Statistical and hydrodynamic numerical modeling to quantify storm surge hazard: Comparison of approaches applied to U.S. North Atlantic coast
Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropica...
Saved in:
Published in | Weather and climate extremes Vol. 42; p. 100628 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2212-0947 2212-0947 |
DOI | 10.1016/j.wace.2023.100628 |
Cover
Loading…
Abstract | Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%-80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%-60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison. |
---|---|
AbstractList | Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%-80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%-60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison. Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the U.S. and France. However, differences in storm climatology, specifically the relative importance of tropical cyclones (TCs) versus extratropical storms (XTCs), have driven differences in estimation method development. This work compares purely statistical modeling with combined statistical and numerical simulation modeling approaches for extreme storm surge applied to the U.S. North Atlantic coast which is subject to both tropical and extratropical storms. Two frequency analysis methods are applied to observed water levels and compared to a copula-based joint probability analysis of TCs and automated frequency analysis of XTCs that is enriched with numerically simulated storms. One frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with additional data from a homogeneous region. The other frequency analysis method is applied using (1) hourly at-site data and (2) hourly at-site data enriched with monthly water level maxima. Variables of interest used in the comparison are skew storm surge, maximum instantaneous storm surge, non-tidal residual and maximum seal level. The performance of the methods (mean surge and water level estimates and confidence intervals) depend on the variable of interest and, to some extent, on return period. Inclusion of additional information (e.g., regional water levels, and monthly maxima) in the frequency analysis methods does not have a large impact on estimated mean surge and water levels, but significantly reduces resulting confidence intervals (over 40% reduction in some cases). However, the confidence intervals still grow with increasing return period. Inclusion of simulated storms in the joint probability analysis results in significantly different mean surge and water level estimates (up to 25% higher than the frequency analysis in some cases). The joint probability analysis confidence intervals are wider than those for the frequency analysis methods lower return periods (e.g., 60%–80% wider at 100 years), but they grow much more slowly and are significantly narrower for higher return periods (e.g., 40%–60% narrower at 1 000 years). Although there are appreciable differences between the results documented in this paper, these are reasonable due to differences in the data and methods used in this comparison. |
ArticleNumber | 100628 |
Author | Hamdi, Yasser Rebour, Vincent Kanney, Joseph Carr, Meredith L. Nadal-Caraballo, Norberto C. |
Author_xml | – sequence: 1 givenname: Yasser orcidid: 0000-0001-6329-0074 surname: Hamdi fullname: Hamdi, Yasser – sequence: 2 givenname: Norberto C. surname: Nadal-Caraballo fullname: Nadal-Caraballo, Norberto C. – sequence: 3 givenname: Joseph surname: Kanney fullname: Kanney, Joseph – sequence: 4 givenname: Meredith L. orcidid: 0000-0003-1970-8511 surname: Carr fullname: Carr, Meredith L. – sequence: 5 givenname: Vincent surname: Rebour fullname: Rebour, Vincent |
BackLink | https://asnr.hal.science/irsn-04385683$$DView record in HAL |
BookMark | eNp9kctuFDEQRS0UJELID7DyGmkav_rFbjQCEmkUFiFrq_ya9qjbHmwPaPIP_DPdGZAIC1Z1VVX3VEn3NboIMViE3lJSUUKb9_vqB2hbMcL43CAN616gS8YoW5FetBd_6VfoOuc9IYS2Pa87cYl-3hcoPhevYcQQDB5OJkVzCjB5jcNxsulpNEVjRx92uET87QiheHfCucQ04XxMO4sHeIRkPuBNnA6QfI4BR4fhcEgR9GDzIkdvzQJ4qO4rfBdTGfC6jAtMYx0hlzfopYMx2-vf9Qo9fPr4dXOz2n75fLtZb1ea96yswBCuWm6t7ZVmvG5dB6LurOaONr1WwrreCVC6bhpuWzbrVlCnnTOWirbhV-j2zDUR9vKQ_ATpJCN4-dSIaSchzV-NVvKOK62BEqOpUIoqSq1o51oDp1S5mfXuzBpgfIa6WW-lTzlIInhXNx3_Tufl7rysU8w5WSe1XwKIoSTwo6RELpHKvVwilUuk8hzpbGX_WP8c-4_pF341q08 |
CitedBy_id | crossref_primary_10_1029_2023EF004236 crossref_primary_10_1007_s11069_024_06781_0 |
Cites_doi | 10.5194/nhess-14-2053-2014 10.1111/risa.12008 10.1111/nyas.12589 10.1073/pnas.1604386113 10.5194/nhess-15-1515-2015 10.1007/s00186-007-0168-7 10.1175/JAM2349.1 10.1002/j.1477-8696.2001.tb06540.x 10.1111/j.1600-0870.2007.00240.x 10.1016/j.jhydrol.2017.10.067 10.1007/s11069-018-3470-1 10.5194/nhess-18-3383-2018 10.1002/2015WR018502 10.2112/JCOASTRES-D-15-00031.1 10.1111/nyas.14011 10.5194/nhess-11-1627-2011 10.1061/(ASCE)0733-9445(2000)126:10(1222) 10.1029/2009JD013630 10.1029/2021WR030873 10.1002/wea.755 10.1007/s11069-018-3237-8 10.5194/nhess-13-2239-2013 10.1007/s11069-015-2111-1 |
ContentType | Journal Article |
Copyright | Attribution |
Copyright_xml | – notice: Attribution |
DBID | AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1016/j.wace.2023.100628 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Environmental Sciences |
EISSN | 2212-0947 |
ExternalDocumentID | oai_doaj_org_article_383bcca10dc14bb1b11e47b1b5a311bf oai_HAL_irsn_04385683v1 10_1016_j_wace_2023_100628 |
GroupedDBID | 0R~ 4.4 457 5VS AAEDT AAEDW AAFWJ AAHBH AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEKER AEUPX AEXQZ AFJKZ AFPKN AFPUW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB FNPLU GBLVA GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O-L O9- OK1 Q38 RIG ROL SDF SSZ 1XC AACTN VOOES |
ID | FETCH-LOGICAL-c392t-ad03b73eee9bc2357f8a458ec3f169cb4ef9f4abc5663e72f4a741fcffde14763 |
IEDL.DBID | DOA |
ISSN | 2212-0947 |
IngestDate | Wed Aug 27 01:18:57 EDT 2025 Fri May 09 12:20:09 EDT 2025 Tue Jul 01 02:09:11 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tropical cyclones Extratropical storms Storm surge Frequency analysis Probabilistic coastal hazards analysis Multivariate flood hazard analysis |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-ad03b73eee9bc2357f8a458ec3f169cb4ef9f4abc5663e72f4a741fcffde14763 |
ORCID | 0000-0001-6329-0074 0000-0003-1970-8511 |
OpenAccessLink | https://doaj.org/article/383bcca10dc14bb1b11e47b1b5a311bf |
ParticipantIDs | doaj_primary_oai_doaj_org_article_383bcca10dc14bb1b11e47b1b5a311bf hal_primary_oai_HAL_irsn_04385683v1 crossref_citationtrail_10_1016_j_wace_2023_100628 crossref_primary_10_1016_j_wace_2023_100628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Weather and climate extremes |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Jia (10.1016/j.wace.2023.100628_bib15) 2016; 81 Vickery (10.1016/j.wace.2023.100628_bib44) 2000; 126 Hamdi (10.1016/j.wace.2023.100628_bib13) 2019; 98 Zhang (10.1016/j.wace.2023.100628_bib48) 2019 Lin (10.1016/j.wace.2023.100628_bib21) 2016; 113 Langousis (10.1016/j.wace.2023.100628_bib17) 2016; 52 Knobby (10.1016/j.wace.2023.100628_bib16) 2023 Nadal-Caraballo (10.1016/j.wace.2023.100628_bib29) 2022 (10.1016/j.wace.2023.100628_bib41) 2009 Hamdi (10.1016/j.wace.2023.100628_bib11) 2015; 15 Nadal-Caraballo (10.1016/j.wace.2023.100628_bib25) 2012 Melby (10.1016/j.wace.2023.100628_bib23) 2012 Nadal-Caraballo (10.1016/j.wace.2023.100628_bib28) 2015; 32 (10.1016/j.wace.2023.100628_bib42) 2011 Blake (10.1016/j.wace.2023.100628_bib4) 2018 Yin (10.1016/j.wace.2023.100628_bib46) 2017; 555 Liberato (10.1016/j.wace.2023.100628_bib19) 2013; 13 Blake (10.1016/j.wace.2023.100628_bib3) 2013 IRSN (10.1016/j.wace.2023.100628_bib14) 2013 Orton (10.1016/j.wace.2023.100628_bib30) 2015; 1336 Pasch (10.1016/j.wace.2023.100628_bib33) 2021 Bucci (10.1016/j.wace.2023.100628_bib5) 2023 Zhang (10.1016/j.wace.2023.100628_bib47) 2018; 94 Hall (10.1016/j.wace.2023.100628_bib9) 2007; 59A Makkonen (10.1016/j.wace.2023.100628_bib22) 2006; 45 Orton (10.1016/j.wace.2023.100628_bib32) 2019; 1439 Nadal-Caraballo (10.1016/j.wace.2023.100628_bib26) 2014 Bardet (10.1016/j.wace.2023.100628_bib2) 2011; 11 Nadal‐Caraballo (10.1016/j.wace.2023.100628_bib27) 2015 Pasch (10.1016/j.wace.2023.100628_bib34) 2023 Saint-Criq (10.1016/j.wace.2023.100628_bib38) 2022; 58 Gonzalez (10.1016/j.wace.2023.100628_bib8) 2019 Rumpf (10.1016/j.wace.2023.100628_bib37) 2007; 66 Pickands (10.1016/j.wace.2023.100628_bib35) 1975; 3 Lin (10.1016/j.wace.2023.100628_bib20) 2010; 115 Orton (10.1016/j.wace.2023.100628_bib31) 2016; 121 Ulbrich (10.1016/j.wace.2023.100628_bib40) 2001; 56 Hamdi (10.1016/j.wace.2023.100628_bib10) 2014; 14 Aerts (10.1016/j.wace.2023.100628_bib1) 2013; 33 Coles (10.1016/j.wace.2023.100628_bib7) 2001 Yawn (10.1016/j.wace.2023.100628_bib45) 2023 Hamdi (10.1016/j.wace.2023.100628_bib12) 2018; 18 Liberato (10.1016/j.wace.2023.100628_bib18) 2011; 66 |
References_xml | – volume: 14 start-page: 2053 year: 2014 ident: 10.1016/j.wace.2023.100628_bib10 article-title: Extreme storm surges: a comparative study of frequency analysis approaches publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-14-2053-2014 – year: 2023 ident: 10.1016/j.wace.2023.100628_bib16 – year: 2023 ident: 10.1016/j.wace.2023.100628_bib34 – volume: 33 start-page: 772 year: 2013 ident: 10.1016/j.wace.2023.100628_bib1 article-title: Low-probability flood risk modeling for New York city publication-title: Risk Anal. doi: 10.1111/risa.12008 – volume: 1336 start-page: 56 year: 2015 ident: 10.1016/j.wace.2023.100628_bib30 article-title: New York city panel on climate change 2015 report chapter 4: dynamic coastal flood modeling publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12589 – year: 2023 ident: 10.1016/j.wace.2023.100628_bib45 – year: 2012 ident: 10.1016/j.wace.2023.100628_bib25 – volume: 113 start-page: 12071 issue: 43 year: 2016 ident: 10.1016/j.wace.2023.100628_bib21 article-title: Hurricane Sandy's flood frequency increasing from year 1800 to 2100 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604386113 – volume: 15 start-page: 1515 year: 2015 ident: 10.1016/j.wace.2023.100628_bib11 article-title: Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-1515-2015 – year: 2015 ident: 10.1016/j.wace.2023.100628_bib27 – year: 2014 ident: 10.1016/j.wace.2023.100628_bib26 article-title: North Atlantic Coast Comprehensive Study – Phase I: statistical analysis of historical extreme water levels with sea level change – volume: 66 start-page: 475 year: 2007 ident: 10.1016/j.wace.2023.100628_bib37 article-title: Stochastic modelling of tropical cyclone tracks publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-007-0168-7 – year: 2013 ident: 10.1016/j.wace.2023.100628_bib3 – volume: 45 start-page: 334 year: 2006 ident: 10.1016/j.wace.2023.100628_bib22 article-title: Plotting positions in extreme value analysis publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAM2349.1 – volume: 56 start-page: 70 year: 2001 ident: 10.1016/j.wace.2023.100628_bib40 article-title: Three extreme storms over europe in december 1999 publication-title: Weather doi: 10.1002/j.1477-8696.2001.tb06540.x – year: 2019 ident: 10.1016/j.wace.2023.100628_bib48 – year: 2001 ident: 10.1016/j.wace.2023.100628_bib7 article-title: An introduction to statistical modeling of extreme values – volume: 59A start-page: 486 year: 2007 ident: 10.1016/j.wace.2023.100628_bib9 article-title: Statistical modeling of North Atlantic tropical cyclone tracks publication-title: Tellus doi: 10.1111/j.1600-0870.2007.00240.x – volume: 555 start-page: 648 year: 2017 ident: 10.1016/j.wace.2023.100628_bib46 article-title: Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.10.067 – year: 2021 ident: 10.1016/j.wace.2023.100628_bib33 – volume: 94 start-page: 1225 year: 2018 ident: 10.1016/j.wace.2023.100628_bib47 article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change publication-title: Nat. Hazards doi: 10.1007/s11069-018-3470-1 – volume: 18 start-page: 3383 year: 2018 ident: 10.1016/j.wace.2023.100628_bib12 article-title: Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-3383-2018 – volume: 52 start-page: 2659 year: 2016 ident: 10.1016/j.wace.2023.100628_bib17 article-title: Threshold detection for the generalized Pareto distribution: review of representative methods and application to the NOAA NCDC daily rainfall database publication-title: Water Resour. Res. doi: 10.1002/2015WR018502 – volume: 32 start-page: 35 issue: 1 year: 2015 ident: 10.1016/j.wace.2023.100628_bib28 article-title: Statistical analysis of historical extreme water levels for the U.S. North Atlantic Coast using Monte Carlo Life-Cycle Simulation publication-title: J. Coast Res. doi: 10.2112/JCOASTRES-D-15-00031.1 – volume: 1439 start-page: 95 issue: 1 year: 2019 ident: 10.1016/j.wace.2023.100628_bib32 article-title: New York city panel on climate change 2019 report chapter 4: coastal flooding publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14011 – year: 2019 ident: 10.1016/j.wace.2023.100628_bib8 article-title: Quantification of uncertainty in probabilistic storm surge models: literature review – year: 2011 ident: 10.1016/j.wace.2023.100628_bib42 – volume: 11 start-page: 1627 year: 2011 ident: 10.1016/j.wace.2023.100628_bib2 article-title: Regional frequency analysis of extreme storm surges along the French coast publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-11-1627-2011 – volume: 126 start-page: 1222 issue: 10 year: 2000 ident: 10.1016/j.wace.2023.100628_bib44 article-title: Simulation of hurricane risk in the U.S. Using empirical track model publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222) – volume: 115 year: 2010 ident: 10.1016/j.wace.2023.100628_bib20 article-title: Risk assessment of hurricane storm surge for New York City publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2009JD013630 – volume: 58 year: 2022 ident: 10.1016/j.wace.2023.100628_bib38 article-title: Extreme sea level estimation combining systematic observed skew surges and historical record sea levels publication-title: Water Resour. Res. doi: 10.1029/2021WR030873 – year: 2018 ident: 10.1016/j.wace.2023.100628_bib4 – volume: 66 start-page: 330 year: 2011 ident: 10.1016/j.wace.2023.100628_bib18 article-title: Klaus – an exceptional winter storm over northern Iberia and southern France publication-title: Weather doi: 10.1002/wea.755 – year: 2009 ident: 10.1016/j.wace.2023.100628_bib41 article-title: Louisiana coastal protection and restoration (LACPR) – volume: 98 start-page: 895 year: 2019 ident: 10.1016/j.wace.2023.100628_bib13 article-title: Development of a target-site-based regional frequency model using historical information publication-title: Nat. Hazards doi: 10.1007/s11069-018-3237-8 – year: 2012 ident: 10.1016/j.wace.2023.100628_bib23 – volume: 13 start-page: 2239 year: 2013 ident: 10.1016/j.wace.2023.100628_bib19 article-title: Explosive development of winter storm Xynthia over the subtropical North Atlantic ocean publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-13-2239-2013 – volume: 81 start-page: 909 year: 2016 ident: 10.1016/j.wace.2023.100628_bib15 article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms publication-title: Nat. Hazards doi: 10.1007/s11069-015-2111-1 – volume: 3 start-page: 119 year: 1975 ident: 10.1016/j.wace.2023.100628_bib35 article-title: Statistical inference using extreme order statistics publication-title: Ann. Stat. – year: 2023 ident: 10.1016/j.wace.2023.100628_bib5 – volume: 121 start-page: 8904 year: 2016 ident: 10.1016/j.wace.2023.100628_bib31 article-title: A validated tropical-extratropical flood hazard assessment for New York Harbor publication-title: J. Geophys. Res. Oceans – year: 2013 ident: 10.1016/j.wace.2023.100628_bib14 – year: 2022 ident: 10.1016/j.wace.2023.100628_bib29 |
SSID | ssj0001793584 |
Score | 2.295399 |
Snippet | Estimating the storm surge magnitude and annual exceedance probability is a key element in the siting and design of coastal nuclear power plants in both the... |
SourceID | doaj hal crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 100628 |
SubjectTerms | Environmental Sciences Extratropical storms Frequency analysis Multivariate flood hazard analysis Probabilistic coastal hazards analysis Storm surge Tropical cyclones |
Title | Statistical and hydrodynamic numerical modeling to quantify storm surge hazard: Comparison of approaches applied to U.S. North Atlantic coast |
URI | https://asnr.hal.science/irsn-04385683 https://doaj.org/article/383bcca10dc14bb1b11e47b1b5a311bf |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDBWGnnoZ2rVD020FgQ67DG6jWHbs3bKgRVCsu6wBehMkWkI6ZHaXOBu6_9D_PFJygvSyXXryB2RJEGnxSaQehXhPWmRzU6qkcGmWqMoWSaHQJKafIZIKEcjns8PXX_PJVF3dZrdbqb44JizSA8eBO6cVlKVWZL9CqayVVkqnhnTNTCql9Tz7ks3bWkyF3ZUh-_dUd0omBnT9Nsi8mIOUIwNyTr--ZYkCYT_Zl9l6PzXYl8s98bIDhjCKHdoXL1z9SvSuCdM2i7D1DR9gPL8jgBmeDsQj48RAs0yfmbqC2UNFs2HMMA_1Krpi5hBy3ZCBgraBnyvDwUEPwDGRP2DJZ6JhZv6QmnyC8SYlITQe1mTjbgkmIlWuYHr27QyCrwdG7ZwrQ8DGLNtDMb28uBlPki65QoIEidrEVP3UDlPnXGmROW98YVRWOEy9zEu0yvnSK2OR8F7qhgO6J_Dh0fvKSUWz0muxUze1OxLAx7YGyCnrXaWUofp8ifRfW29RWVn1hFwPtMaOeZwTYMz1OsTsu2bhaBaOjsLpiY-bb-4j78Y_S39m-W1KMmd2eEGapDtN0v_TpJ44Jek_qWMy-qLvFstas780y4v0lzx-jqbeiF3ufQyLeSt22sXKvSNw09qToMd_AaKg-58 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+and+hydrodynamic+numerical+modeling+to+quantify+storm+surge+hazard%3A+Comparison+of+approaches+applied+to+U.S.+North+Atlantic+coast&rft.jtitle=Weather+and+climate+extremes&rft.au=Hamdi%2C+Yasser&rft.au=Nadal-Caraballo%2C+Norberto+C.&rft.au=Kanney%2C+Joseph&rft.au=Carr%2C+Meredith+L.&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=2212-0947&rft.eissn=2212-0947&rft.volume=42&rft_id=info:doi/10.1016%2Fj.wace.2023.100628&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_irsn_04385683v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-0947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-0947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-0947&client=summon |