Dynamics of droplet impact on solid surface with different roughness
•We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agree...
Saved in:
Published in | International journal of multiphase flow Vol. 96; pp. 56 - 69 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agreement with both the present and previous experimental data.•The transition from spreading to splashing empirically fitted as a function of the surface roughness, which also shows reasonably good agreement with all the public literature data.
This paper reports an experimental investigation on the impact dynamics of droplets (water, decane, ethanol, and tetradecane) onto a flat stainless steel surface, using high-speed microphotography and with a particular interest in the effect of surface roughness on the impact dynamics. Results show that the impacting water droplet spreads on the surface in the form of a rim-bounded lamella and the rim contracts back after reaching the maximum spreading, while this contraction motion is absent for the fuel liquids. With the increase of Weber number (We) and surface roughness, splashing, evidenced by the ejection of secondary droplets, is favored. The droplet spreading, which is characterized by a normalized diameter β, is accelerated with increasing We, while the surface roughness and Ohnesorge number (Oh) tend to slow down the spreading process. Furthermore, the maximum normalized spreading diameter, βmax, depends primarily on the (We/Oh) and the increase in the surface roughness slightly reduces βmax. The transition from spreading to splashing is enhanced with increasing We or Ra or both. An empirical correlation of βmax as a function of the surface roughness was derived based on the present experimental data. In addition, the transition from spreading to splashing can be represented by a critical (We/Oh)1/2, which was fitted as a function of the surface roughness. All the proposed empirical correlations show good agreement with literature data and are believed to be of importance for the spray/wall interaction modelling. |
---|---|
AbstractList | •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet impacting.•We extended previous work on βmax to accommodate Ra effect and the derived empirical correlations of βmax as a function of Ra show good agreement with both the present and previous experimental data.•The transition from spreading to splashing empirically fitted as a function of the surface roughness, which also shows reasonably good agreement with all the public literature data.
This paper reports an experimental investigation on the impact dynamics of droplets (water, decane, ethanol, and tetradecane) onto a flat stainless steel surface, using high-speed microphotography and with a particular interest in the effect of surface roughness on the impact dynamics. Results show that the impacting water droplet spreads on the surface in the form of a rim-bounded lamella and the rim contracts back after reaching the maximum spreading, while this contraction motion is absent for the fuel liquids. With the increase of Weber number (We) and surface roughness, splashing, evidenced by the ejection of secondary droplets, is favored. The droplet spreading, which is characterized by a normalized diameter β, is accelerated with increasing We, while the surface roughness and Ohnesorge number (Oh) tend to slow down the spreading process. Furthermore, the maximum normalized spreading diameter, βmax, depends primarily on the (We/Oh) and the increase in the surface roughness slightly reduces βmax. The transition from spreading to splashing is enhanced with increasing We or Ra or both. An empirical correlation of βmax as a function of the surface roughness was derived based on the present experimental data. In addition, the transition from spreading to splashing can be represented by a critical (We/Oh)1/2, which was fitted as a function of the surface roughness. All the proposed empirical correlations show good agreement with literature data and are believed to be of importance for the spray/wall interaction modelling. |
Author | Li, Jianling Zhang, Xuhui Zhang, Peng Qin, Mengxiao Weng, Xinyan Tang, Chenglong Huang, Zuohua |
Author_xml | – sequence: 1 givenname: Chenglong surname: Tang fullname: Tang, Chenglong email: chenglongtang@mail.xjtu.edu.cn organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 2 givenname: Mengxiao surname: Qin fullname: Qin, Mengxiao organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 3 givenname: Xinyan surname: Weng fullname: Weng, Xinyan organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 4 givenname: Xuhui surname: Zhang fullname: Zhang, Xuhui organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 5 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Department of Mechanical Engineering, the Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 6 givenname: Jianling surname: Li fullname: Li, Jianling organization: School of Power and Energy, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 7 givenname: Zuohua surname: Huang fullname: Huang, Zuohua organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China |
BookMark | eNqN0EtrAjEUBeBQLFRt_0NW3c00DzMz2RSKtrUgdOM-ZPKoGcZkSGLFf98Ru3IlHLh39cE5MzDxwRsAnjEqMcLVS1e6bn_osxt2Mhnbh2NJEK5LNAaROzDFTc0LyiidgCmiCBecEvIAZil1CCFWL-gUrFYnL_dOJRgs1DEMvcnQ7QepMgweptA7DdMhWqkMPLq8g9pZa6LxGcZw-Nl5k9IjuLeyT-bp_87B9uN9u1wXm-_Pr-XbplCUk1y0GumWVZIQwrBqqxpjyipFVN0aPb6NZAtMG95wzjRrWo50g4zluKa0rSs6B68XVsWQUjRWDNHtZTwJjMR5EtGJ60nEeRKBxiAyAqsrQLkssws-R-n625n1hTFj119nokjKGa-MdtGoLHRwt1J_MdePYQ |
CitedBy_id | crossref_primary_10_1007_s00339_024_07579_4 crossref_primary_10_1016_j_applthermaleng_2019_113848 crossref_primary_10_1038_s41586_022_05061_w crossref_primary_10_1080_01932691_2024_2307571 crossref_primary_10_1016_j_colsurfa_2020_125989 crossref_primary_10_1080_00223131_2020_1764406 crossref_primary_10_1016_j_compfluid_2024_106377 crossref_primary_10_1016_j_ijmultiphaseflow_2019_05_002 crossref_primary_10_1021_acs_langmuir_7b02718 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103173 crossref_primary_10_3390_app10030942 crossref_primary_10_1103_PhysRevResearch_5_013100 crossref_primary_10_1115_1_4046559 crossref_primary_10_1016_j_nucengdes_2019_01_029 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104548 crossref_primary_10_1063_5_0105619 crossref_primary_10_1016_j_combustflame_2021_111597 crossref_primary_10_1016_j_anucene_2023_110145 crossref_primary_10_1016_j_seppur_2024_129344 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126787 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_007 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123219 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_081 crossref_primary_10_1016_j_watres_2024_122486 crossref_primary_10_1021_acs_langmuir_0c00601 crossref_primary_10_12677_IJFD_2020_82004 crossref_primary_10_1016_j_colsurfa_2021_126467 crossref_primary_10_1017_jfm_2024_684 crossref_primary_10_1115_1_4048289 crossref_primary_10_1016_j_ast_2019_105639 crossref_primary_10_1103_PhysRevFluids_4_083602 crossref_primary_10_3390_en11061576 crossref_primary_10_1007_s00396_023_05185_z crossref_primary_10_3390_app122110747 crossref_primary_10_1016_j_icheatmasstransfer_2024_107690 crossref_primary_10_1007_s00348_022_03416_7 crossref_primary_10_1103_PhysRevFluids_5_011601 crossref_primary_10_1063_5_0252351 crossref_primary_10_1016_j_ces_2021_116977 crossref_primary_10_1016_j_expthermflusci_2021_110503 crossref_primary_10_1016_j_applthermaleng_2018_02_055 crossref_primary_10_3390_en15218181 crossref_primary_10_3390_mi13091521 crossref_primary_10_1103_PhysRevFluids_7_093606 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121795 crossref_primary_10_3390_app10020685 crossref_primary_10_1016_j_coldregions_2021_103373 crossref_primary_10_1016_j_cplett_2023_141025 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103501 crossref_primary_10_1002_admi_202100235 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104529 crossref_primary_10_1016_j_ast_2019_03_018 crossref_primary_10_1016_j_jqsrt_2020_106856 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_059 crossref_primary_10_1016_j_jclepro_2023_138605 crossref_primary_10_1063_5_0073258 crossref_primary_10_1016_j_applthermaleng_2021_117739 crossref_primary_10_1088_1361_6439_acf13c crossref_primary_10_1016_j_ijthermalsci_2020_106594 crossref_primary_10_1080_01457632_2023_2199534 crossref_primary_10_1063_5_0179562 crossref_primary_10_1007_s11012_020_01285_0 crossref_primary_10_1016_j_cropro_2024_106835 crossref_primary_10_1002_dro2_116 crossref_primary_10_1016_j_jcis_2020_05_086 crossref_primary_10_1021_acs_langmuir_0c01628 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123524 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119494 crossref_primary_10_1021_acs_langmuir_1c02825 crossref_primary_10_1063_5_0241186 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125018 crossref_primary_10_1063_5_0225952 crossref_primary_10_1016_j_ijmultiphaseflow_2019_06_015 crossref_primary_10_1016_j_expthermflusci_2018_08_029 crossref_primary_10_1016_j_matdes_2023_112192 crossref_primary_10_1016_j_optlastec_2024_110791 crossref_primary_10_3390_en16021008 crossref_primary_10_1016_j_colsurfa_2022_130911 crossref_primary_10_1016_j_apsadv_2025_100738 crossref_primary_10_1063_5_0030188 crossref_primary_10_1134_S0015462824600068 crossref_primary_10_1021_acs_langmuir_4c00371 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122177 crossref_primary_10_1017_jfm_2021_313 crossref_primary_10_1063_5_0246986 crossref_primary_10_1016_j_colsurfa_2022_130360 crossref_primary_10_3390_pr10091766 crossref_primary_10_1016_j_addma_2022_102829 crossref_primary_10_3390_app7100977 crossref_primary_10_1063_5_0155328 crossref_primary_10_1007_s42757_019_0052_8 crossref_primary_10_1016_j_expthermflusci_2018_10_033 crossref_primary_10_1016_j_expthermflusci_2024_111338 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124959 crossref_primary_10_1103_PhysRevE_100_042803 crossref_primary_10_1002_smtd_202401983 crossref_primary_10_1063_5_0232326 crossref_primary_10_1007_s12217_019_9702_5 crossref_primary_10_1016_j_expthermflusci_2023_111023 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104909 crossref_primary_10_1016_j_expthermflusci_2024_111322 crossref_primary_10_1016_j_apsusc_2021_150717 crossref_primary_10_1088_1742_6596_1549_3_032028 crossref_primary_10_1088_1361_648X_ac3c67 crossref_primary_10_1016_j_sajce_2022_04_002 crossref_primary_10_7498_aps_69_20191141 crossref_primary_10_3390_coatings13081415 crossref_primary_10_1016_j_anucene_2020_107548 crossref_primary_10_1016_j_ces_2019_06_058 crossref_primary_10_1016_j_molliq_2020_114480 crossref_primary_10_3390_en14010080 crossref_primary_10_1134_S0015462822020033 crossref_primary_10_7498_aps_70_20201918 crossref_primary_10_3390_polym15214277 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119571 crossref_primary_10_1063_5_0086050 crossref_primary_10_7567_1882_0786_ab5906 crossref_primary_10_1016_j_anucene_2019_107081 crossref_primary_10_1063_5_0220581 crossref_primary_10_1021_acs_langmuir_0c00217 crossref_primary_10_1016_j_anucene_2022_109062 crossref_primary_10_1016_j_jfluidstructs_2023_103839 crossref_primary_10_2139_ssrn_4053075 crossref_primary_10_1038_s41598_019_51490_5 crossref_primary_10_1016_j_colsurfa_2024_134996 crossref_primary_10_1007_s00348_019_2715_4 crossref_primary_10_3390_coatings11091043 crossref_primary_10_1139_cjp_2018_0494 crossref_primary_10_1186_s40494_024_01475_z crossref_primary_10_1016_j_ast_2023_108126 crossref_primary_10_1063_5_0226777 crossref_primary_10_1063_5_0243314 crossref_primary_10_1016_j_wear_2025_205768 crossref_primary_10_1021_acs_iecr_3c02119 crossref_primary_10_1016_j_colsurfa_2023_132381 crossref_primary_10_1016_j_euromechflu_2022_07_009 crossref_primary_10_1021_acs_langmuir_1c01076 crossref_primary_10_1021_acs_langmuir_9b01507 crossref_primary_10_1002_cjce_25652 crossref_primary_10_1002_smll_202307759 crossref_primary_10_1021_acsomega_4c00881 crossref_primary_10_1016_j_ces_2025_121470 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123190 crossref_primary_10_1016_j_colcom_2022_100651 crossref_primary_10_1016_j_ces_2020_116149 crossref_primary_10_1063_5_0109293 crossref_primary_10_1021_acs_iecr_3c01560 crossref_primary_10_1021_acs_iecr_3c02650 crossref_primary_10_3390_app12178549 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120891 crossref_primary_10_1007_s10409_024_24165_x crossref_primary_10_1063_5_0046356 crossref_primary_10_1063_5_0211388 crossref_primary_10_1063_5_0028081 crossref_primary_10_1016_j_colsurfa_2020_125385 crossref_primary_10_1063_5_0073049 crossref_primary_10_3390_w15040719 crossref_primary_10_2514_1_T6656 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_023 crossref_primary_10_1016_j_ces_2019_115199 crossref_primary_10_1016_j_euromechflu_2020_07_006 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103241 crossref_primary_10_1007_s00170_024_13116_7 crossref_primary_10_1063_5_0120642 crossref_primary_10_1016_j_icheatmasstransfer_2021_105282 crossref_primary_10_1016_j_jtte_2020_02_001 crossref_primary_10_1063_5_0136692 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120076 crossref_primary_10_3390_pr11092591 crossref_primary_10_1016_j_expthermflusci_2019_110020 crossref_primary_10_1063_5_0174008 crossref_primary_10_3390_fluids7010038 crossref_primary_10_1016_j_expthermflusci_2023_111094 crossref_primary_10_1016_j_ces_2018_06_030 crossref_primary_10_1016_j_optlastec_2023_110329 crossref_primary_10_1016_j_anucene_2019_107038 crossref_primary_10_1016_j_colsurfa_2024_134250 crossref_primary_10_1007_s00162_023_00652_3 crossref_primary_10_1021_acs_langmuir_0c03193 crossref_primary_10_1016_j_agrformet_2019_107762 crossref_primary_10_1002_mdp2_263 crossref_primary_10_1021_acs_langmuir_1c01797 crossref_primary_10_1016_j_expthermflusci_2019_03_024 crossref_primary_10_1088_2058_8585_ad59b3 crossref_primary_10_1016_j_expthermflusci_2019_03_021 crossref_primary_10_1016_j_colsurfa_2023_132217 crossref_primary_10_1016_j_colsurfa_2021_126895 crossref_primary_10_1063_5_0249722 crossref_primary_10_1021_acs_langmuir_4c05317 crossref_primary_10_3389_fenrg_2021_678495 crossref_primary_10_3390_app142411608 crossref_primary_10_1007_s42401_023_00192_y crossref_primary_10_1016_j_ijheatmasstransfer_2022_122625 crossref_primary_10_3390_fluids5030107 crossref_primary_10_1134_S0015462822601681 crossref_primary_10_1038_s41598_022_08852_3 |
Cites_doi | 10.1016/j.wear.2015.02.054 10.1016/j.cis.2015.02.004 10.1103/PhysRevE.75.056316 10.1103/PhysRevLett.108.036101 10.1103/PhysRevLett.94.184505 10.1038/35015525 10.1016/S0894-1777(03)00015-3 10.1016/j.expthermflusci.2012.08.020 10.4271/871613 10.1016/j.ijheatfluidflow.2006.09.003 10.1063/1.3432498 10.1098/rspa.1981.0002 10.1016/j.pecs.2010.01.002 10.1016/0021-9797(75)90126-5 10.4271/950283 10.1039/c4sm00050a 10.1177/1468087411431890 10.1103/PhysRevLett.109.054501 10.1016/0010-2180(94)00174-Q 10.1016/S0043-1648(03)00253-9 10.1007/s00348-005-0043-3 10.1146/annurev-fluid-122414-034401 10.1007/BF02645275 10.1063/1.3129283 10.1063/1.869661 10.1006/jcis.1998.5518 10.1021/ie50320a024 10.1016/j.ijheatmasstransfer.2008.05.028 10.1016/j.expthermflusci.2014.10.019 10.1016/0301-9322(94)00069-V 10.1021/acs.langmuir.5b04639 10.1098/rspa.2001.0923 10.1146/annurev.fluid.38.050304.092144 10.1209/0295-5075/106/24001 10.1016/S0142-727X(00)00086-2 10.1002/aic.690410602 10.1017/S0022112004000904 10.1021/la0481288 10.1103/PhysRevApplied.2.044018 10.1016/j.expthermflusci.2014.01.014 10.1007/s00348-005-0045-1 10.1017/jfm.2016.584 10.1039/tf9444000546 10.1007/s00348-002-0431-x 10.1007/s003480050073 10.1017/S0022112006000231 10.1063/1.868850 10.1063/1.4941577 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2017.07.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
EndPage | 69 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2017_07_002 S0301932217300046 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c392t-bd0db56a22251cb6711356c2c7bed1358a5413898995d58b90d80ef91733b763 |
IEDL.DBID | .~1 |
ISSN | 0301-9322 |
IngestDate | Thu Apr 24 23:13:24 EDT 2025 Tue Jul 01 02:45:06 EDT 2025 Fri Feb 23 02:26:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transition from spreading to splashing Droplet impact Surface roughness Spreading diameter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-bd0db56a22251cb6711356c2c7bed1358a5413898995d58b90d80ef91733b763 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0301932217300046 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_ijmultiphaseflow_2017_07_002 crossref_citationtrail_10_1016_j_ijmultiphaseflow_2017_07_002 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2017_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mundo, Sommerfeld, Tropea (bib0021) 1995; 21 Bai, C., Gosman, A.D., 1995. Development of methodology for spray impingement simulation. SAE paper No.950283. Wenzel (bib0044) 1936; 28 Chou, Patterson (bib0007) 1995; 101 Pasandideh-Fard, Aziz, Chandra, Mostaghimi (bib0023) 2001; 22 Sen, Vaikuntanathan, Sivakumar (bib0032) 2014; 54 Stow, Hadfield (bib0035) 1981; 373 Vaikuntanathan, Sivakumar (bib0040) 2014; 10 Vaikuntanathan, Sivakumar (bib0041) 2016; 32 Vander Wal, Berger, Mozes (bib0043) 2006; 40 Yarin (bib0048) 2006 Cossali, Coghe, Marengo (bib0009) 1997; 22 Sampath, Herman (bib0030) 1996; 5 Kim (bib0014) 2007; 28 Xu (bib0046) 2007; 75 Mann, Arya (bib0018) 2003; 254 Wildeman, Visser, Sun, Lohse (bib0045) 2016; 805 Allen (bib0001) 1975; 51 Latka, Strandburgpeshkin, Driscoll, Stevens, Nagel (bib0016) 2012; 109 Clanet, Beguin, Richard, Quere (bib0008) 2004; 517 Stevens (bib0034) 2014; 106 Eggers, Fontelos, Josserand, Zaleski (bib0010) 2010; 22 Seo, Lee, Kim, Yoon (bib0033) 2015; 61 Xu, Zhang, Nagel (bib0047) 2005; 94 Bergeron, Bonn, Martin, Vovelle (bib0004) 2000; 405 Vander Wal, Berger, Mozes (bib0042) 2006; 40 Matsui, Y., Sugihara, K., 1987. Sources of hydrocarbon emissions from a small direct injection diesel engine. SAE Paper No.871613. Kalghatgi, Bradley (bib0013) 2012; 13 Rioboo, Marengo, Tropea (bib0026) 2002; 33 Roisman, Lembach, Tropea (bib0028) 2015; 222 Cassie, Baxter (bib0005) 1944; 40 Scheller, Bousfield (bib0031) 1995; 41 Lim, Han, Chung, Chung, Ko, Grigoropoulos (bib0017) 2009; 52 Jia, Qiu (bib0011) 2003; 27 Ukiwe, Kwok (bib0039) 2005; 21 Laan, de Bruin, Bartolo, Josserand, Bonn (bib0015) 2014; 2 Thoroddsen, Sakakibara (bib0036) 1998; 10 Josserand, Thoroddsen (bib0012) 2016 Roisman (bib0027) 2009; 21 PasandidehFard, Qiao, Chandra, Mostaghimi (bib0024) 1996; 8 Roisman, Rioboo, Tropea (bib0029) 2002; 458 Tobin, Rohr, Raps, Willemse, Norman, Young (bib0037) 2015; 328 Bayer, Megaridis (bib0003) 2006; 558 Chamakos, Kavousanakis, Boudouvis, Papathanasiou (bib0006) 2016; 28 Palacios, Hernández, Gómez, Zanzi, López (bib0022) 2013; 44 Moreira, Moita, Panão (bib0020) 2010; 36 Range, Feuillebois (bib0025) 1998; 203 Tran, Staat, Prosperetti, Sun, Lohse (bib0038) 2012; 108 Moreira (10.1016/j.ijmultiphaseflow.2017.07.002_bib0020) 2010; 36 Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0029) 2002; 458 Josserand (10.1016/j.ijmultiphaseflow.2017.07.002_bib0012) 2016 Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0028) 2015; 222 Roisman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0027) 2009; 21 Bayer (10.1016/j.ijmultiphaseflow.2017.07.002_bib0003) 2006; 558 Jia (10.1016/j.ijmultiphaseflow.2017.07.002_bib0011) 2003; 27 10.1016/j.ijmultiphaseflow.2017.07.002_bib0002 Vander Wal (10.1016/j.ijmultiphaseflow.2017.07.002_bib0042) 2006; 40 Range (10.1016/j.ijmultiphaseflow.2017.07.002_bib0025) 1998; 203 Cassie (10.1016/j.ijmultiphaseflow.2017.07.002_bib0005) 1944; 40 Eggers (10.1016/j.ijmultiphaseflow.2017.07.002_bib0010) 2010; 22 Thoroddsen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0036) 1998; 10 Ukiwe (10.1016/j.ijmultiphaseflow.2017.07.002_bib0039) 2005; 21 Chamakos (10.1016/j.ijmultiphaseflow.2017.07.002_bib0006) 2016; 28 Lim (10.1016/j.ijmultiphaseflow.2017.07.002_bib0017) 2009; 52 Rioboo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0026) 2002; 33 Mundo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0021) 1995; 21 Mann (10.1016/j.ijmultiphaseflow.2017.07.002_bib0018) 2003; 254 Pasandideh-Fard (10.1016/j.ijmultiphaseflow.2017.07.002_bib0023) 2001; 22 Wenzel (10.1016/j.ijmultiphaseflow.2017.07.002_bib0044) 1936; 28 Seo (10.1016/j.ijmultiphaseflow.2017.07.002_bib0033) 2015; 61 Kim (10.1016/j.ijmultiphaseflow.2017.07.002_bib0014) 2007; 28 Scheller (10.1016/j.ijmultiphaseflow.2017.07.002_bib0031) 1995; 41 Bergeron (10.1016/j.ijmultiphaseflow.2017.07.002_bib0004) 2000; 405 Wildeman (10.1016/j.ijmultiphaseflow.2017.07.002_bib0045) 2016; 805 Kalghatgi (10.1016/j.ijmultiphaseflow.2017.07.002_bib0013) 2012; 13 Allen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0001) 1975; 51 Laan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0015) 2014; 2 Cossali (10.1016/j.ijmultiphaseflow.2017.07.002_bib0009) 1997; 22 Latka (10.1016/j.ijmultiphaseflow.2017.07.002_bib0016) 2012; 109 PasandidehFard (10.1016/j.ijmultiphaseflow.2017.07.002_bib0024) 1996; 8 Stevens (10.1016/j.ijmultiphaseflow.2017.07.002_bib0034) 2014; 106 10.1016/j.ijmultiphaseflow.2017.07.002_bib0019 Tobin (10.1016/j.ijmultiphaseflow.2017.07.002_bib0037) 2015; 328 Xu (10.1016/j.ijmultiphaseflow.2017.07.002_bib0047) 2005; 94 Stow (10.1016/j.ijmultiphaseflow.2017.07.002_bib0035) 1981; 373 Vaikuntanathan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0041) 2016; 32 Clanet (10.1016/j.ijmultiphaseflow.2017.07.002_bib0008) 2004; 517 Palacios (10.1016/j.ijmultiphaseflow.2017.07.002_bib0022) 2013; 44 Sen (10.1016/j.ijmultiphaseflow.2017.07.002_bib0032) 2014; 54 Xu (10.1016/j.ijmultiphaseflow.2017.07.002_bib0046) 2007; 75 Chou (10.1016/j.ijmultiphaseflow.2017.07.002_bib0007) 1995; 101 Vaikuntanathan (10.1016/j.ijmultiphaseflow.2017.07.002_bib0040) 2014; 10 Tran (10.1016/j.ijmultiphaseflow.2017.07.002_bib0038) 2012; 108 Sampath (10.1016/j.ijmultiphaseflow.2017.07.002_bib0030) 1996; 5 Vander Wal (10.1016/j.ijmultiphaseflow.2017.07.002_bib0043) 2006; 40 Yarin (10.1016/j.ijmultiphaseflow.2017.07.002_bib0048) 2006 |
References_xml | – volume: 41 start-page: 1357 year: 1995 end-page: 1367 ident: bib0031 article-title: Newtonian drop impact with a solid-surface publication-title: Aiche J – volume: 40 start-page: 0546 year: 1944 end-page: 0550 ident: bib0005 article-title: Wettability of porous surfaces publication-title: Trans. Faraday. Soc. – volume: 2 year: 2014 ident: bib0015 article-title: Maximum diameter of impacting liquid droplets publication-title: Phys. Rev. Appl. – volume: 32 start-page: 2399 year: 2016 end-page: 2409 ident: bib0041 article-title: Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture publication-title: Langmuir – volume: 203 start-page: 16 year: 1998 end-page: 30 ident: bib0025 article-title: Influence of surface roughness on liquid drop impact publication-title: J. Colloid Interf. Sci. – volume: 10 start-page: 2991 year: 2014 end-page: 3002 ident: bib0040 article-title: Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces publication-title: Soft Matter – volume: 21 start-page: 151 year: 1995 end-page: 173 ident: bib0021 article-title: Droplet-wall collisions - experimental studies of the deformation and breakup process publication-title: Int. J. Multiphase Flow. – volume: 61 start-page: 121 year: 2015 end-page: 129 ident: bib0033 article-title: Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall publication-title: Exp. Therm. Fluid. Sci. – volume: 328 start-page: 318 year: 2015 end-page: 328 ident: bib0037 article-title: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities publication-title: Wear – volume: 21 start-page: 666 year: 2005 end-page: 673 ident: bib0039 article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces publication-title: Langmuir – reference: Bai, C., Gosman, A.D., 1995. Development of methodology for spray impingement simulation. SAE paper No.950283. – volume: 54 start-page: 38 year: 2014 end-page: 46 ident: bib0032 article-title: Experimental investigation of biofuel drop impact on stainless steel surface publication-title: Exp. Therm. Fluid. Sci. – volume: 5 start-page: 445 year: 1996 end-page: 456 ident: bib0030 article-title: Rapid solidification and microstructure development during plasma spray deposition publication-title: J. Therm. Spray. Technol. – volume: 254 start-page: 652 year: 2003 end-page: 667 ident: bib0018 article-title: HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades publication-title: Wear – volume: 28 year: 2016 ident: bib0006 article-title: Droplet spreading on rough surfaces: tackling the contact line boundary condition publication-title: Phys. Fluids. – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: bib0044 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. – volume: 40 start-page: 23 year: 2006 end-page: 32 ident: bib0042 article-title: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them publication-title: Exp. Fluids. – volume: 405 start-page: 772 year: 2000 end-page: 775 ident: bib0004 article-title: Controlling droplet deposition with polymer additives publication-title: Nature – volume: 8 start-page: 650 year: 1996 end-page: 659 ident: bib0024 article-title: Capillary effects during droplet impact on a solid surface publication-title: Phys. Fluids. – reference: Matsui, Y., Sugihara, K., 1987. Sources of hydrocarbon emissions from a small direct injection diesel engine. SAE Paper No.871613. – start-page: 365 year: 2016 end-page: 391 ident: bib0012 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid. Mech. – volume: 36 start-page: 554 year: 2010 end-page: 580 ident: bib0020 article-title: Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog publication-title: Energ. Combust. – volume: 108 year: 2012 ident: bib0038 article-title: Drop impact on superheated surfaces publication-title: Phys. Rev. Lett. – volume: 28 start-page: 753 year: 2007 end-page: 767 ident: bib0014 article-title: Spray cooling heat transfer: the state of the art publication-title: Int. J. Heat Fluid. Fl. – volume: 94 year: 2005 ident: bib0047 article-title: Drop splashing on a dry smooth surface publication-title: Phys. Rev. Lett. – volume: 22 start-page: 201 year: 2001 end-page: 210 ident: bib0023 article-title: Cooling effectiveness of a water drop impinging on a hot surface publication-title: Int. J. Heat Fluid. Fl. – volume: 10 start-page: 1359 year: 1998 end-page: 1374 ident: bib0036 article-title: Evolution of the fingering pattern of an impacting drop publication-title: Phys. Fluids. – volume: 458 start-page: 1411 year: 2002 end-page: 1430 ident: bib0029 article-title: Normal impact of a liquid drop on a dry surface: model for spreading and receding publication-title: P. Roy. Soc. Lond. A Mat. – volume: 33 start-page: 112 year: 2002 end-page: 124 ident: bib0026 article-title: Time evolution of liquid drop impact onto solid, dry surfaces publication-title: Exp. Fluids. – volume: 22 year: 2010 ident: bib0010 article-title: Drop dynamics after impact on a solid wall: theory and simulations publication-title: Phys. Fluids. – volume: 40 start-page: 53 year: 2006 end-page: 59 ident: bib0043 article-title: The splash/non-splash boundary upon a dry surface and thin fluid film publication-title: Exp. Fluids. – volume: 106 start-page: 24001 year: 2014 ident: bib0034 article-title: Scaling of the splash threshold for low-viscosity fluids publication-title: EPL – volume: 51 start-page: 350 year: 1975 end-page: 351 ident: bib0001 article-title: Role of surface-tension in splashing publication-title: J. Colloid Interf. Sci. – volume: 22 start-page: 463 year: 1997 end-page: 472 ident: bib0009 article-title: The impact of a single drop on a wetted solid surface publication-title: Exp. Fluids. – volume: 21 year: 2009 ident: bib0027 article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film publication-title: Phys. Fluids. – volume: 558 start-page: 415 year: 2006 end-page: 449 ident: bib0003 article-title: Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics publication-title: J. Fluid. Mech. – volume: 109 start-page: 1 year: 2012 end-page: 6 ident: bib0016 article-title: Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure publication-title: Phys. Rev. Lett. – volume: 44 start-page: 571 year: 2013 end-page: 582 ident: bib0022 article-title: Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces publication-title: Exp. Therm. Fluid. Sci. – volume: 27 start-page: 829 year: 2003 end-page: 838 ident: bib0011 article-title: Experimental investigation of droplet dynamics and heat transfer in spray cooling publication-title: Exp. Therm. Fluid. Sci. – volume: 13 start-page: 399 year: 2012 end-page: 414 ident: bib0013 article-title: Pre-ignition and 'super-knock' in turbo-charged spark-ignition engines publication-title: Int. J. Engine. Res. – volume: 52 start-page: 431 year: 2009 end-page: 441 ident: bib0017 article-title: Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate publication-title: Int. J. Heat Mass Tran. – volume: 101 start-page: 45 year: 1995 end-page: 57 ident: bib0007 article-title: In-cylinder measurement of mixture maldistribution in a L-head engine publication-title: Comb. Flame. – volume: 222 start-page: 615 year: 2015 end-page: 621 ident: bib0028 article-title: Drop splashing induced by target roughness and porosity: the size plays no role publication-title: Adva. Colloid Interf. Sci. – start-page: 159 year: 2006 end-page: 192 ident: bib0048 article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing publication-title: Annu. Rev. Fluid. Mech. – volume: 517 start-page: 199 year: 2004 end-page: 208 ident: bib0008 article-title: Maximal deformation of an impacting drop publication-title: J. Fluid. Mech. – volume: 373 start-page: 419 year: 1981 end-page: 441 ident: bib0035 article-title: An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface publication-title: P. Roy. Soc. Lond. A Mat. – volume: 75 year: 2007 ident: bib0046 article-title: Liquid drop splashing on smooth, rough, and textured surfaces publication-title: Phys. Rev. E. – volume: 805 start-page: 636 year: 2016 end-page: 655 ident: bib0045 article-title: On the spreading of impacting drops publication-title: J. Fluid. Mech. – volume: 328 start-page: 318 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0037 article-title: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities publication-title: Wear doi: 10.1016/j.wear.2015.02.054 – volume: 222 start-page: 615 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0028 article-title: Drop splashing induced by target roughness and porosity: the size plays no role publication-title: Adva. Colloid Interf. Sci. doi: 10.1016/j.cis.2015.02.004 – volume: 75 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0046 article-title: Liquid drop splashing on smooth, rough, and textured surfaces publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.75.056316 – volume: 108 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0038 article-title: Drop impact on superheated surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.036101 – volume: 94 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0047 article-title: Drop splashing on a dry smooth surface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.184505 – volume: 405 start-page: 772 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0004 article-title: Controlling droplet deposition with polymer additives publication-title: Nature doi: 10.1038/35015525 – volume: 27 start-page: 829 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0011 article-title: Experimental investigation of droplet dynamics and heat transfer in spray cooling publication-title: Exp. Therm. Fluid. Sci. doi: 10.1016/S0894-1777(03)00015-3 – volume: 44 start-page: 571 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0022 article-title: Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces publication-title: Exp. Therm. Fluid. Sci. doi: 10.1016/j.expthermflusci.2012.08.020 – ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0019 doi: 10.4271/871613 – volume: 28 start-page: 753 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0014 article-title: Spray cooling heat transfer: the state of the art publication-title: Int. J. Heat Fluid. Fl. doi: 10.1016/j.ijheatfluidflow.2006.09.003 – volume: 22 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0010 article-title: Drop dynamics after impact on a solid wall: theory and simulations publication-title: Phys. Fluids. doi: 10.1063/1.3432498 – volume: 373 start-page: 419 year: 1981 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0035 article-title: An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface publication-title: P. Roy. Soc. Lond. A Mat. doi: 10.1098/rspa.1981.0002 – volume: 36 start-page: 554 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0020 article-title: Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog publication-title: Energ. Combust. doi: 10.1016/j.pecs.2010.01.002 – volume: 51 start-page: 350 year: 1975 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0001 article-title: Role of surface-tension in splashing publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(75)90126-5 – ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0002 doi: 10.4271/950283 – volume: 10 start-page: 2991 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0040 article-title: Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces publication-title: Soft Matter doi: 10.1039/c4sm00050a – volume: 13 start-page: 399 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0013 article-title: Pre-ignition and 'super-knock' in turbo-charged spark-ignition engines publication-title: Int. J. Engine. Res. doi: 10.1177/1468087411431890 – volume: 109 start-page: 1 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0016 article-title: Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.054501 – volume: 101 start-page: 45 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0007 article-title: In-cylinder measurement of mixture maldistribution in a L-head engine publication-title: Comb. Flame. doi: 10.1016/0010-2180(94)00174-Q – volume: 254 start-page: 652 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0018 article-title: HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades publication-title: Wear doi: 10.1016/S0043-1648(03)00253-9 – volume: 40 start-page: 23 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0042 article-title: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them publication-title: Exp. Fluids. doi: 10.1007/s00348-005-0043-3 – start-page: 365 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0012 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-122414-034401 – volume: 5 start-page: 445 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0030 article-title: Rapid solidification and microstructure development during plasma spray deposition publication-title: J. Therm. Spray. Technol. doi: 10.1007/BF02645275 – volume: 21 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0027 article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film publication-title: Phys. Fluids. doi: 10.1063/1.3129283 – volume: 10 start-page: 1359 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0036 article-title: Evolution of the fingering pattern of an impacting drop publication-title: Phys. Fluids. doi: 10.1063/1.869661 – volume: 203 start-page: 16 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0025 article-title: Influence of surface roughness on liquid drop impact publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1998.5518 – volume: 28 start-page: 988 year: 1936 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0044 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 52 start-page: 431 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0017 article-title: Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2008.05.028 – volume: 61 start-page: 121 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0033 article-title: Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall publication-title: Exp. Therm. Fluid. Sci. doi: 10.1016/j.expthermflusci.2014.10.019 – volume: 21 start-page: 151 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0021 article-title: Droplet-wall collisions - experimental studies of the deformation and breakup process publication-title: Int. J. Multiphase Flow. doi: 10.1016/0301-9322(94)00069-V – volume: 32 start-page: 2399 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0041 article-title: Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture publication-title: Langmuir doi: 10.1021/acs.langmuir.5b04639 – volume: 458 start-page: 1411 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0029 article-title: Normal impact of a liquid drop on a dry surface: model for spreading and receding publication-title: P. Roy. Soc. Lond. A Mat. doi: 10.1098/rspa.2001.0923 – start-page: 159 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0048 article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 106 start-page: 24001 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0034 article-title: Scaling of the splash threshold for low-viscosity fluids publication-title: EPL doi: 10.1209/0295-5075/106/24001 – volume: 22 start-page: 201 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0023 article-title: Cooling effectiveness of a water drop impinging on a hot surface publication-title: Int. J. Heat Fluid. Fl. doi: 10.1016/S0142-727X(00)00086-2 – volume: 41 start-page: 1357 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0031 article-title: Newtonian drop impact with a solid-surface publication-title: Aiche J doi: 10.1002/aic.690410602 – volume: 517 start-page: 199 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0008 article-title: Maximal deformation of an impacting drop publication-title: J. Fluid. Mech. doi: 10.1017/S0022112004000904 – volume: 21 start-page: 666 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0039 article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces publication-title: Langmuir doi: 10.1021/la0481288 – volume: 2 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0015 article-title: Maximum diameter of impacting liquid droplets publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.044018 – volume: 54 start-page: 38 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0032 article-title: Experimental investigation of biofuel drop impact on stainless steel surface publication-title: Exp. Therm. Fluid. Sci. doi: 10.1016/j.expthermflusci.2014.01.014 – volume: 40 start-page: 53 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0043 article-title: The splash/non-splash boundary upon a dry surface and thin fluid film publication-title: Exp. Fluids. doi: 10.1007/s00348-005-0045-1 – volume: 805 start-page: 636 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0045 article-title: On the spreading of impacting drops publication-title: J. Fluid. Mech. doi: 10.1017/jfm.2016.584 – volume: 40 start-page: 0546 year: 1944 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0005 article-title: Wettability of porous surfaces publication-title: Trans. Faraday. Soc. doi: 10.1039/tf9444000546 – volume: 33 start-page: 112 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0026 article-title: Time evolution of liquid drop impact onto solid, dry surfaces publication-title: Exp. Fluids. doi: 10.1007/s00348-002-0431-x – volume: 22 start-page: 463 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0009 article-title: The impact of a single drop on a wetted solid surface publication-title: Exp. Fluids. doi: 10.1007/s003480050073 – volume: 558 start-page: 415 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0003 article-title: Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics publication-title: J. Fluid. Mech. doi: 10.1017/S0022112006000231 – volume: 8 start-page: 650 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0024 article-title: Capillary effects during droplet impact on a solid surface publication-title: Phys. Fluids. doi: 10.1063/1.868850 – volume: 28 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2017.07.002_bib0006 article-title: Droplet spreading on rough surfaces: tackling the contact line boundary condition publication-title: Phys. Fluids. doi: 10.1063/1.4941577 |
SSID | ssj0005743 |
Score | 2.5900753 |
Snippet | •We have for the first time, discussed the effect of Ra thoroughly on the evolution of the non-dimensional droplet spreading diameter β for droplet... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Droplet impact Spreading diameter Surface roughness Transition from spreading to splashing |
Title | Dynamics of droplet impact on solid surface with different roughness |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.07.002 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5VIBAMCAqI8qg8IDbTpHEeHRiqlqqA6EKRukV-RaSqkqpNxcZvx5cHFFg6sMWRbUXny_mz77s7gGvH10oqGVFtSUmZrRzKmRDU5lojQuc6954_j7zhK3ucuJMa9KpYGKRVlra_sOm5tS7ftEpptuZx3HpBMG_Qh8HUTh4DiRHszEctv_1Yo3kUJHvsTLH3Ltx8c7ziaUHbezM7RjRL35Hq5efJPMtrlj8b1drmMziEgxI1km7xYUdQ00kd9tdyCdZhJ-dyyuUx9PtFlfklSSOiFsgQz0gRDUnShBhlixVZrhYRl5rgPSypqqRkJC_ag9bvBMaD-3FvSMtiCVQaiJNRoSwlXI_j-c2WwvNt23E92Za-0Mo8Btxl6JQ05ytXuYHoWCqwdGROa44jjJE5ha0kTfQZEIcFFlMW923NmVa6Y35q0-AykMqzpd2Au0owoSwTiWM9i1lYMcam4W_BhijY0EJfd7sB_tf4eZFSY-OR3Wodwh9KEhr7v-Ec5_8wxwXsYasISbyErWyx0lcGm2SimStfE7a7D0_D0SepGujl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxNfBKGrE5x6Mt4aWPjl4ICAp8riICbdmX40lpBAo8e-7290K6oWDt75m00ynM9_ufjMD8Gj7nFFGY4OblBqOxWwDO4QYFuZcInTM893z4cgL353XiTspQbvIhZG0Su37lU_PvbW-UtfarC-SpP4mwbxAHwJT23kO5B5UZHUqtwyVVq8fjjZMD8Wzl88bUuAAnjY0r2SqmHsfImjEs_mnZHv5eT1PvdLyJ1ZtxZ_uKZxo4Iha6t3OoMTTKhxvlROswn5O56Src-h0VKP5FZrHiC0lSTxDKiESzVMk7C1haLVexphyJJdiUdEoJUN53x7pAC9g3H0Zt0ND90swqEA5mUGYyYjrYTmFsyjxfMuyXY82qE84E4cBdh25LymmWC5zA9I0WWDyWEzYbJsIP3MJ5XSe8itAthOYDjOxb3HscMab4r8WJ5gGlHkWtWrwXCgmorqWuGxpMYsK0tg0-q3YSCo2MuV2d6MG_rf8QlXV2FmyVXyH6IedRCIE7DjG9T-M8QCH4Xg4iAa9Uf8GjuQdlaF4C-VsueZ3Aqpk5F6b4hegZOuW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+droplet+impact+on+solid+surface+with+different+roughness&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Tang%2C+Chenglong&rft.au=Qin%2C+Mengxiao&rft.au=Weng%2C+Xinyan&rft.au=Zhang%2C+Xuhui&rft.date=2017-11-01&rft.issn=0301-9322&rft.volume=96&rft.spage=56&rft.epage=69&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2017.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2017_07_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |