Towards Compact 1-bit CNNs via Bayesian Learning
Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this e...
Saved in:
Published in | International journal of computer vision Vol. 130; no. 2; pp. 201 - 225 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this end, 1-bit CNNs have emerged as a feasible solution as they are much more resource-efficient. Unfortunately, they often suffer from a significant performance drop compared to their full-precision counterparts. In this paper, we propose a novel Bayesian Optimized compact 1-bit CNNs (BONNs) model, which has the advantage of Bayesian learning, to improve the performance of 1-bit CNNs significantly. BONNs incorporate the prior distributions of full-precision kernels, features, and filters into a Bayesian framework to construct 1-bit CNNs in a comprehensive end-to-end manner. The proposed Bayesian learning algorithms are well-founded and used to optimize the network simultaneously in different kernels, features, and filters, which largely improves the compactness and capacity of 1-bit CNNs. We further introduce a new Bayesian learning-based pruning method for 1-bit CNNs, which significantly increases the model efficiency with very competitive performance. This enables our method to be used in a variety of practical scenarios. Extensive experiments on the ImageNet, CIFAR, and LFW datasets show that BONNs achieve the best in classification performance compared to a variety of state-of-the-art 1-bit CNN models. In particular, BONN achieves a strong generalization performance on the object detection task. |
---|---|
AbstractList | Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it remains a major challenge to deploy these powerful DCNNs in resource-limited environments, such as embedded devices and smartphones. To this end, 1-bit CNNs have emerged as a feasible solution as they are much more resource-efficient. Unfortunately, they often suffer from a significant performance drop compared to their full-precision counterparts. In this paper, we propose a novel Bayesian Optimized compact 1-bit CNNs (BONNs) model, which has the advantage of Bayesian learning, to improve the performance of 1-bit CNNs significantly. BONNs incorporate the prior distributions of full-precision kernels, features, and filters into a Bayesian framework to construct 1-bit CNNs in a comprehensive end-to-end manner. The proposed Bayesian learning algorithms are well-founded and used to optimize the network simultaneously in different kernels, features, and filters, which largely improves the compactness and capacity of 1-bit CNNs. We further introduce a new Bayesian learning-based pruning method for 1-bit CNNs, which significantly increases the model efficiency with very competitive performance. This enables our method to be used in a variety of practical scenarios. Extensive experiments on the ImageNet, CIFAR, and LFW datasets show that BONNs achieve the best in classification performance compared to a variety of state-of-the-art 1-bit CNN models. In particular, BONN achieves a strong generalization performance on the object detection task. |
Audience | Academic |
Author | Guo, Guodong Gu, Jiaxin Doermann, David Zhao, Junhe Zhang, Baochang Xu, Sheng |
Author_xml | – sequence: 1 givenname: Junhe surname: Zhao fullname: Zhao, Junhe organization: Beihang University – sequence: 2 givenname: Sheng surname: Xu fullname: Xu, Sheng organization: Beihang University – sequence: 3 givenname: Baochang orcidid: 0000-0001-7396-6218 surname: Zhang fullname: Zhang, Baochang email: bczhang@buaa.edu.cn organization: Beihang University – sequence: 4 givenname: Jiaxin surname: Gu fullname: Gu, Jiaxin organization: Youtu Lab, Tencent – sequence: 5 givenname: David surname: Doermann fullname: Doermann, David organization: University at Buffalo – sequence: 6 givenname: Guodong surname: Guo fullname: Guo, Guodong organization: Institute of Deep Learning, Baidu Research, National Engineering Laboratory for Deep Learning Technology and Application |
BookMark | eNp9kE1r3DAQQEVJoZukf6AnQ085KJmRbNk6Jku-YEmhTc9i7B0vCrv2VtKm3X8fJS6E5BB0EIj3ZtA7FAfDOLAQ3xBOEaA-i4jKaAkKJWBVarn_JGZY1VpiCdWBmIFVICtj8Ys4jPEBAFSj9EzA_fiXwjIW83GzpS4VKFufivndXSwePRUXtOfoaSgWTGHww-pYfO5pHfnr__tI_L66vJ_fyMWP69v5-UJ22qokWyStrMUSGTuo2RIQL5vSstXckmZjdccEljUaXLYKuQHTtHWlbYN1r4_E92nuNox_dhyTexh3YcgrnTLKolGNNpk6nagVrdn5oR9ToC6fJW98lxv1Pr-fG1tCiaXCLJy8ETKT-F9a0S5Gd_vr51u2mdgujDEG7l3nEyWflUB-7RDcc3w3xXc5vnuJ7_ZZVe_UbfAbCvuPJT1JMcPDisPrlz-wngBqRZWc |
CitedBy_id | crossref_primary_10_1007_s11263_023_01836_4 crossref_primary_10_1109_TPAMI_2023_3300513 crossref_primary_10_1007_s00521_022_07127_2 crossref_primary_10_3389_frobt_2025_1518965 crossref_primary_10_1007_s11263_024_02250_0 crossref_primary_10_3390_s23042250 |
Cites_doi | 10.1016/S0893-6080(00)00098-8 10.1214/07-AOAS114 10.1080/01621459.2017.1409122 10.1007/s11263-009-0275-4 10.1162/neco.1992.4.3.448 10.1590/S0104-65001997000200006 10.1162/neco.1992.4.3.415 10.1007/s11263-019-01227-8 10.1109/TPAMI.2015.2502579 10.1109/CVPR.2019.00508 10.1109/CVPR.2018.00094 10.1007/978-3-030-01252-6_6 10.1007/978-3-319-10593-2_13 10.1109/CVPR.2014.220 10.1109/CVPR.2019.00291 10.1109/CVPR.2019.00280 10.1109/ICCV.2017.298 10.1109/ICCV48922.2021.00515 10.1109/CVPR.2009.5206848 10.1109/CVPR.2019.00932 10.1007/978-3-030-01216-8_20 10.1109/CVPR.2018.00826 10.1109/CVPR.2019.00447 10.1109/CVPR.2017.643 10.1109/ICCV.2017.541 10.1007/978-3-319-46478-7_31 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2018.00907 10.1109/CVPR46437.2021.00563 10.1007/978-3-030-58610-2_1 10.1609/aaai.v33i01.33018344 10.1007/978-3-030-58598-3_37 10.1109/ICCV.2019.00501 10.1007/978-3-319-46493-0_32 10.1609/aaai.v32i1.11713 10.1109/CVPR.2019.00230 10.1007/978-3-030-58568-6_9 10.1109/CVPR.2017.243 10.1007/978-3-030-58536-5_5 10.1109/CVPR42600.2020.00232 10.24963/ijcai.2018/336 10.1109/CVPR42600.2020.00160 10.1109/CVPR.2019.00290 10.1007/978-3-030-01246-5_2 10.1109/CVPR42600.2020.00212 10.5244/C.30.87 10.1109/ICCV.2017.155 10.1109/CVPR.2015.7298682 10.1109/TPAMI.2021.3066410 10.1007/978-3-030-01270-0_19 10.1007/978-3-319-46448-0_2 10.1109/WACV45572.2020.9093444 10.1109/CVPR42600.2020.01343 10.1007/978-3-030-58536-5_38 10.1109/ICCV.2017.282 10.1109/CVPR42600.2020.01318 10.1109/CVPR.2016.90 10.5244/C.29.41 10.1109/CVPR.2019.00448 10.1109/CVPRW.2017.250 10.1109/CVPR.2018.00291 10.1109/WACV.2016.7477558 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s11263-021-01543-y |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 225 |
ExternalDocumentID | A694041421 10_1007_s11263_021_01543_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT ABRTQ PQGLB AEIIB PMFND 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c392t-b1a3299141e1c07e9a0aed849e93eba3e693cea09e3161db21e8068b7539817f3 |
IEDL.DBID | U2A |
ISSN | 0920-5691 |
IngestDate | Sat Jul 26 00:04:05 EDT 2025 Tue Jun 10 21:03:52 EDT 2025 Sun Jul 13 06:36:54 EDT 2025 Tue Jul 01 04:30:58 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Fri Feb 21 02:47:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Quantization Pruning Binarized network Bayesian learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-b1a3299141e1c07e9a0aed849e93eba3e693cea09e3161db21e8068b7539817f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7396-6218 |
PQID | 2629162836 |
PQPubID | 1456341 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2629162836 gale_infotracacademiconefile_A694041421 gale_incontextgauss_ISR_A694041421 crossref_citationtrail_10_1007_s11263_021_01543_y crossref_primary_10_1007_s11263_021_01543_y springer_journals_10_1007_s11263_021_01543_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Mockus, Tiesis, Zilinskas (CR64) 1978; 2 CR39 CR38 CR37 Lampinen, Vehtari (CR35) 2001; 14 CR36 CR34 CR33 CR32 CR31 CR30 Liang, Li, Zhou (CR44) 2018; 113 Han, Mao, Dally (CR17) 2015; 56 CR49 CR48 CR47 CR46 CR45 CR43 CR42 CR41 CR40 Tipping (CR81) 2001; 1 MacKay (CR62) 1992; 4 Bishop (CR1) 1997; 4 CR59 CR58 CR56 CR55 CR54 CR53 CR52 MacKay (CR61) 1992; 4 CR51 CR50 CR69 CR68 CR67 CR66 CR65 CR63 CR60 Liu, Luo, Wu, Yang, Liu, Cheng (CR57) 2020; 128 CR79 CR78 CR77 CR76 CR75 CR74 Hastie, Tibshirani, Friedman, Franklin (CR20) 2005; 27 CR73 CR72 CR71 CR70 Blei, Lafferty (CR2) 2007; 1 Zhang, Zou, He, Sun (CR97) 2016; 38 CR4 CR3 CR6 CR5 CR8 CR7 CR9 CR89 CR88 CR87 CR86 CR85 CR84 CR83 CR82 CR80 CR19 CR18 CR16 CR15 CR14 CR13 CR11 CR99 CR10 CR98 CR96 CR95 CR94 CR93 CR92 CR91 CR90 Everingham, Van Gool, Williams, Winn, Zisserman (CR12) 2010; 88 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR22 CR21 CR102 CR100 CR101 F Liang (1543_CR44) 2018; 113 1543_CR89 1543_CR86 1543_CR85 1543_CR88 1543_CR87 1543_CR82 1543_CR84 1543_CR83 1543_CR80 1543_CR16 1543_CR19 1543_CR18 1543_CR13 1543_CR15 1543_CR14 1543_CR96 1543_CR11 1543_CR99 1543_CR10 1543_CR98 1543_CR93 1543_CR92 1543_CR95 1543_CR94 1543_CR91 1543_CR90 1543_CR101 1543_CR100 DJ MacKay (1543_CR61) 1992; 4 J Lampinen (1543_CR35) 2001; 14 1543_CR102 1543_CR68 1543_CR67 1543_CR69 1543_CR63 1543_CR66 1543_CR65 M Everingham (1543_CR12) 2010; 88 1543_CR60 J Mockus (1543_CR64) 1978; 2 1543_CR5 1543_CR79 1543_CR6 1543_CR78 1543_CR3 1543_CR4 1543_CR9 1543_CR75 1543_CR74 1543_CR7 1543_CR77 1543_CR8 1543_CR76 1543_CR71 1543_CR70 1543_CR73 1543_CR72 S Han (1543_CR17) 2015; 56 ME Tipping (1543_CR81) 2001; 1 1543_CR49 1543_CR46 1543_CR45 1543_CR48 1543_CR47 1543_CR42 1543_CR41 1543_CR43 1543_CR40 CM Bishop (1543_CR1) 1997; 4 1543_CR56 T Hastie (1543_CR20) 2005; 27 1543_CR59 1543_CR58 DJ MacKay (1543_CR62) 1992; 4 1543_CR53 1543_CR52 1543_CR55 1543_CR54 1543_CR51 1543_CR50 X Zhang (1543_CR97) 2016; 38 1543_CR28 1543_CR27 1543_CR29 1543_CR24 1543_CR23 1543_CR26 Z Liu (1543_CR57) 2020; 128 1543_CR25 1543_CR22 1543_CR21 1543_CR39 1543_CR38 1543_CR34 1543_CR37 1543_CR36 1543_CR31 1543_CR30 1543_CR33 1543_CR32 DM Blei (1543_CR2) 2007; 1 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR68 – ident: CR74 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR8 – volume: 14 start-page: 257 issue: 3 year: 2001 end-page: 274 ident: CR35 article-title: Bayesian approach for neural networks-review and case studies publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00098-8 – ident: CR25 – ident: CR42 – ident: CR101 – ident: CR71 – ident: CR19 – volume: 27 start-page: 83 issue: 2 year: 2005 end-page: 85 ident: CR20 article-title: The elements of statistical learning: Data mining, inference and prediction publication-title: The Mathematical Intelligencer – ident: CR92 – ident: CR88 – ident: CR11 – ident: CR60 – ident: CR36 – ident: CR85 – volume: 1 start-page: 17 issue: 1 year: 2007 end-page: 35 ident: CR2 article-title: A correlated topic model of science publication-title: The annals of applied statistics doi: 10.1214/07-AOAS114 – ident: CR5 – volume: 113 start-page: 955 issue: 523 year: 2018 end-page: 972 ident: CR44 article-title: Bayesian neural networks for selection of drug sensitive genes publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2017.1409122 – ident: CR100 – ident: CR18 – ident: CR66 – ident: CR91 – ident: CR47 – ident: CR72 – ident: CR89 – ident: CR30 – volume: 88 start-page: 303 issue: 2 year: 2010 end-page: 338 ident: CR12 article-title: The pascal visual object classes (voc) challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0275-4 – ident: CR10 – ident: CR33 – ident: CR6 – ident: CR86 – ident: CR63 – ident: CR27 – ident: CR69 – ident: CR94 – ident: CR3 – ident: CR38 – ident: CR52 – ident: CR13 – volume: 4 start-page: 448 issue: 3 year: 1992 end-page: 472 ident: CR62 article-title: A practical bayesian framework for backpropagation networks publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.448 – ident: CR55 – ident: CR83 – ident: CR41 – ident: CR24 – volume: 4 start-page: 61 issue: 1 year: 1997 end-page: 68 ident: CR1 article-title: Bayesian neural networks publication-title: Journal of the Brazilian Computer Society doi: 10.1590/S0104-65001997000200006 – volume: 4 start-page: 415 issue: 3 year: 1992 end-page: 447 ident: CR61 article-title: Bayesian interpolation publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.415 – ident: CR70 – ident: CR102 – volume: 128 start-page: 202 issue: 1 year: 2020 end-page: 219 ident: CR57 article-title: Bi-real net: Binarizing deep network towards real-network performance publication-title: International Journal of Computer Vision doi: 10.1007/s11263-019-01227-8 – ident: CR49 – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: CR81 article-title: Sparse bayesian learning and the relevance vector machine publication-title: Journal of Machine Learning Research – ident: CR93 – volume: 2 start-page: 2 issue: 117–129 year: 1978 ident: CR64 article-title: The application of bayesian methods for seeking the extremum publication-title: Towards Global Optimization – ident: CR4 – ident: CR87 – ident: CR29 – ident: CR58 – ident: CR84 – volume: 56 start-page: 3 issue: 4 year: 2015 end-page: 7 ident: CR17 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding publication-title: Fiber – ident: CR21 – ident: CR46 – ident: CR96 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR50 – ident: CR9 – ident: CR32 – ident: CR78 – ident: CR26 – ident: CR99 – ident: CR95 – ident: CR43 – ident: CR14 – ident: CR37 – ident: CR53 – ident: CR82 – ident: CR79 – ident: CR56 – ident: CR40 – ident: CR98 – ident: CR23 – ident: CR48 – ident: CR73 – ident: CR65 – ident: CR90 – ident: CR31 – ident: CR34 – ident: CR7 – ident: CR59 – ident: CR76 – volume: 38 start-page: 1943 issue: 10 year: 2016 end-page: 1955 ident: CR97 article-title: Accelerating very deep convolutional networks for classification and detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2502579 – ident: CR28 – ident: 1543_CR9 doi: 10.1109/CVPR.2019.00508 – ident: 1543_CR26 – ident: 1543_CR78 – ident: 1543_CR85 doi: 10.1109/CVPR.2018.00094 – volume: 38 start-page: 1943 issue: 10 year: 2016 ident: 1543_CR97 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2502579 – ident: 1543_CR52 doi: 10.1007/978-3-030-01252-6_6 – ident: 1543_CR49 – ident: 1543_CR10 doi: 10.1007/978-3-319-10593-2_13 – ident: 1543_CR5 – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 1543_CR61 publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.415 – ident: 1543_CR80 doi: 10.1109/CVPR.2014.220 – ident: 1543_CR42 doi: 10.1109/CVPR.2019.00291 – ident: 1543_CR50 doi: 10.1109/CVPR.2019.00280 – ident: 1543_CR56 doi: 10.1109/ICCV.2017.298 – ident: 1543_CR32 – ident: 1543_CR92 doi: 10.1109/ICCV48922.2021.00515 – ident: 1543_CR7 doi: 10.1109/CVPR.2009.5206848 – ident: 1543_CR29 – ident: 1543_CR37 doi: 10.1109/CVPR.2019.00932 – ident: 1543_CR83 doi: 10.1007/978-3-030-01216-8_20 – ident: 1543_CR101 doi: 10.1109/CVPR.2018.00826 – ident: 1543_CR98 – ident: 1543_CR22 doi: 10.1109/CVPR.2019.00447 – ident: 1543_CR41 – ident: 1543_CR93 doi: 10.1109/CVPR.2017.643 – ident: 1543_CR60 doi: 10.1109/ICCV.2017.541 – ident: 1543_CR66 – ident: 1543_CR87 doi: 10.1007/978-3-319-46478-7_31 – ident: 1543_CR53 – ident: 1543_CR48 doi: 10.1007/978-3-319-10602-1_48 – ident: 1543_CR102 doi: 10.1109/CVPR.2018.00907 – ident: 1543_CR91 doi: 10.1109/CVPR46437.2021.00563 – ident: 1543_CR95 – ident: 1543_CR90 doi: 10.1007/978-3-030-58610-2_1 – ident: 1543_CR24 – volume: 2 start-page: 2 issue: 117–129 year: 1978 ident: 1543_CR64 publication-title: Towards Global Optimization – ident: 1543_CR14 doi: 10.1609/aaai.v33i01.33018344 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 1543_CR12 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0275-4 – ident: 1543_CR19 – ident: 1543_CR11 – volume: 4 start-page: 448 issue: 3 year: 1992 ident: 1543_CR62 publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.448 – volume: 27 start-page: 83 issue: 2 year: 2005 ident: 1543_CR20 publication-title: The Mathematical Intelligencer – volume: 128 start-page: 202 issue: 1 year: 2020 ident: 1543_CR57 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-019-01227-8 – ident: 1543_CR89 doi: 10.1007/978-3-030-58598-3_37 – ident: 1543_CR16 – volume: 4 start-page: 61 issue: 1 year: 1997 ident: 1543_CR1 publication-title: Journal of the Brazilian Computer Society doi: 10.1590/S0104-65001997000200006 – volume: 14 start-page: 257 issue: 3 year: 2001 ident: 1543_CR35 publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00098-8 – ident: 1543_CR15 doi: 10.1109/ICCV.2019.00501 – ident: 1543_CR73 doi: 10.1007/978-3-319-46493-0_32 – volume: 1 start-page: 17 issue: 1 year: 2007 ident: 1543_CR2 publication-title: The annals of applied statistics doi: 10.1214/07-AOAS114 – ident: 1543_CR33 – ident: 1543_CR38 doi: 10.1609/aaai.v32i1.11713 – ident: 1543_CR84 doi: 10.1109/CVPR.2019.00230 – ident: 1543_CR74 – ident: 1543_CR58 doi: 10.1007/978-3-030-58568-6_9 – ident: 1543_CR59 – ident: 1543_CR28 doi: 10.1109/CVPR.2017.243 – ident: 1543_CR65 – ident: 1543_CR13 doi: 10.1007/978-3-030-58536-5_5 – ident: 1543_CR88 – ident: 1543_CR36 – ident: 1543_CR72 doi: 10.1109/CVPR42600.2020.00232 – ident: 1543_CR46 doi: 10.24963/ijcai.2018/336 – ident: 1543_CR100 – ident: 1543_CR77 – ident: 1543_CR25 – ident: 1543_CR6 – ident: 1543_CR94 – ident: 1543_CR45 doi: 10.1109/CVPR42600.2020.00160 – ident: 1543_CR47 doi: 10.1109/CVPR.2019.00290 – ident: 1543_CR51 doi: 10.1007/978-3-030-01246-5_2 – volume: 1 start-page: 211 year: 2001 ident: 1543_CR81 publication-title: Journal of Machine Learning Research – ident: 1543_CR86 doi: 10.1109/CVPR42600.2020.00212 – ident: 1543_CR18 – ident: 1543_CR96 doi: 10.5244/C.30.87 – ident: 1543_CR23 doi: 10.1109/ICCV.2017.155 – ident: 1543_CR75 doi: 10.1109/CVPR.2015.7298682 – ident: 1543_CR54 doi: 10.1109/TPAMI.2021.3066410 – ident: 1543_CR3 – ident: 1543_CR99 – ident: 1543_CR30 doi: 10.1007/978-3-030-01270-0_19 – ident: 1543_CR55 doi: 10.1007/978-3-319-46448-0_2 – ident: 1543_CR82 – ident: 1543_CR70 doi: 10.1109/WACV45572.2020.9093444 – ident: 1543_CR71 doi: 10.1109/CVPR42600.2020.01343 – volume: 56 start-page: 3 issue: 4 year: 2015 ident: 1543_CR17 publication-title: Fiber – ident: 1543_CR40 – ident: 1543_CR39 doi: 10.1007/978-3-030-58536-5_38 – ident: 1543_CR43 doi: 10.1109/ICCV.2017.282 – ident: 1543_CR63 – ident: 1543_CR34 – ident: 1543_CR4 doi: 10.1109/CVPR42600.2020.01318 – ident: 1543_CR21 doi: 10.1109/CVPR.2016.90 – ident: 1543_CR79 – ident: 1543_CR8 – ident: 1543_CR69 doi: 10.5244/C.29.41 – volume: 113 start-page: 955 issue: 523 year: 2018 ident: 1543_CR44 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2017.1409122 – ident: 1543_CR68 – ident: 1543_CR31 doi: 10.1109/CVPR.2019.00448 – ident: 1543_CR67 doi: 10.1109/CVPRW.2017.250 – ident: 1543_CR27 doi: 10.1109/CVPR.2018.00291 – ident: 1543_CR76 doi: 10.1109/WACV.2016.7477558 |
SSID | ssj0002823 |
Score | 2.4412243 |
Snippet | Deep convolutional neural networks (DCNNs) have dominated as the best performers on almost all computer vision tasks over the past several years. However, it... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 201 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Back propagation Bayesian analysis Comparative analysis Computer Imaging Computer Science Computer vision Data mining Deep learning Electronic devices Image Processing and Computer Vision Kernels Machine learning Machine vision Neural networks Normal distribution Object recognition Pattern Recognition Pattern Recognition and Graphics Performance enhancement Smartphones Vision |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSyMxFD6s9WVf1L2Idd0lyMI-uGEnk0yaPImKooJl0RZ8C8nMaSlIW51R6L_fJM1YXNHXTOb2JTnnO8m5APys8sxJJTktKlZQYXsVVYVg1EkrNWrHefR2v-rL86G4vC1u04ZbndwqW5kYBXU1K8Me-Z9c5p7JeGUoD-f3NFSNCqerqYTGGqx7EaxUB9aPT_t_r59lsTcolsXkvZFUSM1S2MwyeI7l8QwzmNOF4HTxQjX9L6BfnZRGBXS2BRuJOZKj5VB_gg84_QybiUWStEZr39QWamjbvkA2iM6xNYmrv2yIR2nSkJN-vyZPE0uO7QJDMCVJ2VbHX2F4djo4OaepVAItPcFpqGOWe8XCBENWZj3UNrNYKeHh5ugsR6l5iTbTyD3Fq1zOUGVSOW-saMV6I74NnelsijtAUIjIDGwxGgnpSocVKqurnCPXaEUXWIuSKVMe8VDO4s6sMiAHZI1H1kRkzaILB8_3zJdZNN7tvR_ANyE9xTT4v4ztY12bi5trcyS1yAQTOevCr9RpNPOvL20KJ_A_ETJavei51w6iSQu0Nqvp1IXf7cCuLr_9cbvvP-0bfMxDgET0696DTvPwiN89bWncjzQ3_wEeWOT6 priority: 102 providerName: ProQuest |
Title | Towards Compact 1-bit CNNs via Bayesian Learning |
URI | https://link.springer.com/article/10.1007/s11263-021-01543-y https://www.proquest.com/docview/2629162836 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD708rKXXbqNZeuCGIM9dAbrYsV6TLukXbuG0jbQPQnJPimFko7ZHeTf70iRG7pLoU8C-diWP1nSdzg3gI-1yL0utcyKmheZcoM6KwvFM6-dNmi8lNHb_XiiD6bq8KK4SEFhTeft3pkk4069CnbjItocg_pbKJkt1mGzIN09OHJNxfBu_yUlYllAnhSjQhueQmX-_Yx7x9Gfm_Jf1tF46Iyfw9PEFtlwOb0vYA3nW_AsMUeW1mVDXV1xhq7vJeTn0SG2YXHFVy0jZK5atjeZNOzXlWO7boEhgJKlDKuXr2A6Hp3vHWSpPEJWEalpM8-dpMOEK468ygdoXO6wLhVBLNE7idrICl1uUBKtq73gWOa69KSgmJIPZvI1bMxv5vgGGCoV2YArZjOlfeWxxtKZWkiUBp3qAe9QslXKHR5KWFzbVdbjgKwlZG1E1i56sHN3z49l5owHpT8E8G1ISTEPPi-X7rZp7NezUzvURuWKK8F78CkJzW7o9ZVLIQT0ESGL1T3J7W4SbVqUjRVaEBkmPqV78Lmb2NXl_w_u7ePE38ETEYIkom_3Nmy0P2_xPVGX1vdhvRzv92Fz-OX421lo978fjajdHU1OTvvxP_4Nxr3mkw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8SWAhYCcYCI-BFvfECoFJZd2u4BtlJvrp3MVpXQbktS0P4pfiNjr9NVQfTWq-M4zsxk5pt4HgAvapF7XWqZFTUvMuX6dVYWimdeO23QeCljtPveWA_31ZeD4mANfne5MCGsstOJUVHX8yr8I38rtCAkQ8ZQvz85zULXqHC62rXQWIrFDi5-kcvWvBt9JP6-FGLwabI9zFJXgawiLNBmnjtJOpgrjrzK-2hc7rAuFe1MoncStZEVutygJDRUe8GxzHXpCdebkvenkta9BteVJEseMtMHn881P7kvy9b15JIV2vCUpLNM1eMinpgG571QMltcMIR_m4N_zmWjuRvcgVsJp7KtpWDdhTWc3YPbCbOypBEaGuraQnRj9yGfxFDchkVdU7WMeHLcsu3xuGE_jx374BYYUjdZqu169AD2r4SED2F9Np_hI2CoVMQhrphOlfaVxxpLZ2ohURp0qge8o5KtUtXy0Dzju13VWw6UtURZGylrFz14fX7PybJmx6Wznwfi21AMYxaibY7cWdPY0bevdksblSuuBO_BqzRpOqfHVy4lL9BLhPpZF2Zudky0SR00diW8PXjTMXZ1-f-b27h8tWdwYzjZ27W7o_HOY7gpQmpGjCjfhPX2xxk-IcDU-qdRShkcXvVn8QcHdx_5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS48EYsFLAQiANEjR_xxgeE-lp1KURVaaXejJ1Mqkpot5AtaP8av45x4nRVEL31mjiOMzOe-SaeB8CrSqRe51omWcWzRLlRleSZ4onXThs0Xso22v1zoXeP1Mfj7HgFfve5MCGssteJraKuZmX4R74utCAkQ8ZQr9cxLGJ_e_zh7HsSOkiFk9a-nUYnInu4-EXuW_N-sk28fi3EeOdwazeJHQaSknDBPPHcSdLHXHHkZTpC41KHVa5olRK9k6iNLNGlBiUho8oLjnmqc08Y3-R8VEua9wasjoJXNIDVzZ1i_-DCDpAz0zWyJwct04bHlJ0ucY-L9vw0uPKZksnikln82zj8c0rbGr_xXbgdUSvb6MTsHqzg9D7ciQiWRf3Q0KW-SUR_7QGkh21gbsNazVPOGXHodM62iqJhP08d23QLDImcLFZ6PXkIR9dCxEcwmM6m-BgYKtWiEpfVtdK-9Fhh7kwlJEqDTg2B91SyZaxhHlppfLPL6suBspYoa1vK2sUQ3l48c9ZV8Lhy9MtAfBtKY0yDkJ2486axky8HdkMblSquBB_CmziontHrSxdTGegjQjWtSyPXeibaqBwauxTlIbzrGbu8_f_FPbl6thdwk7aE_TQp9p7CLRHyNNrw8jUYzH-c4zNCT3P_PIopg6_XvTP-AJwoJYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Compact+1-bit+CNNs+via+Bayesian+Learning&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhao%2C+Junhe&rft.au=Xu%2C+Sheng&rft.au=Zhang%2C+Baochang&rft.au=Gu%2C+Jiaxin&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=2&rft.spage=201&rft.epage=225&rft_id=info:doi/10.1007%2Fs11263-021-01543-y&rft.externalDocID=10_1007_s11263_021_01543_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |