Dynamics of droplet impact on solid surface with different roughness

•We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agree...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 96; pp. 56 - 69
Main Authors Tang, Chenglong, Qin, Mengxiao, Weng, Xinyan, Zhang, Xuhui, Zhang, Peng, Li, Jianling, Huang, Zuohua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agreement with both the present and previous experimental data.•The transition from spreading to splashing empirically fitted as a function of the surface roughness, which also shows reasonably good agreement with all the public literature data. This paper reports an experimental investigation on the impact dynamics of droplets (water, decane, ethanol, and tetradecane) onto a flat stainless steel surface, using high-speed microphotography and with a particular interest in the effect of surface roughness on the impact dynamics. Results show that the impacting water droplet spreads on the surface in the form of a rim-bounded lamella and the rim contracts back after reaching the maximum spreading, while this contraction motion is absent for the fuel liquids. With the increase of Weber number (We) and surface roughness, splashing, evidenced by the ejection of secondary droplets, is favored. The droplet spreading, which is characterized by a normalized diameter β, is accelerated with increasing We, while the surface roughness and Ohnesorge number (Oh) tend to slow down the spreading process. Furthermore, the maximum normalized spreading diameter, βmax, depends primarily on the (We/Oh) and the increase in the surface roughness slightly reduces βmax. The transition from spreading to splashing is enhanced with increasing We or Ra or both. An empirical correlation of βmax as a function of the surface roughness was derived based on the present experimental data. In addition, the transition from spreading to splashing can be represented by a critical (We/Oh)1/2, which was fitted as a function of the surface roughness. All the proposed empirical correlations show good agreement with literature data and are believed to be of importance for the spray/wall interaction modelling.
AbstractList •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agreement with both the present and previous experimental data.•The transition from spreading to splashing empirically fitted as a function of the surface roughness, which also shows reasonably good agreement with all the public literature data. This paper reports an experimental investigation on the impact dynamics of droplets (water, decane, ethanol, and tetradecane) onto a flat stainless steel surface, using high-speed microphotography and with a particular interest in the effect of surface roughness on the impact dynamics. Results show that the impacting water droplet spreads on the surface in the form of a rim-bounded lamella and the rim contracts back after reaching the maximum spreading, while this contraction motion is absent for the fuel liquids. With the increase of Weber number (We) and surface roughness, splashing, evidenced by the ejection of secondary droplets, is favored. The droplet spreading, which is characterized by a normalized diameter β, is accelerated with increasing We, while the surface roughness and Ohnesorge number (Oh) tend to slow down the spreading process. Furthermore, the maximum normalized spreading diameter, βmax, depends primarily on the (We/Oh) and the increase in the surface roughness slightly reduces βmax. The transition from spreading to splashing is enhanced with increasing We or Ra or both. An empirical correlation of βmax as a function of the surface roughness was derived based on the present experimental data. In addition, the transition from spreading to splashing can be represented by a critical (We/Oh)1/2, which was fitted as a function of the surface roughness. All the proposed empirical correlations show good agreement with literature data and are believed to be of importance for the spray/wall interaction modelling.
Author Li, Jianling
Zhang, Xuhui
Zhang, Peng
Qin, Mengxiao
Weng, Xinyan
Tang, Chenglong
Huang, Zuohua
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Tang
  fullname: Tang, Chenglong
  email: chenglongtang@mail.xjtu.edu.cn
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 2
  givenname: Mengxiao
  surname: Qin
  fullname: Qin, Mengxiao
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 3
  givenname: Xinyan
  surname: Weng
  fullname: Weng, Xinyan
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 4
  givenname: Xuhui
  surname: Zhang
  fullname: Zhang, Xuhui
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 5
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Department of Mechanical Engineering, the Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 6
  givenname: Jianling
  surname: Li
  fullname: Li, Jianling
  organization: School of Power and Energy, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 7
  givenname: Zuohua
  surname: Huang
  fullname: Huang, Zuohua
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
BookMark eNqN0EtrAjEUBeBQLFRt_0NW3c00DzMz2RSKtrUgdOM-ZPKoGcZkSGLFf98Ru3IlHLh39cE5MzDxwRsAnjEqMcLVS1e6bn_osxt2Mhnbh2NJEK5LNAaROzDFTc0LyiidgCmiCBecEvIAZil1CCFWL-gUrFYnL_dOJRgs1DEMvcnQ7QepMgweptA7DdMhWqkMPLq8g9pZa6LxGcZw-Nl5k9IjuLeyT-bp_87B9uN9u1wXm-_Pr-XbplCUk1y0GumWVZIQwrBqqxpjyipFVN0aPb6NZAtMG95wzjRrWo50g4zluKa0rSs6B68XVsWQUjRWDNHtZTwJjMR5EtGJ60nEeRKBxiAyAqsrQLkssws-R-n625n1hTFj119nokjKGa-MdtGoLHRwt1J_MdePYQ
CitedBy_id crossref_primary_10_1007_s00339_024_07579_4
crossref_primary_10_1016_j_applthermaleng_2019_113848
crossref_primary_10_1038_s41586_022_05061_w
crossref_primary_10_1080_01932691_2024_2307571
crossref_primary_10_1016_j_colsurfa_2020_125989
crossref_primary_10_1080_00223131_2020_1764406
crossref_primary_10_1016_j_compfluid_2024_106377
crossref_primary_10_1016_j_ijmultiphaseflow_2019_05_002
crossref_primary_10_1021_acs_langmuir_7b02718
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103173
crossref_primary_10_3390_app10030942
crossref_primary_10_1103_PhysRevResearch_5_013100
crossref_primary_10_1115_1_4046559
crossref_primary_10_1016_j_nucengdes_2019_01_029
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104548
crossref_primary_10_1063_5_0105619
crossref_primary_10_1016_j_combustflame_2021_111597
crossref_primary_10_1016_j_anucene_2023_110145
crossref_primary_10_1016_j_seppur_2024_129344
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126787
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_007
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123219
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_081
crossref_primary_10_1016_j_watres_2024_122486
crossref_primary_10_1021_acs_langmuir_0c00601
crossref_primary_10_12677_IJFD_2020_82004
crossref_primary_10_1016_j_colsurfa_2021_126467
crossref_primary_10_1017_jfm_2024_684
crossref_primary_10_1115_1_4048289
crossref_primary_10_1016_j_ast_2019_105639
crossref_primary_10_1103_PhysRevFluids_4_083602
crossref_primary_10_3390_en11061576
crossref_primary_10_1007_s00396_023_05185_z
crossref_primary_10_3390_app122110747
crossref_primary_10_1016_j_icheatmasstransfer_2024_107690
crossref_primary_10_1007_s00348_022_03416_7
crossref_primary_10_1103_PhysRevFluids_5_011601
crossref_primary_10_1063_5_0252351
crossref_primary_10_1016_j_ces_2021_116977
crossref_primary_10_1016_j_expthermflusci_2021_110503
crossref_primary_10_1016_j_applthermaleng_2018_02_055
crossref_primary_10_3390_en15218181
crossref_primary_10_3390_mi13091521
crossref_primary_10_1103_PhysRevFluids_7_093606
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121795
crossref_primary_10_3390_app10020685
crossref_primary_10_1016_j_coldregions_2021_103373
crossref_primary_10_1016_j_cplett_2023_141025
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103501
crossref_primary_10_1002_admi_202100235
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104529
crossref_primary_10_1016_j_ast_2019_03_018
crossref_primary_10_1016_j_jqsrt_2020_106856
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_059
crossref_primary_10_1016_j_jclepro_2023_138605
crossref_primary_10_1063_5_0073258
crossref_primary_10_1016_j_applthermaleng_2021_117739
crossref_primary_10_1088_1361_6439_acf13c
crossref_primary_10_1016_j_ijthermalsci_2020_106594
crossref_primary_10_1080_01457632_2023_2199534
crossref_primary_10_1063_5_0179562
crossref_primary_10_1007_s11012_020_01285_0
crossref_primary_10_1016_j_cropro_2024_106835
crossref_primary_10_1002_dro2_116
crossref_primary_10_1016_j_jcis_2020_05_086
crossref_primary_10_1021_acs_langmuir_0c01628
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123524
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119494
crossref_primary_10_1021_acs_langmuir_1c02825
crossref_primary_10_1063_5_0241186
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125018
crossref_primary_10_1063_5_0225952
crossref_primary_10_1016_j_ijmultiphaseflow_2019_06_015
crossref_primary_10_1016_j_expthermflusci_2018_08_029
crossref_primary_10_1016_j_matdes_2023_112192
crossref_primary_10_1016_j_optlastec_2024_110791
crossref_primary_10_3390_en16021008
crossref_primary_10_1016_j_colsurfa_2022_130911
crossref_primary_10_1016_j_apsadv_2025_100738
crossref_primary_10_1063_5_0030188
crossref_primary_10_1134_S0015462824600068
crossref_primary_10_1021_acs_langmuir_4c00371
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122177
crossref_primary_10_1017_jfm_2021_313
crossref_primary_10_1063_5_0246986
crossref_primary_10_1016_j_colsurfa_2022_130360
crossref_primary_10_3390_pr10091766
crossref_primary_10_1016_j_addma_2022_102829
crossref_primary_10_3390_app7100977
crossref_primary_10_1063_5_0155328
crossref_primary_10_1007_s42757_019_0052_8
crossref_primary_10_1016_j_expthermflusci_2018_10_033
crossref_primary_10_1016_j_expthermflusci_2024_111338
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124959
crossref_primary_10_1103_PhysRevE_100_042803
crossref_primary_10_1002_smtd_202401983
crossref_primary_10_1063_5_0232326
crossref_primary_10_1007_s12217_019_9702_5
crossref_primary_10_1016_j_expthermflusci_2023_111023
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104909
crossref_primary_10_1016_j_expthermflusci_2024_111322
crossref_primary_10_1016_j_apsusc_2021_150717
crossref_primary_10_1088_1742_6596_1549_3_032028
crossref_primary_10_1088_1361_648X_ac3c67
crossref_primary_10_1016_j_sajce_2022_04_002
crossref_primary_10_7498_aps_69_20191141
crossref_primary_10_3390_coatings13081415
crossref_primary_10_1016_j_anucene_2020_107548
crossref_primary_10_1016_j_ces_2019_06_058
crossref_primary_10_1016_j_molliq_2020_114480
crossref_primary_10_3390_en14010080
crossref_primary_10_1134_S0015462822020033
crossref_primary_10_7498_aps_70_20201918
crossref_primary_10_3390_polym15214277
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119571
crossref_primary_10_1063_5_0086050
crossref_primary_10_7567_1882_0786_ab5906
crossref_primary_10_1016_j_anucene_2019_107081
crossref_primary_10_1063_5_0220581
crossref_primary_10_1021_acs_langmuir_0c00217
crossref_primary_10_1016_j_anucene_2022_109062
crossref_primary_10_1016_j_jfluidstructs_2023_103839
crossref_primary_10_2139_ssrn_4053075
crossref_primary_10_1038_s41598_019_51490_5
crossref_primary_10_1016_j_colsurfa_2024_134996
crossref_primary_10_1007_s00348_019_2715_4
crossref_primary_10_3390_coatings11091043
crossref_primary_10_1139_cjp_2018_0494
crossref_primary_10_1186_s40494_024_01475_z
crossref_primary_10_1016_j_ast_2023_108126
crossref_primary_10_1063_5_0226777
crossref_primary_10_1063_5_0243314
crossref_primary_10_1016_j_wear_2025_205768
crossref_primary_10_1021_acs_iecr_3c02119
crossref_primary_10_1016_j_colsurfa_2023_132381
crossref_primary_10_1016_j_euromechflu_2022_07_009
crossref_primary_10_1021_acs_langmuir_1c01076
crossref_primary_10_1021_acs_langmuir_9b01507
crossref_primary_10_1002_cjce_25652
crossref_primary_10_1002_smll_202307759
crossref_primary_10_1021_acsomega_4c00881
crossref_primary_10_1016_j_ces_2025_121470
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123190
crossref_primary_10_1016_j_colcom_2022_100651
crossref_primary_10_1016_j_ces_2020_116149
crossref_primary_10_1063_5_0109293
crossref_primary_10_1021_acs_iecr_3c01560
crossref_primary_10_1021_acs_iecr_3c02650
crossref_primary_10_3390_app12178549
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120891
crossref_primary_10_1007_s10409_024_24165_x
crossref_primary_10_1063_5_0046356
crossref_primary_10_1063_5_0211388
crossref_primary_10_1063_5_0028081
crossref_primary_10_1016_j_colsurfa_2020_125385
crossref_primary_10_1063_5_0073049
crossref_primary_10_3390_w15040719
crossref_primary_10_2514_1_T6656
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_023
crossref_primary_10_1016_j_ces_2019_115199
crossref_primary_10_1016_j_euromechflu_2020_07_006
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103241
crossref_primary_10_1007_s00170_024_13116_7
crossref_primary_10_1063_5_0120642
crossref_primary_10_1016_j_icheatmasstransfer_2021_105282
crossref_primary_10_1016_j_jtte_2020_02_001
crossref_primary_10_1063_5_0136692
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120076
crossref_primary_10_3390_pr11092591
crossref_primary_10_1016_j_expthermflusci_2019_110020
crossref_primary_10_1063_5_0174008
crossref_primary_10_3390_fluids7010038
crossref_primary_10_1016_j_expthermflusci_2023_111094
crossref_primary_10_1016_j_ces_2018_06_030
crossref_primary_10_1016_j_optlastec_2023_110329
crossref_primary_10_1016_j_anucene_2019_107038
crossref_primary_10_1016_j_colsurfa_2024_134250
crossref_primary_10_1007_s00162_023_00652_3
crossref_primary_10_1021_acs_langmuir_0c03193
crossref_primary_10_1016_j_agrformet_2019_107762
crossref_primary_10_1002_mdp2_263
crossref_primary_10_1021_acs_langmuir_1c01797
crossref_primary_10_1016_j_expthermflusci_2019_03_024
crossref_primary_10_1088_2058_8585_ad59b3
crossref_primary_10_1016_j_expthermflusci_2019_03_021
crossref_primary_10_1016_j_colsurfa_2023_132217
crossref_primary_10_1016_j_colsurfa_2021_126895
crossref_primary_10_1063_5_0249722
crossref_primary_10_1021_acs_langmuir_4c05317
crossref_primary_10_3389_fenrg_2021_678495
crossref_primary_10_3390_app142411608
crossref_primary_10_1007_s42401_023_00192_y
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122625
crossref_primary_10_3390_fluids5030107
crossref_primary_10_1134_S0015462822601681
crossref_primary_10_1038_s41598_022_08852_3
Cites_doi 10.1016/j.wear.2015.02.054
10.1016/j.cis.2015.02.004
10.1103/PhysRevE.75.056316
10.1103/PhysRevLett.108.036101
10.1103/PhysRevLett.94.184505
10.1038/35015525
10.1016/S0894-1777(03)00015-3
10.1016/j.expthermflusci.2012.08.020
10.4271/871613
10.1016/j.ijheatfluidflow.2006.09.003
10.1063/1.3432498
10.1098/rspa.1981.0002
10.1016/j.pecs.2010.01.002
10.1016/0021-9797(75)90126-5
10.4271/950283
10.1039/c4sm00050a
10.1177/1468087411431890
10.1103/PhysRevLett.109.054501
10.1016/0010-2180(94)00174-Q
10.1016/S0043-1648(03)00253-9
10.1007/s00348-005-0043-3
10.1146/annurev-fluid-122414-034401
10.1007/BF02645275
10.1063/1.3129283
10.1063/1.869661
10.1006/jcis.1998.5518
10.1021/ie50320a024
10.1016/j.ijheatmasstransfer.2008.05.028
10.1016/j.expthermflusci.2014.10.019
10.1016/0301-9322(94)00069-V
10.1021/acs.langmuir.5b04639
10.1098/rspa.2001.0923
10.1146/annurev.fluid.38.050304.092144
10.1209/0295-5075/106/24001
10.1016/S0142-727X(00)00086-2
10.1002/aic.690410602
10.1017/S0022112004000904
10.1021/la0481288
10.1103/PhysRevApplied.2.044018
10.1016/j.expthermflusci.2014.01.014
10.1007/s00348-005-0045-1
10.1017/jfm.2016.584
10.1039/tf9444000546
10.1007/s00348-002-0431-x
10.1007/s003480050073
10.1017/S0022112006000231
10.1063/1.868850
10.1063/1.4941577
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2017.07.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 69
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2017_07_002
S0301932217300046
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c392t-bd0db56a22251cb6711356c2c7bed1358a5413898995d58b90d80ef91733b763
IEDL.DBID .~1
ISSN 0301-9322
IngestDate Thu Apr 24 23:13:24 EDT 2025
Tue Jul 01 02:45:06 EDT 2025
Fri Feb 23 02:26:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Transition from spreading to splashing
Droplet impact
Surface roughness
Spreading diameter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-bd0db56a22251cb6711356c2c7bed1358a5413898995d58b90d80ef91733b763
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0301932217300046
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2017_07_002
crossref_citationtrail_10_1016_j_ijmultiphaseflow_2017_07_002
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2017_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of multiphase flow
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mundo, Sommerfeld, Tropea (bib0021) 1995; 21
Bai, C., Gosman, A.D., 1995. Development of methodology for spray impingement simulation. SAE paper No.950283.
Wenzel (bib0044) 1936; 28
Chou, Patterson (bib0007) 1995; 101
Pasandideh-Fard, Aziz, Chandra, Mostaghimi (bib0023) 2001; 22
Sen, Vaikuntanathan, Sivakumar (bib0032) 2014; 54
Stow, Hadfield (bib0035) 1981; 373
Vaikuntanathan, Sivakumar (bib0040) 2014; 10
Vaikuntanathan, Sivakumar (bib0041) 2016; 32
Vander Wal, Berger, Mozes (bib0043) 2006; 40
Yarin (bib0048) 2006
Cossali, Coghe, Marengo (bib0009) 1997; 22
Sampath, Herman (bib0030) 1996; 5
Kim (bib0014) 2007; 28
Xu (bib0046) 2007; 75
Mann, Arya (bib0018) 2003; 254
Wildeman, Visser, Sun, Lohse (bib0045) 2016; 805
Allen (bib0001) 1975; 51
Latka, Strandburgpeshkin, Driscoll, Stevens, Nagel (bib0016) 2012; 109
Clanet, Beguin, Richard, Quere (bib0008) 2004; 517
Stevens (bib0034) 2014; 106
Eggers, Fontelos, Josserand, Zaleski (bib0010) 2010; 22
Seo, Lee, Kim, Yoon (bib0033) 2015; 61
Xu, Zhang, Nagel (bib0047) 2005; 94
Bergeron, Bonn, Martin, Vovelle (bib0004) 2000; 405
Vander Wal, Berger, Mozes (bib0042) 2006; 40
Matsui, Y., Sugihara, K., 1987. Sources of hydrocarbon emissions from a small direct injection diesel engine. SAE Paper No.871613.
Kalghatgi, Bradley (bib0013) 2012; 13
Rioboo, Marengo, Tropea (bib0026) 2002; 33
Roisman, Lembach, Tropea (bib0028) 2015; 222
Cassie, Baxter (bib0005) 1944; 40
Scheller, Bousfield (bib0031) 1995; 41
Lim, Han, Chung, Chung, Ko, Grigoropoulos (bib0017) 2009; 52
Jia, Qiu (bib0011) 2003; 27
Ukiwe, Kwok (bib0039) 2005; 21
Laan, de Bruin, Bartolo, Josserand, Bonn (bib0015) 2014; 2
Thoroddsen, Sakakibara (bib0036) 1998; 10
Josserand, Thoroddsen (bib0012) 2016
Roisman (bib0027) 2009; 21
PasandidehFard, Qiao, Chandra, Mostaghimi (bib0024) 1996; 8
Roisman, Rioboo, Tropea (bib0029) 2002; 458
Tobin, Rohr, Raps, Willemse, Norman, Young (bib0037) 2015; 328
Bayer, Megaridis (bib0003) 2006; 558
Chamakos, Kavousanakis, Boudouvis, Papathanasiou (bib0006) 2016; 28
Palacios, Hernández, Gómez, Zanzi, López (bib0022) 2013; 44
Moreira, Moita, Panão (bib0020) 2010; 36
Range, Feuillebois (bib0025) 1998; 203
Tran, Staat, Prosperetti, Sun, Lohse (bib0038) 2012; 108
Moreira (10.1016/j.ijmultiphaseflow.2017.07.002_bib0020) 2010; 36
Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0029) 2002; 458
Josserand (10.1016/j.ijmultiphaseflow.2017.07.002_bib0012) 2016
Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0028) 2015; 222
Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0027) 2009; 21
Bayer (10.1016/j.ijmultiphaseflow.2017.07.002_bib0003) 2006; 558
Jia (10.1016/j.ijmultiphaseflow.2017.07.002_bib0011) 2003; 27
10.1016/j.ijmultiphaseflow.2017.07.002_bib0002
Vander Wal (10.1016/j.ijmultiphaseflow.2017.07.002_bib0042) 2006; 40
Range (10.1016/j.ijmultiphaseflow.2017.07.002_bib0025) 1998; 203
Cassie (10.1016/j.ijmultiphaseflow.2017.07.002_bib0005) 1944; 40
Eggers (10.1016/j.ijmultiphaseflow.2017.07.002_bib0010) 2010; 22
Thoroddsen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0036) 1998; 10
Ukiwe (10.1016/j.ijmultiphaseflow.2017.07.002_bib0039) 2005; 21
Chamakos (10.1016/j.ijmultiphaseflow.2017.07.002_bib0006) 2016; 28
Lim (10.1016/j.ijmultiphaseflow.2017.07.002_bib0017) 2009; 52
Rioboo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0026) 2002; 33
Mundo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0021) 1995; 21
Mann (10.1016/j.ijmultiphaseflow.2017.07.002_bib0018) 2003; 254
Pasandideh-Fard (10.1016/j.ijmultiphaseflow.2017.07.002_bib0023) 2001; 22
Wenzel (10.1016/j.ijmultiphaseflow.2017.07.002_bib0044) 1936; 28
Seo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0033) 2015; 61
Kim (10.1016/j.ijmultiphaseflow.2017.07.002_bib0014) 2007; 28
Scheller (10.1016/j.ijmultiphaseflow.2017.07.002_bib0031) 1995; 41
Bergeron (10.1016/j.ijmultiphaseflow.2017.07.002_bib0004) 2000; 405
Wildeman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0045) 2016; 805
Kalghatgi (10.1016/j.ijmultiphaseflow.2017.07.002_bib0013) 2012; 13
Allen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0001) 1975; 51
Laan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0015) 2014; 2
Cossali (10.1016/j.ijmultiphaseflow.2017.07.002_bib0009) 1997; 22
Latka (10.1016/j.ijmultiphaseflow.2017.07.002_bib0016) 2012; 109
PasandidehFard (10.1016/j.ijmultiphaseflow.2017.07.002_bib0024) 1996; 8
Stevens (10.1016/j.ijmultiphaseflow.2017.07.002_bib0034) 2014; 106
10.1016/j.ijmultiphaseflow.2017.07.002_bib0019
Tobin (10.1016/j.ijmultiphaseflow.2017.07.002_bib0037) 2015; 328
Xu (10.1016/j.ijmultiphaseflow.2017.07.002_bib0047) 2005; 94
Stow (10.1016/j.ijmultiphaseflow.2017.07.002_bib0035) 1981; 373
Vaikuntanathan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0041) 2016; 32
Clanet (10.1016/j.ijmultiphaseflow.2017.07.002_bib0008) 2004; 517
Palacios (10.1016/j.ijmultiphaseflow.2017.07.002_bib0022) 2013; 44
Sen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0032) 2014; 54
Xu (10.1016/j.ijmultiphaseflow.2017.07.002_bib0046) 2007; 75
Chou (10.1016/j.ijmultiphaseflow.2017.07.002_bib0007) 1995; 101
Vaikuntanathan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0040) 2014; 10
Tran (10.1016/j.ijmultiphaseflow.2017.07.002_bib0038) 2012; 108
Sampath (10.1016/j.ijmultiphaseflow.2017.07.002_bib0030) 1996; 5
Vander Wal (10.1016/j.ijmultiphaseflow.2017.07.002_bib0043) 2006; 40
Yarin (10.1016/j.ijmultiphaseflow.2017.07.002_bib0048) 2006
References_xml – volume: 41
  start-page: 1357
  year: 1995
  end-page: 1367
  ident: bib0031
  article-title: Newtonian drop impact with a solid-surface
  publication-title: Aiche J
– volume: 40
  start-page: 0546
  year: 1944
  end-page: 0550
  ident: bib0005
  article-title: Wettability of porous surfaces
  publication-title: Trans. Faraday. Soc.
– volume: 2
  year: 2014
  ident: bib0015
  article-title: Maximum diameter of impacting liquid droplets
  publication-title: Phys. Rev. Appl.
– volume: 32
  start-page: 2399
  year: 2016
  end-page: 2409
  ident: bib0041
  article-title: Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture
  publication-title: Langmuir
– volume: 203
  start-page: 16
  year: 1998
  end-page: 30
  ident: bib0025
  article-title: Influence of surface roughness on liquid drop impact
  publication-title: J. Colloid Interf. Sci.
– volume: 10
  start-page: 2991
  year: 2014
  end-page: 3002
  ident: bib0040
  article-title: Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces
  publication-title: Soft Matter
– volume: 21
  start-page: 151
  year: 1995
  end-page: 173
  ident: bib0021
  article-title: Droplet-wall collisions - experimental studies of the deformation and breakup process
  publication-title: Int. J. Multiphase Flow.
– volume: 61
  start-page: 121
  year: 2015
  end-page: 129
  ident: bib0033
  article-title: Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall
  publication-title: Exp. Therm. Fluid. Sci.
– volume: 328
  start-page: 318
  year: 2015
  end-page: 328
  ident: bib0037
  article-title: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities
  publication-title: Wear
– volume: 21
  start-page: 666
  year: 2005
  end-page: 673
  ident: bib0039
  article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
  publication-title: Langmuir
– reference: Bai, C., Gosman, A.D., 1995. Development of methodology for spray impingement simulation. SAE paper No.950283.
– volume: 54
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0032
  article-title: Experimental investigation of biofuel drop impact on stainless steel surface
  publication-title: Exp. Therm. Fluid. Sci.
– volume: 5
  start-page: 445
  year: 1996
  end-page: 456
  ident: bib0030
  article-title: Rapid solidification and microstructure development during plasma spray deposition
  publication-title: J. Therm. Spray. Technol.
– volume: 254
  start-page: 652
  year: 2003
  end-page: 667
  ident: bib0018
  article-title: HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades
  publication-title: Wear
– volume: 28
  year: 2016
  ident: bib0006
  article-title: Droplet spreading on rough surfaces: tackling the contact line boundary condition
  publication-title: Phys. Fluids.
– volume: 28
  start-page: 988
  year: 1936
  end-page: 994
  ident: bib0044
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind. Eng. Chem.
– volume: 40
  start-page: 23
  year: 2006
  end-page: 32
  ident: bib0042
  article-title: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them
  publication-title: Exp. Fluids.
– volume: 405
  start-page: 772
  year: 2000
  end-page: 775
  ident: bib0004
  article-title: Controlling droplet deposition with polymer additives
  publication-title: Nature
– volume: 8
  start-page: 650
  year: 1996
  end-page: 659
  ident: bib0024
  article-title: Capillary effects during droplet impact on a solid surface
  publication-title: Phys. Fluids.
– reference: Matsui, Y., Sugihara, K., 1987. Sources of hydrocarbon emissions from a small direct injection diesel engine. SAE Paper No.871613.
– start-page: 365
  year: 2016
  end-page: 391
  ident: bib0012
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid. Mech.
– volume: 36
  start-page: 554
  year: 2010
  end-page: 580
  ident: bib0020
  article-title: Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog
  publication-title: Energ. Combust.
– volume: 108
  year: 2012
  ident: bib0038
  article-title: Drop impact on superheated surfaces
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 753
  year: 2007
  end-page: 767
  ident: bib0014
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int. J. Heat Fluid. Fl.
– volume: 94
  year: 2005
  ident: bib0047
  article-title: Drop splashing on a dry smooth surface
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 201
  year: 2001
  end-page: 210
  ident: bib0023
  article-title: Cooling effectiveness of a water drop impinging on a hot surface
  publication-title: Int. J. Heat Fluid. Fl.
– volume: 10
  start-page: 1359
  year: 1998
  end-page: 1374
  ident: bib0036
  article-title: Evolution of the fingering pattern of an impacting drop
  publication-title: Phys. Fluids.
– volume: 458
  start-page: 1411
  year: 2002
  end-page: 1430
  ident: bib0029
  article-title: Normal impact of a liquid drop on a dry surface: model for spreading and receding
  publication-title: P. Roy. Soc. Lond. A Mat.
– volume: 33
  start-page: 112
  year: 2002
  end-page: 124
  ident: bib0026
  article-title: Time evolution of liquid drop impact onto solid, dry surfaces
  publication-title: Exp. Fluids.
– volume: 22
  year: 2010
  ident: bib0010
  article-title: Drop dynamics after impact on a solid wall: theory and simulations
  publication-title: Phys. Fluids.
– volume: 40
  start-page: 53
  year: 2006
  end-page: 59
  ident: bib0043
  article-title: The splash/non-splash boundary upon a dry surface and thin fluid film
  publication-title: Exp. Fluids.
– volume: 106
  start-page: 24001
  year: 2014
  ident: bib0034
  article-title: Scaling of the splash threshold for low-viscosity fluids
  publication-title: EPL
– volume: 51
  start-page: 350
  year: 1975
  end-page: 351
  ident: bib0001
  article-title: Role of surface-tension in splashing
  publication-title: J. Colloid Interf. Sci.
– volume: 22
  start-page: 463
  year: 1997
  end-page: 472
  ident: bib0009
  article-title: The impact of a single drop on a wetted solid surface
  publication-title: Exp. Fluids.
– volume: 21
  year: 2009
  ident: bib0027
  article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film
  publication-title: Phys. Fluids.
– volume: 558
  start-page: 415
  year: 2006
  end-page: 449
  ident: bib0003
  article-title: Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics
  publication-title: J. Fluid. Mech.
– volume: 109
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib0016
  article-title: Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 571
  year: 2013
  end-page: 582
  ident: bib0022
  article-title: Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces
  publication-title: Exp. Therm. Fluid. Sci.
– volume: 27
  start-page: 829
  year: 2003
  end-page: 838
  ident: bib0011
  article-title: Experimental investigation of droplet dynamics and heat transfer in spray cooling
  publication-title: Exp. Therm. Fluid. Sci.
– volume: 13
  start-page: 399
  year: 2012
  end-page: 414
  ident: bib0013
  article-title: Pre-ignition and 'super-knock' in turbo-charged spark-ignition engines
  publication-title: Int. J. Engine. Res.
– volume: 52
  start-page: 431
  year: 2009
  end-page: 441
  ident: bib0017
  article-title: Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate
  publication-title: Int. J. Heat Mass Tran.
– volume: 101
  start-page: 45
  year: 1995
  end-page: 57
  ident: bib0007
  article-title: In-cylinder measurement of mixture maldistribution in a L-head engine
  publication-title: Comb. Flame.
– volume: 222
  start-page: 615
  year: 2015
  end-page: 621
  ident: bib0028
  article-title: Drop splashing induced by target roughness and porosity: the size plays no role
  publication-title: Adva. Colloid Interf. Sci.
– start-page: 159
  year: 2006
  end-page: 192
  ident: bib0048
  article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing
  publication-title: Annu. Rev. Fluid. Mech.
– volume: 517
  start-page: 199
  year: 2004
  end-page: 208
  ident: bib0008
  article-title: Maximal deformation of an impacting drop
  publication-title: J. Fluid. Mech.
– volume: 373
  start-page: 419
  year: 1981
  end-page: 441
  ident: bib0035
  article-title: An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface
  publication-title: P. Roy. Soc. Lond. A Mat.
– volume: 75
  year: 2007
  ident: bib0046
  article-title: Liquid drop splashing on smooth, rough, and textured surfaces
  publication-title: Phys. Rev. E.
– volume: 805
  start-page: 636
  year: 2016
  end-page: 655
  ident: bib0045
  article-title: On the spreading of impacting drops
  publication-title: J. Fluid. Mech.
– volume: 328
  start-page: 318
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0037
  article-title: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities
  publication-title: Wear
  doi: 10.1016/j.wear.2015.02.054
– volume: 222
  start-page: 615
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0028
  article-title: Drop splashing induced by target roughness and porosity: the size plays no role
  publication-title: Adva. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2015.02.004
– volume: 75
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0046
  article-title: Liquid drop splashing on smooth, rough, and textured surfaces
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.75.056316
– volume: 108
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0038
  article-title: Drop impact on superheated surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.036101
– volume: 94
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0047
  article-title: Drop splashing on a dry smooth surface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.184505
– volume: 405
  start-page: 772
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0004
  article-title: Controlling droplet deposition with polymer additives
  publication-title: Nature
  doi: 10.1038/35015525
– volume: 27
  start-page: 829
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0011
  article-title: Experimental investigation of droplet dynamics and heat transfer in spray cooling
  publication-title: Exp. Therm. Fluid. Sci.
  doi: 10.1016/S0894-1777(03)00015-3
– volume: 44
  start-page: 571
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0022
  article-title: Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces
  publication-title: Exp. Therm. Fluid. Sci.
  doi: 10.1016/j.expthermflusci.2012.08.020
– ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0019
  doi: 10.4271/871613
– volume: 28
  start-page: 753
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0014
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int. J. Heat Fluid. Fl.
  doi: 10.1016/j.ijheatfluidflow.2006.09.003
– volume: 22
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0010
  article-title: Drop dynamics after impact on a solid wall: theory and simulations
  publication-title: Phys. Fluids.
  doi: 10.1063/1.3432498
– volume: 373
  start-page: 419
  year: 1981
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0035
  article-title: An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface
  publication-title: P. Roy. Soc. Lond. A Mat.
  doi: 10.1098/rspa.1981.0002
– volume: 36
  start-page: 554
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0020
  article-title: Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog
  publication-title: Energ. Combust.
  doi: 10.1016/j.pecs.2010.01.002
– volume: 51
  start-page: 350
  year: 1975
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0001
  article-title: Role of surface-tension in splashing
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(75)90126-5
– ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0002
  doi: 10.4271/950283
– volume: 10
  start-page: 2991
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0040
  article-title: Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces
  publication-title: Soft Matter
  doi: 10.1039/c4sm00050a
– volume: 13
  start-page: 399
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0013
  article-title: Pre-ignition and 'super-knock' in turbo-charged spark-ignition engines
  publication-title: Int. J. Engine. Res.
  doi: 10.1177/1468087411431890
– volume: 109
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0016
  article-title: Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.054501
– volume: 101
  start-page: 45
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0007
  article-title: In-cylinder measurement of mixture maldistribution in a L-head engine
  publication-title: Comb. Flame.
  doi: 10.1016/0010-2180(94)00174-Q
– volume: 254
  start-page: 652
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0018
  article-title: HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00253-9
– volume: 40
  start-page: 23
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0042
  article-title: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-005-0043-3
– start-page: 365
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0012
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid. Mech.
  doi: 10.1146/annurev-fluid-122414-034401
– volume: 5
  start-page: 445
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0030
  article-title: Rapid solidification and microstructure development during plasma spray deposition
  publication-title: J. Therm. Spray. Technol.
  doi: 10.1007/BF02645275
– volume: 21
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0027
  article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film
  publication-title: Phys. Fluids.
  doi: 10.1063/1.3129283
– volume: 10
  start-page: 1359
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0036
  article-title: Evolution of the fingering pattern of an impacting drop
  publication-title: Phys. Fluids.
  doi: 10.1063/1.869661
– volume: 203
  start-page: 16
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0025
  article-title: Influence of surface roughness on liquid drop impact
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1998.5518
– volume: 28
  start-page: 988
  year: 1936
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0044
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50320a024
– volume: 52
  start-page: 431
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0017
  article-title: Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2008.05.028
– volume: 61
  start-page: 121
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0033
  article-title: Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall
  publication-title: Exp. Therm. Fluid. Sci.
  doi: 10.1016/j.expthermflusci.2014.10.019
– volume: 21
  start-page: 151
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0021
  article-title: Droplet-wall collisions - experimental studies of the deformation and breakup process
  publication-title: Int. J. Multiphase Flow.
  doi: 10.1016/0301-9322(94)00069-V
– volume: 32
  start-page: 2399
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0041
  article-title: Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b04639
– volume: 458
  start-page: 1411
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0029
  article-title: Normal impact of a liquid drop on a dry surface: model for spreading and receding
  publication-title: P. Roy. Soc. Lond. A Mat.
  doi: 10.1098/rspa.2001.0923
– start-page: 159
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0048
  article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing
  publication-title: Annu. Rev. Fluid. Mech.
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 106
  start-page: 24001
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0034
  article-title: Scaling of the splash threshold for low-viscosity fluids
  publication-title: EPL
  doi: 10.1209/0295-5075/106/24001
– volume: 22
  start-page: 201
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0023
  article-title: Cooling effectiveness of a water drop impinging on a hot surface
  publication-title: Int. J. Heat Fluid. Fl.
  doi: 10.1016/S0142-727X(00)00086-2
– volume: 41
  start-page: 1357
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0031
  article-title: Newtonian drop impact with a solid-surface
  publication-title: Aiche J
  doi: 10.1002/aic.690410602
– volume: 517
  start-page: 199
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0008
  article-title: Maximal deformation of an impacting drop
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112004000904
– volume: 21
  start-page: 666
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0039
  article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
  publication-title: Langmuir
  doi: 10.1021/la0481288
– volume: 2
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0015
  article-title: Maximum diameter of impacting liquid droplets
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.044018
– volume: 54
  start-page: 38
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0032
  article-title: Experimental investigation of biofuel drop impact on stainless steel surface
  publication-title: Exp. Therm. Fluid. Sci.
  doi: 10.1016/j.expthermflusci.2014.01.014
– volume: 40
  start-page: 53
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0043
  article-title: The splash/non-splash boundary upon a dry surface and thin fluid film
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-005-0045-1
– volume: 805
  start-page: 636
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0045
  article-title: On the spreading of impacting drops
  publication-title: J. Fluid. Mech.
  doi: 10.1017/jfm.2016.584
– volume: 40
  start-page: 0546
  year: 1944
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0005
  article-title: Wettability of porous surfaces
  publication-title: Trans. Faraday. Soc.
  doi: 10.1039/tf9444000546
– volume: 33
  start-page: 112
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0026
  article-title: Time evolution of liquid drop impact onto solid, dry surfaces
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-002-0431-x
– volume: 22
  start-page: 463
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0009
  article-title: The impact of a single drop on a wetted solid surface
  publication-title: Exp. Fluids.
  doi: 10.1007/s003480050073
– volume: 558
  start-page: 415
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0003
  article-title: Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112006000231
– volume: 8
  start-page: 650
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0024
  article-title: Capillary effects during droplet impact on a solid surface
  publication-title: Phys. Fluids.
  doi: 10.1063/1.868850
– volume: 28
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0006
  article-title: Droplet spreading on rough surfaces: tackling the contact line boundary condition
  publication-title: Phys. Fluids.
  doi: 10.1063/1.4941577
SSID ssj0005743
Score 2.5900753
Snippet •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Droplet impact
Spreading diameter
Surface roughness
Transition from spreading to splashing
Title Dynamics of droplet impact on solid surface with different roughness
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.07.002
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5VIBAMCAqI8qg8IDbTpHEeHRiqlqqA6EKRukV-RaSqkqpNxcZvx5cHFFg6sMWRbUXny_mz77s7gGvH10oqGVFtSUmZrRzKmRDU5lojQuc6954_j7zhK3ucuJMa9KpYGKRVlra_sOm5tS7ftEpptuZx3HpBMG_Qh8HUTh4DiRHszEctv_1Yo3kUJHvsTLH3Ltx8c7ziaUHbezM7RjRL35Hq5efJPMtrlj8b1drmMziEgxI1km7xYUdQ00kd9tdyCdZhJ-dyyuUx9PtFlfklSSOiFsgQz0gRDUnShBhlixVZrhYRl5rgPSypqqRkJC_ag9bvBMaD-3FvSMtiCVQaiJNRoSwlXI_j-c2WwvNt23E92Za-0Mo8Btxl6JQ05ytXuYHoWCqwdGROa44jjJE5ha0kTfQZEIcFFlMW923NmVa6Y35q0-AykMqzpd2Au0owoSwTiWM9i1lYMcam4W_BhijY0EJfd7sB_tf4eZFSY-OR3Wodwh9KEhr7v-Ec5_8wxwXsYasISbyErWyx0lcGm2SimStfE7a7D0_D0SepGujl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxNfBKGrE5x6Mt4aWPjl4ICAp8riICbdmX40lpBAo8e-7290K6oWDt75m00ynM9_ufjMD8Gj7nFFGY4OblBqOxWwDO4QYFuZcInTM893z4cgL353XiTspQbvIhZG0Su37lU_PvbW-UtfarC-SpP4mwbxAHwJT23kO5B5UZHUqtwyVVq8fjjZMD8Wzl88bUuAAnjY0r2SqmHsfImjEs_mnZHv5eT1PvdLyJ1ZtxZ_uKZxo4Iha6t3OoMTTKhxvlROswn5O56Src-h0VKP5FZrHiC0lSTxDKiESzVMk7C1haLVexphyJJdiUdEoJUN53x7pAC9g3H0Zt0ND90swqEA5mUGYyYjrYTmFsyjxfMuyXY82qE84E4cBdh25LymmWC5zA9I0WWDyWEzYbJsIP3MJ5XSe8itAthOYDjOxb3HscMab4r8WJ5gGlHkWtWrwXCgmorqWuGxpMYsK0tg0-q3YSCo2MuV2d6MG_rf8QlXV2FmyVXyH6IedRCIE7DjG9T-M8QCH4Xg4iAa9Uf8GjuQdlaF4C-VsueZ3Aqpk5F6b4hegZOuW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+droplet+impact+on+solid+surface+with+different+roughness&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Tang%2C+Chenglong&rft.au=Qin%2C+Mengxiao&rft.au=Weng%2C+Xinyan&rft.au=Zhang%2C+Xuhui&rft.date=2017-11-01&rft.issn=0301-9322&rft.volume=96&rft.spage=56&rft.epage=69&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2017.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2017_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon