Machine Learning for Microcontroller-Class Hardware - A Review

The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microco...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 22; p. 1
Main Authors Saha, Swapnil Sayan, Sandha, Sandeep Singh, Srivastava, Mani
Format Journal Article
LanguageEnglish
Published United States IEEE 15.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
AbstractList The advancements in machine learning (ML) opened a new opportunity to bring intelligence to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML deployment has high memory and computes footprint hindering their direct deployment on ultraresource-constrained microcontrollers. This article highlights the unique requirements of enabling onboard ML for microcontroller-class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure that the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of ML model development for microcontroller-class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
Author Sandha, Sandeep Singh
Saha, Swapnil Sayan
Srivastava, Mani
Author_xml – sequence: 1
  givenname: Swapnil Sayan
  orcidid: 0000-0001-5357-2254
  surname: Saha
  fullname: Saha, Swapnil Sayan
  organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA
– sequence: 2
  givenname: Sandeep Singh
  surname: Sandha
  fullname: Sandha, Sandeep Singh
  organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA
– sequence: 3
  givenname: Mani
  surname: Srivastava
  fullname: Srivastava, Mani
  organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36439060$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LxDAQxYMofv8BIkjBi5euM0nbNBdBFj9ZFfwAbyFNpxrptmvSVfzvbdnVgwdPM4ffe8y8t8VWm7YhxvYQRoigjq8fzm5HHDgfCY4gpVhhm5imeYwyyVeHXUCcCPm8wbZCeANAJVO5zjZElggFGWyykxtjX11D0YSMb1zzElWtj26c9a1tm863dU0-HtcmhOjS-PLTeIri6DS6pw9HnztsrTJ1oN3l3GZP52eP48t4cndxNT6dxFYo3sUGJOWIvChshsSToqQsMRWqUqQZqtRyrhCgkqaSORVQQWFsBWVhc1NKbsQ2O1r4znz7PqfQ6akLluraNNTOg-Yygf4hVHmPHv5B39q5b_rrekqkIk_STPXUwZKaF1Mq9cy7qfFf-ieZHpALoE8iBE-Vtq4znRtCMa7WCHroQA8d6KEDveygV-If5Y_5f5r9hcYR0S-vFHLBU_EN1faPmg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TIE_2023_3303627
crossref_primary_10_1109_ACCESS_2023_3294111
crossref_primary_10_1109_ACCESS_2024_3512860
crossref_primary_10_3390_app14010412
crossref_primary_10_1007_s12243_024_01041_5
crossref_primary_10_1109_ACCESS_2024_3389673
crossref_primary_10_1109_ACCESS_2024_3365349
crossref_primary_10_1016_j_compeleceng_2024_110038
crossref_primary_10_1109_JIOT_2024_3419251
crossref_primary_10_5753_jisa_2024_3835
crossref_primary_10_1109_JSEN_2024_3498910
crossref_primary_10_1145_3696003
crossref_primary_10_1145_3583683
crossref_primary_10_1109_JSEN_2023_3317331
crossref_primary_10_3390_s23125424
crossref_primary_10_1109_ACCESS_2024_3454363
crossref_primary_10_3390_math11030568
crossref_primary_10_3390_a17110476
crossref_primary_10_1109_JSEN_2024_3383721
crossref_primary_10_3390_app15031056
crossref_primary_10_3390_fi16110409
crossref_primary_10_1109_JLT_2024_3429490
crossref_primary_10_1109_JLT_2024_3372015
crossref_primary_10_1109_JSEN_2024_3424655
crossref_primary_10_1109_TIM_2023_3318710
crossref_primary_10_32604_cmc_2023_041022
crossref_primary_10_1016_j_iot_2024_101153
crossref_primary_10_1007_s10462_025_11106_z
crossref_primary_10_1109_LSENS_2023_3327914
crossref_primary_10_3390_computers12020023
crossref_primary_10_1109_ACCESS_2024_3382757
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1016_j_rineng_2023_101315
crossref_primary_10_1109_ACCESS_2023_3325760
crossref_primary_10_1016_j_bspc_2024_107361
crossref_primary_10_1016_j_measurement_2023_113037
crossref_primary_10_3389_fnins_2022_1018006
crossref_primary_10_1109_TII_2024_3395648
crossref_primary_10_3390_biomedinformatics5010014
crossref_primary_10_1109_JSEN_2023_3296523
crossref_primary_10_3390_machines13020090
crossref_primary_10_3390_electronics12183747
crossref_primary_10_3390_s24030877
crossref_primary_10_1016_j_iot_2024_101365
crossref_primary_10_1016_j_ajog_2023_06_017
crossref_primary_10_1016_j_inffus_2023_101953
crossref_primary_10_1016_j_microrel_2023_115179
crossref_primary_10_34133_research_0497
crossref_primary_10_1016_j_eswa_2024_125691
crossref_primary_10_1109_TCASAI_2024_3523858
crossref_primary_10_1109_JSEN_2024_3395774
crossref_primary_10_1109_LSENS_2023_3300804
crossref_primary_10_1088_1741_2552_ad995a
crossref_primary_10_1016_j_bspc_2024_106240
crossref_primary_10_1016_j_compag_2024_108935
crossref_primary_10_1016_j_jestch_2024_101637
crossref_primary_10_1145_3603171
crossref_primary_10_1109_JSEN_2024_3403484
crossref_primary_10_1109_LES_2023_3298731
crossref_primary_10_3390_computation10090159
crossref_primary_10_1109_JSEN_2023_3279858
crossref_primary_10_1002_aisy_202300679
crossref_primary_10_3390_jimaging10120298
crossref_primary_10_3390_electronics11192989
crossref_primary_10_1109_JSEN_2023_3308615
crossref_primary_10_1145_3590956
crossref_primary_10_1109_MIM_2023_10238387
crossref_primary_10_1109_TAI_2024_3377147
Cites_doi 10.1145/3417308.3430273
10.1137/1.9780898717952
10.1109/IJCNN52387.2021.9533927
10.1109/CVPR42600.2020.00071
10.1162/neco_a_00990
10.1109/CVPR.2018.00591
