Characterisation of an Irish caprine lentivirus strain—SRLV phylogeny revisited

Small ruminant lentiviruses (SRLV), i.e. caprine arthritis-encephalitis virus (CAEV) (which infects goats) and maedi-visna virus (MVV) (which infects sheep) are two closely related lentiviruses but the relationship between goat and sheep lentiviruses has not been clearly established. To better under...

Full description

Saved in:
Bibliographic Details
Published inVirus research Vol. 85; no. 1; pp. 29 - 39
Main Authors Rolland, Morgane, Mooney, Jean, Valas, Stephen, Perrin, Gérard, Mamoun, Robert Z.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 23.04.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small ruminant lentiviruses (SRLV), i.e. caprine arthritis-encephalitis virus (CAEV) (which infects goats) and maedi-visna virus (MVV) (which infects sheep) are two closely related lentiviruses but the relationship between goat and sheep lentiviruses has not been clearly established. To better understand their genetic relationship, we reinvestigated the phylogeny of SRLV using new sequences from an Irish and a Norwegian strain together with sequences available from databases. The phylogenetic analyses were carried out on the gag, pol and env fragments using four methods: neighbor-joining (NJ), Fitch and Margoliash (Fitch), Fitch and Wagner parsimony (Pars) and maximum likelihood (ML). The tree topologies were consistent whether derived from any of the four methods or any of the gene fragments, but the phylogenetic analyses in the pol and env regions were more informative than in the gag region. The Tamura–Nei model with variable rates across sites (described by a gamma distribution) provides a more accurate description of SRLV evolution than simple methods. The newly described Irish lentivirus strain, which was isolated from a goat, was closely related to the lentivirus that infects sheep: MVV. The novel Norwegian CAEV strain belonged to a cluster specific to the CAEV strains from Norway. Together, both data confirm the previously reported subdivision of the different SRLV strains into six clades. The caprine and ovine lentivirus sequences are interspersed in phylogenetic trees, supporting the existence of cross-species transmission. Nevertheless, the transmission of an ovine lentivirus to a goat could trigger the emergence of some goat-adapted phylums. Our new sequences confirm the complex situation in SRLV phylogeny but more sequences are needed to elucidate more precisely the relationship between SRLV.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0168-1702
1872-7492
DOI:10.1016/S0168-1702(02)00015-1