Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system

Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silve...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of physics Vol. 12; no. 5; pp. 99 - 107
Main Author 刘彤;张红;程新路;徐阳
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-0462
2095-0470
DOI10.1007/s11467-017-0676-8

Cover

Loading…
Abstract Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.
AbstractList Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.
Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone–Wales (SW) defected graphene–silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone–Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.
ArticleNumber 125201
Author 刘彤;张红;程新路;徐阳
AuthorAffiliation College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
Author_xml – sequence: 1
  fullname: 刘彤;张红;程新路;徐阳
BookMark eNp9kUtr3DAUhUVJoUmaH9CdaNZuryxbspdhyKMQyCItXQrZvhoreCSPpEmZf18ZhxS6mIXQg_vdc3TuBTlz3iEhXxh8YwDye2SsErIAlpeQomg-kPMS2rqASsLZ-1mUn8hVjC8AwJis8v2c4MaPGNAlGjB6p12P1Bu6P2iXDjs6TzruvIvUOvqcsmrxW08Y6YAG-4QD3QY9j5jfo51eMdDcwf-xAel47IIdaDzGhLvP5KPRU8Srt_2S_Lq7_bl5KB6f7n9sbh6LnrdlKjoGpq1lXfOq62roOFRclj3remg4Y40YJAzARDV0JXBtdAtsEI0Rrenzdxp-Sa7XvnPw-wPGpF78Ibgsqco287yt2VIl16o--BgDGtXbpJP1LgVtJ8VALbGqNVaVY1VLrGoh2X_kHOxOh-NJplyZmGvdFsM_T6egZoVGu13mM8x5PFGZkD1aDKfRr28eR--2-yz5blJILpjgVcv_Ao-tqZ8
CitedBy_id crossref_primary_10_3390_nano8070552
Cites_doi 10.1016/S0010-4655(02)00686-0
10.1038/ncomms1589
10.1021/nl200585b
10.1126/science.1231119
10.1103/PhysRevLett.101.197401
10.1103/PhysRevB.75.125434
10.1021/jp209982h
10.1021/nl201771h
10.1080/10408430903505036
10.1103/PhysRevB.73.193406
10.1063/1.1951057
10.1038/nature12151
10.1063/1.4742998
10.1021/ja404890n
10.1126/science.1202691
10.1016/0008-6223(95)00025-9
10.1021/nl102423m
10.1021/jp054227y
10.1038/nature09405
10.1038/nnano.2008.58
10.1038/nnano.2012.131
10.1063/1.3683534
10.1007/s11467-014-0430-4
10.1021/nl300269c
10.1103/PhysRevLett.95.063901
10.1063/1.1503870
10.1021/nl900786u
10.1039/C4CP05049E
10.1103/PhysRevLett.98.216602
10.1103/PhysRevE.62.4318
10.1021/nn9017312
10.1103/PhysRevLett.97.216803
10.1038/nphoton.2010.237
10.1021/nl301774e
10.1126/science.1102896
10.1103/PhysRevLett.106.020501
10.1038/nnano.2010.89
10.1016/j.cplett.2010.01.062
10.1021/nl080872f
10.1103/PhysRevLett.45.566
10.1103/PhysRevB.71.193406
10.1103/PhysRevB.43.1993
10.1103/PhysRevB.86.205401
10.1126/science.297.5586.1536
10.1103/PhysRevLett.113.247004
10.1103/PhysRevLett.108.047401
ContentType Journal Article
Copyright Copyright reserved, 2017, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2017
Higher Education Press and Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Copyright reserved, 2017, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2017
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2017.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11467-017-0676-8
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system
EISSN 2095-0470
EndPage 107
ExternalDocumentID 10_1007_s11467_017_0676_8
10.1007/s11467-017-0676-8
673616349
GeographicLocations United Kingdom--UK
Wales
GeographicLocations_xml – name: Wales
– name: United Kingdom--UK
GroupedDBID -5F
-5G
-BR
-EM
-~C
.VR
06D
0R~
0VY
1-T
29~
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2~H
30V
4.4
406
408
40E
5VS
88I
92L
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CQIGP
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IEA
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M2P
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9T
PCBAR
PF0
PT4
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z88
ZMTXR
~A9
~WA
0R
29
5F
5G
95
A9
AAEIZ
AAPBV
ADTIX
BR
C
EM
H13
HF
HZ
IPNFZ
RIG
VR
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CCPQU
-SA
-S~
AAPKM
AAXDM
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEA
CITATION
PHGZM
PHGZT
Q--
TGP
U1G
U5K
3V.
7XB
8FE
8FG
8FK
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-b10f9575534bb50b304372c1bc0831186d70d0164db203afa901d68f69fc44683
IEDL.DBID U2A
ISSN 2095-0462
IngestDate Sun Jul 13 04:50:47 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 03:04:52 EDT 2025
Fri Feb 21 02:38:02 EST 2025
Thu Aug 18 16:19:19 EDT 2022
Wed Feb 14 09:57:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords quantum plasmons
coherent resonance
SW defected graphene
silver nanowires
hybrid system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-b10f9575534bb50b304372c1bc0831186d70d0164db203afa901d68f69fc44683
Notes Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.
quantum plasmons, coherent resonance, SW defected graphene, silver nanowires, hybrid system
Tong Liu 1, Hong Zhang 1,2, Xin-Lu Cheng 2, Yang Xu 1(1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China; 2Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China)
11-5994/O4
quantum plasmons
coherent resonance
Document received on :2016-09-02
SW defected graphene
silver nanowires
Document accepted on :2017-01-25
hybrid system
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918639518
PQPubID 2044425
PageCount 9
ParticipantIDs proquest_journals_2918639518
crossref_citationtrail_10_1007_s11467_017_0676_8
crossref_primary_10_1007_s11467_017_0676_8
springer_journals_10_1007_s11467_017_0676_8
higheredpress_frontiers_10_1007_s11467_017_0676_8
chongqing_primary_673616349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of physics
PublicationTitleAbbrev Front. Phys
PublicationTitleAlternate Frontiers of Physics in China
PublicationYear 2017
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Chen, Jang, Xiao, Ishigamiand, Fuhrer (CR14) 2008; 3
Zhang, Zhang, Dong, Jiang, Zhang, Chen, Zhang, Liao, Aizpurua, Luo, Yang, Hou (CR20) 2013; 498
Wu, Yan, Zhou, Wang, Lin, Peng, Liu (CR22) 2013; 135
Habteyes, Dhuey, Cabrini, Schuck, Leone (CR29) 2011; 11
Mock, Hill, Degiron, Zauscher, Chilkoti, Smith (CR30) 2008; 8
Liao, Lin, Bao, Cheng, Bai, Liu, Qu, Wang, Huang, Duan (CR10) 2010; 467
Ebbesen, Takada (CR21) 1995; 33
van, Lantman, Deckert-Gaudig, Mank, Deckert, Weckhuysen (CR19) 2012; 7
Maier, Kik, Atwater (CR4) 2002; 81
Bachelier, Russier-Antoine, Benichou, Jonin, DelFatti, Vallee, Brevet (CR27) 2008; 101
Novoselov, Geim, Morozov, Jiang (CR15) 2004; 306
Maier, Atwater (CR1) 2005; 98
Choi, Lahiri, Seelaboyina, Kang (CR7) 2010; 35
Novotny, Van Hulst (CR5) 2011; 5
Brey, Fertig (CR46) 2007; 75
Pakizeh, Käll (CR32) 2009; 9
Zhang, Zhang, Dong, Jiang, Zhang, Chen, Zhang, Liao, Aizpurua, Luo, Yang, Hou (CR34) 2013; 498
Karalis, Lidorikis, Ibanescu, Joannopoulos, Soljacic (CR2) 2005; 95
Koppens, Chang, Garcia de Abajo (CR11) 2011; 11
Cao, Jin, Mirkin (CR3) 2002; 297
Neacsu, Dreyer, Behr, Raschke (CR16) 2006; 73
Brown, Sobhani, Lassiter, Nordlander, Halas (CR28) 2010; 4
Zhang, Zhang, Li (CR17) 2015; 17
Yan, Yuan, Gao (CR41) 2007; 98
Kobayashi, Fukui, Enoki, Kusakabe, Kaburagi (CR45) 2005; 71
Miller, Lazarides (CR31) 2005; 109
Xu, Aizpurua, Käll, Apell (CR35) 2000; 62
Niu, Shin, Lee, Ahn, Yang (CR44) 2012; 100
Thongrattanasiri, Koppens, Garcia de Abajo (CR13) 2012; 108
Vakil, Engheta (CR12) 2011; 332
Sonntag, Klingsporn, Garibay, Roberts, Dieringer, Seideman, Scheidt, Jensen, Schatz, Van Duyne (CR18) 2012; 116
Troullier, Martins (CR39) 1991; 43
Gonzalez-Tudela, Martin-Cano, Moreno, Martin-Moreno, Tejedor, Garcia-Vidal (CR6) 2011; 106
Ferreira, Peres (CR25) 2012; 86
Yoshizawa, Kim, Kawakami, Nagai, Nakayama, Hu, Hasegawa, Uchihashi (CR37) 2014; 113
Marques, Castro, Bertsch, Rubio (CR38) 2003; 151
Fang, Liu, Wang, Ajayan, Nordlander, Halas (CR43) 2012; 12
Jain, El-Sayed (CR33) 2010; 487
Schwierz (CR9) 2010; 5
Son, Cohen, Louie (CR47) 2006; 97
Takatsuka, Takahagi, Sano, Otsuji (CR23) 2012; 112
Garcia de Abajo (CR8) 2013; 339
Stadler, Schmid, Zenobi (CR36) 2010; 10
Li, Zhang, Yan, Yin, Cheng (CR26) 2015; 10
Ceperley, Alder (CR40) 1980; 45
Marinica, Kazansky, Nordlander, Aizpurua, Borisov (CR42) 2012; 12
Liu, Cheng, Liao, Zhou, Bai, Liu, Liu, Huang, Duan (CR24) 2011; 2
S. Thongrattanasiri (676_CR13) 2012; 108
D. M. Ceperley (676_CR40) 1980; 45
R. Zhang (676_CR20) 2013; 498
F. J. Garcia de Abajo (676_CR8) 2013; 339
L. Liao (676_CR10) 2010; 467
M. A. L. Marques (676_CR38) 2003; 151
J. Niu (676_CR44) 2012; 100
Y. W. Son (676_CR47) 2006; 97
A. Karalis (676_CR2) 2005; 95
C. C. Neacsu (676_CR16) 2006; 73
A. Gonzalez-Tudela (676_CR6) 2011; 106
S. A. Maier (676_CR4) 2002; 81
J. H. Chen (676_CR14) 2008; 3
A. Ferreira (676_CR25) 2012; 86
R. Zhang (676_CR34) 2013; 498
S. Yoshizawa (676_CR37) 2014; 113
L. Novotny (676_CR5) 2011; 5
Y. Takatsuka (676_CR23) 2012; 112
W. Choi (676_CR7) 2010; 35
M. D. Sonntag (676_CR18) 2012; 116
Z. Y. Fang (676_CR43) 2012; 12
Y. Liu (676_CR24) 2011; 2
L. Brey (676_CR46) 2007; 75
K. S. Novoselov (676_CR15) 2004; 306
D. Wu (676_CR22) 2013; 135
K. Zhang (676_CR17) 2015; 17
J. J. Mock (676_CR30) 2008; 8
H. X. Xu (676_CR35) 2000; 62
G. Bachelier (676_CR27) 2008; 101
J. Yan (676_CR41) 2007; 98
F. H. L. Koppens (676_CR11) 2011; 11
E. M. van (676_CR19) 2012; 7
T. Pakizeh (676_CR32) 2009; 9
L. V. Brown (676_CR28) 2010; 4
N. Troullier (676_CR39) 1991; 43
D. C. Marinica (676_CR42) 2012; 12
Y. C. Cao (676_CR3) 2002; 297
J. Stadler (676_CR36) 2010; 10
F. Schwierz (676_CR9) 2010; 5
Y. Li (676_CR26) 2015; 10
S. A. Maier (676_CR1) 2005; 98
M. M. Miller (676_CR31) 2005; 109
P. K. Jain (676_CR33) 2010; 487
T. G. Habteyes (676_CR29) 2011; 11
A. Vakil (676_CR12) 2011; 332
T. W. Ebbesen (676_CR21) 1995; 33
Y. Kobayashi (676_CR45) 2005; 71
References_xml – volume: 151
  start-page: 60
  issue: 1
  year: 2003
  ident: CR38
  article-title: Octopus: A first-principles tool for excited electron–ion dynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00686-0
– volume: 2
  start-page: 579
  year: 2011
  ident: CR24
  article-title: Plasmon resonance enhanced multicolour photodetection by graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1589
– volume: 11
  start-page: 1819
  issue: 4
  year: 2011
  ident: CR29
  article-title: Theta-shaped plasmonic nanostructures: Bringing “dark” multipole plasmon resonances into action via conductive coupling
  publication-title: Nano Lett.
  doi: 10.1021/nl200585b
– volume: 339
  start-page: 917
  issue: 6122
  year: 2013
  ident: CR8
  article-title: Graphene nanophotonics
  publication-title: Science
  doi: 10.1126/science.1231119
– volume: 101
  start-page: 197401
  issue: 19
  year: 2008
  ident: CR27
  article-title: Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.197401
– volume: 75
  start-page: 125434
  issue: 12
  year: 2007
  ident: CR46
  article-title: Elementary electronic excitations in graphene nanoribbons
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125434
– volume: 116
  start-page: 478
  issue: 1
  year: 2012
  ident: CR18
  article-title: Singlemolecule tip-enhanced Raman spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209982h
– volume: 11
  start-page: 3370
  issue: 8
  year: 2011
  ident: CR11
  article-title: Graphene plasmonics: A platform for strong light-matter interactions
  publication-title: Nano Lett.
  doi: 10.1021/nl201771h
– volume: 35
  start-page: 52
  issue: 1
  year: 2010
  ident: CR7
  article-title: Synthesis of graphene and its applications: A review
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430903505036
– volume: 73
  start-page: 193406
  issue: 19
  year: 2006
  ident: CR16
  article-title: Scanning-probe Raman spectroscopy with single-molecule sensitivity
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.193406
– volume: 98
  start-page: 011101
  issue: 1
  year: 2005
  ident: CR1
  article-title: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1951057
– volume: 498
  start-page: 82
  issue: 7452
  year: 2013
  ident: CR20
  article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 112
  start-page: 033103
  issue: 3
  year: 2012
  ident: CR23
  article-title: Gain enhancement in graphene terahertz amplifiers with resonant structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4742998
– volume: 135
  start-page: 10926
  issue: 30
  year: 2013
  ident: CR22
  article-title: Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions
  publication-title: Chem. Soc.
  doi: 10.1021/ja404890n
– volume: 332
  start-page: 1291
  issue: 6035
  year: 2011
  ident: CR12
  article-title: Transformation optics using graphene
  publication-title: Science
  doi: 10.1126/science.1202691
– volume: 33
  start-page: 973
  issue: 7
  year: 1995
  ident: CR21
  article-title: Topological and SP3 defect structures in nanotubes
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00025-9
– volume: 10
  start-page: 4514
  issue: 11
  year: 2010
  ident: CR36
  article-title: Nanoscale chemical imaging using top-illumination tip-enhanced Raman Spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl102423m
– volume: 109
  start-page: 21556
  issue: 46
  year: 2005
  ident: CR31
  article-title: Lazari des, A, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054227y
– volume: 498
  start-page: 82
  issue: 7452
  year: 2013
  ident: CR34
  article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 467
  start-page: 305
  issue: 7313
  year: 2010
  ident: CR10
  article-title: High-speed graphene transistors with a self-aligned nanowire gate
  publication-title: Nature
  doi: 10.1038/nature09405
– volume: 3
  start-page: 206
  issue: 4
  year: 2008
  ident: CR14
  article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
– volume: 7
  start-page: 583
  issue: 9
  year: 2012
  ident: CR19
  article-title: Catalytic processes monitored at the nanoscale with tipenhanced Raman spectroscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.131
– volume: 100
  start-page: 061116
  issue: 6
  year: 2012
  ident: CR44
  article-title: Graphene induced tunability of the surface plasmon resonance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3683534
– volume: 10
  start-page: 102
  issue: 1
  year: 2015
  ident: CR26
  article-title: Secondary plasmon resonance in graphene nanostructures
  publication-title: Front. Phys.
  doi: 10.1007/s11467-014-0430-4
– volume: 12
  start-page: 1333
  issue: 3
  year: 2012
  ident: CR42
  article-title: Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer
  publication-title: Nano Lett.
  doi: 10.1021/nl300269c
– volume: 95
  start-page: 063901
  issue: 6
  year: 2005
  ident: CR2
  article-title: Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.063901
– volume: 81
  start-page: 1714
  issue: 9
  year: 2002
  ident: CR4
  article-title: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1503870
– volume: 9
  start-page: 2343
  issue: 6
  year: 2009
  ident: CR32
  article-title: Unidirectional ultracompact optical nanoantennas
  publication-title: Nano Lett.
  doi: 10.1021/nl900786u
– volume: 17
  start-page: 12051
  issue: 18
  year: 2015
  ident: CR17
  article-title: Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05049E
– volume: 98
  start-page: 216602
  issue: 21
  year: 2007
  ident: CR41
  article-title: End and central plasmon resonances in linear atomic chains
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.216602
– volume: 62
  start-page: 4318
  issue: 3
  year: 2000
  ident: CR35
  article-title: Electromagnetic contributions to single molecule sensitivity in surface-enhanced Raman scattering
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4318
– volume: 4
  start-page: 819
  issue: 2
  year: 2010
  ident: CR28
  article-title: Heterodimers: Plasmonic properties of mismatched nanoparticle pairs
  publication-title: ACS Nano
  doi: 10.1021/nn9017312
– volume: 97
  start-page: 216803
  issue: 21
  year: 2006
  ident: CR47
  article-title: Energy gaps in graphene nanoribbons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.216803
– volume: 5
  start-page: 83
  issue: 2
  year: 2011
  ident: CR5
  article-title: Antennas for light
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.237
– volume: 12
  start-page: 3808
  issue: 7
  year: 2012
  ident: CR43
  article-title: Graphene-antenna sandwich photodetector
  publication-title: Nano Lett.
  doi: 10.1021/nl301774e
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: CR15
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 106
  start-page: 020501
  issue: 2
  year: 2011
  ident: CR6
  article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.020501
– volume: 5
  start-page: 487
  issue: 7
  year: 2010
  ident: CR9
  article-title: Graphene transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 487
  start-page: 153
  issue: 4–6
  year: 2010
  ident: CR33
  article-title: Plasmonic coupling in noble metal nanostructures
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.01.062
– volume: 8
  start-page: 2245
  issue: 8
  year: 2008
  ident: CR30
  article-title: Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film
  publication-title: Nano Lett.
  doi: 10.1021/nl080872f
– volume: 45
  start-page: 566
  issue: 7
  year: 1980
  ident: CR40
  article-title: Ground state of the electron gas by a stochastic method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
– volume: 71
  start-page: 193406
  issue: 19
  year: 2005
  ident: CR45
  article-title: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.193406
– volume: 43
  start-page: 1993
  year: 1991
  ident: CR39
  article-title: Efficient pseudopotentials for plane-wave calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.1993
– volume: 86
  start-page: 205401
  issue: 20
  year: 2012
  ident: CR25
  article-title: Complete light absorption in graphene-metamaterial corrugated structures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.205401
– volume: 297
  start-page: 1536
  issue: 5586
  year: 2002
  ident: CR3
  article-title: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection
  publication-title: Science
  doi: 10.1126/science.297.5586.1536
– volume: 113
  start-page: 247004
  issue: 24
  year: 2014
  ident: CR37
  article-title: Imaging Josephson vortices on the surface superconductor Si(111)–(p7p3)–In
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.247004
– volume: 108
  start-page: 047401
  issue: 4
  year: 2012
  ident: CR13
  article-title: Complete optical absorption in periodically patterned graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.047401
– volume: 332
  start-page: 1291
  issue: 6035
  year: 2011
  ident: 676_CR12
  publication-title: Science
  doi: 10.1126/science.1202691
– volume: 11
  start-page: 3370
  issue: 8
  year: 2011
  ident: 676_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl201771h
– volume: 339
  start-page: 917
  issue: 6122
  year: 2013
  ident: 676_CR8
  publication-title: Science
  doi: 10.1126/science.1231119
– volume: 101
  start-page: 197401
  issue: 19
  year: 2008
  ident: 676_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.197401
– volume: 97
  start-page: 216803
  issue: 21
  year: 2006
  ident: 676_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.216803
– volume: 81
  start-page: 1714
  issue: 9
  year: 2002
  ident: 676_CR4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1503870
– volume: 498
  start-page: 82
  issue: 7452
  year: 2013
  ident: 676_CR20
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 112
  start-page: 033103
  issue: 3
  year: 2012
  ident: 676_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4742998
– volume: 487
  start-page: 153
  issue: 4–6
  year: 2010
  ident: 676_CR33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.01.062
– volume: 95
  start-page: 063901
  issue: 6
  year: 2005
  ident: 676_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.063901
– volume: 3
  start-page: 206
  issue: 4
  year: 2008
  ident: 676_CR14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
– volume: 113
  start-page: 247004
  issue: 24
  year: 2014
  ident: 676_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.247004
– volume: 75
  start-page: 125434
  issue: 12
  year: 2007
  ident: 676_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125434
– volume: 109
  start-page: 21556
  issue: 46
  year: 2005
  ident: 676_CR31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054227y
– volume: 151
  start-page: 60
  issue: 1
  year: 2003
  ident: 676_CR38
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00686-0
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 676_CR15
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 116
  start-page: 478
  issue: 1
  year: 2012
  ident: 676_CR18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209982h
– volume: 33
  start-page: 973
  issue: 7
  year: 1995
  ident: 676_CR21
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00025-9
– volume: 106
  start-page: 020501
  issue: 2
  year: 2011
  ident: 676_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.020501
– volume: 10
  start-page: 4514
  issue: 11
  year: 2010
  ident: 676_CR36
  publication-title: Nano Lett.
  doi: 10.1021/nl102423m
– volume: 467
  start-page: 305
  issue: 7313
  year: 2010
  ident: 676_CR10
  publication-title: Nature
  doi: 10.1038/nature09405
– volume: 135
  start-page: 10926
  issue: 30
  year: 2013
  ident: 676_CR22
  publication-title: Chem. Soc.
  doi: 10.1021/ja404890n
– volume: 11
  start-page: 1819
  issue: 4
  year: 2011
  ident: 676_CR29
  publication-title: Nano Lett.
  doi: 10.1021/nl200585b
– volume: 12
  start-page: 1333
  issue: 3
  year: 2012
  ident: 676_CR42
  publication-title: Nano Lett.
  doi: 10.1021/nl300269c
– volume: 2
  start-page: 579
  year: 2011
  ident: 676_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1589
– volume: 498
  start-page: 82
  issue: 7452
  year: 2013
  ident: 676_CR34
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 43
  start-page: 1993
  year: 1991
  ident: 676_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.1993
– volume: 5
  start-page: 83
  issue: 2
  year: 2011
  ident: 676_CR5
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.237
– volume: 71
  start-page: 193406
  issue: 19
  year: 2005
  ident: 676_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.193406
– volume: 98
  start-page: 216602
  issue: 21
  year: 2007
  ident: 676_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.216602
– volume: 108
  start-page: 047401
  issue: 4
  year: 2012
  ident: 676_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.047401
– volume: 10
  start-page: 102
  issue: 1
  year: 2015
  ident: 676_CR26
  publication-title: Front. Phys.
  doi: 10.1007/s11467-014-0430-4
– volume: 17
  start-page: 12051
  issue: 18
  year: 2015
  ident: 676_CR17
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05049E
– volume: 12
  start-page: 3808
  issue: 7
  year: 2012
  ident: 676_CR43
  publication-title: Nano Lett.
  doi: 10.1021/nl301774e
– volume: 35
  start-page: 52
  issue: 1
  year: 2010
  ident: 676_CR7
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430903505036
– volume: 9
  start-page: 2343
  issue: 6
  year: 2009
  ident: 676_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl900786u
– volume: 8
  start-page: 2245
  issue: 8
  year: 2008
  ident: 676_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl080872f
– volume: 62
  start-page: 4318
  issue: 3
  year: 2000
  ident: 676_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4318
– volume: 100
  start-page: 061116
  issue: 6
  year: 2012
  ident: 676_CR44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3683534
– volume: 297
  start-page: 1536
  issue: 5586
  year: 2002
  ident: 676_CR3
  publication-title: Science
  doi: 10.1126/science.297.5586.1536
– volume: 45
  start-page: 566
  issue: 7
  year: 1980
  ident: 676_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
– volume: 5
  start-page: 487
  issue: 7
  year: 2010
  ident: 676_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 7
  start-page: 583
  issue: 9
  year: 2012
  ident: 676_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.131
– volume: 4
  start-page: 819
  issue: 2
  year: 2010
  ident: 676_CR28
  publication-title: ACS Nano
  doi: 10.1021/nn9017312
– volume: 98
  start-page: 011101
  issue: 1
  year: 2005
  ident: 676_CR1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1951057
– volume: 73
  start-page: 193406
  issue: 19
  year: 2006
  ident: 676_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.193406
– volume: 86
  start-page: 205401
  issue: 20
  year: 2012
  ident: 676_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.205401
SSID ssj0001174462
Score 2.070889
Snippet Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We...
SourceID proquest
crossref
springer
higheredpress
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Absorption spectra
Astronomy
Astrophysics and Cosmology
Atomic
Coherence
coherent resonance
Condensed Matter Physics
Density functional theory
Electromagnetic fields
Graphene
hybrid system
Hybrid systems
Molecular
Nanowires
Optical and Plasma Physics
Optical properties
Particle and Nuclear Physics
Photoelectricity
Physics
Physics and Astronomy
Plasmons
quantum plasmons
Research Article
Resonance
Silver
silver nanowires
SW defected graphene
Theoretical analysis
威尔士
混合动力系统
相干共振
石墨
等离子体共振
缺陷
量子
银纳米线
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSsNAEF60XgQRRcXaKnvwpAQ3_8lJRKxF0JPF3pbsny1o0pr24M138A19Eme2SUMFewtsdtjMt5kZdme-IeTceHGihBSODJTAo5vIAT_jO1JIZUyWqlRjgfPjU9QfBA_DcFgduJVVWmVtE62hVoXEM_IrL3UT8Kahm1xPpg52jcLb1aqFxibZcsHT4A5PevfNGQuE24HtKeoxLESG5_pi01bPWSuBZhpMNqwR6RVGRf46Baex4qZ2RjbnQiubm7oSi_65PrVeqbdHdqtwkt4s8N8nGzo_IGOsuUDWJQqCCmTU0LQwdDoHLc7f6QQCZviako5zarm4f76-X8BPlFRpTO7Qiloaa21HyjHmTlOQUiCtMR19Yo0XXTBAH5JB7-75tu9ULRUcCYHQzBEuMylEaKEfCBEy4SO1kSddIbHjGGhYxUwh65YSgFgGYDFXRYmJUiNBlYl_RFo5LOyYUMMMC1zmGxySUZzpOPU8HcSeL02UyTbpLLXJJwvqDJtFBhFgkLYJq_XLZcVGjk0x3njDo4zwcICHIzw8aZOL5ZRa3pqX3RXQuEE-COwuvm5OtwaWV39yyZt91yaXNdjN8L_CTtYL65BtD3eeTQvsktbsY65PIbyZiTO7h38BF7P3lg
  priority: 102
  providerName: ProQuest
Title Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system
URI http://lib.cqvip.com/qk/71009X/201705/673616349.html
https://journal.hep.com.cn/fop/EN/10.1007/s11467-017-0676-8
https://link.springer.com/article/10.1007/s11467-017-0676-8
https://www.proquest.com/docview/2918639518
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VICQkhNoCIk0a7YFTkaX12vHjGFACoiqqUKPCaZV9kUiQR50cuPEf-g_7S5jZ2ERBgNSTLe16bM233v3snfkG4MiJNDNKq0DHRtGvmyTAdSYKtNLGuUFucksJzj8uk_N-fHHdvi7zuIsq2r3akvQz9SrZzb_UNKviDIsmN2CzjZ_uNKz7orP6sYIcO_aFRAWn7GM8r3YzX7NCmgrDyfh2hndcW5t2hj7QwhofkLpGQF_smfqlqPcRdksOyTpL0D_BBzv-DFs-llMXezCilAsSXWJockKCGpZNHJst0ImLezZFvoxjr2CjMfNS3P8e__7GZaJgxlJshzXMq1hb31KMKHSaoZUJqRqz4QOleLGlAPQ-9HvdX6fnQVlRIdDIg-aBCrnLkaC1o1ipNlcRKRsJHSpNBcfCLDEpNyS6ZRQCNkCseGiSzCW50-jULDqA2hgf7BCY447HIY8cNekkHdg0F8LGqYi0Swa6Do1nv8rpUjnDB5EhAYzzOvDK01KXYuRUE-NOrmSUCSiJQEkCSmZ1-PZ8SWXvnc7hGnzSkRwEFRd_75pmBbEsX-RCihy9EiENxebjCvZV85vGvvxX7wZsCxqSPkiwCbX5n4X9imRnrlqwkfXOWrDZObv53sXjSffy51XLD_kngIL7Lg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThtBDLYoHKhUoSKomkJhDuUCWnV2drM_B1RVlBDKzwkEt2nmj0SCbMImQtx4B96Dh-JJak-yREEiN24rzY53ZHttz4z9GeCHE2lmlFaBjo2io5skQD8TBVpp41wrN7mlAueT06R5Hv-9rF_OwVNVC0NplZVN9IbaFJrOyH-KPMzQm9bD7FevH1DXKLpdrVpojNTiyN7f4Zat3D38g_LdEqKxf7bXDMZdBQKNscAgUCF3OQYp9ShWqs5VROg-QodKU9Mt_IhJuSHgKaNw0S1cLw9Nkrkkdxr3TlmEdD_AQhzhYqgyvXEwOdPB8D72PUwFp8JnfK4uUn21nrdK5BbQRSBPCM6hXXSv-uikptzip7bP8bDG58JOxb6vrmu9F2x8hqVx-Mp-j_RtGeZsdwU6VONBKE8MCRWE4GFZ4Vh_iFIb3rAeBujIvZJ1usxjfz8_PF6gXyqZsZRMYg3zsNnWj5QdytVmSKUgGGXWvqeaMjZCnF6F83dh9heY7-LCvgJz3PE45JGjIZ2kLZvmQtg4FZF2SUvXYO2Fm7I3gurwWWsYccZ5DXjFX6nH6OfUhONaTnCbSTwSxSNJPDKrwfbLlIrejJfDKaFJR_gT1M181pz1SrBybDlKOdHzGuxUwp4Mv0ns22xim7DYPDs5lseHp0dr8FGQFvqUxHWYH9wO7XcMrQZqw-szg3_v_QP9B2eIMkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58oAgiPrG26h48KcHNJs3jKGrxjQeL3pbuyxY0bU178OZ_8B_6S5zZJpaKCt4Cm52EmX187H7zDSF7lseJlkp6KtQSj24iD_aZwFNSaWtbqU4NJjhf30RnzfDiof5Q1DnNS7Z7eSU5ymlAlaZscNjT9nCc-OYmOK6wsNqC-WkyC6uxj5yuJj8aH7IA3g5dUVHOMBMZnsubzZ-soL5Cu5s99uHrE_vUYtuRLox25NQJMPrt_tRtS41lslTgSXo0GgArZMpkq2TO8TpVvkY6mH6BAkwUTHZRXMPQrqX9ITh0-Ex7gJ1hHOa0k1Eny_3x9n4PW0ZOtUGeh9HUKVob15J3kEZNwUoXFY5p-xXTvehIDHqdNBund8dnXlFdwVOAiQae9JlNAazVg1DKOpMBqhxx5UuFxcf8JNIx0yjApSUErwVxY76OEhulVoFTk2CDzGTwY5uEWmZZ6LPAYpOK4paJU85NGPNA2ailKqT65VfRG6loOEIZgMEwrRBWelqoQpgc62M8ibGkMgZKQKAEBkokFbL_1aW098fL_kT4hEVpCCw0_lefWhliUUzqXPAUvBIAJIXmgzLs4-ZfjW396-1dMn970hBX5zeXVbLAcXQ67mCNzAxehmYbMNBA7rhx_gkzrP5J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+resonance+of+quantum+plasmons+in+Stone%E2%80%93Wales+defected+graphene%E2%80%93silver+nanowire+hybrid+system&rft.jtitle=Frontiers+of+physics&rft.au=Liu%2C+Tong&rft.au=Zhang%2C+Hong&rft.au=Cheng%2C+Xin-Lu&rft.au=Xu%2C+Yang&rft.date=2017-10-01&rft.pub=Higher+Education+Press&rft.issn=2095-0462&rft.eissn=2095-0470&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1007%2Fs11467-017-0676-8&rft.externalDocID=10_1007_s11467_017_0676_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71009X%2F71009X.jpg