10.1145/3297858.3304011
10.1109/CVPR.2019.00293
10.1109/MSEC.2020.3039941
10.1109/CVPR46437.2021.01407
10.1109/ET52713.2021.9579991
10.2514/1.43270
10.1007/BF00992698
10.1145/3534586
10.1109/ISCAS51556.2021.9401300
10.1007/978-3-030-95498-7_20
10.21437/Interspeech.2020-1864
10.3115/v1/W14-4012
10.1109/BigData.2018.8621865
10.1145/3358198
10.1109/ICCVW.2013.37
10.1145/3384419.3431158
10.1109/SenSysML50931.2020.00011
10.1109/CVPR46437.2021.01346
10.1109/TC.2021.3066883
10.1016/0165-1684(94)90029-9
10.1109/CVPR.2017.243
10.1145/3384419.3430898
10.1145/3458864.3467882
10.1109/DAC18074.2021.9586232
10.1007/978-3-030-58517-4_32
10.3389/frcmn.2021.657653
10.1109/JIOT.2020.3007662
10.1109/TNNLS.2020.3009047
10.1145/3417313.3429382
10.1609/aaai.v33i01.33014780
10.1109/JSEN.2021.3113908
10.1145/3394486.3403379
10.1145/3358189
10.1145/3460418.3479287
10.1145/3485730.3485942
10.1109/SWC50871.2021.00023
10.1016/j.compeleceng.2013.11.024
10.3390/s16010115
10.18653/v1/2020.findings-emnlp.372
10.1145/3314221.3314597
10.1109/CVPR.2018.00474
10.1109/CVPR42600.2020.00640
10.1109/TPAMI.2013.50
10.1007/978-3-319-49409-8_7
10.3390/electronics10212640
10.1109/JIOT.2020.2966773
10.1109/CVPR.2019.00881
10.1109/CVPR.2016.90
10.1145/3131672.3131675
10.1016/j.iot.2021.100461
10.1038/s41928-018-0059-3
10.1109/JIOT.2021.3098166
10.1109/ICASSP40776.2020.9054609
10.21236/ADA164453
10.1007/BFb0020217
10.1109/ICTAI.2019.00238
10.1016/j.neunet.2014.09.003
10.1126/science.290.5500.2323
10.1109/CVPR42600.2020.01079
10.1145/195470.195557
10.1109/TCSII.2020.2983648
10.1109/CogMI52975.2021.00041
10.1109/CVPR42600.2020.01195
10.1609/aaai.v33i01.33012429
10.1109/CVPR.2018.00716
10.1145/3450494
10.1162/neco.1997.9.8.1735
10.3390/s21092984
10.33682/m76f-d618
10.1109/JPROC.2021.3098483
10.1109/TCAD.2020.3012216
10.1007/978-3-030-58526-6_39
10.1109/WASPAA.2019.8937164
10.1109/CVPR.2016.91
10.1016/j.neucom.2020.10.081
10.3390/s20143811
10.1038/s42256-021-00356-5
10.1145/1375581.1375595
10.1109/CVPR.2019.01099
10.1016/j.iot.2021.100437
10.3390/s21041339
10.1145/3097983.3098043
10.3390/s21144805
10.1098/rsta.2019.0155
10.3390/s19092158
10.1007/978-1-4615-4337-4
10.1109/TKDE.2019.2946162
10.1145/3369837
10.1109/VLSID.2019.00056
10.1109/CVPR.2018.00286
10.1109/CVPR.2018.00907
10.1109/ICRA40945.2020.9196860
10.1109/MIEL52794.2021.9569099
10.1109/CVPR.2015.7298878
10.1109/SP.2019.00065
10.1109/IROS.2018.8593722
10.1145/3476995
10.21105/joss.00861
10.1214/aoms/1177729694
10.1109/CVPR46437.2021.01283
10.1109/LRA.2018.2795643
10.1109/MCAS.2020.3005467
10.1109/JIOT.2019.2917066
10.1109/ICCV.2019.00140
10.1109/ACCESS.2019.2924045
10.1109/CVPR.2017.195
10.21437/Interspeech.2015-352
10.1109/PerComWorkshops53856.2022.9767250
10.1109/JIOT.2020.2976702
10.1109/JETCAS.2021.3121554
10.1145/3488659.3493776
10.1109/IoTDI49375.2020.00022
10.1038/44565
10.1109/TVCG.2019.2944182
10.1109/OJCS.2020.2993259
10.1109/BigData52589.2021.9671765
10.1109/MSP.2020.2975749
10.1145/2046660.2046682
10.1145/3308558.3313426
10.1145/3477034
10.1145/3447582
10.1109/ICCV.2019.00020
10.1109/TNNLS.2022.3166101
10.1109/DCOSS.2019.00111
10.1145/3133956.3133982
10.1109/TCAD.2020.2986127
10.1038/s41592-019-0686-2
10.1145/3332165.3347881
10.1109/COINS51742.2021.9524173
10.1145/3440016
10.1109/RAICS51191.2020.9332480
10.1109/CVPRW50498.2020.00203
10.1186/s40537-015-0032-1
10.1145/3437984.3458836
10.1145/3079856.3080215
10.1109/CVPR.2012.6247801
10.21105/joss.01746
10.1145/3534594
10.1145/2809695.2809718
10.1145/3316781.3317757
10.1007/978-981-16-0749-3_52
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
DOI 10.1109/JSEN.2022.3210773
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 36439060
10_1109_JSEN_2022_3210773
9912325
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1P41EB028242
  funderid: 10.13039/100000002
– fundername: Army Research Laboratory
  grantid: W911NF-17-2-0196
  funderid: 10.13039/100006754
– fundername: Semiconductor Research Corporation
  grantid: S201617
  funderid: 10.13039/100000028
– fundername: NIBIB NIH HHS
  grantid: P41 EB028242
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c392t-a07e8112bbc61e24bde64af19d356195c229100f7af78eb0f0bacf0dbc8ad72a3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Fri Jul 11 02:14:40 EDT 2025
Mon Jun 30 10:13:19 EDT 2025
Mon Jul 21 06:01:30 EDT 2025
Tue Jul 01 04:26:58 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 27 02:29:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords model compression
sensors
optimization
neural networks
Feature projection
internet-of-things
machine learning
TinyML
neural architecture search
microcontrollers
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-a07e8112bbc61e24bde64af19d356195c229100f7af78eb0f0bacf0dbc8ad72a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5357-2254
OpenAccessLink https://ieeexplore.ieee.org/ielx7/7361/9946942/09912325.pdf
PMID 36439060
PQID 2735384569
PQPubID 75733
PageCount 1
ParticipantIDs proquest_miscellaneous_2740906198
pubmed_primary_36439060
ieee_primary_9912325
crossref_citationtrail_10_1109_JSEN_2022_3210773
proquest_journals_2735384569
crossref_primary_10_1109_JSEN_2022_3210773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref208
ref205
ref206
ref203
gupta (ref58) 2017
ref52
ref204
ref55
ref201
ref202
greydanus (ref238) 2019; 32
stamoulis (ref144) 2019
beutel (ref190) 2020
saha (ref60) 2020; 33
sandha (ref245) 2019
baker (ref127) 2017
hardy (ref209) 2020
ref211
ref50
ref218
ref45
ref219
ref216
ref217
mehta (ref117) 2022
ref214
ref212
bradski (ref41) 2008
ref213
elsken (ref142) 2018
hammerla (ref228) 2016
banbury (ref8) 2021; 3
ref7
pham (ref143) 2018
ref4
ref3
ref100
ref221
ref101
ref222
ref220
ref37
ref30
mathur (ref191) 2021
ref39
ref38
chen (ref230) 2018; 2
(ref54) 2022
blouw (ref207) 2020
arjovsky (ref105) 2016
wen (ref115) 2021
ref24
ref23
ref26
howard (ref12) 2017
ref25
(ref32) 2022
ref20
ref22
pedregosa (ref44) 2012; 12
ref21
ray (ref6) 2021; 34
ref28
ref27
zhang (ref13) 2017
gupta (ref77) 2015
ref29
bannink (ref53) 2021; 3
gielda (ref157) 2017
fedorov (ref86) 2019; 32
kusupati (ref59) 2018
ref200
goyal (ref171) 2020
ref128
ref97
ref247
ref96
ref248
ref124
ref98
ref125
ref246
han (ref76) 2015; 28
liu (ref87) 2018
ma (ref235) 2020; 33
zoph (ref126) 2017
chen (ref130) 2018
bochkovskiy (ref99) 2020
ref133
ref254
ref95
ref131
ref252
ref94
ref132
ref250
ref251
guyon (ref73) 2008; 207
zhou (ref215) 2020
wang (ref154) 2019
ref90
cai (ref19) 2020; 33
ref258
ref85
ref259
ref88
ref136
ref257
tan (ref168) 2022
van der maaten (ref70) 2008; 9
wong (ref114) 2020
banbury (ref9) 2021
ref82
ref81
ref145
jose (ref106) 2018
ref263
nguyen (ref193) 2019
ref140
ref261
(ref179) 2022
clark (ref43) 2015; 6 2 0
ref141
ref262
ref80
ref260
ref229
ref78
ref109
ref75
ref225
ref104
ref226
ref223
ref102
li (ref135) 2021; 20
ref103
(ref35) 2022
ref71
ref232
ref111
ref233
ref231
ref110
ref68
ref119
ref67
vaswani (ref112) 0; 2017
ref69
ref118
ref236
ref63
ref66
ref234
ref65
(ref34) 2022
jagielski (ref253) 2020
lin (ref121) 2021
han (ref49) 2016
dudziak (ref149) 2020; 33
voelker (ref107) 2019; 32
ref243
ref122
ref244
ref123
ref62
ref241
ref120
ref242
lin (ref255) 2018
ref240
(ref172) 2022
elsken (ref134) 2019; 20
mao (ref237) 2018
lin (ref31) 2020; 33
van den oord (ref108) 2016
siddegowda (ref51) 2022
saha (ref227) 2020
daulton (ref148) 2022
wong (ref113) 2020
morawiec (ref174) 2022
ref175
ref176
whaley (ref181) 1998
denton (ref61) 2014
mermelstein (ref210) 1976; 116
dennis (ref169) 2019; 32
cai (ref5) 2019
jung (ref42) 2019; 25
sutton (ref138) 2018
wu (ref116) 2019
(ref36) 2022
guyon (ref74) 2003; 3
ref188
ref189
gui (ref256) 2019; 32
ref186
mazumder (ref33) 2021
ref187
ref184
ref185
ref182
ref183
zemlyanikin (ref224) 2019
abdelfattah (ref152) 2020
ref146
ref147
(ref177) 2022
kumar (ref57) 2017
warden (ref46) 2019
abadi (ref79) 2016
tanaka (ref155) 2020; 33
lee (ref153) 2018
cranmer (ref239) 2020
mellor (ref151) 2021
ref150
ref159
chowdhery (ref14) 2019
(ref178) 2022
ref158
liberis (ref89) 2022
balakrishnama (ref64) 1998; 18
tauzin (ref40) 2021; 22
ganin (ref249) 2016; 17
ref166
krishnamoorthi (ref47) 2018
ref165
ref162
ref163
ref160
ref161
iandola (ref92) 2016
dennis (ref170) 2018
mcmahan (ref198) 2017
ref11
ref17
ref16
ref18
thakker (ref91) 2021; 3
silver (ref137) 2014
liu (ref139) 2018
(ref72) 2022
warden (ref10) 2018
(ref173) 2021
lai (ref164) 2018
zhu (ref48) 2018
hubara (ref84) 2016; 29
ref2
ref1
ref192
ref199
krizhevsky (ref15) 2009
(ref180) 2022
ref197
ref195
ref196
krizhevsky (ref93) 2012; 25
ref194
david (ref167) 2021; 3
chen (ref156) 2020
rusci (ref83) 2020; 2
cai (ref129) 2018
References_xml – ident: ref25
  doi: 10.1145/3417308.3430273
– ident: ref39
  doi: 10.1137/1.9780898717952
– ident: ref184
  doi: 10.1109/IJCNN52387.2021.9533927
– year: 2022
  ident: ref54
  publication-title: Microsoft/Nni An Open Source Automl Toolkit for Automate Machine Learning Lifecycle Including Feature Engineering Neural Architecture Search Model Compression and Hyper-Parameter Tuning
– volume: 2017
  start-page: 5998
  year: 0
  ident: ref112
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 3
  start-page: 1
  year: 2021
  ident: ref8
  article-title: MicroNets: Neural network architectures for deploying TinyML applications on commodity microcontrollers
  publication-title: Proc Mach Learn Syst
– volume: 2
  start-page: 326
  year: 2020
  ident: ref83
  article-title: Memory-driven mixed low precision quantization for enabling deep network inference on microcontrollers
  publication-title: Proc Mach Learn Syst
– ident: ref259
  doi: 10.1109/CVPR42600.2020.00071
– year: 2022
  ident: ref35
  publication-title: Qeexo Automl
– year: 2022
  ident: ref180
  publication-title: Reality AI
– ident: ref206
  doi: 10.1162/neco_a_00990
– ident: ref159
  doi: 10.1109/CVPR.2018.00591
– ident: ref24
  doi: 10.1145/3297858.3304011
– volume: 3
  start-page: 680
  year: 2021
  ident: ref53
  article-title: Larq compute engine: Design, benchmark and deploy state-of-the-art binarized neural networks
  publication-title: Proc Mach Learn Syst
– ident: ref132
  doi: 10.1109/CVPR.2019.00293
– ident: ref204
  doi: 10.1109/MSEC.2020.3039941
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref93
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref251
  doi: 10.1109/CVPR46437.2021.01407
– ident: ref214
  doi: 10.1109/ET52713.2021.9579991
– ident: ref233
  doi: 10.2514/1.43270
– ident: ref136
  doi: 10.1007/BF00992698
– start-page: 1
  year: 2021
  ident: ref121
  article-title: MCUNetV2: Memory-efficient patch-based inference for tiny deep learning
  publication-title: Proc Annu Conf Neural Inf Process Syst (NeurIPS)
– ident: ref2
  doi: 10.1145/3534586
– start-page: 1
  year: 2019
  ident: ref224
  article-title: 512 KiB RAM is enough! Live camera face recognition DNN on MCU
  publication-title: Proc IEEE/CVF Int Conf Comput Vis Workshop (ICCVW)
– ident: ref222
  doi: 10.1109/ISCAS51556.2021.9401300
– ident: ref189
  doi: 10.1007/978-3-030-95498-7_20
– volume: 3
  start-page: 1
  year: 2021
  ident: ref167
  article-title: TensorFlow Lite Micro: Embedded machine learning for TinyML systems
  publication-title: Proc Mach Learn Syst
– start-page: 1737
  year: 2015
  ident: ref77
  article-title: Deep learning with limited numerical precision
  publication-title: Proc Int Conf Mach Learn
– ident: ref208
  doi: 10.21437/Interspeech.2020-1864
– start-page: 265
  year: 2016
  ident: ref79
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– ident: ref104
  doi: 10.3115/v1/W14-4012
– year: 2020
  ident: ref190
  article-title: Flower: A friendly federated learning research framework
  publication-title: arXiv 2007 14390
– ident: ref101
  doi: 10.1109/BigData.2018.8621865
– ident: ref162
  doi: 10.1145/3358198
– ident: ref218
  doi: 10.1109/ICCVW.2013.37
– ident: ref236
  doi: 10.1145/3384419.3431158
– ident: ref221
  doi: 10.1109/SenSysML50931.2020.00011
– year: 2022
  ident: ref36
  publication-title: Plumerai
– start-page: 1
  year: 2018
  ident: ref139
  article-title: DARTS: Differentiable architecture search
  publication-title: Proc Int Conf Learn Represent
– ident: ref202
  doi: 10.1109/CVPR46437.2021.01346
– ident: ref165
  doi: 10.1109/TC.2021.3066883
– ident: ref63
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref96
  doi: 10.1109/CVPR.2017.243
– volume: 2
  start-page: 3l
  year: 2018
  ident: ref230
  article-title: Understanding the limitations of existing energy-efficient design approaches for deep neural networks
  publication-title: Energy
– ident: ref20
  doi: 10.1145/3384419.3430898
– ident: ref158
  doi: 10.1145/3458864.3467882
– ident: ref7
  doi: 10.1109/DAC18074.2021.9586232
– ident: ref141
  doi: 10.1007/978-3-030-58517-4_32
– year: 2022
  ident: ref172
  publication-title: X-CUBE-AI-AI Expansion Pack for STM32CubeMX-Stmicroelectronics
– year: 2022
  ident: ref168
  publication-title: Utensor/Utensor TinyML Ai Inference Library
– ident: ref192
  doi: 10.3389/frcmn.2021.657653
– ident: ref196
  doi: 10.1109/JIOT.2020.3007662
– ident: ref261
  doi: 10.1109/TNNLS.2020.3009047
– ident: ref183
  doi: 10.1145/3417313.3429382
– volume: 3
  start-page: 533
  year: 2021
  ident: ref91
  article-title: Doping: A technique for extreme compression of LSTM models using sparse structured additive matrices
  publication-title: Proc Mach Learn Syst
– start-page: 1
  year: 2018
  ident: ref142
  article-title: Efficient multi-objective neural architecture search via Lamarckian evolution
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2020
  ident: ref215
  article-title: Memory-efficient, limb position-aware hand gesture recognition using hyperdimensional computing
  publication-title: Proc Res Symp Tiny Mach Learn
– ident: ref145
  doi: 10.1609/aaai.v33i01.33014780
– start-page: 1
  year: 2017
  ident: ref126
  article-title: Neural architecture search with reinforcement learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2016
  ident: ref108
  article-title: WaveNet: A generative model for raw audio
  publication-title: Proc 9th ISCA WKSH Speech Synth WKSH (SSW)
– ident: ref217
  doi: 10.1109/JSEN.2021.3113908
– year: 2018
  ident: ref47
  article-title: Quantizing deep convolutional networks for efficient inference: A whitepaper
  publication-title: arXiv 1806 08342
– ident: ref250
  doi: 10.1145/3394486.3403379
– start-page: 1
  year: 2021
  ident: ref33
  article-title: Multilingual spoken words Corpus
  publication-title: Proc 35th Conf Neural Inf Process Syst Datasets Benchmarks Track (Round)
– ident: ref163
  doi: 10.1145/3358189
– ident: ref213
  doi: 10.1145/3460418.3479287
– ident: ref241
  doi: 10.1145/3485730.3485942
– ident: ref186
  doi: 10.1109/SWC50871.2021.00023
– ident: ref75
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref110
  doi: 10.3390/s16010115
– start-page: 1
  year: 2021
  ident: ref9
  article-title: MLPerf Tiny benchmark
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref118
  doi: 10.18653/v1/2020.findings-emnlp.372
– ident: ref56
  doi: 10.1145/3314221.3314597
– ident: ref94
  doi: 10.1109/CVPR.2018.00474
– ident: ref254
  doi: 10.1109/CVPR42600.2020.00640
– start-page: 1
  year: 2017
  ident: ref157
  article-title: Renode: A flexible, open-source simulation framework for building scalable, well-tested RISC-V systems
  publication-title: Proc 7th RISC-V Workshop
– ident: ref248
  doi: 10.1109/TPAMI.2013.50
– ident: ref109
  doi: 10.1007/978-3-319-49409-8_7
– ident: ref216
  doi: 10.3390/electronics10212640
– ident: ref231
  doi: 10.1109/JIOT.2020.2966773
– ident: ref82
  doi: 10.1109/CVPR.2019.00881
– year: 2020
  ident: ref113
  article-title: TinySpeech: Attention condensers for deep speech recognition neural networks on edge devices
  publication-title: arXiv 2008 04245
– volume: 9
  start-page: 1
  year: 2008
  ident: ref70
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref78
  doi: 10.1145/3131672.3131675
– volume: 33
  start-page: 1
  year: 2020
  ident: ref60
  article-title: RNNPool: Efficient non-linear pooling for RAM constrained inference
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1016/j.iot.2021.100461
– start-page: 9031
  year: 2018
  ident: ref59
  article-title: FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– volume: 32
  start-page: 1285
  year: 2019
  ident: ref256
  article-title: Model compression with adversarial robustness: A unified optimization framework
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 10976
  year: 2018
  ident: ref170
  article-title: Multiple instance learning for efficient sequential data classification on resource-constrained devices
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– ident: ref260
  doi: 10.1038/s41928-018-0059-3
– ident: ref185
  doi: 10.1109/JIOT.2021.3098166
– ident: ref146
  doi: 10.1109/ICASSP40776.2020.9054609
– ident: ref71
  doi: 10.21236/ADA164453
– ident: ref69
  doi: 10.1007/BFb0020217
– year: 2019
  ident: ref14
  article-title: Visual wake words dataset
  publication-title: arXiv 1906 05721
– ident: ref175
  doi: 10.1109/ICTAI.2019.00238
– year: 2017
  ident: ref12
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– start-page: 1
  year: 2020
  ident: ref156
  article-title: Neural architecture search on ImageNet in four GPU hours: A theoretically inspired perspective
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2018
  ident: ref129
  article-title: ProxylessNAS: Direct neural architecture search on target task and hardware
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2020
  ident: ref239
  article-title: Lagrangian neural networks
  publication-title: Proc ICLR WKSH Integr Deep Neural Models Differ Equ
– ident: ref30
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 1
  year: 2019
  ident: ref116
  article-title: Lite transformer with long-short range attention
  publication-title: Proc Int Conf Learn Represent
– year: 2017
  ident: ref13
  article-title: Hello edge: Keyword spotting on microcontrollers
  publication-title: arXiv 1711 07128
– ident: ref68
  doi: 10.1126/science.290.5500.2323
– ident: ref97
  doi: 10.1109/CVPR42600.2020.01079
– year: 2022
  ident: ref72
  publication-title: Eloquentarduino
– start-page: 1
  year: 2018
  ident: ref255
  article-title: Defensive quantization: When efficiency meets robustness
  publication-title: Proc Int Conf Learn Represent
– volume: 28
  start-page: 1
  year: 2015
  ident: ref76
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2016
  ident: ref49
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref161
  doi: 10.1145/195470.195557
– ident: ref55
  doi: 10.1109/TCSII.2020.2983648
– ident: ref123
  doi: 10.1109/CogMI52975.2021.00041
– volume: 34
  start-page: 1595
  year: 2021
  ident: ref6
  article-title: A review on TinyML: State-of-the-art and prospects
  publication-title: J King Saud Univ Comput Inf Sci
– ident: ref131
  doi: 10.1109/CVPR42600.2020.01195
– ident: ref252
  doi: 10.1609/aaai.v33i01.33012429
– ident: ref95
  doi: 10.1109/CVPR.2018.00716
– start-page: 1935
  year: 2017
  ident: ref57
  article-title: Resource-efficient machine learning in 2 KB RAM for the Internet of Things
  publication-title: Proc Int Conf Mach Learn
– start-page: 1273
  year: 2017
  ident: ref198
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– start-page: 2380
  year: 2018
  ident: ref106
  article-title: Kronecker recurrent units
  publication-title: Proc Int Conf Mach Learn
– year: 2021
  ident: ref173
  publication-title: Nanoedge AI Library
– start-page: 507
  year: 2022
  ident: ref148
  article-title: Multi-objective Bayesian optimization over high-dimensional search spaces
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– year: 2022
  ident: ref51
  article-title: Neural network quantization with AI model efficiency toolkit (AIMET)
  publication-title: arXiv 2201 08442
– volume: 6 2 0
  start-page: 1
  year: 2015
  ident: ref43
  article-title: Pillow (pil fork) documentation
  publication-title: Readthedocs io
– ident: ref246
  doi: 10.1145/3450494
– ident: ref103
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1
  year: 2018
  ident: ref237
  article-title: The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision
  publication-title: Proc Int Conf Learn Represent
– ident: ref81
  doi: 10.3390/s21092984
– ident: ref18
  doi: 10.33682/m76f-d618
– ident: ref85
  doi: 10.1109/JPROC.2021.3098483
– year: 2022
  ident: ref32
  publication-title: Edge Impulse
– volume: 33
  start-page: 6377
  year: 2020
  ident: ref155
  article-title: Pruning neural networks without any data by iteratively conserving synaptic flow
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 207
  year: 2008
  ident: ref73
  publication-title: Feature Extraction Foundations and Applications
– start-page: 1533
  year: 2016
  ident: ref228
  article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables
  publication-title: Proc 25th Int Joint Conf Artif Intell
– ident: ref247
  doi: 10.1109/TCAD.2020.3012216
– year: 2009
  ident: ref15
  publication-title: Learning multiple layers of features from tiny images
– ident: ref150
  doi: 10.1007/978-3-030-58526-6_39
– start-page: 1120
  year: 2016
  ident: ref105
  article-title: Unitary evolution recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref17
  doi: 10.1109/WASPAA.2019.8937164
– ident: ref102
  doi: 10.1109/CVPR.2016.91
– start-page: 1345
  year: 2020
  ident: ref253
  article-title: High accuracy and high fidelity extraction of neural networks
  publication-title: Proc 29th USENIX Secur Symp (USENIX Secur )
– ident: ref226
  doi: 10.1016/j.neucom.2020.10.081
– ident: ref244
  doi: 10.3390/s20143811
– ident: ref50
  doi: 10.1038/s42256-021-00356-5
– ident: ref182
  doi: 10.1145/1375581.1375595
– start-page: 1
  year: 2018
  ident: ref153
  article-title: SNIP: Single-shot network pruning based on connection sensitivity
  publication-title: Proc Int Conf Learn Represent
– ident: ref140
  doi: 10.1109/CVPR.2019.01099
– volume: 116
  start-page: 374
  year: 1976
  ident: ref210
  article-title: Distance measures for speech recognition, psychological and instrumental
  publication-title: Pattern Recognit Artif Intell
– start-page: 578
  year: 2018
  ident: ref130
  article-title: TVM: An automated end-to-end optimizing compiler for deep learning
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– ident: ref211
  doi: 10.1016/j.iot.2021.100437
– ident: ref21
  doi: 10.3390/s21041339
– ident: ref147
  doi: 10.1145/3097983.3098043
– ident: ref120
  doi: 10.3390/s21144805
– year: 2022
  ident: ref34
  publication-title: Sensiml Making Sensor Data Sensible
– start-page: 1
  year: 2019
  ident: ref5
  article-title: Once-for-all: Train one network and specialize it for efficient deployment
  publication-title: Proc Int Conf Learn Represent
– ident: ref166
  doi: 10.1098/rsta.2019.0155
– ident: ref225
  doi: 10.3390/s19092158
– ident: ref160
  doi: 10.1007/978-1-4615-4337-4
– ident: ref37
  doi: 10.1109/TKDE.2019.2946162
– ident: ref26
  doi: 10.1145/3369837
– ident: ref199
  doi: 10.1109/VLSID.2019.00056
– ident: ref80
  doi: 10.1109/CVPR.2018.00286
– start-page: 7588
  year: 2021
  ident: ref151
  article-title: Neural architecture search without training
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2017
  ident: ref127
  article-title: Designing neural network architectures using reinforcement learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref128
  doi: 10.1109/CVPR.2018.00907
– ident: ref232
  doi: 10.1109/ICRA40945.2020.9196860
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref74
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref223
  doi: 10.1109/MIEL52794.2021.9569099
– start-page: 1
  year: 2022
  ident: ref89
  article-title: Differentiable network pruning to enable smart applications
  publication-title: Proc 4th U K Mobile Wearable Ubiquitous Syst Res Symp
– year: 2018
  ident: ref10
  article-title: Speech commands: A dataset for limited-vocabulary speech recognition
  publication-title: arXiv 1804 03209
– ident: ref111
  doi: 10.1109/CVPR.2015.7298878
– volume: 18
  start-page: 1
  year: 1998
  ident: ref64
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Inst Signal Inf Process
– year: 2019
  ident: ref46
  publication-title: Tinyml Machine Learning with tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers
– ident: ref203
  doi: 10.1109/SP.2019.00065
– volume: 32
  start-page: 15379
  year: 2019
  ident: ref238
  article-title: Hamiltonian neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/IROS.2018.8593722
– year: 2008
  ident: ref41
  publication-title: Learning OpenCV Computer Vision With the OpenCV Library
– volume: 22
  start-page: 1
  year: 2021
  ident: ref40
  article-title: giotto-tda: A topological data analysis toolkit for machine learning and data exploration
  publication-title: J Mach Learn Res
– ident: ref124
  doi: 10.1145/3476995
– start-page: 4095
  year: 2018
  ident: ref143
  article-title: Efficient neural architecture search via parameters sharing
  publication-title: Proc Int Conf Mach Learn
– start-page: 756
  year: 2019
  ident: ref193
  article-title: DïOT: A federated self-learning anomaly detection system for IoT
  publication-title: Proc IEEE 39th Int Conf Distrib Comput Syst (ICDCS)
– start-page: 481
  year: 2019
  ident: ref144
  article-title: Single-path NAS: Designing hardware-efficient ConvNets in less than 4 hours
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– start-page: 1
  year: 2020
  ident: ref209
  article-title: An ultra-low power RNN classifier for always-on voice wake-up detection robust to real-world scenarios
  publication-title: Proc Res Symp Tiny Mach Learn
– ident: ref66
  doi: 10.21105/joss.00861
– start-page: 1
  year: 2020
  ident: ref207
  article-title: Hardware aware training for efficient keyword spotting on general purpose and specialized hardware
  publication-title: Proc Res Symp Tiny Mach Learn
– ident: ref67
  doi: 10.1214/aoms/1177729694
– volume: 25
  start-page: 1
  year: 2019
  ident: ref42
  article-title: Imgaug documentation
  publication-title: Readthedocs io
– ident: ref98
  doi: 10.1109/CVPR46437.2021.01283
– ident: ref219
  doi: 10.1109/LRA.2018.2795643
– ident: ref3
  doi: 10.1109/MCAS.2020.3005467
– start-page: 1
  year: 2021
  ident: ref191
  article-title: On-device federated learning with Flower
  publication-title: Proc Device Intell Workshop MLSys
– ident: ref220
  doi: 10.1109/JIOT.2019.2917066
– ident: ref133
  doi: 10.1109/ICCV.2019.00140
– ident: ref258
  doi: 10.1109/ACCESS.2019.2924045
– start-page: 1
  year: 2022
  ident: ref117
  article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref11
  doi: 10.1109/CVPR.2017.195
– ident: ref229
  doi: 10.21437/Interspeech.2015-352
– ident: ref195
  doi: 10.1109/PerComWorkshops53856.2022.9767250
– ident: ref176
  doi: 10.1109/JIOT.2020.2976702
– volume: 20
  start-page: 1997
  year: 2019
  ident: ref134
  article-title: Neural architecture search: A survey
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref138
  publication-title: Reinforcement Learning An Introduction
– start-page: 1331
  year: 2017
  ident: ref58
  article-title: ProtoNN: Compressed and accurate KNN for resource-scarce devices
  publication-title: Proc Int Conf Mach Learn
– ident: ref188
  doi: 10.1109/JETCAS.2021.3121554
– volume: 33
  start-page: 1
  year: 2020
  ident: ref19
  article-title: TinyTL: Reduce memory, not parameters for efficient on-device learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 32
  start-page: 1
  year: 2019
  ident: ref169
  article-title: Shallow RNN: Accurate time-series classification on resource constrained devices
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 387
  year: 2014
  ident: ref137
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2019
  ident: ref245
  article-title: Exploiting smartphone peripherals for precise time synchronization
  publication-title: Proc IEEE Global Conf Signal Inf Process (GlobalSIP)
– volume: 33
  start-page: 10480
  year: 2020
  ident: ref149
  article-title: BRP-NAS: Prediction-based NAS using GCNs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref205
  doi: 10.1145/3488659.3493776
– ident: ref242
  doi: 10.1109/IoTDI49375.2020.00022
– volume: 17
  start-page: 2030
  year: 2016
  ident: ref249
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref62
  doi: 10.1038/44565
– year: 2022
  ident: ref174
  publication-title: sklearn-porter
– start-page: 1
  year: 2019
  ident: ref154
  article-title: Picking winning tickets before training by preserving gradient flow
  publication-title: Proc Int Conf Learn Represent
– ident: ref65
  doi: 10.1109/TVCG.2019.2944182
– ident: ref197
  doi: 10.1109/OJCS.2020.2993259
– ident: ref187
  doi: 10.1109/BigData52589.2021.9671765
– ident: ref27
  doi: 10.1109/MSP.2020.2975749
– ident: ref29
  doi: 10.1145/2046660.2046682
– start-page: 1269
  year: 2014
  ident: ref61
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref240
  doi: 10.1145/3308558.3313426
– year: 2022
  ident: ref178
  publication-title: Edge Ai/TinyML SAAS Deep Learning
– volume: 20
  start-page: 1
  year: 2021
  ident: ref135
  article-title: FLASH: Fast neural architecture search with hardware optimization
  publication-title: ACM Trans Embedded Comput Syst
  doi: 10.1145/3477034
– volume: 33
  start-page: 14604
  year: 2020
  ident: ref235
  article-title: STLnet: Signal temporal logic enforced multivariate recurrent neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– ident: ref125
  doi: 10.1145/3447582
– volume: 12
  start-page: 2825
  year: 2012
  ident: ref44
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– year: 2022
  ident: ref177
  publication-title: AI-Driven Deep Neural Network Optimizer
– ident: ref257
  doi: 10.1109/ICCV.2019.00020
– start-page: 1
  year: 2018
  ident: ref48
  article-title: To prune, or not to prune: Exploring the efficacy of pruning for model compression
  publication-title: Proc Int Conf Learn Represent
– ident: ref194
  doi: 10.1109/TNNLS.2022.3166101
– year: 2020
  ident: ref99
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv 2004 10934
– ident: ref22
  doi: 10.1109/DCOSS.2019.00111
– volume: 32
  start-page: 1
  year: 2019
  ident: ref86
  article-title: SpArSe: Sparse architecture search for CNNs on resource-constrained microcontrollers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1145/3133956.3133982
– ident: ref263
  doi: 10.1109/TCAD.2020.2986127
– ident: ref45
  doi: 10.1038/s41592-019-0686-2
– ident: ref212
  doi: 10.1145/3332165.3347881
– ident: ref119
  doi: 10.1109/COINS51742.2021.9524173
– start-page: 3711
  year: 2020
  ident: ref171
  article-title: DROCC: Deep robust one-class classification
  publication-title: Proc Int Conf Mach Learn
– volume: 29
  start-page: 1
  year: 2016
  ident: ref84
  article-title: Binarized neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2020
  ident: ref152
  article-title: Zero-cost proxies for lightweight NAS
  publication-title: Proc Int Conf Learn Represent
– ident: ref90
  doi: 10.1145/3440016
– ident: ref200
  doi: 10.1109/RAICS51191.2020.9332480
– start-page: 1
  year: 2018
  ident: ref87
  article-title: Rethinking the value of network pruning
  publication-title: Proc Int Conf Learn Represent
– year: 2022
  ident: ref179
  publication-title: Neuton AI-No-Code Artificial Intelligence for All
– ident: ref100
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref38
  doi: 10.1186/s40537-015-0032-1
– start-page: 1
  year: 2020
  ident: ref114
  article-title: AttendNets: Tiny deep image recognition neural networks for the edge via visual attention condensers
  publication-title: Proc 6th WKSH Energy Efficient Mach Learn Cognit Comput (EMC2)
– ident: ref122
  doi: 10.1145/3437984.3458836
– ident: ref88
  doi: 10.1145/3079856.3080215
– volume: 32
  start-page: 15570
  year: 2019
  ident: ref107
  article-title: Legendre memory units: Continuous-time representation in recurrent neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref234
  doi: 10.1109/CVPR.2012.6247801
– year: 2016
  ident: ref92
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size
  publication-title: arXiv 1602 07360
– ident: ref52
  doi: 10.21105/joss.01746
– ident: ref1
  doi: 10.1145/3534594
– year: 2018
  ident: ref164
  article-title: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs
  publication-title: arXiv 1801 06601 [cs]
– volume: 33
  start-page: 11711
  year: 2020
  ident: ref31
  article-title: MCUNet: Tiny deep learning on IoT devices
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 39
  year: 2020
  ident: ref227
  article-title: Deep convolutional bidirectional LSTM for complex activity recognition with missing data
  publication-title: Human Activity Recognition Challenge
– start-page: 1
  year: 1998
  ident: ref181
  article-title: Automatically tuned linear algebra software
  publication-title: Proc 1998 ACM/IEEE Supercomputing 98 Conf
– year: 2021
  ident: ref115
  article-title: AttendSeg: A tiny attention condenser neural network for semantic segmentation on the edge
  publication-title: arXiv 2104 14623
– ident: ref243
  doi: 10.1145/2809695.2809718
– ident: ref262
  doi: 10.1145/3316781.3317757
– ident: ref201
  doi: 10.1007/978-981-16-0749-3_52
SSID ssj0019757
Score 2.6531262
SecondaryResourceType review_article
Snippet The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers....
The advancements in machine learning (ML) opened a new opportunity to bring intelligence to the low-end Internet-of-Things (IoT) nodes, such as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Computational modeling
Data models
Feature projection
Hardware
Internet of Things
Machine learning
Mathematical models
Microcontrollers
model compression
neural architecture search
neural networks
optimization
Random access memory
Sensors
TinyML
Workflow
Title Machine Learning for Microcontroller-Class Hardware - A Review
URI https://ieeexplore.ieee.org/document/9912325
https://www.ncbi.nlm.nih.gov/pubmed/36439060
https://www.proquest.com/docview/2735384569
https://www.proquest.com/docview/2740906198
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT9swFMCfgAvswFfZFijISDshUpw4iZMLUoVACKlcWKXeItt53iRQO3Wt0PbX8-y40YbYxC1SnC8_O_49vy-AL0ZK0rmE27UhTSejBTnWVmMseJMIRC2NL_c2ui9ux9ndJJ-swXkXC4OI3vkMB-7Q2_KbmVm6rbILYhkCgHwd1klxa2O1OotBJX1WT5rAPM6EnAQLZsKri7uH63vSBNN04AJWpBR_rUG-qMq_-dKvMzc7MFq9Yete8jhYLvTA_H6VvPG9n7AL2wE42bAdIXuwhtN9-PBHGsJ92AyV0L__6sHlyHtXIguJV78xolo2cm57wav9CeexL6XJnNX_Wc2RxWzIWiPDAYxvrr9e3cahxkJsiIwWseISS2IurU2RYJrpBotM2aRqBJFVlZs0JaDgViorS9Tccq2M5Y02pWpkqsRH2JjOpvgZGOocCyWtSjRmVcmVbVSRy8wqoRNtiwj4qtdrExKQuzoYT7VXRHhVO0HVTlB1EFQEZ90lP9rsG_9r3HP93TUMXR1BfyXaOszPnzVBG_3pCR6rCE670zSznLlETXG2dG1I9yXcqcoIPrVDoru3cCDHC3749jOPYMu9mYtZTPI-bCzmSzwmeFnoEz9qXwCHTukI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigceLQ8AgWMBBekbB07iZMDSBW02j52L7TS3oLtjEGi2kXbXVXlt_BX-G-MHW8ECLhV4hYpjpN4xjPfeF4AL6xSZHNJf2pDlk5OCjk1zmAqeZtJRKNsaPc2GpfD0_xwUkzW4FufC4OIIfgMB_4y-PLbmV36o7IdwjIEAFYhlEd4eUEG2vnrg3dEzZdC7O-dvB2msYdAaknzL1LNFVaEKYyxZYYiNy2WuXZZ3UpCDnVhhSCFyZ3STlVouONGW8dbYyvdKqElzXsNrhPOKESXHdb7KGoV6oiSyOBpLtUk-kwzXu8cvt8bk-0pxMCnyCglf9F6oY3L3xFt0Gz7t-H7ak26gJbPg-XCDOzX38pF_q-LdgduRUjNdrs9cBfWcLoJN38qtLgJG7HX-6fLLXgzCvGjyGJp2Y-McDsb-cDEGLd_hvM0NAtlPq7hQs-RpWyXdW6Ue3B6JT9zH9ansyk-BIamwFIrpzODeV1x7VpdFip3WprMuDIBvqJyY2OJdd_p46wJphavG88YjWeMJjJGAq_6R7509UX-NXjL07cfGEmbwPaKlZoogc4bgqWkywge1wk872-T7PAOIT3F2dKPIeueAF1dJfCgY8F-bumhKi_5oz-_8xlsDE9Gx83xwfjoMdzwX-kzNLNiG9YX8yU-Iai2ME_DjmHw4aq57QcNOUi7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Microcontroller-Class+Hardware%3A+A+Review&rft.jtitle=IEEE+sensors+journal&rft.au=Swapnil+Sayan+Saha&rft.au=Sandeep+Singh+Sandha&rft.au=Srivastava%2C+Mani&rft.date=2022-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=22&rft.spage=21362&rft_id=info:doi/10.1109%2FJSEN.2022.3210773&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon