Statistical and hydrodynamic numerical modeling to quantify storm surge hazard: Comparison of approaches applied to U.S. North Atlantic coast

Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropica...

Full description

Saved in:
Bibliographic Details
Published inWeather and climate extremes Vol. 42; p. 100628
Main Authors Hamdi, Yasser, Nadal-Caraballo, Norberto C., Kanney, Joseph, Carr, Meredith L., Rebour, Vincent
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text
ISSN2212-0947
2212-0947
DOI10.1016/j.wace.2023.100628

Cover

Loading…
Abstract Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%-80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%-60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison.
AbstractList Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%-80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%-60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison.
Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%–80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%–60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison.
ArticleNumber 100628
Author Hamdi, Yasser
Rebour, Vincent
Kanney, Joseph
Carr, Meredith L.
Nadal-Caraballo, Norberto C.
Author_xml – sequence: 1
  givenname: Yasser
  orcidid: 0000-0001-6329-0074
  surname: Hamdi
  fullname: Hamdi, Yasser
– sequence: 2
  givenname: Norberto C.
  surname: Nadal-Caraballo
  fullname: Nadal-Caraballo, Norberto C.
– sequence: 3
  givenname: Joseph
  surname: Kanney
  fullname: Kanney, Joseph
– sequence: 4
  givenname: Meredith L.
  orcidid: 0000-0003-1970-8511
  surname: Carr
  fullname: Carr, Meredith L.
– sequence: 5
  givenname: Vincent
  surname: Rebour
  fullname: Rebour, Vincent
BackLink https://asnr.hal.science/irsn-04385683$$DView record in HAL
BookMark eNp9kctuFDEQRS0UJELID7DyGmkav_rFbjQCEmkUFiFrq_ya9qjbHmwPaPIP_DPdGZAIC1Z1VVX3VEn3NboIMViE3lJSUUKb9_vqB2hbMcL43CAN616gS8YoW5FetBd_6VfoOuc9IYS2Pa87cYl-3hcoPhevYcQQDB5OJkVzCjB5jcNxsulpNEVjRx92uET87QiheHfCucQ04XxMO4sHeIRkPuBNnA6QfI4BR4fhcEgR9GDzIkdvzQJ4qO4rfBdTGfC6jAtMYx0hlzfopYMx2-vf9Qo9fPr4dXOz2n75fLtZb1ea96yswBCuWm6t7ZVmvG5dB6LurOaONr1WwrreCVC6bhpuWzbrVlCnnTOWirbhV-j2zDUR9vKQ_ATpJCN4-dSIaSchzV-NVvKOK62BEqOpUIoqSq1o51oDp1S5mfXuzBpgfIa6WW-lTzlIInhXNx3_Tufl7rysU8w5WSe1XwKIoSTwo6RELpHKvVwilUuk8hzpbGX_WP8c-4_pF341q08
CitedBy_id crossref_primary_10_1029_2023EF004236
crossref_primary_10_1007_s11069_024_06781_0
Cites_doi 10.5194/nhess-14-2053-2014
10.1111/risa.12008
10.1111/nyas.12589
10.1073/pnas.1604386113
10.5194/nhess-15-1515-2015
10.1007/s00186-007-0168-7
10.1175/JAM2349.1
10.1002/j.1477-8696.2001.tb06540.x
10.1111/j.1600-0870.2007.00240.x
10.1016/j.jhydrol.2017.10.067
10.1007/s11069-018-3470-1
10.5194/nhess-18-3383-2018
10.1002/2015WR018502
10.2112/JCOASTRES-D-15-00031.1
10.1111/nyas.14011
10.5194/nhess-11-1627-2011
10.1061/(ASCE)0733-9445(2000)126:10(1222)
10.1029/2009JD013630
10.1029/2021WR030873
10.1002/wea.755
10.1007/s11069-018-3237-8
10.5194/nhess-13-2239-2013
10.1007/s11069-015-2111-1
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.wace.2023.100628
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
EISSN 2212-0947
ExternalDocumentID oai_doaj_org_article_383bcca10dc14bb1b11e47b1b5a311bf
oai_HAL_irsn_04385683v1
10_1016_j_wace_2023_100628
GroupedDBID 0R~
4.4
457
5VS
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEKER
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O-L
O9-
OK1
Q38
RIG
ROL
SDF
SSZ
1XC
AACTN
VOOES
ID FETCH-LOGICAL-c392t-ad03b73eee9bc2357f8a458ec3f169cb4ef9f4abc5663e72f4a741fcffde14763
IEDL.DBID DOA
ISSN 2212-0947
IngestDate Wed Aug 27 01:18:57 EDT 2025
Fri May 09 12:20:09 EDT 2025
Tue Jul 01 02:09:11 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tropical cyclones Extratropical storms Storm surge Frequency analysis Probabilistic coastal hazards analysis Multivariate flood hazard analysis
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-ad03b73eee9bc2357f8a458ec3f169cb4ef9f4abc5663e72f4a741fcffde14763
ORCID 0000-0001-6329-0074
0000-0003-1970-8511
OpenAccessLink https://doaj.org/article/383bcca10dc14bb1b11e47b1b5a311bf
ParticipantIDs doaj_primary_oai_doaj_org_article_383bcca10dc14bb1b11e47b1b5a311bf
hal_primary_oai_HAL_irsn_04385683v1
crossref_citationtrail_10_1016_j_wace_2023_100628
crossref_primary_10_1016_j_wace_2023_100628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Weather and climate extremes
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Jia (10.1016/j.wace.2023.100628_bib15) 2016; 81
Vickery (10.1016/j.wace.2023.100628_bib44) 2000; 126
Hamdi (10.1016/j.wace.2023.100628_bib13) 2019; 98
Zhang (10.1016/j.wace.2023.100628_bib48) 2019
Lin (10.1016/j.wace.2023.100628_bib21) 2016; 113
Langousis (10.1016/j.wace.2023.100628_bib17) 2016; 52
Knobby (10.1016/j.wace.2023.100628_bib16) 2023
Nadal-Caraballo (10.1016/j.wace.2023.100628_bib29) 2022
(10.1016/j.wace.2023.100628_bib41) 2009
Hamdi (10.1016/j.wace.2023.100628_bib11) 2015; 15
Nadal-Caraballo (10.1016/j.wace.2023.100628_bib25) 2012
Melby (10.1016/j.wace.2023.100628_bib23) 2012
Nadal-Caraballo (10.1016/j.wace.2023.100628_bib28) 2015; 32
(10.1016/j.wace.2023.100628_bib42) 2011
Blake (10.1016/j.wace.2023.100628_bib4) 2018
Yin (10.1016/j.wace.2023.100628_bib46) 2017; 555
Liberato (10.1016/j.wace.2023.100628_bib19) 2013; 13
Blake (10.1016/j.wace.2023.100628_bib3) 2013
IRSN (10.1016/j.wace.2023.100628_bib14) 2013
Orton (10.1016/j.wace.2023.100628_bib30) 2015; 1336
Pasch (10.1016/j.wace.2023.100628_bib33) 2021
Bucci (10.1016/j.wace.2023.100628_bib5) 2023
Zhang (10.1016/j.wace.2023.100628_bib47) 2018; 94
Hall (10.1016/j.wace.2023.100628_bib9) 2007; 59A
Makkonen (10.1016/j.wace.2023.100628_bib22) 2006; 45
Orton (10.1016/j.wace.2023.100628_bib32) 2019; 1439
Nadal-Caraballo (10.1016/j.wace.2023.100628_bib26) 2014
Bardet (10.1016/j.wace.2023.100628_bib2) 2011; 11
Nadal‐Caraballo (10.1016/j.wace.2023.100628_bib27) 2015
Pasch (10.1016/j.wace.2023.100628_bib34) 2023
Saint-Criq (10.1016/j.wace.2023.100628_bib38) 2022; 58
Gonzalez (10.1016/j.wace.2023.100628_bib8) 2019
Rumpf (10.1016/j.wace.2023.100628_bib37) 2007; 66
Pickands (10.1016/j.wace.2023.100628_bib35) 1975; 3
Lin (10.1016/j.wace.2023.100628_bib20) 2010; 115
Orton (10.1016/j.wace.2023.100628_bib31) 2016; 121
Ulbrich (10.1016/j.wace.2023.100628_bib40) 2001; 56
Hamdi (10.1016/j.wace.2023.100628_bib10) 2014; 14
Aerts (10.1016/j.wace.2023.100628_bib1) 2013; 33
Coles (10.1016/j.wace.2023.100628_bib7) 2001
Yawn (10.1016/j.wace.2023.100628_bib45) 2023
Hamdi (10.1016/j.wace.2023.100628_bib12) 2018; 18
Liberato (10.1016/j.wace.2023.100628_bib18) 2011; 66
References_xml – volume: 14
  start-page: 2053
  year: 2014
  ident: 10.1016/j.wace.2023.100628_bib10
  article-title: Extreme storm surges: a comparative study of frequency analysis approaches
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-2053-2014
– year: 2023
  ident: 10.1016/j.wace.2023.100628_bib16
– year: 2023
  ident: 10.1016/j.wace.2023.100628_bib34
– volume: 33
  start-page: 772
  year: 2013
  ident: 10.1016/j.wace.2023.100628_bib1
  article-title: Low-probability flood risk modeling for New York city
  publication-title: Risk Anal.
  doi: 10.1111/risa.12008
– volume: 1336
  start-page: 56
  year: 2015
  ident: 10.1016/j.wace.2023.100628_bib30
  article-title: New York city panel on climate change 2015 report chapter 4: dynamic coastal flood modeling
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12589
– year: 2023
  ident: 10.1016/j.wace.2023.100628_bib45
– year: 2012
  ident: 10.1016/j.wace.2023.100628_bib25
– volume: 113
  start-page: 12071
  issue: 43
  year: 2016
  ident: 10.1016/j.wace.2023.100628_bib21
  article-title: Hurricane Sandy's flood frequency increasing from year 1800 to 2100
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604386113
– volume: 15
  start-page: 1515
  year: 2015
  ident: 10.1016/j.wace.2023.100628_bib11
  article-title: Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-15-1515-2015
– year: 2015
  ident: 10.1016/j.wace.2023.100628_bib27
– year: 2014
  ident: 10.1016/j.wace.2023.100628_bib26
  article-title: North Atlantic Coast Comprehensive Study – Phase I: statistical analysis of historical extreme water levels with sea level change
– volume: 66
  start-page: 475
  year: 2007
  ident: 10.1016/j.wace.2023.100628_bib37
  article-title: Stochastic modelling of tropical cyclone tracks
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-007-0168-7
– year: 2013
  ident: 10.1016/j.wace.2023.100628_bib3
– volume: 45
  start-page: 334
  year: 2006
  ident: 10.1016/j.wace.2023.100628_bib22
  article-title: Plotting positions in extreme value analysis
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAM2349.1
– volume: 56
  start-page: 70
  year: 2001
  ident: 10.1016/j.wace.2023.100628_bib40
  article-title: Three extreme storms over europe in december 1999
  publication-title: Weather
  doi: 10.1002/j.1477-8696.2001.tb06540.x
– year: 2019
  ident: 10.1016/j.wace.2023.100628_bib48
– year: 2001
  ident: 10.1016/j.wace.2023.100628_bib7
  article-title: An introduction to statistical modeling of extreme values
– volume: 59A
  start-page: 486
  year: 2007
  ident: 10.1016/j.wace.2023.100628_bib9
  article-title: Statistical modeling of North Atlantic tropical cyclone tracks
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.2007.00240.x
– volume: 555
  start-page: 648
  year: 2017
  ident: 10.1016/j.wace.2023.100628_bib46
  article-title: Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.10.067
– year: 2021
  ident: 10.1016/j.wace.2023.100628_bib33
– volume: 94
  start-page: 1225
  year: 2018
  ident: 10.1016/j.wace.2023.100628_bib47
  article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3470-1
– volume: 18
  start-page: 3383
  year: 2018
  ident: 10.1016/j.wace.2023.100628_bib12
  article-title: Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-3383-2018
– volume: 52
  start-page: 2659
  year: 2016
  ident: 10.1016/j.wace.2023.100628_bib17
  article-title: Threshold detection for the generalized Pareto distribution: review of representative methods and application to the NOAA NCDC daily rainfall database
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018502
– volume: 32
  start-page: 35
  issue: 1
  year: 2015
  ident: 10.1016/j.wace.2023.100628_bib28
  article-title: Statistical analysis of historical extreme water levels for the U.S. North Atlantic Coast using Monte Carlo Life-Cycle Simulation
  publication-title: J. Coast Res.
  doi: 10.2112/JCOASTRES-D-15-00031.1
– volume: 1439
  start-page: 95
  issue: 1
  year: 2019
  ident: 10.1016/j.wace.2023.100628_bib32
  article-title: New York city panel on climate change 2019 report chapter 4: coastal flooding
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.14011
– year: 2019
  ident: 10.1016/j.wace.2023.100628_bib8
  article-title: Quantification of uncertainty in probabilistic storm surge models: literature review
– year: 2011
  ident: 10.1016/j.wace.2023.100628_bib42
– volume: 11
  start-page: 1627
  year: 2011
  ident: 10.1016/j.wace.2023.100628_bib2
  article-title: Regional frequency analysis of extreme storm surges along the French coast
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-11-1627-2011
– volume: 126
  start-page: 1222
  issue: 10
  year: 2000
  ident: 10.1016/j.wace.2023.100628_bib44
  article-title: Simulation of hurricane risk in the U.S. Using empirical track model
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222)
– volume: 115
  year: 2010
  ident: 10.1016/j.wace.2023.100628_bib20
  article-title: Risk assessment of hurricane storm surge for New York City
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2009JD013630
– volume: 58
  year: 2022
  ident: 10.1016/j.wace.2023.100628_bib38
  article-title: Extreme sea level estimation combining systematic observed skew surges and historical record sea levels
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030873
– year: 2018
  ident: 10.1016/j.wace.2023.100628_bib4
– volume: 66
  start-page: 330
  year: 2011
  ident: 10.1016/j.wace.2023.100628_bib18
  article-title: Klaus – an exceptional winter storm over northern Iberia and southern France
  publication-title: Weather
  doi: 10.1002/wea.755
– year: 2009
  ident: 10.1016/j.wace.2023.100628_bib41
  article-title: Louisiana coastal protection and restoration (LACPR)
– volume: 98
  start-page: 895
  year: 2019
  ident: 10.1016/j.wace.2023.100628_bib13
  article-title: Development of a target-site-based regional frequency model using historical information
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3237-8
– year: 2012
  ident: 10.1016/j.wace.2023.100628_bib23
– volume: 13
  start-page: 2239
  year: 2013
  ident: 10.1016/j.wace.2023.100628_bib19
  article-title: Explosive development of winter storm Xynthia over the subtropical North Atlantic ocean
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-13-2239-2013
– volume: 81
  start-page: 909
  year: 2016
  ident: 10.1016/j.wace.2023.100628_bib15
  article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-2111-1
– volume: 3
  start-page: 119
  year: 1975
  ident: 10.1016/j.wace.2023.100628_bib35
  article-title: Statistical inference using extreme order statistics
  publication-title: Ann. Stat.
– year: 2023
  ident: 10.1016/j.wace.2023.100628_bib5
– volume: 121
  start-page: 8904
  year: 2016
  ident: 10.1016/j.wace.2023.100628_bib31
  article-title: A validated tropical-extratropical flood hazard assessment for New York Harbor
  publication-title: J. Geophys. Res. Oceans
– year: 2013
  ident: 10.1016/j.wace.2023.100628_bib14
– year: 2022
  ident: 10.1016/j.wace.2023.100628_bib29
SSID ssj0001793584
Score 2.295399
Snippet Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 100628
SubjectTerms Environmental Sciences
Extratropical storms
Frequency analysis
Multivariate flood hazard analysis
Probabilistic coastal hazards analysis
Storm surge
Tropical cyclones
Title Statistical and hydrodynamic numerical modeling to quantify storm surge hazard: Comparison of approaches applied to U.S. North Atlantic coast
URI https://asnr.hal.science/irsn-04385683
https://doaj.org/article/383bcca10dc14bb1b11e47b1b5a311bf
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDBWGnnoZ2rVD020FgQ67DG6jWHbs3bKgRVCsu6wBehMkWkI6ZHaXOBu6_9D_PFJygvSyXXryB2RJEGnxSaQehXhPWmRzU6qkcGmWqMoWSaHQJKafIZIKEcjns8PXX_PJVF3dZrdbqb44JizSA8eBO6cVlKVWZL9CqayVVkqnhnTNTCql9Tz7ks3bWkyF3ZUh-_dUd0omBnT9Nsi8mIOUIwNyTr--ZYkCYT_Zl9l6PzXYl8s98bIDhjCKHdoXL1z9SvSuCdM2i7D1DR9gPL8jgBmeDsQj48RAs0yfmbqC2UNFs2HMMA_1Krpi5hBy3ZCBgraBnyvDwUEPwDGRP2DJZ6JhZv6QmnyC8SYlITQe1mTjbgkmIlWuYHr27QyCrwdG7ZwrQ8DGLNtDMb28uBlPki65QoIEidrEVP3UDlPnXGmROW98YVRWOEy9zEu0yvnSK2OR8F7qhgO6J_Dh0fvKSUWz0muxUze1OxLAx7YGyCnrXaWUofp8ifRfW29RWVn1hFwPtMaOeZwTYMz1OsTsu2bhaBaOjsLpiY-bb-4j78Y_S39m-W1KMmd2eEGapDtN0v_TpJ44Jek_qWMy-qLvFstas780y4v0lzx-jqbeiF3ufQyLeSt22sXKvSNw09qToMd_AaKg-58
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+and+hydrodynamic+numerical+modeling+to+quantify+storm+surge+hazard%3A+Comparison+of+approaches+applied+to+U.S.+North+Atlantic+coast&rft.jtitle=Weather+and+climate+extremes&rft.au=Hamdi%2C+Yasser&rft.au=Nadal-Caraballo%2C+Norberto+C.&rft.au=Kanney%2C+Joseph&rft.au=Carr%2C+Meredith+L.&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=2212-0947&rft.eissn=2212-0947&rft.volume=42&rft_id=info:doi/10.1016%2Fj.wace.2023.100628&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_irsn_04385683v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-0947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-0947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-0947&client=summon