Towards Compact 1-bit CNNs via Bayesian Learning

Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this e...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 130; no. 2; pp. 201 - 225
Main Authors Zhao, Junhe, Xu, Sheng, Zhang, Baochang, Gu, Jiaxin, Doermann, David, Guo, Guodong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this end, 1-bit CNNs have emerged as a feasible solution as they are much more resource-efficient. Unfortunately, they often suffer from a significant performance drop compared to their full-precision counterparts. In this paper, we propose a novel Bayesian Optimized compact 1-bit CNNs (BONNs) model, which has the advantage of Bayesian learning, to improve the performance of 1-bit CNNs significantly. BONNs incorporate the prior distributions of full-precision kernels, features, and filters into a Bayesian framework to construct 1-bit CNNs in a comprehensive end-to-end manner. The proposed Bayesian learning algorithms are well-founded and used to optimize the network simultaneously in different kernels, features, and filters, which largely improves the compactness and capacity of 1-bit CNNs. We further introduce a new Bayesian learning-based pruning method for 1-bit CNNs, which significantly increases the model efficiency with very competitive performance. This enables our method to be used in a variety of practical scenarios. Extensive experiments on the ImageNet, CIFAR, and LFW datasets show that BONNs achieve the best in classification performance compared to a variety of state-of-the-art 1-bit CNN models. In particular, BONN achieves a strong generalization performance on the object detection task.
AbstractList Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this end, 1-bit CNNs have emerged as a feasible solution as they are much more resource-efficient. Unfortunately, they often suffer from a significant performance drop compared to their full-precision counterparts. In this paper, we propose a novel Bayesian Optimized compact 1-bit CNNs (BONNs) model, which has the advantage of Bayesian learning, to improve the performance of 1-bit CNNs significantly. BONNs incorporate the prior distributions of full-precision kernels, features, and filters into a Bayesian framework to construct 1-bit CNNs in a comprehensive end-to-end manner. The proposed Bayesian learning algorithms are well-founded and used to optimize the network simultaneously in different kernels, features, and filters, which largely improves the compactness and capacity of 1-bit CNNs. We further introduce a new Bayesian learning-based pruning method for 1-bit CNNs, which significantly increases the model efficiency with very competitive performance. This enables our method to be used in a variety of practical scenarios. Extensive experiments on the ImageNet, CIFAR, and LFW datasets show that BONNs achieve the best in classification performance compared to a variety of state-of-the-art 1-bit CNN models. In particular, BONN achieves a strong generalization performance on the object detection task.
Audience Academic
Author Guo, Guodong
Gu, Jiaxin
Doermann, David
Zhao, Junhe
Zhang, Baochang
Xu, Sheng
Author_xml – sequence: 1
  givenname: Junhe
  surname: Zhao
  fullname: Zhao, Junhe
  organization: Beihang University
– sequence: 2
  givenname: Sheng
  surname: Xu
  fullname: Xu, Sheng
  organization: Beihang University
– sequence: 3
  givenname: Baochang
  orcidid: 0000-0001-7396-6218
  surname: Zhang
  fullname: Zhang, Baochang
  email: bczhang@buaa.edu.cn
  organization: Beihang University
– sequence: 4
  givenname: Jiaxin
  surname: Gu
  fullname: Gu, Jiaxin
  organization: Youtu Lab, Tencent
– sequence: 5
  givenname: David
  surname: Doermann
  fullname: Doermann, David
  organization: University at Buffalo
– sequence: 6
  givenname: Guodong
  surname: Guo
  fullname: Guo, Guodong
  organization: Institute of Deep Learning, Baidu Research, National Engineering Laboratory for Deep Learning Technology and Application
BookMark eNp9kE1r3DAQQEVJoZukf6AnQ085KJmRbNk6Jku-YEmhTc9i7B0vCrv2VtKm3X8fJS6E5BB0EIj3ZtA7FAfDOLAQ3xBOEaA-i4jKaAkKJWBVarn_JGZY1VpiCdWBmIFVICtj8Ys4jPEBAFSj9EzA_fiXwjIW83GzpS4VKFufivndXSwePRUXtOfoaSgWTGHww-pYfO5pHfnr__tI_L66vJ_fyMWP69v5-UJ22qokWyStrMUSGTuo2RIQL5vSstXckmZjdccEljUaXLYKuQHTtHWlbYN1r4_E92nuNox_dhyTexh3YcgrnTLKolGNNpk6nagVrdn5oR9ToC6fJW98lxv1Pr-fG1tCiaXCLJy8ETKT-F9a0S5Gd_vr51u2mdgujDEG7l3nEyWflUB-7RDcc3w3xXc5vnuJ7_ZZVe_UbfAbCvuPJT1JMcPDisPrlz-wngBqRZWc
CitedBy_id crossref_primary_10_1007_s11263_023_01836_4
crossref_primary_10_1109_TPAMI_2023_3300513
crossref_primary_10_1007_s00521_022_07127_2
crossref_primary_10_3389_frobt_2025_1518965
crossref_primary_10_1007_s11263_024_02250_0
crossref_primary_10_3390_s23042250
Cites_doi 10.1016/S0893-6080(00)00098-8
10.1214/07-AOAS114
10.1080/01621459.2017.1409122
10.1007/s11263-009-0275-4
10.1162/neco.1992.4.3.448
10.1590/S0104-65001997000200006
10.1162/neco.1992.4.3.415
10.1007/s11263-019-01227-8
10.1109/TPAMI.2015.2502579
10.1109/CVPR.2019.00508
10.1109/CVPR.2018.00094
10.1007/978-3-030-01252-6_6
10.1007/978-3-319-10593-2_13
10.1109/CVPR.2014.220
10.1109/CVPR.2019.00291
10.1109/CVPR.2019.00280
10.1109/ICCV.2017.298
10.1109/ICCV48922.2021.00515
10.1109/CVPR.2009.5206848
10.1109/CVPR.2019.00932
10.1007/978-3-030-01216-8_20
10.1109/CVPR.2018.00826
10.1109/CVPR.2019.00447
10.1109/CVPR.2017.643
10.1109/ICCV.2017.541
10.1007/978-3-319-46478-7_31
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2018.00907
10.1109/CVPR46437.2021.00563
10.1007/978-3-030-58610-2_1
10.1609/aaai.v33i01.33018344
10.1007/978-3-030-58598-3_37
10.1109/ICCV.2019.00501
10.1007/978-3-319-46493-0_32
10.1609/aaai.v32i1.11713
10.1109/CVPR.2019.00230
10.1007/978-3-030-58568-6_9
10.1109/CVPR.2017.243
10.1007/978-3-030-58536-5_5
10.1109/CVPR42600.2020.00232
10.24963/ijcai.2018/336
10.1109/CVPR42600.2020.00160
10.1109/CVPR.2019.00290
10.1007/978-3-030-01246-5_2
10.1109/CVPR42600.2020.00212
10.5244/C.30.87
10.1109/ICCV.2017.155
10.1109/CVPR.2015.7298682
10.1109/TPAMI.2021.3066410
10.1007/978-3-030-01270-0_19
10.1007/978-3-319-46448-0_2
10.1109/WACV45572.2020.9093444
10.1109/CVPR42600.2020.01343
10.1007/978-3-030-58536-5_38
10.1109/ICCV.2017.282
10.1109/CVPR42600.2020.01318
10.1109/CVPR.2016.90
10.5244/C.29.41
10.1109/CVPR.2019.00448
10.1109/CVPRW.2017.250
10.1109/CVPR.2018.00291
10.1109/WACV.2016.7477558
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-021-01543-y
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 225
ExternalDocumentID A694041421
10_1007_s11263_021_01543_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
ABRTQ
PQGLB
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-b1a3299141e1c07e9a0aed849e93eba3e693cea09e3161db21e8068b7539817f3
IEDL.DBID U2A
ISSN 0920-5691
IngestDate Sat Jul 26 00:04:05 EDT 2025
Tue Jun 10 21:03:52 EDT 2025
Sun Jul 13 06:36:54 EDT 2025
Tue Jul 01 04:30:58 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quantization
Pruning
Binarized network
Bayesian learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-b1a3299141e1c07e9a0aed849e93eba3e693cea09e3161db21e8068b7539817f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7396-6218
PQID 2629162836
PQPubID 1456341
PageCount 25
ParticipantIDs proquest_journals_2629162836
gale_infotracacademiconefile_A694041421
gale_incontextgauss_ISR_A694041421
crossref_citationtrail_10_1007_s11263_021_01543_y
crossref_primary_10_1007_s11263_021_01543_y
springer_journals_10_1007_s11263_021_01543_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Mockus, Tiesis, Zilinskas (CR64) 1978; 2
CR39
CR38
CR37
Lampinen, Vehtari (CR35) 2001; 14
CR36
CR34
CR33
CR32
CR31
CR30
Liang, Li, Zhou (CR44) 2018; 113
Han, Mao, Dally (CR17) 2015; 56
CR49
CR48
CR47
CR46
CR45
CR43
CR42
CR41
CR40
Tipping (CR81) 2001; 1
MacKay (CR62) 1992; 4
Bishop (CR1) 1997; 4
CR59
CR58
CR56
CR55
CR54
CR53
CR52
MacKay (CR61) 1992; 4
CR51
CR50
CR69
CR68
CR67
CR66
CR65
CR63
CR60
Liu, Luo, Wu, Yang, Liu, Cheng (CR57) 2020; 128
CR79
CR78
CR77
CR76
CR75
CR74
Hastie, Tibshirani, Friedman, Franklin (CR20) 2005; 27
CR73
CR72
CR71
CR70
Blei, Lafferty (CR2) 2007; 1
Zhang, Zou, He, Sun (CR97) 2016; 38
CR4
CR3
CR6
CR5
CR8
CR7
CR9
CR89
CR88
CR87
CR86
CR85
CR84
CR83
CR82
CR80
CR19
CR18
CR16
CR15
CR14
CR13
CR11
CR99
CR10
CR98
CR96
CR95
CR94
CR93
CR92
CR91
CR90
Everingham, Van Gool, Williams, Winn, Zisserman (CR12) 2010; 88
CR29
CR28
CR27
CR26
CR25
CR24
CR23
CR22
CR21
CR102
CR100
CR101
F Liang (1543_CR44) 2018; 113
1543_CR89
1543_CR86
1543_CR85
1543_CR88
1543_CR87
1543_CR82
1543_CR84
1543_CR83
1543_CR80
1543_CR16
1543_CR19
1543_CR18
1543_CR13
1543_CR15
1543_CR14
1543_CR96
1543_CR11
1543_CR99
1543_CR10
1543_CR98
1543_CR93
1543_CR92
1543_CR95
1543_CR94
1543_CR91
1543_CR90
1543_CR101
1543_CR100
DJ MacKay (1543_CR61) 1992; 4
J Lampinen (1543_CR35) 2001; 14
1543_CR102
1543_CR68
1543_CR67
1543_CR69
1543_CR63
1543_CR66
1543_CR65
M Everingham (1543_CR12) 2010; 88
1543_CR60
J Mockus (1543_CR64) 1978; 2
1543_CR5
1543_CR79
1543_CR6
1543_CR78
1543_CR3
1543_CR4
1543_CR9
1543_CR75
1543_CR74
1543_CR7
1543_CR77
1543_CR8
1543_CR76
1543_CR71
1543_CR70
1543_CR73
1543_CR72
S Han (1543_CR17) 2015; 56
ME Tipping (1543_CR81) 2001; 1
1543_CR49
1543_CR46
1543_CR45
1543_CR48
1543_CR47
1543_CR42
1543_CR41
1543_CR43
1543_CR40
CM Bishop (1543_CR1) 1997; 4
1543_CR56
T Hastie (1543_CR20) 2005; 27
1543_CR59
1543_CR58
DJ MacKay (1543_CR62) 1992; 4
1543_CR53
1543_CR52
1543_CR55
1543_CR54
1543_CR51
1543_CR50
X Zhang (1543_CR97) 2016; 38
1543_CR28
1543_CR27
1543_CR29
1543_CR24
1543_CR23
1543_CR26
Z Liu (1543_CR57) 2020; 128
1543_CR25
1543_CR22
1543_CR21
1543_CR39
1543_CR38
1543_CR34
1543_CR37
1543_CR36
1543_CR31
1543_CR30
1543_CR33
1543_CR32
DM Blei (1543_CR2) 2007; 1
References_xml – ident: CR45
– ident: CR22
– ident: CR68
– ident: CR74
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR54
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 14
  start-page: 257
  issue: 3
  year: 2001
  end-page: 274
  ident: CR35
  article-title: Bayesian approach for neural networks-review and case studies
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00098-8
– ident: CR25
– ident: CR42
– ident: CR101
– ident: CR71
– ident: CR19
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  end-page: 85
  ident: CR20
  article-title: The elements of statistical learning: Data mining, inference and prediction
  publication-title: The Mathematical Intelligencer
– ident: CR92
– ident: CR88
– ident: CR11
– ident: CR60
– ident: CR36
– ident: CR85
– volume: 1
  start-page: 17
  issue: 1
  year: 2007
  end-page: 35
  ident: CR2
  article-title: A correlated topic model of science
  publication-title: The annals of applied statistics
  doi: 10.1214/07-AOAS114
– ident: CR5
– volume: 113
  start-page: 955
  issue: 523
  year: 2018
  end-page: 972
  ident: CR44
  article-title: Bayesian neural networks for selection of drug sensitive genes
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1409122
– ident: CR100
– ident: CR18
– ident: CR66
– ident: CR91
– ident: CR47
– ident: CR72
– ident: CR89
– ident: CR30
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  ident: CR12
  article-title: The pascal visual object classes (voc) challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: CR10
– ident: CR33
– ident: CR6
– ident: CR86
– ident: CR63
– ident: CR27
– ident: CR69
– ident: CR94
– ident: CR3
– ident: CR38
– ident: CR52
– ident: CR13
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  end-page: 472
  ident: CR62
  article-title: A practical bayesian framework for backpropagation networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.448
– ident: CR55
– ident: CR83
– ident: CR41
– ident: CR24
– volume: 4
  start-page: 61
  issue: 1
  year: 1997
  end-page: 68
  ident: CR1
  article-title: Bayesian neural networks
  publication-title: Journal of the Brazilian Computer Society
  doi: 10.1590/S0104-65001997000200006
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  end-page: 447
  ident: CR61
  article-title: Bayesian interpolation
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.415
– ident: CR70
– ident: CR102
– volume: 128
  start-page: 202
  issue: 1
  year: 2020
  end-page: 219
  ident: CR57
  article-title: Bi-real net: Binarizing deep network towards real-network performance
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01227-8
– ident: CR49
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: CR81
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: Journal of Machine Learning Research
– ident: CR93
– volume: 2
  start-page: 2
  issue: 117–129
  year: 1978
  ident: CR64
  article-title: The application of bayesian methods for seeking the extremum
  publication-title: Towards Global Optimization
– ident: CR4
– ident: CR87
– ident: CR29
– ident: CR58
– ident: CR84
– volume: 56
  start-page: 3
  issue: 4
  year: 2015
  end-page: 7
  ident: CR17
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
  publication-title: Fiber
– ident: CR21
– ident: CR46
– ident: CR96
– ident: CR67
– ident: CR75
– ident: CR15
– ident: CR50
– ident: CR9
– ident: CR32
– ident: CR78
– ident: CR26
– ident: CR99
– ident: CR95
– ident: CR43
– ident: CR14
– ident: CR37
– ident: CR53
– ident: CR82
– ident: CR79
– ident: CR56
– ident: CR40
– ident: CR98
– ident: CR23
– ident: CR48
– ident: CR73
– ident: CR65
– ident: CR90
– ident: CR31
– ident: CR34
– ident: CR7
– ident: CR59
– ident: CR76
– volume: 38
  start-page: 1943
  issue: 10
  year: 2016
  end-page: 1955
  ident: CR97
  article-title: Accelerating very deep convolutional networks for classification and detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2502579
– ident: CR28
– ident: 1543_CR9
  doi: 10.1109/CVPR.2019.00508
– ident: 1543_CR26
– ident: 1543_CR78
– ident: 1543_CR85
  doi: 10.1109/CVPR.2018.00094
– volume: 38
  start-page: 1943
  issue: 10
  year: 2016
  ident: 1543_CR97
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2502579
– ident: 1543_CR52
  doi: 10.1007/978-3-030-01252-6_6
– ident: 1543_CR49
– ident: 1543_CR10
  doi: 10.1007/978-3-319-10593-2_13
– ident: 1543_CR5
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 1543_CR61
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.415
– ident: 1543_CR80
  doi: 10.1109/CVPR.2014.220
– ident: 1543_CR42
  doi: 10.1109/CVPR.2019.00291
– ident: 1543_CR50
  doi: 10.1109/CVPR.2019.00280
– ident: 1543_CR56
  doi: 10.1109/ICCV.2017.298
– ident: 1543_CR32
– ident: 1543_CR92
  doi: 10.1109/ICCV48922.2021.00515
– ident: 1543_CR7
  doi: 10.1109/CVPR.2009.5206848
– ident: 1543_CR29
– ident: 1543_CR37
  doi: 10.1109/CVPR.2019.00932
– ident: 1543_CR83
  doi: 10.1007/978-3-030-01216-8_20
– ident: 1543_CR101
  doi: 10.1109/CVPR.2018.00826
– ident: 1543_CR98
– ident: 1543_CR22
  doi: 10.1109/CVPR.2019.00447
– ident: 1543_CR41
– ident: 1543_CR93
  doi: 10.1109/CVPR.2017.643
– ident: 1543_CR60
  doi: 10.1109/ICCV.2017.541
– ident: 1543_CR66
– ident: 1543_CR87
  doi: 10.1007/978-3-319-46478-7_31
– ident: 1543_CR53
– ident: 1543_CR48
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1543_CR102
  doi: 10.1109/CVPR.2018.00907
– ident: 1543_CR91
  doi: 10.1109/CVPR46437.2021.00563
– ident: 1543_CR95
– ident: 1543_CR90
  doi: 10.1007/978-3-030-58610-2_1
– ident: 1543_CR24
– volume: 2
  start-page: 2
  issue: 117–129
  year: 1978
  ident: 1543_CR64
  publication-title: Towards Global Optimization
– ident: 1543_CR14
  doi: 10.1609/aaai.v33i01.33018344
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1543_CR12
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 1543_CR19
– ident: 1543_CR11
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 1543_CR62
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.448
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: 1543_CR20
  publication-title: The Mathematical Intelligencer
– volume: 128
  start-page: 202
  issue: 1
  year: 2020
  ident: 1543_CR57
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01227-8
– ident: 1543_CR89
  doi: 10.1007/978-3-030-58598-3_37
– ident: 1543_CR16
– volume: 4
  start-page: 61
  issue: 1
  year: 1997
  ident: 1543_CR1
  publication-title: Journal of the Brazilian Computer Society
  doi: 10.1590/S0104-65001997000200006
– volume: 14
  start-page: 257
  issue: 3
  year: 2001
  ident: 1543_CR35
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00098-8
– ident: 1543_CR15
  doi: 10.1109/ICCV.2019.00501
– ident: 1543_CR73
  doi: 10.1007/978-3-319-46493-0_32
– volume: 1
  start-page: 17
  issue: 1
  year: 2007
  ident: 1543_CR2
  publication-title: The annals of applied statistics
  doi: 10.1214/07-AOAS114
– ident: 1543_CR33
– ident: 1543_CR38
  doi: 10.1609/aaai.v32i1.11713
– ident: 1543_CR84
  doi: 10.1109/CVPR.2019.00230
– ident: 1543_CR74
– ident: 1543_CR58
  doi: 10.1007/978-3-030-58568-6_9
– ident: 1543_CR59
– ident: 1543_CR28
  doi: 10.1109/CVPR.2017.243
– ident: 1543_CR65
– ident: 1543_CR13
  doi: 10.1007/978-3-030-58536-5_5
– ident: 1543_CR88
– ident: 1543_CR36
– ident: 1543_CR72
  doi: 10.1109/CVPR42600.2020.00232
– ident: 1543_CR46
  doi: 10.24963/ijcai.2018/336
– ident: 1543_CR100
– ident: 1543_CR77
– ident: 1543_CR25
– ident: 1543_CR6
– ident: 1543_CR94
– ident: 1543_CR45
  doi: 10.1109/CVPR42600.2020.00160
– ident: 1543_CR47
  doi: 10.1109/CVPR.2019.00290
– ident: 1543_CR51
  doi: 10.1007/978-3-030-01246-5_2
– volume: 1
  start-page: 211
  year: 2001
  ident: 1543_CR81
  publication-title: Journal of Machine Learning Research
– ident: 1543_CR86
  doi: 10.1109/CVPR42600.2020.00212
– ident: 1543_CR18
– ident: 1543_CR96
  doi: 10.5244/C.30.87
– ident: 1543_CR23
  doi: 10.1109/ICCV.2017.155
– ident: 1543_CR75
  doi: 10.1109/CVPR.2015.7298682
– ident: 1543_CR54
  doi: 10.1109/TPAMI.2021.3066410
– ident: 1543_CR3
– ident: 1543_CR99
– ident: 1543_CR30
  doi: 10.1007/978-3-030-01270-0_19
– ident: 1543_CR55
  doi: 10.1007/978-3-319-46448-0_2
– ident: 1543_CR82
– ident: 1543_CR70
  doi: 10.1109/WACV45572.2020.9093444
– ident: 1543_CR71
  doi: 10.1109/CVPR42600.2020.01343
– volume: 56
  start-page: 3
  issue: 4
  year: 2015
  ident: 1543_CR17
  publication-title: Fiber
– ident: 1543_CR40
– ident: 1543_CR39
  doi: 10.1007/978-3-030-58536-5_38
– ident: 1543_CR43
  doi: 10.1109/ICCV.2017.282
– ident: 1543_CR63
– ident: 1543_CR34
– ident: 1543_CR4
  doi: 10.1109/CVPR42600.2020.01318
– ident: 1543_CR21
  doi: 10.1109/CVPR.2016.90
– ident: 1543_CR79
– ident: 1543_CR8
– ident: 1543_CR69
  doi: 10.5244/C.29.41
– volume: 113
  start-page: 955
  issue: 523
  year: 2018
  ident: 1543_CR44
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1409122
– ident: 1543_CR68
– ident: 1543_CR31
  doi: 10.1109/CVPR.2019.00448
– ident: 1543_CR67
  doi: 10.1109/CVPRW.2017.250
– ident: 1543_CR27
  doi: 10.1109/CVPR.2018.00291
– ident: 1543_CR76
  doi: 10.1109/WACV.2016.7477558
SSID ssj0002823
Score 2.4412243
Snippet Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation
Bayesian analysis
Comparative analysis
Computer Imaging
Computer Science
Computer vision
Data mining
Deep learning
Electronic devices
Image Processing and Computer Vision
Kernels
Machine learning
Machine vision
Neural networks
Normal distribution
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Performance enhancement
Smartphones
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSyMxFD6s9WVf1L2Idd0lyMI-uGEnk0yaPImKooJl0RZ8C8nMaSlIW51R6L_fJM1YXNHXTOb2JTnnO8m5APys8sxJJTktKlZQYXsVVYVg1EkrNWrHefR2v-rL86G4vC1u04ZbndwqW5kYBXU1K8Me-Z9c5p7JeGUoD-f3NFSNCqerqYTGGqx7EaxUB9aPT_t_r59lsTcolsXkvZFUSM1S2MwyeI7l8QwzmNOF4HTxQjX9L6BfnZRGBXS2BRuJOZKj5VB_gg84_QybiUWStEZr39QWamjbvkA2iM6xNYmrv2yIR2nSkJN-vyZPE0uO7QJDMCVJ2VbHX2F4djo4OaepVAItPcFpqGOWe8XCBENWZj3UNrNYKeHh5ugsR6l5iTbTyD3Fq1zOUGVSOW-saMV6I74NnelsijtAUIjIDGwxGgnpSocVKqurnCPXaEUXWIuSKVMe8VDO4s6sMiAHZI1H1kRkzaILB8_3zJdZNN7tvR_ANyE9xTT4v4ztY12bi5trcyS1yAQTOevCr9RpNPOvL20KJ_A_ETJavei51w6iSQu0Nqvp1IXf7cCuLr_9cbvvP-0bfMxDgET0696DTvPwiN89bWncjzQ3_wEeWOT6
  priority: 102
  providerName: ProQuest
Title Towards Compact 1-bit CNNs via Bayesian Learning
URI https://link.springer.com/article/10.1007/s11263-021-01543-y
https://www.proquest.com/docview/2629162836
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD708rKXXbqNZeuCGIM9dAbrYsV6TLukXbuG0jbQPQnJPimFko7ZHeTf70iRG7pLoU8C-diWP1nSdzg3gI-1yL0utcyKmheZcoM6KwvFM6-dNmi8lNHb_XiiD6bq8KK4SEFhTeft3pkk4069CnbjItocg_pbKJkt1mGzIN09OHJNxfBu_yUlYllAnhSjQhueQmX-_Yx7x9Gfm_Jf1tF46Iyfw9PEFtlwOb0vYA3nW_AsMUeW1mVDXV1xhq7vJeTn0SG2YXHFVy0jZK5atjeZNOzXlWO7boEhgJKlDKuXr2A6Hp3vHWSpPEJWEalpM8-dpMOEK468ygdoXO6wLhVBLNE7idrICl1uUBKtq73gWOa69KSgmJIPZvI1bMxv5vgGGCoV2YArZjOlfeWxxtKZWkiUBp3qAe9QslXKHR5KWFzbVdbjgKwlZG1E1i56sHN3z49l5owHpT8E8G1ISTEPPi-X7rZp7NezUzvURuWKK8F78CkJzW7o9ZVLIQT0ESGL1T3J7W4SbVqUjRVaEBkmPqV78Lmb2NXl_w_u7ePE38ETEYIkom_3Nmy0P2_xPVGX1vdhvRzv92Fz-OX421lo978fjajdHU1OTvvxP_4Nxr3mkw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8SWAhYCcYCI-BFvfECoFJZd2u4BtlJvrp3MVpXQbktS0P4pfiNjr9NVQfTWq-M4zsxk5pt4HgAvapF7XWqZFTUvMuX6dVYWimdeO23QeCljtPveWA_31ZeD4mANfne5MCGsstOJUVHX8yr8I38rtCAkQ8ZQvz85zULXqHC62rXQWIrFDi5-kcvWvBt9JP6-FGLwabI9zFJXgawiLNBmnjtJOpgrjrzK-2hc7rAuFe1MoncStZEVutygJDRUe8GxzHXpCdebkvenkta9BteVJEseMtMHn881P7kvy9b15JIV2vCUpLNM1eMinpgG571QMltcMIR_m4N_zmWjuRvcgVsJp7KtpWDdhTWc3YPbCbOypBEaGuraQnRj9yGfxFDchkVdU7WMeHLcsu3xuGE_jx374BYYUjdZqu169AD2r4SED2F9Np_hI2CoVMQhrphOlfaVxxpLZ2ohURp0qge8o5KtUtXy0Dzju13VWw6UtURZGylrFz14fX7PybJmx6Wznwfi21AMYxaibY7cWdPY0bevdksblSuuBO_BqzRpOqfHVy4lL9BLhPpZF2Zudky0SR00diW8PXjTMXZ1-f-b27h8tWdwYzjZ27W7o_HOY7gpQmpGjCjfhPX2xxk-IcDU-qdRShkcXvVn8QcHdx_5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS48EYsFLAQiANEjR_xxgeE-lp1KURVaaXejJ1Mqkpot5AtaP8av45x4nRVEL31mjiOMzOe-SaeB8CrSqRe51omWcWzRLlRleSZ4onXThs0Xso22v1zoXeP1Mfj7HgFfve5MCGssteJraKuZmX4R74utCAkQ8ZQr9cxLGJ_e_zh7HsSOkiFk9a-nUYnInu4-EXuW_N-sk28fi3EeOdwazeJHQaSknDBPPHcSdLHXHHkZTpC41KHVa5olRK9k6iNLNGlBiUho8oLjnmqc08Y3-R8VEua9wasjoJXNIDVzZ1i_-DCDpAz0zWyJwct04bHlJ0ucY-L9vw0uPKZksnikln82zj8c0rbGr_xXbgdUSvb6MTsHqzg9D7ciQiWRf3Q0KW-SUR_7QGkh21gbsNazVPOGXHodM62iqJhP08d23QLDImcLFZ6PXkIR9dCxEcwmM6m-BgYKtWiEpfVtdK-9Fhh7kwlJEqDTg2B91SyZaxhHlppfLPL6suBspYoa1vK2sUQ3l48c9ZV8Lhy9MtAfBtKY0yDkJ2486axky8HdkMblSquBB_CmziontHrSxdTGegjQjWtSyPXeibaqBwauxTlIbzrGbu8_f_FPbl6thdwk7aE_TQp9p7CLRHyNNrw8jUYzH-c4zNCT3P_PIopg6_XvTP-AJwoJYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Compact+1-bit+CNNs+via+Bayesian+Learning&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhao%2C+Junhe&rft.au=Xu%2C+Sheng&rft.au=Zhang%2C+Baochang&rft.au=Gu%2C+Jiaxin&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=2&rft.spage=201&rft.epage=225&rft_id=info:doi/10.1007%2Fs11263-021-01543-y&rft.externalDocID=10_1007_s11263_021_01543_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon