Constrained neural adaptive PID control for robot manipulators
The problem of designing an analytical gain tuning and stable PID controller for nonlinear robotic systems is a long-lasting open challenge. This problem becomes even more intricate if unknown system dynamics and external disturbances are involved. This paper presents a novel adaptive neural-based c...
Saved in:
Published in | Journal of the Franklin Institute Vol. 357; no. 7; pp. 3907 - 3923 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.05.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The problem of designing an analytical gain tuning and stable PID controller for nonlinear robotic systems is a long-lasting open challenge. This problem becomes even more intricate if unknown system dynamics and external disturbances are involved. This paper presents a novel adaptive neural-based control design for a robot with incomplete dynamical modeling and facing disturbances based on a simple structured PID-like control. Radial basis function neural networks are used to estimate uncertainties and to determine PID gains through a direct Lyapunov method. The controller is further augmented to provide constrained behavior during system operation, while stability is guaranteed by using a barrier Lyapunov function. The paper provides proof that all signals in the closed-loop system are bounded while the constraints are not violated. Finally, numerical simulations provide a validation of the effectiveness of the reported theoretical developments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2019.12.042 |