization: Department of Mathematics, Shahid Bahonar University |
BookMark | eNp9kM1KXTEQx0Ox0Kv1AboLdOPm1HycfC1FahUEF7XrkBvnaOSc5DbJUY4r36Fv6JM0l1uoCO3AMMPw_80M_320F1MEhD5R8oUSoo5LT4jpO0K3SUW3vEMrxgTtFONiD62o4qIznIkP6LCUe9LCGG40XaGbs_npacFTuoExxFs8pIz9nUs1eFyWUmEq-CE4HGKF_OBGXJcNdAxfvzz_-o6HvzB-DPUOb1x2E9Tc6Dl6yNU1cPmI3g9uLHD4px6gH2dfr0_Pu8urbxenJ5ed54bVbg2GaSdFD2vmvGd9a6joiday185zaXQbESqJ970GSZTW4LhkazKA5JQfoKPd3k1OP2co1U6heBhHFyHNxVKlCNOmV6RJP7-R3qc5x_adpVIwpaURrKnoTuVzKiXDYDc5TC4vlhK7td7urLfNeru13i6NUW8YH6qrIcWaXRj_S7IdWdqVeAv51U__hH4D29ubUw |
CitedBy_id | crossref_primary_10_1016_j_fss_2018_06_008 |
Cites_doi | 10.3233/IFS-2012-0501 10.1103/PhysRevLett.74.5028 10.1109/TSMCC.2006.886983 10.1109/TFUZZ.2009.2017378 10.1109/TFUZZ.2010.2052259 10.1109/TFUZZ.2006.879986 10.1016/j.eswa.2012.12.032 10.1016/0375-9601(76)90101-8 10.1007/s11071-010-9939-4 10.1063/1.1803673 10.1142/S0218127406015404 10.1109/TFUZZ.2009.2023325 10.1109/TFUZZ.2006.882463 10.1142/S0218127402005479 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.physa.2005.06.075 10.1109/TSMC.1985.6313399 10.1108/03321641311305728 10.1109/TFUZZ.2012.2186818 10.1109/NAFIPS.2001.944239 10.1109/91.873578 10.1016/j.ins.2010.10.011 10.1007/978-3-642-59281-2 10.1016/j.asoc.2011.12.010 10.1090/S0025-5718-1974-0331751-8 10.1007/978-3-540-76284-3 10.1109/3477.907565 10.1016/j.engappai.2005.12.011 10.1016/j.chaos.2005.01.023 10.7498/aps.56.3121 10.1109/MCI.2007.357192 10.1109/TFUZZ.2012.2210555 10.1142/2637 10.1007/BF01608556 10.1109/TFUZZ.2006.889764 10.1109/TFUZZ.2004.832538 10.1016/j.ins.2008.07.013 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 Islamic Azad University 2014 |
Copyright_xml | – notice: The Author(s) 2014 – notice: Islamic Azad University 2014 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7U5 8FD H8D L7M |
DOI | 10.1007/s40094-014-0115-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2251-7235 |
EndPage | 10 |
ExternalDocumentID | 3585210551 10_1007_s40094_014_0115_y |
Genre | Feature |
GroupedDBID | -A0 0R~ 2VQ 4.4 40G 5VS 8FE 8FG AAHNG ABECU ABJNI ABMQK ABSXP ABTMW ACGFS ACOKC ADBBV ADINQ ADKNI ADYFF AFKRA AFQWF AHBYD AHSBF AHYZX AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU EBS EJD FNLPD GROUPED_DOAJ GX1 HCIFZ IAO IPNFZ ISR KQ8 NQJWS OK1 P62 PIMPY PROAC RIG RNS RSV SNPRN SOHCF SOJ SPH UOJIU UTJUX ZMTXR AAYXX CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7U5 8FD EBLON H8D L7M PUEGO |
ID | FETCH-LOGICAL-c392t-be928a654eb2acc244eb154088648ac369844e0160cc48e60788ea362b0fe6313 |
IEDL.DBID | 8FG |
ISSN | 1735-9325 2251-7227 |
IngestDate | Fri Sep 05 05:15:04 EDT 2025 Sun Jul 13 03:51:45 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Thu Jul 10 08:31:11 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Footprint of uncertainty Lower and upper membership functions Parametric uncertainty Interval type-2 Takagi–Sugeno fuzzy system Chaotic systems |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-be928a654eb2acc244eb154088648ac369844e0160cc48e60788ea362b0fe6313 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1652786952?pq-origsite=%requestingapplication% |
PQID | 1652786952 |
PQPubID | 2034700 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1770289470 proquest_journals_1652786952 crossref_primary_10_1007_s40094_014_0115_y crossref_citationtrail_10_1007_s40094_014_0115_y springer_journals_10_1007_s40094_014_0115_y |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of theoretical and applied physics |
PublicationTitleAbbrev | J Theor Appl Phys |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | VincentUENjahANAkinladeOSolarinARTPhase synchronization in unidirectional coupled chaotic ratchetsChaos200414101810252004Chaos..14.1018V1080.37039210651610.1063/1.180367310.1063/1.1803673, 1080.37039, 2106516, 2004Chaos..14.1018V ZhangHBLiaoXFYuJBFuzzy modeling and synchronization of hyper chaotic systemsChaos Solitons Fractals2005268358432005CSF....26..835Z1093.9354010.1016/j.chaos.2005.01.02310.1016/j.chaos.2005.01.023, 1093.93540, 2005CSF....26..835Z WuDTanWWA simplified type-2 fuzzy controller for real-time controlISA Trans.20061550351622962482296248 PourkargarDBShahrokhiMOptimal fuzzy synchronization of generalized lorenz chaotic systemTJMCS201122736 NiuHZhangQZhangYThe chaos synchronization of a singular chemical model and a Williamowski–Rossler modelInt. J. Inform. Syst. Sci.20026435536428004692800469 HidalgoDCastilloOMelinPType-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithmsInf. Sci.2009179132123214510.1016/j.ins.2008.07.01310.1016/j.ins.2008.07.013 HongLFeiLZhongLXiajieYTrillionQZhangBThe application of chaotic PWM control for EMI suppressionCOMPEL Int. J. Comput. Math. Electr. Electron. Eng20133275076210.1108/0332164131130572810.1108/03321641311305728 LamHKLeungFStability analysis of fuzzy model based control systemsSpringer20112641912153235636 RoopaeiMZolghadriMBLinTCSynchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode controlNonlinear Dyn.2011666676801242.9307010.1007/s11071-010-9939-410.1007/s11071-010-9939-4, 1242.93070 ZhangHGYangDDChaiTYGuaranteed cost networked control for T–S fuzzy systems with time delayIEEE Trans Syst Man Cybern C20073716017210.1109/TSMCC.2006.88698310.1109/TSMCC.2006.886983 Leal RamirezCCastilloOMelinPRodriguez DiazASimulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structureInf. Sci.20111813519535274799410.1016/j.ins.2010.10.01110.1016/j.ins.2010.10.011, 2747994 LakshmananMMuraliKNonlinear Oscillators: Controlling and Synchronization1996SingaporeWorld Scientific0868.580580868.58058 HagrasHA hierarchical type-2 fuzzy logic control architecture for autonomous mobile robotsIEEE Trans. Fuzzy Syst.20041252453910.1109/TFUZZ.2004.83253810.1109/TFUZZ.2004.832538 RösslerOEAn equation for continuous ChaosPhys. Lett.197657A53973981976PhLA...57..397R10.1016/0375-9601(76)90101-810.1016/0375-9601(76)90101-8, 1976PhLA...57..397R LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632021301411963JAtS...20..130L10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;210.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, 1963JAtS...20..130L AlligoodKTSauerTYorkeJAChaos: An Introduction to Dynamical Systems1997New YorkSpringer10.1007/978-3-642-59281-210.1007/978-3-642-59281-2 LianKYLIUPWuTCLinWCChaotic control using fuzzy model-based methodsInt. J. Bifurc. Chaos200212182718411052.93505192741510.1142/S021812740200547910.1142/S0218127402005479, 1052.93505, 1927415 CastilloOMelinPType-2 Fuzzy Logic Theory and Application2008BerlinSpringer HuangzhangLiuDWangZControlling Chaos, Suppression, Synchronization and Chaotification2009BerlinSpringer MendelJMUncertain rule-based fuzzy logic systems: introduction and new directions, upper saddle river2001NJPrentice-Hall LamHKLeungFHFSynchronization of uncertain chaotic systems based on the fuzzy-model-based approachInt. J. Bifurc. Chaos200616143514441139.93350225486510.1142/S021812740601540410.1142/S0218127406015404, 1139.93350, 2254865 BunchJRHopcroftJTriangular factorization and inversion by fast matrix multiplicationMath. Comput.1974282312360276.1500633175110.1090/S0025-5718-1974-0331751-810.1090/S0025-5718-1974-0331751-8, 0276.15006, 331751 LiangQMendelJMEqualization of nonlinear time-varying channels using type-2 fuzzy adaptive filtersIEEE Trans. Fuzzy Syst.20008555156310.1109/91.87357810.1109/91.873578 HénonMA two-dimensional mapping with a strange attractorCommun. Math. Phys.197650169771976CMaPh..50...69H0576.5801810.1007/BF0160855610.1007/BF01608556, 0576.58018, 1976CMaPh..50...69H QiuJFengGGaoHStatic output feedback H-infinity control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functionsIEEE Trans. Fuzzy Syst.201321224526110.1109/TFUZZ.2012.221055510.1109/TFUZZ.2012.2210555 MendelJLiuFSuper-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy setIEEE Trans. Fuzzy Syst.20071530932010.1109/TFUZZ.2006.88246310.1109/TFUZZ.2006.882463 Ohtake, H., Tanaka, K., Wang, H.: Fuzzy modeling via sector nonlinearity concept. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada 1, 127–132 (2001) LianKYChiangTSChiuCSLiuPSynthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systemsIEEE Trans. Syst. Man Cybern.200131668310.1109/3477.90756510.1109/3477.907565 MendelJJohnRILiuFInterval type-2 fuzzy logic systems made simpleIEEE Trans. Fuzzy Syst.20061480882110.1109/TFUZZ.2006.87998610.1109/TFUZZ.2006.879986 HagrasHType-2 FLCs: a new generation of fuzzy controllersIEEE Comput. Intell. Mag.20072304310.1109/MCI.2007.35719210.1109/MCI.2007.357192 MelinPAstudilloLCastilloOValdezFGarciaMOptimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigmExpert Syst. Appl.20134083185319510.1016/j.eswa.2012.12.03210.1016/j.eswa.2012.12.032 KocarevLParlitzUGeneral approach for chaotic synchronization with applications to communicationPhys. Rev. Lett.199574502850301995PhRvL..74.5028K10.1103/PhysRevLett.74.502810.1103/PhysRevLett.74.5028, 1995PhRvL..74.5028K TaoYChaotic secure communication systems—history and new resultsTelecommun. Rev.19999597634 YangDSZhangHGLiHGMengZYGeneralized synchronization of two non identical chaotic systems based on fuzzy modelActa Phys. Sinica200756312131261150.9335423556461150.93354, 2355646 QiuJFengGGaoHFuzzy-model-based piecewise H-infinity static output feedback controller design for networked nonlinear systems”IEEE Trans. Fuzzy Syst.201018591993410.1109/TFUZZ.2010.205225910.1109/TFUZZ.2010.2052259 WuDTanWWGenetic learning and performance evaluation of type-2 fuzzy logic controllersEng. Appl. Artif. Intell.20061982984110.1016/j.engappai.2005.12.01110.1016/j.engappai.2005.12.011 DuXYingHLinFOn modeling of fuzzy hybrid systemsJ. Intell. Fuzzy Syst.2012231291411269.9305429587081269.93054, 2958708 QiuJFengGYangJA new design of delay-dependent robust H-infinity filtering for discrete-time T-S fuzzy systems with time-varying delayIEEE Trans. Fuzzy Syst.20091751044105810.1109/TFUZZ.2009.201737810.1109/TFUZZ.2009.2017378 JammehEAFleuryMCHagrasHGhanbariMInterval type-2 fuzzy logic congestion control for video streaming across IP networksIEEE Trans. Fuzzy Syst.2009171123114210.1109/TFUZZ.2009.202332510.1109/TFUZZ.2009.2023325 TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans. Syst. Man Cybern.1985151161320576.9302110.1109/TSMC.1985.631339910.1109/TSMC.1985.6313399, 0576.93021 CouplandSJohnRGeometric type-1 and type-2 fuzzy logic systemsIEEE Trans. Fuzzy Syst.20071531510.1109/TFUZZ.2006.88976410.1109/TFUZZ.2006.889764 Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers, IEEE Trans. Fuzzy Syst., in press (2012) CastilloOMelinPA review on the design and optimization of interval type-2 fuzzy controllersAppl. Soft. Comput.20121241267127810.1016/j.asoc.2011.12.01010.1016/j.asoc.2011.12.010 VincentUENjahANAkinladeOSolarinARTPhase synchronization in bidirectional coupled chaotic ratchetsPhys. A200636018019610.1016/j.physa.2005.06.07510.1016/j.physa.2005.06.075 BoccalettiSFariniAArecchiFTAdaptive synchronization of chaos for secure communicationPhys. Rev. E199755514483831448383 HG Zhang (115_CR9) 2007; 37 C Leal Ramirez (115_CR27) 2011; 181 O Castillo (115_CR29) 2012; 12 HK Lam (115_CR40) 2011; 264 UE Vincent (115_CR3) 2006; 360 DS Yang (115_CR13) 2007; 56 D Wu (115_CR18) 2006; 19 Huangzhang (115_CR39) 2009 M Roopaei (115_CR25) 2011; 66 UE Vincent (115_CR2) 2004; 14 H Hagras (115_CR20) 2007; 2 115_CR32 J Qiu (115_CR44) 2010; 18 O Castillo (115_CR33) 2008 T Takagi (115_CR12) 1985; 15 D Hidalgo (115_CR30) 2009; 179 L Hong (115_CR17) 2013; 32 KY Lian (115_CR11) 2001; 31 J Qiu (115_CR43) 2009; 17 DB Pourkargar (115_CR16) 2011; 2 EN Lorenz (115_CR37) 1963; 20 M Lakshmanan (115_CR4) 1996 D Wu (115_CR31) 2006; 15 P Melin (115_CR28) 2013; 40 115_CR42 J Mendel (115_CR23) 2006; 14 M Hénon (115_CR35) 1976; 50 OE Rössler (115_CR36) 1976; 57A H Niu (115_CR5) 2002; 6 S Boccaletti (115_CR7) 1997; 55 X Du (115_CR34) 2012; 23 Y Tao (115_CR8) 1999; 9 JR Bunch (115_CR38) 1974; 28 KT Alligood (115_CR1) 1997 HB Zhang (115_CR10) 2005; 26 J Qiu (115_CR45) 2013; 21 KY Lian (115_CR15) 2002; 12 H Hagras (115_CR19) 2004; 12 J Mendel (115_CR24) 2007; 15 HK Lam (115_CR14) 2006; 16 Q Liang (115_CR41) 2000; 8 S Coupland (115_CR26) 2007; 15 EA Jammeh (115_CR22) 2009; 17 JM Mendel (115_CR21) 2001 L Kocarev (115_CR6) 1995; 74 |
References_xml | – reference: YangDSZhangHGLiHGMengZYGeneralized synchronization of two non identical chaotic systems based on fuzzy modelActa Phys. Sinica200756312131261150.9335423556461150.93354, 2355646 – reference: ZhangHBLiaoXFYuJBFuzzy modeling and synchronization of hyper chaotic systemsChaos Solitons Fractals2005268358432005CSF....26..835Z1093.9354010.1016/j.chaos.2005.01.02310.1016/j.chaos.2005.01.023, 1093.93540, 2005CSF....26..835Z – reference: HidalgoDCastilloOMelinPType-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithmsInf. Sci.2009179132123214510.1016/j.ins.2008.07.01310.1016/j.ins.2008.07.013 – reference: BoccalettiSFariniAArecchiFTAdaptive synchronization of chaos for secure communicationPhys. Rev. E199755514483831448383 – reference: HagrasHType-2 FLCs: a new generation of fuzzy controllersIEEE Comput. Intell. Mag.20072304310.1109/MCI.2007.35719210.1109/MCI.2007.357192 – reference: Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers, IEEE Trans. Fuzzy Syst., in press (2012) – reference: DuXYingHLinFOn modeling of fuzzy hybrid systemsJ. Intell. Fuzzy Syst.2012231291411269.9305429587081269.93054, 2958708 – reference: VincentUENjahANAkinladeOSolarinARTPhase synchronization in bidirectional coupled chaotic ratchetsPhys. A200636018019610.1016/j.physa.2005.06.07510.1016/j.physa.2005.06.075 – reference: WuDTanWWGenetic learning and performance evaluation of type-2 fuzzy logic controllersEng. Appl. Artif. Intell.20061982984110.1016/j.engappai.2005.12.01110.1016/j.engappai.2005.12.011 – reference: TaoYChaotic secure communication systems—history and new resultsTelecommun. Rev.19999597634 – reference: HuangzhangLiuDWangZControlling Chaos, Suppression, Synchronization and Chaotification2009BerlinSpringer – reference: JammehEAFleuryMCHagrasHGhanbariMInterval type-2 fuzzy logic congestion control for video streaming across IP networksIEEE Trans. Fuzzy Syst.2009171123114210.1109/TFUZZ.2009.202332510.1109/TFUZZ.2009.2023325 – reference: CastilloOMelinPA review on the design and optimization of interval type-2 fuzzy controllersAppl. Soft. Comput.20121241267127810.1016/j.asoc.2011.12.01010.1016/j.asoc.2011.12.010 – reference: CastilloOMelinPType-2 Fuzzy Logic Theory and Application2008BerlinSpringer – reference: HagrasHA hierarchical type-2 fuzzy logic control architecture for autonomous mobile robotsIEEE Trans. Fuzzy Syst.20041252453910.1109/TFUZZ.2004.83253810.1109/TFUZZ.2004.832538 – reference: BunchJRHopcroftJTriangular factorization and inversion by fast matrix multiplicationMath. Comput.1974282312360276.1500633175110.1090/S0025-5718-1974-0331751-810.1090/S0025-5718-1974-0331751-8, 0276.15006, 331751 – reference: Ohtake, H., Tanaka, K., Wang, H.: Fuzzy modeling via sector nonlinearity concept. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada 1, 127–132 (2001) – reference: RoopaeiMZolghadriMBLinTCSynchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode controlNonlinear Dyn.2011666676801242.9307010.1007/s11071-010-9939-410.1007/s11071-010-9939-4, 1242.93070 – reference: LianKYChiangTSChiuCSLiuPSynthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systemsIEEE Trans. Syst. Man Cybern.200131668310.1109/3477.90756510.1109/3477.907565 – reference: CouplandSJohnRGeometric type-1 and type-2 fuzzy logic systemsIEEE Trans. Fuzzy Syst.20071531510.1109/TFUZZ.2006.88976410.1109/TFUZZ.2006.889764 – reference: LianKYLIUPWuTCLinWCChaotic control using fuzzy model-based methodsInt. J. Bifurc. Chaos200212182718411052.93505192741510.1142/S021812740200547910.1142/S0218127402005479, 1052.93505, 1927415 – reference: LiangQMendelJMEqualization of nonlinear time-varying channels using type-2 fuzzy adaptive filtersIEEE Trans. Fuzzy Syst.20008555156310.1109/91.87357810.1109/91.873578 – reference: LakshmananMMuraliKNonlinear Oscillators: Controlling and Synchronization1996SingaporeWorld Scientific0868.580580868.58058 – reference: ZhangHGYangDDChaiTYGuaranteed cost networked control for T–S fuzzy systems with time delayIEEE Trans Syst Man Cybern C20073716017210.1109/TSMCC.2006.88698310.1109/TSMCC.2006.886983 – reference: LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.19632021301411963JAtS...20..130L10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;210.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, 1963JAtS...20..130L – reference: PourkargarDBShahrokhiMOptimal fuzzy synchronization of generalized lorenz chaotic systemTJMCS201122736 – reference: LamHKLeungFHFSynchronization of uncertain chaotic systems based on the fuzzy-model-based approachInt. J. Bifurc. Chaos200616143514441139.93350225486510.1142/S021812740601540410.1142/S0218127406015404, 1139.93350, 2254865 – reference: QiuJFengGGaoHFuzzy-model-based piecewise H-infinity static output feedback controller design for networked nonlinear systems”IEEE Trans. Fuzzy Syst.201018591993410.1109/TFUZZ.2010.205225910.1109/TFUZZ.2010.2052259 – reference: KocarevLParlitzUGeneral approach for chaotic synchronization with applications to communicationPhys. Rev. Lett.199574502850301995PhRvL..74.5028K10.1103/PhysRevLett.74.502810.1103/PhysRevLett.74.5028, 1995PhRvL..74.5028K – reference: RösslerOEAn equation for continuous ChaosPhys. Lett.197657A53973981976PhLA...57..397R10.1016/0375-9601(76)90101-810.1016/0375-9601(76)90101-8, 1976PhLA...57..397R – reference: NiuHZhangQZhangYThe chaos synchronization of a singular chemical model and a Williamowski–Rossler modelInt. J. Inform. Syst. Sci.20026435536428004692800469 – reference: Leal RamirezCCastilloOMelinPRodriguez DiazASimulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structureInf. Sci.20111813519535274799410.1016/j.ins.2010.10.01110.1016/j.ins.2010.10.011, 2747994 – reference: LamHKLeungFStability analysis of fuzzy model based control systemsSpringer20112641912153235636 – reference: MendelJLiuFSuper-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy setIEEE Trans. Fuzzy Syst.20071530932010.1109/TFUZZ.2006.88246310.1109/TFUZZ.2006.882463 – reference: MelinPAstudilloLCastilloOValdezFGarciaMOptimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigmExpert Syst. Appl.20134083185319510.1016/j.eswa.2012.12.03210.1016/j.eswa.2012.12.032 – reference: HongLFeiLZhongLXiajieYTrillionQZhangBThe application of chaotic PWM control for EMI suppressionCOMPEL Int. J. Comput. Math. Electr. Electron. Eng20133275076210.1108/0332164131130572810.1108/03321641311305728 – reference: TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans. Syst. Man Cybern.1985151161320576.9302110.1109/TSMC.1985.631339910.1109/TSMC.1985.6313399, 0576.93021 – reference: MendelJJohnRILiuFInterval type-2 fuzzy logic systems made simpleIEEE Trans. Fuzzy Syst.20061480882110.1109/TFUZZ.2006.87998610.1109/TFUZZ.2006.879986 – reference: AlligoodKTSauerTYorkeJAChaos: An Introduction to Dynamical Systems1997New YorkSpringer10.1007/978-3-642-59281-210.1007/978-3-642-59281-2 – reference: MendelJMUncertain rule-based fuzzy logic systems: introduction and new directions, upper saddle river2001NJPrentice-Hall – reference: QiuJFengGGaoHStatic output feedback H-infinity control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functionsIEEE Trans. Fuzzy Syst.201321224526110.1109/TFUZZ.2012.221055510.1109/TFUZZ.2012.2210555 – reference: VincentUENjahANAkinladeOSolarinARTPhase synchronization in unidirectional coupled chaotic ratchetsChaos200414101810252004Chaos..14.1018V1080.37039210651610.1063/1.180367310.1063/1.1803673, 1080.37039, 2106516, 2004Chaos..14.1018V – reference: WuDTanWWA simplified type-2 fuzzy controller for real-time controlISA Trans.20061550351622962482296248 – reference: HénonMA two-dimensional mapping with a strange attractorCommun. Math. Phys.197650169771976CMaPh..50...69H0576.5801810.1007/BF0160855610.1007/BF01608556, 0576.58018, 1976CMaPh..50...69H – reference: QiuJFengGYangJA new design of delay-dependent robust H-infinity filtering for discrete-time T-S fuzzy systems with time-varying delayIEEE Trans. Fuzzy Syst.20091751044105810.1109/TFUZZ.2009.201737810.1109/TFUZZ.2009.2017378 – volume: 9 start-page: 597 year: 1999 ident: 115_CR8 publication-title: Telecommun. Rev. – volume: 23 start-page: 129 year: 2012 ident: 115_CR34 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-2012-0501 – volume: 74 start-page: 5028 year: 1995 ident: 115_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.5028 – volume: 264 start-page: 191 year: 2011 ident: 115_CR40 publication-title: Springer – volume: 37 start-page: 160 year: 2007 ident: 115_CR9 publication-title: IEEE Trans Syst Man Cybern C doi: 10.1109/TSMCC.2006.886983 – volume: 17 start-page: 1044 issue: 5 year: 2009 ident: 115_CR43 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2017378 – volume: 18 start-page: 919 issue: 5 year: 2010 ident: 115_CR44 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2052259 – volume: 14 start-page: 808 year: 2006 ident: 115_CR23 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.879986 – volume: 40 start-page: 3185 issue: 8 year: 2013 ident: 115_CR28 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.032 – volume: 57A start-page: 397 issue: 5 year: 1976 ident: 115_CR36 publication-title: Phys. Lett. doi: 10.1016/0375-9601(76)90101-8 – volume: 66 start-page: 667 year: 2011 ident: 115_CR25 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-010-9939-4 – volume: 14 start-page: 1018 year: 2004 ident: 115_CR2 publication-title: Chaos doi: 10.1063/1.1803673 – volume: 55 start-page: 5 year: 1997 ident: 115_CR7 publication-title: Phys. Rev. E – volume: 16 start-page: 1435 year: 2006 ident: 115_CR14 publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127406015404 – volume: 17 start-page: 1123 year: 2009 ident: 115_CR22 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2023325 – volume: 15 start-page: 309 year: 2007 ident: 115_CR24 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.882463 – volume: 12 start-page: 1827 year: 2002 ident: 115_CR15 publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127402005479 – volume-title: Controlling Chaos, Suppression, Synchronization and Chaotification year: 2009 ident: 115_CR39 – volume-title: Uncertain rule-based fuzzy logic systems: introduction and new directions, upper saddle river year: 2001 ident: 115_CR21 – volume: 20 start-page: 130 issue: 2 year: 1963 ident: 115_CR37 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 360 start-page: 180 year: 2006 ident: 115_CR3 publication-title: Phys. A doi: 10.1016/j.physa.2005.06.075 – volume: 15 start-page: 116 year: 1985 ident: 115_CR12 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313399 – volume: 32 start-page: 750 year: 2013 ident: 115_CR17 publication-title: COMPEL Int. J. Comput. Math. Electr. Electron. Eng doi: 10.1108/03321641311305728 – ident: 115_CR32 doi: 10.1109/TFUZZ.2012.2186818 – ident: 115_CR42 doi: 10.1109/NAFIPS.2001.944239 – volume: 8 start-page: 551 issue: 5 year: 2000 ident: 115_CR41 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.873578 – volume: 181 start-page: 519 issue: 3 year: 2011 ident: 115_CR27 publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.011 – volume-title: Chaos: An Introduction to Dynamical Systems year: 1997 ident: 115_CR1 doi: 10.1007/978-3-642-59281-2 – volume: 2 start-page: 27 year: 2011 ident: 115_CR16 publication-title: TJMCS – volume: 12 start-page: 1267 issue: 4 year: 2012 ident: 115_CR29 publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2011.12.010 – volume: 28 start-page: 231 year: 1974 ident: 115_CR38 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1974-0331751-8 – volume-title: Type-2 Fuzzy Logic Theory and Application year: 2008 ident: 115_CR33 doi: 10.1007/978-3-540-76284-3 – volume: 31 start-page: 66 year: 2001 ident: 115_CR11 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/3477.907565 – volume: 6 start-page: 355 issue: 4 year: 2002 ident: 115_CR5 publication-title: Int. J. Inform. Syst. Sci. – volume: 19 start-page: 829 year: 2006 ident: 115_CR18 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2005.12.011 – volume: 15 start-page: 503 year: 2006 ident: 115_CR31 publication-title: ISA Trans. – volume: 26 start-page: 835 year: 2005 ident: 115_CR10 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.01.023 – volume: 56 start-page: 3121 year: 2007 ident: 115_CR13 publication-title: Acta Phys. Sinica doi: 10.7498/aps.56.3121 – volume: 2 start-page: 30 year: 2007 ident: 115_CR20 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2007.357192 – volume: 21 start-page: 245 issue: 2 year: 2013 ident: 115_CR45 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2210555 – volume-title: Nonlinear Oscillators: Controlling and Synchronization year: 1996 ident: 115_CR4 doi: 10.1142/2637 – volume: 50 start-page: 69 issue: 1 year: 1976 ident: 115_CR35 publication-title: Commun. Math. Phys. doi: 10.1007/BF01608556 – volume: 15 start-page: 3 year: 2007 ident: 115_CR26 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889764 – volume: 12 start-page: 524 year: 2004 ident: 115_CR19 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.832538 – volume: 179 start-page: 2123 issue: 13 year: 2009 ident: 115_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.07.013 |
SSID | ssj0000993981 |
Score | 1.8918444 |
Snippet | A motivation for using fuzzy systems stems in part from the fact that they are particularly suitable for processes when the physical systems or qualitative... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Applied and Technical Physics Atomic Chaos theory Condensed Matter Physics Dynamical systems Fuzzy Fuzzy logic Fuzzy set theory Intervals Mathematical models Medical and Radiation Physics Molecular Nanoscale Science and Technology Optical and Plasma Physics Physics Physics and Astronomy Uncertainty |
SummonAdditionalLinks | – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IngRn1hdJYInpdBHmqRHEddF0Iu7sLfSpiku6K7YrtA9-R_8h_4SZ9LHqqjgoT20kwQmj_nmkRlCTnzQqjLtgW4i0XSTwisErcN2uYBzUvJUKbwofHPL-0N2PQpG9T3uvIl2b1yS5qRuL7sxjIID1RcfN7DLZbKC2cSwbAFzrlrDCkAePzTFSV3hBzbgk6DxZv7Uy1d5tACZ3_yiRtz0Nsh6jRPpeTWxm2RJT7bIqonXVPk2SXuz-bykpo4NtKcAPam6j6dATavkzDl9Gcd0bEIaoSM0tdoeHby_vt3RbNGYoiGWYgLwR6ytpSjIuSpKoCh3yLB3Objo23XBBFsBzCnsRIeejHnAQF2OlQLJDScxQDIpOZOx8nko4RPmlFOKSc0BHkgdgwhLnExz3_V3SWcyneg9QhlLfKGk8FLugPxiCWCBUGbcTQTPpM4s4jRsi1SdTRyLWjxEbR5kw-kIOB0hp6PSIqdtk6cqlcZfxN1mLqJ6V-WRywNPSB4GnkWO29-wH9DJEU_0dAY0QqDzlAnHImfNHH7q4rcB9_9FfUDWPLOGcBl1Sad4nulDQCdFcmRW4wepotsZ priority: 102 providerName: Springer Nature |
Title | Fuzzy modeling for chaotic systems via interval type-2 T–S fuzzy model with parametric uncertainty |
URI | https://link.springer.com/article/10.1007/s40094-014-0115-y https://www.proquest.com/docview/1652786952 https://www.proquest.com/docview/1770289470 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90IvgifuJ0jgg-KcE2TZP0SXQ4RVDED_CttFmKA93UbcL8673L2k0FfWihbT4gud797iN3APsRalWFE6ibGDLddPCWoNbBQ6WRTxrVsZYOCl9dq4sHefkYP5YGt0EZVlnxRM-oO31LNvKjUMVCG5XE4vj1jVPVKPKuliU05mEhRElDdG7a51MbC6KfKPF1SpFqQ66F0JVjk07PSQqrQ12arjDm45-iaYY3f7lIveRpr8ByCRnZyWSPV2HO9dZg0Ydu2sE65O3R5-eY-ZI22J8hCmX2KetjazbJ0zxgH92MdX10Iw5EVlcu2D2_Y8WsKyOLLKNM4C9UZMsyFHiTcIHheAMe2mf3rQteVk7gFvHOkOcuESZTsUS9ObMWRTiyZMRmxihpMhupxOArSi5nrTROIU4wLkNZlgeFU1EYbUKt1--5LWBS5pG2RouOClCQyRxBQWIKFeZaFcYVdQiqRUttmVacqls8p9OEyH6dU1znlNY5HdfhYNrldZJT47_GjWon0vL3GqQzYqjD3vQz_hjk7ch6rj_CNlqTF1XqoA6H1Q5-G-KvCbf_n3AHloQnGaKaBtSG7yO3i7hkmDdhXgbnTU-CTVg4Pbu-ucWnlmo1vab_Bc7z4MU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcARBCC6oFFADFBapvYBWxOv17vpQVbyiUCBCECRuxt6sVSRIaJO0Mh_Vb-yMHwkgwY2DfbD3Ic3OzvsB8MVHrSp1AnUTQ6abLr5C1Dq4pzTSSaO61lKi8Flbta7kj-vgegr-VbkwFFZZ0cScUHf7lmzku54KhDYqDMT3h1-cukaRd7VqoVGgxYnL_qLKNvh2fIjn-1WI5lHnoMXLrgLcoiww5IkLhYlVIFGnjK1F9obkCuUWY5Q0sfVVaPATFV6zVhqnkIcaFyOdTxqpU77n47rTMCMpo7UGM_tH7fOLsVUH5S0_zDuj4j3xuBZCV65UyteTFMiH2js9XsCz58xwIuG-cMrmvK75ARZKIZXtFVi1CFOu9xFm82BRO1iCpDl6fMxY3kQH5zOUe5n9GfdxNCsqQw_Yn9uY3ebxlLgQ2Xm5YB1-ydLJVEY2YEa1x--prZdlyGKLAIVhtgxX7wLVFaj1-j33CZiUia-t0aKrGsg6ZYJiSGhS5SVapcaldWhUQItsWcic-mncReMSzDmcI4RzRHCOsjpsj6c8FFU83hq8Xp1EVF7oQTRBvzpsjX_jVST_Stxz_RGO0Zr8tlI36rBTneCTJV7bcPXtDTdhrtU5O41Oj9snazAvcvQhDFqH2vD3yH1GqWiYbJSoyODmvbH_P-TfGZk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9ioE1cJtiHKCvDk7bLJovGcWznMCEECzA2NAmQuGWJ64hK0AJtQemftr-O95ykHUhw45AeUtuRnn9-334P4HOIVlXhBNomhlw3XfyJ0erggdLIJ43qWksXhX8fqr0T-fM0Op2Df81dGEqrbHiiZ9TdgSUf-UagIqGNiiOxUdRpEX92ks3LK04dpCjS2rTTqCBy4MpbNN-G3_d3cK-_CJH8ON7e43WHAW5RLxjx3MXCZCqSaF9m1qKoQ9aFOowxSprMhio2-IqKsFkrjVMoT43LkOfnncKpMAhx3RewoEMdk-Fnkt2pfwc1rzD2PVLxxARcC6GboCrd3JOU0od2PD1BxMv7YnGm6z4Iz3qplyzB61pdZVsVvpZhzvXfwEufNmqHbyFPxpNJyXw7HZzPUANm9iwb4GhW1Ygesptexno-sxIXIo8vF-yYH7FiNpWRN5hRFfILavBlGQrbKlVhVL6Dk2eh6XuY7w_6bgWYlHmordGiqzooRGWOCklsChXkWhXGFS3oNERLbV3SnDprnKfTYsyezinSOSU6p2ULvk6nXFb1PJ4a3G52Iq2P9jCdAbEFn6Z_46GkSEvWd4MxjtGaIrhSd1rwrdnB_5Z47IOrT39wHV4h5tNf-4cHH2BRePQQgNowP7oeuzVUj0b5R49DBn-fG_h3NdwcaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+modeling+for+chaotic+systems+via+interval+type-2+T%E2%80%93S+fuzzy+model+with+parametric+uncertainty&rft.jtitle=Journal+of+theoretical+and+applied+physics&rft.au=Hasanifard%2C+Goran&rft.au=Gharaveisi%2C+Ali+Akbar&rft.au=Vali%2C+Mohammad+Ali&rft.date=2014-04-01&rft.issn=1735-9325&rft.eissn=2251-7235&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs40094-014-0115-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40094_014_0115_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-9325&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-9325&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-9325&client=summon |