A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities

Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels. Electrolytic water splitting using proton exchange membrane electrolysers (PEMEs) provides a pathway to sustainable hydrogen production through coupli...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 9; no. 6; pp. 1621 - 1626
Main Authors Kirkaldy, Niall, Chisholm, Greig, Chen, Jia-Jia, Cronin, Leroy
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels. Electrolytic water splitting using proton exchange membrane electrolysers (PEMEs) provides a pathway to sustainable hydrogen production through coupling to renewable energy sources, but can suffer from gas crossover at low current densities and high operating pressures, causing explosive gas mixtures and decreasing cell lifetimes. Here we demonstrate the application of a highly stable, organic electron-coupled proton buffer (ECPB) which allows the decoupling of hydrogen and oxygen production during water splitting. By merging concepts from redox flow battery and PEM electrolysis research, we have built a hybrid electrolyser device capable of decoupling the gas evolution reactions during water splitting. The device improves on both gas purity and operational safety, while still working at industrially relevant, high current density. Anthraquinone-2,7-disulfonic acid was used as an organic redox mediator in this two-step process, producing H at current densities of up to 3.71 A cm at 2.00 V, extending the concept of the ECPB.
AbstractList Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels. Electrolytic water splitting using proton exchange membrane electrolysers (PEMEs) provides a pathway to sustainable hydrogen production through coupling to renewable energy sources, but can suffer from gas crossover at low current densities and high operating pressures, causing explosive gas mixtures and decreasing cell lifetimes. Here we demonstrate the application of a highly stable, organic electron-coupled proton buffer (ECPB) which allows the decoupling of hydrogen and oxygen production during water splitting. By merging concepts from redox flow battery and PEM electrolysis research, we have built a hybrid electrolyser device capable of decoupling the gas evolution reactions during water splitting. The device improves on both gas purity and operational safety, while still working at industrially relevant, high current density. Anthraquinone-2,7-disulfonic acid was used as an organic redox mediator in this two-step process, producing H 2 at current densities of up to 3.71 A cm −2 at 2.00 V, extending the concept of the ECPB.
Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels. Electrolytic water splitting using proton exchange membrane electrolysers (PEMEs) provides a pathway to sustainable hydrogen production through coupling to renewable energy sources, but can suffer from gas crossover at low current densities and high operating pressures, causing explosive gas mixtures and decreasing cell lifetimes. Here we demonstrate the application of a highly stable, organic electron-coupled proton buffer (ECPB) which allows the decoupling of hydrogen and oxygen production during water splitting. By merging concepts from redox flow battery and PEM electrolysis research, we have built a hybrid electrolyser device capable of decoupling the gas evolution reactions during water splitting. The device improves on both gas purity and operational safety, while still working at industrially relevant, high current density. Anthraquinone-2,7-disulfonic acid was used as an organic redox mediator in this two-step process, producing H at current densities of up to 3.71 A cm at 2.00 V, extending the concept of the ECPB.
Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels. Electrolytic water splitting using proton exchange membrane electrolysers (PEMEs) provides a pathway to sustainable hydrogen production through coupling to renewable energy sources, but can suffer from gas crossover at low current densities and high operating pressures, causing explosive gas mixtures and decreasing cell lifetimes. Here we demonstrate the application of a highly stable, organic electron-coupled proton buffer (ECPB) which allows the decoupling of hydrogen and oxygen production during water splitting. By merging concepts from redox flow battery and PEM electrolysis research, we have built a hybrid electrolyser device capable of decoupling the gas evolution reactions during water splitting. The device improves on both gas purity and operational safety, while still working at industrially relevant, high current density. Anthraquinone-2,7-disulfonic acid was used as an organic redox mediator in this two-step process, producing H2 at current densities of up to 3.71 A cm−2 at 2.00 V, extending the concept of the ECPB.
Author Chisholm, Greig
Cronin, Leroy
Chen, Jia-Jia
Kirkaldy, Niall
Author_xml – sequence: 1
  givenname: Niall
  orcidid: 0000-0001-8242-9537
  surname: Kirkaldy
  fullname: Kirkaldy, Niall
  email: Lee.Cronin@glasgow.ac.uk
  organization: WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK . Email: Lee.Cronin@glasgow.ac.uk
– sequence: 2
  givenname: Greig
  surname: Chisholm
  fullname: Chisholm, Greig
  email: Lee.Cronin@glasgow.ac.uk
  organization: WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK . Email: Lee.Cronin@glasgow.ac.uk
– sequence: 3
  givenname: Jia-Jia
  orcidid: 0000-0003-1044-7079
  surname: Chen
  fullname: Chen, Jia-Jia
  email: Lee.Cronin@glasgow.ac.uk
  organization: WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK . Email: Lee.Cronin@glasgow.ac.uk
– sequence: 4
  givenname: Leroy
  orcidid: 0000-0001-8035-5757
  surname: Cronin
  fullname: Cronin, Leroy
  email: Lee.Cronin@glasgow.ac.uk
  organization: WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK . Email: Lee.Cronin@glasgow.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29675207$$D View this record in MEDLINE/PubMed
BookMark eNpd0cFOAjEQBuDGYESRiw9gNvFiDKvdlu62R0JETUg8yH1T2imULC22uwfe3iLIwV7aZL7-mczcoJ7zDhC6K_Bzgal4UVVUmFHOzQW6Jnhc5CWjond-E9xHwxg3OB1KC0aqK9QnoqxSpbpGfpLtglStVbIZZT6spLMq34K2sgU9ytb7ZbA6gwZUG3yzjxCydi3bTIPy3a6BmIgOfgUuBXndpSjvsgTWdrXOVBcCuIN20bYW4i26NLKJMDzdA7SYvS6m7_n88-1jOpnnigrS5lITSiTXSgoFSwMlY3zJoCSCs7EGIUFJwwU1BBOtmJGmMlowPgZpTFnSAXo8xqaevjuIbb21UUHTSAe-i3X6xsVYEIETffhHN74LLjWXVIG5YKWokno6KhV8jAFMvQt2K8O-LnB9WEQ9rb6mv4uYJXx_iuyWaZRn-jd2-gNssodX
CitedBy_id crossref_primary_10_1002_celc_201801671
crossref_primary_10_3389_fenrg_2022_980360
crossref_primary_10_1021_acs_chemrev_2c00573
crossref_primary_10_1016_j_xcrp_2020_100138
crossref_primary_10_1007_s10854_021_07146_0
crossref_primary_10_1021_acsenergylett_1c00236
crossref_primary_10_1002_ange_202219076
crossref_primary_10_1002_ange_202214333
crossref_primary_10_1016_j_cattod_2021_08_030
crossref_primary_10_1016_j_cogsc_2021_100453
crossref_primary_10_1016_j_jechem_2024_03_001
crossref_primary_10_3390_ma12203364
crossref_primary_10_1039_D3TA07059J
crossref_primary_10_1002_aenm_202002453
crossref_primary_10_1002_anie_202003198
crossref_primary_10_1021_acs_inorgchem_4c00835
crossref_primary_10_1021_acsami_1c07266
crossref_primary_10_1039_D2CC05775A
crossref_primary_10_1016_j_cej_2023_148126
crossref_primary_10_1002_cphc_201900423
crossref_primary_10_1021_acsmaterialslett_1c00074
crossref_primary_10_1038_s41467_021_22250_9
crossref_primary_10_1021_acs_iecr_3c00901
crossref_primary_10_1021_jacs_0c09510
crossref_primary_10_1021_acsenergylett_0c00631
crossref_primary_10_1016_j_joule_2019_09_019
crossref_primary_10_1039_D1EE03982B
crossref_primary_10_1039_C8TA07773H
crossref_primary_10_1002_asia_202201093
crossref_primary_10_1021_acsmaterialslett_4c00745
crossref_primary_10_1002_adsu_202300283
crossref_primary_10_3389_fceng_2022_966451
crossref_primary_10_1088_2399_1984_ac1db9
crossref_primary_10_1038_s41563_023_01767_y
crossref_primary_10_1002_aenm_202203455
crossref_primary_10_1016_j_nxsust_2024_100029
crossref_primary_10_1016_j_ijhydene_2023_05_326
crossref_primary_10_1039_C9TA03285A
crossref_primary_10_1002_advs_202104916
crossref_primary_10_1016_j_jpowsour_2023_232857
crossref_primary_10_1002_anie_202219076
crossref_primary_10_1039_D2MA00185C
crossref_primary_10_1007_s41918_022_00159_1
crossref_primary_10_1016_j_ccr_2024_215837
crossref_primary_10_1016_j_electacta_2019_135255
crossref_primary_10_1080_02603594_2021_2013827
crossref_primary_10_1016_j_isci_2020_101720
crossref_primary_10_1016_j_cej_2024_153461
crossref_primary_10_1039_D1EE01226F
crossref_primary_10_1021_acsenergylett_4c00773
crossref_primary_10_1002_ange_202003198
crossref_primary_10_1002_anie_202214333
Cites_doi 10.1021/jacs.6b03187
10.1002/adfm.201200694
10.1007/s10800-011-0348-2
10.1016/j.ijhydene.2013.01.151
10.1016/j.ijhydene.2013.09.013
10.1021/ja4071893
10.1038/nchem.1621
10.1149/2.1001409jes
10.1016/j.jpowsour.2005.07.038
10.1039/C4EE01426J
10.1002/cssc.201000182
10.1126/science.aab3033
10.1038/nature12909
10.1002/anie.201600705
10.1016/j.solener.2004.09.003
10.1149/2.0101601jes
10.1016/j.ijhydene.2009.09.015
10.1016/j.ijhydene.2010.03.058
10.1126/science.1257443
10.3390/molecules201119711
10.1016/j.ijhydene.2011.09.116
10.1149/2.1371607jes
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/c7sc05388f
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 1626
ExternalDocumentID 10_1039_C7SC05388F
29675207
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
NPM
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAWGC
AAYXX
ABASK
ABGFH
AETIL
AFVBQ
AHGXI
ANBJS
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
ROYLF
RPMJG
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c392t-ad232a8dca9cebfe6558b5e629854de9aecaf893f202dc5faf7fd9584eaff663
ISSN 2041-6520
IngestDate Fri Aug 16 04:17:14 EDT 2024
Fri Sep 13 02:29:25 EDT 2024
Fri Aug 23 02:07:46 EDT 2024
Sat Sep 28 08:48:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-ad232a8dca9cebfe6558b5e629854de9aecaf893f202dc5faf7fd9584eaff663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8035-5757
0000-0003-1044-7079
0000-0001-8242-9537
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2018/sc/c7sc05388f
PMID 29675207
PQID 2010895697
PQPubID 2047492
PageCount 6
ParticipantIDs proquest_miscellaneous_2028949290
proquest_journals_2010895697
crossref_primary_10_1039_C7SC05388F
pubmed_primary_29675207
PublicationCentury 2000
PublicationDate 2018-02-14
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Schalenbach (C7SC05388F-(cit6)/*[position()=1]) 2013; 38
Gutiérrez-Martín (C7SC05388F-(cit4)/*[position()=1]) 2012; 37
Rausch (C7SC05388F-(cit10)/*[position()=1]) 2014; 345
Yang (C7SC05388F-(cit13)/*[position()=1]) 2014; 161
Symes (C7SC05388F-(cit8)/*[position()=1]) 2013; 5
Huskinson (C7SC05388F-(cit12)/*[position()=1]) 2014; 505
Yang (C7SC05388F-(cit17)/*[position()=1]) 2016; 163
Ding (C7SC05388F-(cit16)/*[position()=1]) 2016; 55
Perry (C7SC05388F-(cit20)/*[position()=1]) 2016; 163
Staffell (C7SC05388F-(cit2)/*[position()=1]) 2017
Rausch (C7SC05388F-(cit9)/*[position()=1]) 2013; 135
Lin (C7SC05388F-(cit15)/*[position()=1]) 2015; 349
Wang (C7SC05388F-(cit21)/*[position()=1]) 2013; 23
C7SC05388F-(cit23)/*[position()=1]
Weber (C7SC05388F-(cit22)/*[position()=1]) 2011; 41
Jörissen (C7SC05388F-(cit24)/*[position()=1]) 2006; 155
Millet (C7SC05388F-(cit18)/*[position()=1]) 2010; 35
Bloor (C7SC05388F-(cit11)/*[position()=1]) 2016; 138
Armaroli (C7SC05388F-(cit3)/*[position()=1]) 2011; 4
Barbir (C7SC05388F-(cit7)/*[position()=1]) 2005; 78
Pan (C7SC05388F-(cit14)/*[position()=1]) 2015; 20
Grigoriev (C7SC05388F-(cit5)/*[position()=1]) 2011; 36
Chisholm (C7SC05388F-(cit19)/*[position()=1]) 2014; 7
Carmo (C7SC05388F-(cit1)/*[position()=1]) 2013; 38
References_xml – volume: 138
  start-page: 6707
  year: 2016
  ident: C7SC05388F-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03187
  contributor:
    fullname: Bloor
– volume: 23
  start-page: 970
  year: 2013
  ident: C7SC05388F-(cit21)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200694
  contributor:
    fullname: Wang
– volume: 41
  start-page: 1137
  year: 2011
  ident: C7SC05388F-(cit22)/*[position()=1]
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0348-2
  contributor:
    fullname: Weber
– volume: 38
  start-page: 4901
  year: 2013
  ident: C7SC05388F-(cit1)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
  contributor:
    fullname: Carmo
– volume: 38
  start-page: 14921
  year: 2013
  ident: C7SC05388F-(cit6)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.013
  contributor:
    fullname: Schalenbach
– volume-title: The role of hydrogen and fuel cells in future energy systems, H2FC SUPERGEN
  year: 2017
  ident: C7SC05388F-(cit2)/*[position()=1]
  contributor:
    fullname: Staffell
– ident: C7SC05388F-(cit23)/*[position()=1]
– volume: 135
  start-page: 13656
  year: 2013
  ident: C7SC05388F-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4071893
  contributor:
    fullname: Rausch
– volume: 5
  start-page: 403
  year: 2013
  ident: C7SC05388F-(cit8)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1621
  contributor:
    fullname: Symes
– volume: 161
  start-page: A1371
  year: 2014
  ident: C7SC05388F-(cit13)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1001409jes
  contributor:
    fullname: Yang
– volume: 155
  start-page: 23
  year: 2006
  ident: C7SC05388F-(cit24)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.07.038
  contributor:
    fullname: Jörissen
– volume: 7
  start-page: 3026
  year: 2014
  ident: C7SC05388F-(cit19)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01426J
  contributor:
    fullname: Chisholm
– volume: 4
  start-page: 21
  year: 2011
  ident: C7SC05388F-(cit3)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000182
  contributor:
    fullname: Armaroli
– volume: 349
  start-page: 1529
  year: 2015
  ident: C7SC05388F-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aab3033
  contributor:
    fullname: Lin
– volume: 505
  start-page: 195
  year: 2014
  ident: C7SC05388F-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12909
  contributor:
    fullname: Huskinson
– volume: 55
  start-page: 4772
  year: 2016
  ident: C7SC05388F-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600705
  contributor:
    fullname: Ding
– volume: 78
  start-page: 661
  year: 2005
  ident: C7SC05388F-(cit7)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.09.003
  contributor:
    fullname: Barbir
– volume: 163
  start-page: A5064
  year: 2016
  ident: C7SC05388F-(cit20)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0101601jes
  contributor:
    fullname: Perry
– volume: 35
  start-page: 5043
  year: 2010
  ident: C7SC05388F-(cit18)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.015
  contributor:
    fullname: Millet
– volume: 36
  start-page: 2721
  year: 2011
  ident: C7SC05388F-(cit5)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.058
  contributor:
    fullname: Grigoriev
– volume: 345
  start-page: 1326
  year: 2014
  ident: C7SC05388F-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1257443
  contributor:
    fullname: Rausch
– volume: 20
  start-page: 20499
  year: 2015
  ident: C7SC05388F-(cit14)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules201119711
  contributor:
    fullname: Pan
– volume: 37
  start-page: 1151
  year: 2012
  ident: C7SC05388F-(cit4)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.116
  contributor:
    fullname: Gutiérrez-Martín
– volume: 163
  start-page: A1442
  year: 2016
  ident: C7SC05388F-(cit17)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1371607jes
  contributor:
    fullname: Yang
SSID ssj0000331527
Score 2.470254
Snippet Hydrogen is seen as a sustainable fuel of the future, yet the vast majority of global hydrogen production comes from the reformation of fossil fuels....
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1621
SubjectTerms Current density
Decoupling
Electrolysis
Fossil fuels
Gas evolution
Gas mixtures
High current
Hydrogen
Hydrogen production
Hydrogen storage
Oxygen production
Rechargeable batteries
Renewable energy sources
Water splitting
Title A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities
URI https://www.ncbi.nlm.nih.gov/pubmed/29675207
https://www.proquest.com/docview/2010895697/abstract/
https://search.proquest.com/docview/2028949290
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4k1hQUZw6wbysJ34WFVbVsuyHOhKvUWOH7sVVbtq00P5QfxOxrGdBLQg4BK1juVEni_2zPibGYTeSljzWC7iKBWyiohRLBJVFkeKGpXzRDNKbbzzp3N2ckFO53Q-GHzvsZZ2dfVOfrsxruR_pAptIFcbJfsPkm0HhQb4DfKFK0gYrn8l43EIcmqy9vsKTTJqokG8F_Nqb0OyRr7azXIP7wW6pqhHCuzO3fVSb6GL2qwvHVdL7Xzp8HpkExmPpE_fpCzPvQ6Ew5DZICQbCLFB9kQ4xID1XAwfF5uvYulXc5iVltQxuVpsg1f2gy0R2vJ5FiI6dTReeEiL34lN5OtiJfRmve97LJLCkpyTzmPp_CKBlNqQTnxpu27tS2OSRIym7shG99tc7qOwePMeRvsLccJc4LXf1OEvu3HDiDObb1XmWwmrUVGYblsMVIDzz-X04uysnB3PZ7fQ7TTnNO-Z7s2On2W-OnD73iETbsbfd4P_rPv8xqBpFJvZfXTPWyR47OD1AA306iG6087WI7Qe4xZmR_hXkB1hBzHchxi2EMMtxHCAGO4ghqGDhRj2EMMtxB6j2fR4NjmJfJ2OSIJ2XUdCgVouCiUFl7oy9vsuKqpZygtKlOZCS2FALzZpnCpJjTC5URw0Xy2MAY33CTpYrVf6GcIZdCJgZNOMKUJJUhFDckVUBoMaysgQvQkTWF67bCxlw6LIeDnJv0yaaZ4O0WGY29J_rdvSsj4KThnPh-h1extm0h6QiZVe72yftOAEDIZ4iJ46mbSPSTmY1mmcP__z4C_Q3Q7yh-ig3uz0S1Bb6-pVg5kfyICe1Q
link.rule.ids 315,786,790,870,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical%2C+organic-mediated%2C+hybrid+electrolyser+that+decouples+hydrogen+production+at+high+current+densities&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Kirkaldy%2C+Niall&rft.au=Chisholm%2C+Greig&rft.au=Jia-Jia%2C+Chen&rft.au=Cronin%2C+Leroy&rft.date=2018-02-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=9&rft.issue=6&rft.spage=1621&rft.epage=1626&rft_id=info:doi/10.1039%2Fc7sc05388f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon