Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system
Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silve...
Saved in:
Published in | Frontiers of physics Vol. 12; no. 5; pp. 99 - 107 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.10.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-0462 2095-0470 |
DOI | 10.1007/s11467-017-0676-8 |
Cover
Loading…
Abstract | Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene. |
---|---|
AbstractList | Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene. Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone–Wales (SW) defected graphene–silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone–Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene. |
ArticleNumber | 125201 |
Author | 刘彤;张红;程新路;徐阳 |
AuthorAffiliation | College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
Author_xml | – sequence: 1 fullname: 刘彤;张红;程新路;徐阳 |
BookMark | eNp9kUtr3DAUhUVJoUmaH9CdaNZuryxbspdhyKMQyCItXQrZvhoreCSPpEmZf18ZhxS6mIXQg_vdc3TuBTlz3iEhXxh8YwDye2SsErIAlpeQomg-kPMS2rqASsLZ-1mUn8hVjC8AwJis8v2c4MaPGNAlGjB6p12P1Bu6P2iXDjs6TzruvIvUOvqcsmrxW08Y6YAG-4QD3QY9j5jfo51eMdDcwf-xAel47IIdaDzGhLvP5KPRU8Srt_2S_Lq7_bl5KB6f7n9sbh6LnrdlKjoGpq1lXfOq62roOFRclj3remg4Y40YJAzARDV0JXBtdAtsEI0Rrenzdxp-Sa7XvnPw-wPGpF78Ibgsqco287yt2VIl16o--BgDGtXbpJP1LgVtJ8VALbGqNVaVY1VLrGoh2X_kHOxOh-NJplyZmGvdFsM_T6egZoVGu13mM8x5PFGZkD1aDKfRr28eR--2-yz5blJILpjgVcv_Ao-tqZ8 |
CitedBy_id | crossref_primary_10_3390_nano8070552 |
Cites_doi | 10.1016/S0010-4655(02)00686-0 10.1038/ncomms1589 10.1021/nl200585b 10.1126/science.1231119 10.1103/PhysRevLett.101.197401 10.1103/PhysRevB.75.125434 10.1021/jp209982h 10.1021/nl201771h 10.1080/10408430903505036 10.1103/PhysRevB.73.193406 10.1063/1.1951057 10.1038/nature12151 10.1063/1.4742998 10.1021/ja404890n 10.1126/science.1202691 10.1016/0008-6223(95)00025-9 10.1021/nl102423m 10.1021/jp054227y 10.1038/nature09405 10.1038/nnano.2008.58 10.1038/nnano.2012.131 10.1063/1.3683534 10.1007/s11467-014-0430-4 10.1021/nl300269c 10.1103/PhysRevLett.95.063901 10.1063/1.1503870 10.1021/nl900786u 10.1039/C4CP05049E 10.1103/PhysRevLett.98.216602 10.1103/PhysRevE.62.4318 10.1021/nn9017312 10.1103/PhysRevLett.97.216803 10.1038/nphoton.2010.237 10.1021/nl301774e 10.1126/science.1102896 10.1103/PhysRevLett.106.020501 10.1038/nnano.2010.89 10.1016/j.cplett.2010.01.062 10.1021/nl080872f 10.1103/PhysRevLett.45.566 10.1103/PhysRevB.71.193406 10.1103/PhysRevB.43.1993 10.1103/PhysRevB.86.205401 10.1126/science.297.5586.1536 10.1103/PhysRevLett.113.247004 10.1103/PhysRevLett.108.047401 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2017, Higher Education Press and Springer-Verlag Berlin Heidelberg Higher Education Press and Springer-Verlag Berlin Heidelberg 2017 Higher Education Press and Springer-Verlag Berlin Heidelberg 2017. |
Copyright_xml | – notice: Copyright reserved, 2017, Higher Education Press and Springer-Verlag Berlin Heidelberg – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2017 – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2017. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11467-017-0676-8 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system |
EISSN | 2095-0470 |
EndPage | 107 |
ExternalDocumentID | 10_1007_s11467_017_0676_8 10.1007/s11467-017-0676-8 673616349 |
GeographicLocations | United Kingdom--UK Wales |
GeographicLocations_xml | – name: Wales – name: United Kingdom--UK |
GroupedDBID | -5F -5G -BR -EM -~C .VR 06D 0R~ 0VY 1-T 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2~H 30V 4.4 406 408 40E 5VS 88I 92L 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CQIGP CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IAO IEA IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M2P M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O9J P4S P9T PCBAR PF0 PT4 R89 R9I ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z88 ZMTXR ~A9 ~WA 0R 29 5F 5G 95 A9 AAEIZ AAPBV ADTIX BR C EM H13 HF HZ IPNFZ RIG VR AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS CCPQU -SA -S~ AAPKM AAXDM AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEA CITATION PHGZM PHGZT Q-- TGP U1G U5K 3V. 7XB 8FE 8FG 8FK P62 PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c392t-b10f9575534bb50b304372c1bc0831186d70d0164db203afa901d68f69fc44683 |
IEDL.DBID | U2A |
ISSN | 2095-0462 |
IngestDate | Sun Jul 13 04:50:47 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 03:04:52 EDT 2025 Fri Feb 21 02:38:02 EST 2025 Thu Aug 18 16:19:19 EDT 2022 Wed Feb 14 09:57:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | quantum plasmons coherent resonance SW defected graphene silver nanowires hybrid system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-b10f9575534bb50b304372c1bc0831186d70d0164db203afa901d68f69fc44683 |
Notes | Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene. quantum plasmons, coherent resonance, SW defected graphene, silver nanowires, hybrid system Tong Liu 1, Hong Zhang 1,2, Xin-Lu Cheng 2, Yang Xu 1(1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China; 2Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China) 11-5994/O4 quantum plasmons coherent resonance Document received on :2016-09-02 SW defected graphene silver nanowires Document accepted on :2017-01-25 hybrid system ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918639518 |
PQPubID | 2044425 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2918639518 crossref_citationtrail_10_1007_s11467_017_0676_8 crossref_primary_10_1007_s11467_017_0676_8 springer_journals_10_1007_s11467_017_0676_8 higheredpress_frontiers_10_1007_s11467_017_0676_8 chongqing_primary_673616349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationSubtitle | Selected Publications from Chinese Universities |
PublicationTitle | Frontiers of physics |
PublicationTitleAbbrev | Front. Phys |
PublicationTitleAlternate | Frontiers of Physics in China |
PublicationYear | 2017 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Chen, Jang, Xiao, Ishigamiand, Fuhrer (CR14) 2008; 3 Zhang, Zhang, Dong, Jiang, Zhang, Chen, Zhang, Liao, Aizpurua, Luo, Yang, Hou (CR20) 2013; 498 Wu, Yan, Zhou, Wang, Lin, Peng, Liu (CR22) 2013; 135 Habteyes, Dhuey, Cabrini, Schuck, Leone (CR29) 2011; 11 Mock, Hill, Degiron, Zauscher, Chilkoti, Smith (CR30) 2008; 8 Liao, Lin, Bao, Cheng, Bai, Liu, Qu, Wang, Huang, Duan (CR10) 2010; 467 Ebbesen, Takada (CR21) 1995; 33 van, Lantman, Deckert-Gaudig, Mank, Deckert, Weckhuysen (CR19) 2012; 7 Maier, Kik, Atwater (CR4) 2002; 81 Bachelier, Russier-Antoine, Benichou, Jonin, DelFatti, Vallee, Brevet (CR27) 2008; 101 Novoselov, Geim, Morozov, Jiang (CR15) 2004; 306 Maier, Atwater (CR1) 2005; 98 Choi, Lahiri, Seelaboyina, Kang (CR7) 2010; 35 Novotny, Van Hulst (CR5) 2011; 5 Brey, Fertig (CR46) 2007; 75 Pakizeh, Käll (CR32) 2009; 9 Zhang, Zhang, Dong, Jiang, Zhang, Chen, Zhang, Liao, Aizpurua, Luo, Yang, Hou (CR34) 2013; 498 Karalis, Lidorikis, Ibanescu, Joannopoulos, Soljacic (CR2) 2005; 95 Koppens, Chang, Garcia de Abajo (CR11) 2011; 11 Cao, Jin, Mirkin (CR3) 2002; 297 Neacsu, Dreyer, Behr, Raschke (CR16) 2006; 73 Brown, Sobhani, Lassiter, Nordlander, Halas (CR28) 2010; 4 Zhang, Zhang, Li (CR17) 2015; 17 Yan, Yuan, Gao (CR41) 2007; 98 Kobayashi, Fukui, Enoki, Kusakabe, Kaburagi (CR45) 2005; 71 Miller, Lazarides (CR31) 2005; 109 Xu, Aizpurua, Käll, Apell (CR35) 2000; 62 Niu, Shin, Lee, Ahn, Yang (CR44) 2012; 100 Thongrattanasiri, Koppens, Garcia de Abajo (CR13) 2012; 108 Vakil, Engheta (CR12) 2011; 332 Sonntag, Klingsporn, Garibay, Roberts, Dieringer, Seideman, Scheidt, Jensen, Schatz, Van Duyne (CR18) 2012; 116 Troullier, Martins (CR39) 1991; 43 Gonzalez-Tudela, Martin-Cano, Moreno, Martin-Moreno, Tejedor, Garcia-Vidal (CR6) 2011; 106 Ferreira, Peres (CR25) 2012; 86 Yoshizawa, Kim, Kawakami, Nagai, Nakayama, Hu, Hasegawa, Uchihashi (CR37) 2014; 113 Marques, Castro, Bertsch, Rubio (CR38) 2003; 151 Fang, Liu, Wang, Ajayan, Nordlander, Halas (CR43) 2012; 12 Jain, El-Sayed (CR33) 2010; 487 Schwierz (CR9) 2010; 5 Son, Cohen, Louie (CR47) 2006; 97 Takatsuka, Takahagi, Sano, Otsuji (CR23) 2012; 112 Garcia de Abajo (CR8) 2013; 339 Stadler, Schmid, Zenobi (CR36) 2010; 10 Li, Zhang, Yan, Yin, Cheng (CR26) 2015; 10 Ceperley, Alder (CR40) 1980; 45 Marinica, Kazansky, Nordlander, Aizpurua, Borisov (CR42) 2012; 12 Liu, Cheng, Liao, Zhou, Bai, Liu, Liu, Huang, Duan (CR24) 2011; 2 S. Thongrattanasiri (676_CR13) 2012; 108 D. M. Ceperley (676_CR40) 1980; 45 R. Zhang (676_CR20) 2013; 498 F. J. Garcia de Abajo (676_CR8) 2013; 339 L. Liao (676_CR10) 2010; 467 M. A. L. Marques (676_CR38) 2003; 151 J. Niu (676_CR44) 2012; 100 Y. W. Son (676_CR47) 2006; 97 A. Karalis (676_CR2) 2005; 95 C. C. Neacsu (676_CR16) 2006; 73 A. Gonzalez-Tudela (676_CR6) 2011; 106 S. A. Maier (676_CR4) 2002; 81 J. H. Chen (676_CR14) 2008; 3 A. Ferreira (676_CR25) 2012; 86 R. Zhang (676_CR34) 2013; 498 S. Yoshizawa (676_CR37) 2014; 113 L. Novotny (676_CR5) 2011; 5 Y. Takatsuka (676_CR23) 2012; 112 W. Choi (676_CR7) 2010; 35 M. D. Sonntag (676_CR18) 2012; 116 Z. Y. Fang (676_CR43) 2012; 12 Y. Liu (676_CR24) 2011; 2 L. Brey (676_CR46) 2007; 75 K. S. Novoselov (676_CR15) 2004; 306 D. Wu (676_CR22) 2013; 135 K. Zhang (676_CR17) 2015; 17 J. J. Mock (676_CR30) 2008; 8 H. X. Xu (676_CR35) 2000; 62 G. Bachelier (676_CR27) 2008; 101 J. Yan (676_CR41) 2007; 98 F. H. L. Koppens (676_CR11) 2011; 11 E. M. van (676_CR19) 2012; 7 T. Pakizeh (676_CR32) 2009; 9 L. V. Brown (676_CR28) 2010; 4 N. Troullier (676_CR39) 1991; 43 D. C. Marinica (676_CR42) 2012; 12 Y. C. Cao (676_CR3) 2002; 297 J. Stadler (676_CR36) 2010; 10 F. Schwierz (676_CR9) 2010; 5 Y. Li (676_CR26) 2015; 10 S. A. Maier (676_CR1) 2005; 98 M. M. Miller (676_CR31) 2005; 109 P. K. Jain (676_CR33) 2010; 487 T. G. Habteyes (676_CR29) 2011; 11 A. Vakil (676_CR12) 2011; 332 T. W. Ebbesen (676_CR21) 1995; 33 Y. Kobayashi (676_CR45) 2005; 71 |
References_xml | – volume: 151 start-page: 60 issue: 1 year: 2003 ident: CR38 article-title: Octopus: A first-principles tool for excited electron–ion dynamics publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00686-0 – volume: 2 start-page: 579 year: 2011 ident: CR24 article-title: Plasmon resonance enhanced multicolour photodetection by graphene publication-title: Nat. Commun. doi: 10.1038/ncomms1589 – volume: 11 start-page: 1819 issue: 4 year: 2011 ident: CR29 article-title: Theta-shaped plasmonic nanostructures: Bringing “dark” multipole plasmon resonances into action via conductive coupling publication-title: Nano Lett. doi: 10.1021/nl200585b – volume: 339 start-page: 917 issue: 6122 year: 2013 ident: CR8 article-title: Graphene nanophotonics publication-title: Science doi: 10.1126/science.1231119 – volume: 101 start-page: 197401 issue: 19 year: 2008 ident: CR27 article-title: Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.197401 – volume: 75 start-page: 125434 issue: 12 year: 2007 ident: CR46 article-title: Elementary electronic excitations in graphene nanoribbons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125434 – volume: 116 start-page: 478 issue: 1 year: 2012 ident: CR18 article-title: Singlemolecule tip-enhanced Raman spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp209982h – volume: 11 start-page: 3370 issue: 8 year: 2011 ident: CR11 article-title: Graphene plasmonics: A platform for strong light-matter interactions publication-title: Nano Lett. doi: 10.1021/nl201771h – volume: 35 start-page: 52 issue: 1 year: 2010 ident: CR7 article-title: Synthesis of graphene and its applications: A review publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430903505036 – volume: 73 start-page: 193406 issue: 19 year: 2006 ident: CR16 article-title: Scanning-probe Raman spectroscopy with single-molecule sensitivity publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.193406 – volume: 98 start-page: 011101 issue: 1 year: 2005 ident: CR1 article-title: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures publication-title: J. Appl. Phys. doi: 10.1063/1.1951057 – volume: 498 start-page: 82 issue: 7452 year: 2013 ident: CR20 article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering publication-title: Nature doi: 10.1038/nature12151 – volume: 112 start-page: 033103 issue: 3 year: 2012 ident: CR23 article-title: Gain enhancement in graphene terahertz amplifiers with resonant structures publication-title: J. Appl. Phys. doi: 10.1063/1.4742998 – volume: 135 start-page: 10926 issue: 30 year: 2013 ident: CR22 article-title: Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions publication-title: Chem. Soc. doi: 10.1021/ja404890n – volume: 332 start-page: 1291 issue: 6035 year: 2011 ident: CR12 article-title: Transformation optics using graphene publication-title: Science doi: 10.1126/science.1202691 – volume: 33 start-page: 973 issue: 7 year: 1995 ident: CR21 article-title: Topological and SP3 defect structures in nanotubes publication-title: Carbon doi: 10.1016/0008-6223(95)00025-9 – volume: 10 start-page: 4514 issue: 11 year: 2010 ident: CR36 article-title: Nanoscale chemical imaging using top-illumination tip-enhanced Raman Spectroscopy publication-title: Nano Lett. doi: 10.1021/nl102423m – volume: 109 start-page: 21556 issue: 46 year: 2005 ident: CR31 article-title: Lazari des, A, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment publication-title: J. Phys. Chem. B doi: 10.1021/jp054227y – volume: 498 start-page: 82 issue: 7452 year: 2013 ident: CR34 article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering publication-title: Nature doi: 10.1038/nature12151 – volume: 467 start-page: 305 issue: 7313 year: 2010 ident: CR10 article-title: High-speed graphene transistors with a self-aligned nanowire gate publication-title: Nature doi: 10.1038/nature09405 – volume: 3 start-page: 206 issue: 4 year: 2008 ident: CR14 article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.58 – volume: 7 start-page: 583 issue: 9 year: 2012 ident: CR19 article-title: Catalytic processes monitored at the nanoscale with tipenhanced Raman spectroscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.131 – volume: 100 start-page: 061116 issue: 6 year: 2012 ident: CR44 article-title: Graphene induced tunability of the surface plasmon resonance publication-title: Appl. Phys. Lett. doi: 10.1063/1.3683534 – volume: 10 start-page: 102 issue: 1 year: 2015 ident: CR26 article-title: Secondary plasmon resonance in graphene nanostructures publication-title: Front. Phys. doi: 10.1007/s11467-014-0430-4 – volume: 12 start-page: 1333 issue: 3 year: 2012 ident: CR42 article-title: Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer publication-title: Nano Lett. doi: 10.1021/nl300269c – volume: 95 start-page: 063901 issue: 6 year: 2005 ident: CR2 article-title: Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.063901 – volume: 81 start-page: 1714 issue: 9 year: 2002 ident: CR4 article-title: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss publication-title: Appl. Phys. Lett. doi: 10.1063/1.1503870 – volume: 9 start-page: 2343 issue: 6 year: 2009 ident: CR32 article-title: Unidirectional ultracompact optical nanoantennas publication-title: Nano Lett. doi: 10.1021/nl900786u – volume: 17 start-page: 12051 issue: 18 year: 2015 ident: CR17 article-title: Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05049E – volume: 98 start-page: 216602 issue: 21 year: 2007 ident: CR41 article-title: End and central plasmon resonances in linear atomic chains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.216602 – volume: 62 start-page: 4318 issue: 3 year: 2000 ident: CR35 article-title: Electromagnetic contributions to single molecule sensitivity in surface-enhanced Raman scattering publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4318 – volume: 4 start-page: 819 issue: 2 year: 2010 ident: CR28 article-title: Heterodimers: Plasmonic properties of mismatched nanoparticle pairs publication-title: ACS Nano doi: 10.1021/nn9017312 – volume: 97 start-page: 216803 issue: 21 year: 2006 ident: CR47 article-title: Energy gaps in graphene nanoribbons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.216803 – volume: 5 start-page: 83 issue: 2 year: 2011 ident: CR5 article-title: Antennas for light publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.237 – volume: 12 start-page: 3808 issue: 7 year: 2012 ident: CR43 article-title: Graphene-antenna sandwich photodetector publication-title: Nano Lett. doi: 10.1021/nl301774e – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: CR15 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 106 start-page: 020501 issue: 2 year: 2011 ident: CR6 article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.020501 – volume: 5 start-page: 487 issue: 7 year: 2010 ident: CR9 article-title: Graphene transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 487 start-page: 153 issue: 4–6 year: 2010 ident: CR33 article-title: Plasmonic coupling in noble metal nanostructures publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.01.062 – volume: 8 start-page: 2245 issue: 8 year: 2008 ident: CR30 article-title: Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film publication-title: Nano Lett. doi: 10.1021/nl080872f – volume: 45 start-page: 566 issue: 7 year: 1980 ident: CR40 article-title: Ground state of the electron gas by a stochastic method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.566 – volume: 71 start-page: 193406 issue: 19 year: 2005 ident: CR45 article-title: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.193406 – volume: 43 start-page: 1993 year: 1991 ident: CR39 article-title: Efficient pseudopotentials for plane-wave calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.1993 – volume: 86 start-page: 205401 issue: 20 year: 2012 ident: CR25 article-title: Complete light absorption in graphene-metamaterial corrugated structures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.205401 – volume: 297 start-page: 1536 issue: 5586 year: 2002 ident: CR3 article-title: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection publication-title: Science doi: 10.1126/science.297.5586.1536 – volume: 113 start-page: 247004 issue: 24 year: 2014 ident: CR37 article-title: Imaging Josephson vortices on the surface superconductor Si(111)–(p7p3)–In publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.247004 – volume: 108 start-page: 047401 issue: 4 year: 2012 ident: CR13 article-title: Complete optical absorption in periodically patterned graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.047401 – volume: 332 start-page: 1291 issue: 6035 year: 2011 ident: 676_CR12 publication-title: Science doi: 10.1126/science.1202691 – volume: 11 start-page: 3370 issue: 8 year: 2011 ident: 676_CR11 publication-title: Nano Lett. doi: 10.1021/nl201771h – volume: 339 start-page: 917 issue: 6122 year: 2013 ident: 676_CR8 publication-title: Science doi: 10.1126/science.1231119 – volume: 101 start-page: 197401 issue: 19 year: 2008 ident: 676_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.197401 – volume: 97 start-page: 216803 issue: 21 year: 2006 ident: 676_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.216803 – volume: 81 start-page: 1714 issue: 9 year: 2002 ident: 676_CR4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1503870 – volume: 498 start-page: 82 issue: 7452 year: 2013 ident: 676_CR20 publication-title: Nature doi: 10.1038/nature12151 – volume: 112 start-page: 033103 issue: 3 year: 2012 ident: 676_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.4742998 – volume: 487 start-page: 153 issue: 4–6 year: 2010 ident: 676_CR33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.01.062 – volume: 95 start-page: 063901 issue: 6 year: 2005 ident: 676_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.063901 – volume: 3 start-page: 206 issue: 4 year: 2008 ident: 676_CR14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.58 – volume: 113 start-page: 247004 issue: 24 year: 2014 ident: 676_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.247004 – volume: 75 start-page: 125434 issue: 12 year: 2007 ident: 676_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125434 – volume: 109 start-page: 21556 issue: 46 year: 2005 ident: 676_CR31 publication-title: J. Phys. Chem. B doi: 10.1021/jp054227y – volume: 151 start-page: 60 issue: 1 year: 2003 ident: 676_CR38 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00686-0 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 676_CR15 publication-title: Science doi: 10.1126/science.1102896 – volume: 116 start-page: 478 issue: 1 year: 2012 ident: 676_CR18 publication-title: J. Phys. Chem. C doi: 10.1021/jp209982h – volume: 33 start-page: 973 issue: 7 year: 1995 ident: 676_CR21 publication-title: Carbon doi: 10.1016/0008-6223(95)00025-9 – volume: 106 start-page: 020501 issue: 2 year: 2011 ident: 676_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.020501 – volume: 10 start-page: 4514 issue: 11 year: 2010 ident: 676_CR36 publication-title: Nano Lett. doi: 10.1021/nl102423m – volume: 467 start-page: 305 issue: 7313 year: 2010 ident: 676_CR10 publication-title: Nature doi: 10.1038/nature09405 – volume: 135 start-page: 10926 issue: 30 year: 2013 ident: 676_CR22 publication-title: Chem. Soc. doi: 10.1021/ja404890n – volume: 11 start-page: 1819 issue: 4 year: 2011 ident: 676_CR29 publication-title: Nano Lett. doi: 10.1021/nl200585b – volume: 12 start-page: 1333 issue: 3 year: 2012 ident: 676_CR42 publication-title: Nano Lett. doi: 10.1021/nl300269c – volume: 2 start-page: 579 year: 2011 ident: 676_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms1589 – volume: 498 start-page: 82 issue: 7452 year: 2013 ident: 676_CR34 publication-title: Nature doi: 10.1038/nature12151 – volume: 43 start-page: 1993 year: 1991 ident: 676_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.1993 – volume: 5 start-page: 83 issue: 2 year: 2011 ident: 676_CR5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.237 – volume: 71 start-page: 193406 issue: 19 year: 2005 ident: 676_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.193406 – volume: 98 start-page: 216602 issue: 21 year: 2007 ident: 676_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.216602 – volume: 108 start-page: 047401 issue: 4 year: 2012 ident: 676_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.047401 – volume: 10 start-page: 102 issue: 1 year: 2015 ident: 676_CR26 publication-title: Front. Phys. doi: 10.1007/s11467-014-0430-4 – volume: 17 start-page: 12051 issue: 18 year: 2015 ident: 676_CR17 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05049E – volume: 12 start-page: 3808 issue: 7 year: 2012 ident: 676_CR43 publication-title: Nano Lett. doi: 10.1021/nl301774e – volume: 35 start-page: 52 issue: 1 year: 2010 ident: 676_CR7 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430903505036 – volume: 9 start-page: 2343 issue: 6 year: 2009 ident: 676_CR32 publication-title: Nano Lett. doi: 10.1021/nl900786u – volume: 8 start-page: 2245 issue: 8 year: 2008 ident: 676_CR30 publication-title: Nano Lett. doi: 10.1021/nl080872f – volume: 62 start-page: 4318 issue: 3 year: 2000 ident: 676_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4318 – volume: 100 start-page: 061116 issue: 6 year: 2012 ident: 676_CR44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3683534 – volume: 297 start-page: 1536 issue: 5586 year: 2002 ident: 676_CR3 publication-title: Science doi: 10.1126/science.297.5586.1536 – volume: 45 start-page: 566 issue: 7 year: 1980 ident: 676_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.566 – volume: 5 start-page: 487 issue: 7 year: 2010 ident: 676_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 7 start-page: 583 issue: 9 year: 2012 ident: 676_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.131 – volume: 4 start-page: 819 issue: 2 year: 2010 ident: 676_CR28 publication-title: ACS Nano doi: 10.1021/nn9017312 – volume: 98 start-page: 011101 issue: 1 year: 2005 ident: 676_CR1 publication-title: J. Appl. Phys. doi: 10.1063/1.1951057 – volume: 73 start-page: 193406 issue: 19 year: 2006 ident: 676_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.193406 – volume: 86 start-page: 205401 issue: 20 year: 2012 ident: 676_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.205401 |
SSID | ssj0001174462 |
Score | 2.070889 |
Snippet | Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We... |
SourceID | proquest crossref springer higheredpress chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Absorption spectra Astronomy Astrophysics and Cosmology Atomic Coherence coherent resonance Condensed Matter Physics Density functional theory Electromagnetic fields Graphene hybrid system Hybrid systems Molecular Nanowires Optical and Plasma Physics Optical properties Particle and Nuclear Physics Photoelectricity Physics Physics and Astronomy Plasmons quantum plasmons Research Article Resonance Silver silver nanowires SW defected graphene Theoretical analysis 威尔士 混合动力系统 相干共振 石墨 等离子体共振 缺陷 量子 银纳米线 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSsNAEF60XgQRRcXaKnvwpAQ3_8lJRKxF0JPF3pbsny1o0pr24M138A19Eme2SUMFewtsdtjMt5kZdme-IeTceHGihBSODJTAo5vIAT_jO1JIZUyWqlRjgfPjU9QfBA_DcFgduJVVWmVtE62hVoXEM_IrL3UT8Kahm1xPpg52jcLb1aqFxibZcsHT4A5PevfNGQuE24HtKeoxLESG5_pi01bPWSuBZhpMNqwR6RVGRf46Baex4qZ2RjbnQiubm7oSi_65PrVeqbdHdqtwkt4s8N8nGzo_IGOsuUDWJQqCCmTU0LQwdDoHLc7f6QQCZviako5zarm4f76-X8BPlFRpTO7Qiloaa21HyjHmTlOQUiCtMR19Yo0XXTBAH5JB7-75tu9ULRUcCYHQzBEuMylEaKEfCBEy4SO1kSddIbHjGGhYxUwh65YSgFgGYDFXRYmJUiNBlYl_RFo5LOyYUMMMC1zmGxySUZzpOPU8HcSeL02UyTbpLLXJJwvqDJtFBhFgkLYJq_XLZcVGjk0x3njDo4zwcICHIzw8aZOL5ZRa3pqX3RXQuEE-COwuvm5OtwaWV39yyZt91yaXNdjN8L_CTtYL65BtD3eeTQvsktbsY65PIbyZiTO7h38BF7P3lg priority: 102 providerName: ProQuest |
Title | Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system |
URI | http://lib.cqvip.com/qk/71009X/201705/673616349.html https://journal.hep.com.cn/fop/EN/10.1007/s11467-017-0676-8 https://link.springer.com/article/10.1007/s11467-017-0676-8 https://www.proquest.com/docview/2918639518 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VICQkhNoCIk0a7YFTkaX12vHjGFACoiqqUKPCaZV9kUiQR50cuPEf-g_7S5jZ2ERBgNSTLe16bM233v3snfkG4MiJNDNKq0DHRtGvmyTAdSYKtNLGuUFucksJzj8uk_N-fHHdvi7zuIsq2r3akvQz9SrZzb_UNKviDIsmN2CzjZ_uNKz7orP6sYIcO_aFRAWn7GM8r3YzX7NCmgrDyfh2hndcW5t2hj7QwhofkLpGQF_smfqlqPcRdksOyTpL0D_BBzv-DFs-llMXezCilAsSXWJockKCGpZNHJst0ImLezZFvoxjr2CjMfNS3P8e__7GZaJgxlJshzXMq1hb31KMKHSaoZUJqRqz4QOleLGlAPQ-9HvdX6fnQVlRIdDIg-aBCrnLkaC1o1ipNlcRKRsJHSpNBcfCLDEpNyS6ZRQCNkCseGiSzCW50-jULDqA2hgf7BCY447HIY8cNekkHdg0F8LGqYi0Swa6Do1nv8rpUjnDB5EhAYzzOvDK01KXYuRUE-NOrmSUCSiJQEkCSmZ1-PZ8SWXvnc7hGnzSkRwEFRd_75pmBbEsX-RCihy9EiENxebjCvZV85vGvvxX7wZsCxqSPkiwCbX5n4X9imRnrlqwkfXOWrDZObv53sXjSffy51XLD_kngIL7Lg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThtBDLYoHKhUoSKomkJhDuUCWnV2drM_B1RVlBDKzwkEt2nmj0SCbMImQtx4B96Dh-JJak-yREEiN24rzY53ZHttz4z9GeCHE2lmlFaBjo2io5skQD8TBVpp41wrN7mlAueT06R5Hv-9rF_OwVNVC0NplZVN9IbaFJrOyH-KPMzQm9bD7FevH1DXKLpdrVpojNTiyN7f4Zat3D38g_LdEqKxf7bXDMZdBQKNscAgUCF3OQYp9ShWqs5VROg-QodKU9Mt_IhJuSHgKaNw0S1cLw9Nkrkkdxr3TlmEdD_AQhzhYqgyvXEwOdPB8D72PUwFp8JnfK4uUn21nrdK5BbQRSBPCM6hXXSv-uikptzip7bP8bDG58JOxb6vrmu9F2x8hqVx-Mp-j_RtGeZsdwU6VONBKE8MCRWE4GFZ4Vh_iFIb3rAeBujIvZJ1usxjfz8_PF6gXyqZsZRMYg3zsNnWj5QdytVmSKUgGGXWvqeaMjZCnF6F83dh9heY7-LCvgJz3PE45JGjIZ2kLZvmQtg4FZF2SUvXYO2Fm7I3gurwWWsYccZ5DXjFX6nH6OfUhONaTnCbSTwSxSNJPDKrwfbLlIrejJfDKaFJR_gT1M181pz1SrBybDlKOdHzGuxUwp4Mv0ns22xim7DYPDs5lseHp0dr8FGQFvqUxHWYH9wO7XcMrQZqw-szg3_v_QP9B2eIMkc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58oAgiPrG26h48KcHNJs3jKGrxjQeL3pbuyxY0bU178OZ_8B_6S5zZJpaKCt4Cm52EmX187H7zDSF7lseJlkp6KtQSj24iD_aZwFNSaWtbqU4NJjhf30RnzfDiof5Q1DnNS7Z7eSU5ymlAlaZscNjT9nCc-OYmOK6wsNqC-WkyC6uxj5yuJj8aH7IA3g5dUVHOMBMZnsubzZ-soL5Cu5s99uHrE_vUYtuRLox25NQJMPrt_tRtS41lslTgSXo0GgArZMpkq2TO8TpVvkY6mH6BAkwUTHZRXMPQrqX9ITh0-Ex7gJ1hHOa0k1Eny_3x9n4PW0ZOtUGeh9HUKVob15J3kEZNwUoXFY5p-xXTvehIDHqdNBund8dnXlFdwVOAiQae9JlNAazVg1DKOpMBqhxx5UuFxcf8JNIx0yjApSUErwVxY76OEhulVoFTk2CDzGTwY5uEWmZZ6LPAYpOK4paJU85NGPNA2ailKqT65VfRG6loOEIZgMEwrRBWelqoQpgc62M8ibGkMgZKQKAEBkokFbL_1aW098fL_kT4hEVpCCw0_lefWhliUUzqXPAUvBIAJIXmgzLs4-ZfjW396-1dMn970hBX5zeXVbLAcXQ67mCNzAxehmYbMNBA7rhx_gkzrP5J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+resonance+of+quantum+plasmons+in+Stone%E2%80%93Wales+defected+graphene%E2%80%93silver+nanowire+hybrid+system&rft.jtitle=Frontiers+of+physics&rft.au=Liu%2C+Tong&rft.au=Zhang%2C+Hong&rft.au=Cheng%2C+Xin-Lu&rft.au=Xu%2C+Yang&rft.date=2017-10-01&rft.pub=Higher+Education+Press&rft.issn=2095-0462&rft.eissn=2095-0470&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1007%2Fs11467-017-0676-8&rft.externalDocID=10_1007_s11467_017_0676_8 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71009X%2F71009X.jpg |