Machine Learning for Microcontroller-Class Hardware - A Review
The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microco...
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 22; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
15.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward. |
---|---|
AbstractList | The advancements in machine learning (ML) opened a new opportunity to bring intelligence to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML deployment has high memory and computes footprint hindering their direct deployment on ultraresource-constrained microcontrollers. This article highlights the unique requirements of enabling onboard ML for microcontroller-class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure that the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of ML model development for microcontroller-class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward. The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward. The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward. |
Author | Sandha, Sandeep Singh Saha, Swapnil Sayan Srivastava, Mani |
Author_xml | – sequence: 1 givenname: Swapnil Sayan orcidid: 0000-0001-5357-2254 surname: Saha fullname: Saha, Swapnil Sayan organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA – sequence: 2 givenname: Sandeep Singh surname: Sandha fullname: Sandha, Sandeep Singh organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA – sequence: 3 givenname: Mani surname: Srivastava fullname: Srivastava, Mani organization: Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36439060$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LxDAQxYMofv8BIkjBi5euM0nbNBdBFj9ZFfwAbyFNpxrptmvSVfzvbdnVgwdPM4ffe8y8t8VWm7YhxvYQRoigjq8fzm5HHDgfCY4gpVhhm5imeYwyyVeHXUCcCPm8wbZCeANAJVO5zjZElggFGWyykxtjX11D0YSMb1zzElWtj26c9a1tm863dU0-HtcmhOjS-PLTeIri6DS6pw9HnztsrTJ1oN3l3GZP52eP48t4cndxNT6dxFYo3sUGJOWIvChshsSToqQsMRWqUqQZqtRyrhCgkqaSORVQQWFsBWVhc1NKbsQ2O1r4znz7PqfQ6akLluraNNTOg-Yygf4hVHmPHv5B39q5b_rrekqkIk_STPXUwZKaF1Mq9cy7qfFf-ieZHpALoE8iBE-Vtq4znRtCMa7WCHroQA8d6KEDveygV-If5Y_5f5r9hcYR0S-vFHLBU_EN1faPmg |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_TIE_2023_3303627 crossref_primary_10_1109_ACCESS_2023_3294111 crossref_primary_10_1109_ACCESS_2024_3512860 crossref_primary_10_3390_app14010412 crossref_primary_10_1007_s12243_024_01041_5 crossref_primary_10_1109_ACCESS_2024_3389673 crossref_primary_10_1109_ACCESS_2024_3365349 crossref_primary_10_1016_j_compeleceng_2024_110038 crossref_primary_10_1109_JIOT_2024_3419251 crossref_primary_10_5753_jisa_2024_3835 crossref_primary_10_1109_JSEN_2024_3498910 crossref_primary_10_1145_3696003 crossref_primary_10_1145_3583683 crossref_primary_10_1109_JSEN_2023_3317331 crossref_primary_10_3390_s23125424 crossref_primary_10_1109_ACCESS_2024_3454363 crossref_primary_10_3390_math11030568 crossref_primary_10_3390_a17110476 crossref_primary_10_1109_JSEN_2024_3383721 crossref_primary_10_3390_app15031056 crossref_primary_10_3390_fi16110409 crossref_primary_10_1109_JLT_2024_3429490 crossref_primary_10_1109_JLT_2024_3372015 crossref_primary_10_1109_JSEN_2024_3424655 crossref_primary_10_1109_TIM_2023_3318710 crossref_primary_10_32604_cmc_2023_041022 crossref_primary_10_1016_j_iot_2024_101153 crossref_primary_10_1007_s10462_025_11106_z crossref_primary_10_1109_LSENS_2023_3327914 crossref_primary_10_3390_computers12020023 crossref_primary_10_1109_ACCESS_2024_3382757 crossref_primary_10_1109_COMST_2023_3319952 crossref_primary_10_1016_j_rineng_2023_101315 crossref_primary_10_1109_ACCESS_2023_3325760 crossref_primary_10_1016_j_bspc_2024_107361 crossref_primary_10_1016_j_measurement_2023_113037 crossref_primary_10_3389_fnins_2022_1018006 crossref_primary_10_1109_TII_2024_3395648 crossref_primary_10_3390_biomedinformatics5010014 crossref_primary_10_1109_JSEN_2023_3296523 crossref_primary_10_3390_machines13020090 crossref_primary_10_3390_electronics12183747 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_iot_2024_101365 crossref_primary_10_1016_j_ajog_2023_06_017 crossref_primary_10_1016_j_inffus_2023_101953 crossref_primary_10_1016_j_microrel_2023_115179 crossref_primary_10_34133_research_0497 crossref_primary_10_1016_j_eswa_2024_125691 crossref_primary_10_1109_TCASAI_2024_3523858 crossref_primary_10_1109_JSEN_2024_3395774 crossref_primary_10_1109_LSENS_2023_3300804 crossref_primary_10_1088_1741_2552_ad995a crossref_primary_10_1016_j_bspc_2024_106240 crossref_primary_10_1016_j_compag_2024_108935 crossref_primary_10_1016_j_jestch_2024_101637 crossref_primary_10_1145_3603171 crossref_primary_10_1109_JSEN_2024_3403484 crossref_primary_10_1109_LES_2023_3298731 crossref_primary_10_3390_computation10090159 crossref_primary_10_1109_JSEN_2023_3279858 crossref_primary_10_1002_aisy_202300679 crossref_primary_10_3390_jimaging10120298 crossref_primary_10_3390_electronics11192989 crossref_primary_10_1109_JSEN_2023_3308615 crossref_primary_10_1145_3590956 crossref_primary_10_1109_MIM_2023_10238387 crossref_primary_10_1109_TAI_2024_3377147 |
Cites_doi | 10.1145/3417308.3430273 10.1137/1.9780898717952 10.1109/IJCNN52387.2021.9533927 10.1109/CVPR42600.2020.00071 10.1162/neco_a_00990 10.1109/CVPR.2018.00591 10.1145/3297858.3304011 10.1109/CVPR.2019.00293 10.1109/MSEC.2020.3039941 10.1109/CVPR46437.2021.01407 10.1109/ET52713.2021.9579991 10.2514/1.43270 10.1007/BF00992698 10.1145/3534586 10.1109/ISCAS51556.2021.9401300 10.1007/978-3-030-95498-7_20 10.21437/Interspeech.2020-1864 10.3115/v1/W14-4012 10.1109/BigData.2018.8621865 10.1145/3358198 10.1109/ICCVW.2013.37 10.1145/3384419.3431158 10.1109/SenSysML50931.2020.00011 10.1109/CVPR46437.2021.01346 10.1109/TC.2021.3066883 10.1016/0165-1684(94)90029-9 10.1109/CVPR.2017.243 10.1145/3384419.3430898 10.1145/3458864.3467882 10.1109/DAC18074.2021.9586232 10.1007/978-3-030-58517-4_32 10.3389/frcmn.2021.657653 10.1109/JIOT.2020.3007662 10.1109/TNNLS.2020.3009047 10.1145/3417313.3429382 10.1609/aaai.v33i01.33014780 10.1109/JSEN.2021.3113908 10.1145/3394486.3403379 10.1145/3358189 10.1145/3460418.3479287 10.1145/3485730.3485942 10.1109/SWC50871.2021.00023 10.1016/j.compeleceng.2013.11.024 10.3390/s16010115 10.18653/v1/2020.findings-emnlp.372 10.1145/3314221.3314597 10.1109/CVPR.2018.00474 10.1109/CVPR42600.2020.00640 10.1109/TPAMI.2013.50 10.1007/978-3-319-49409-8_7 10.3390/electronics10212640 10.1109/JIOT.2020.2966773 10.1109/CVPR.2019.00881 10.1109/CVPR.2016.90 10.1145/3131672.3131675 10.1016/j.iot.2021.100461 10.1038/s41928-018-0059-3 10.1109/JIOT.2021.3098166 10.1109/ICASSP40776.2020.9054609 10.21236/ADA164453 10.1007/BFb0020217 10.1109/ICTAI.2019.00238 10.1016/j.neunet.2014.09.003 10.1126/science.290.5500.2323 10.1109/CVPR42600.2020.01079 10.1145/195470.195557 10.1109/TCSII.2020.2983648 10.1109/CogMI52975.2021.00041 10.1109/CVPR42600.2020.01195 10.1609/aaai.v33i01.33012429 10.1109/CVPR.2018.00716 10.1145/3450494 10.1162/neco.1997.9.8.1735 10.3390/s21092984 10.33682/m76f-d618 10.1109/JPROC.2021.3098483 10.1109/TCAD.2020.3012216 10.1007/978-3-030-58526-6_39 10.1109/WASPAA.2019.8937164 10.1109/CVPR.2016.91 10.1016/j.neucom.2020.10.081 10.3390/s20143811 10.1038/s42256-021-00356-5 10.1145/1375581.1375595 10.1109/CVPR.2019.01099 10.1016/j.iot.2021.100437 10.3390/s21041339 10.1145/3097983.3098043 10.3390/s21144805 10.1098/rsta.2019.0155 10.3390/s19092158 10.1007/978-1-4615-4337-4 10.1109/TKDE.2019.2946162 10.1145/3369837 10.1109/VLSID.2019.00056 10.1109/CVPR.2018.00286 10.1109/CVPR.2018.00907 10.1109/ICRA40945.2020.9196860 10.1109/MIEL52794.2021.9569099 10.1109/CVPR.2015.7298878 10.1109/SP.2019.00065 10.1109/IROS.2018.8593722 10.1145/3476995 10.21105/joss.00861 10.1214/aoms/1177729694 10.1109/CVPR46437.2021.01283 10.1109/LRA.2018.2795643 10.1109/MCAS.2020.3005467 10.1109/JIOT.2019.2917066 10.1109/ICCV.2019.00140 10.1109/ACCESS.2019.2924045 10.1109/CVPR.2017.195 10.21437/Interspeech.2015-352 10.1109/PerComWorkshops53856.2022.9767250 10.1109/JIOT.2020.2976702 10.1109/JETCAS.2021.3121554 10.1145/3488659.3493776 10.1109/IoTDI49375.2020.00022 10.1038/44565 10.1109/TVCG.2019.2944182 10.1109/OJCS.2020.2993259 10.1109/BigData52589.2021.9671765 10.1109/MSP.2020.2975749 10.1145/2046660.2046682 10.1145/3308558.3313426 10.1145/3477034 10.1145/3447582 10.1109/ICCV.2019.00020 10.1109/TNNLS.2022.3166101 10.1109/DCOSS.2019.00111 10.1145/3133956.3133982 10.1109/TCAD.2020.2986127 10.1038/s41592-019-0686-2 10.1145/3332165.3347881 10.1109/COINS51742.2021.9524173 10.1145/3440016 10.1109/RAICS51191.2020.9332480 10.1109/CVPRW50498.2020.00203 10.1186/s40537-015-0032-1 10.1145/3437984.3458836 10.1145/3079856.3080215 10.1109/CVPR.2012.6247801 10.21105/joss.01746 10.1145/3534594 10.1145/2809695.2809718 10.1145/3316781.3317757 10.1007/978-981-16-0749-3_52 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD L7M 7X8 |
DOI | 10.1109/JSEN.2022.3210773 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 36439060 10_1109_JSEN_2022_3210773 9912325 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: 1P41EB028242 funderid: 10.13039/100000002 – fundername: Army Research Laboratory grantid: W911NF-17-2-0196 funderid: 10.13039/100006754 – fundername: Semiconductor Research Corporation grantid: S201617 funderid: 10.13039/100000028 – fundername: NIBIB NIH HHS grantid: P41 EB028242 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION NPM 7SP 7U5 8FD L7M 7X8 |
ID | FETCH-LOGICAL-c392t-a07e8112bbc61e24bde64af19d356195c229100f7af78eb0f0bacf0dbc8ad72a3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Fri Jul 11 02:14:40 EDT 2025 Mon Jun 30 10:13:19 EDT 2025 Mon Jul 21 06:01:30 EDT 2025 Tue Jul 01 04:26:58 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Aug 27 02:29:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | model compression sensors optimization neural networks Feature projection internet-of-things machine learning TinyML neural architecture search microcontrollers |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-a07e8112bbc61e24bde64af19d356195c229100f7af78eb0f0bacf0dbc8ad72a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5357-2254 |
OpenAccessLink | https://ieeexplore.ieee.org/ielx7/7361/9946942/09912325.pdf |
PMID | 36439060 |
PQID | 2735384569 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2740906198 pubmed_primary_36439060 ieee_primary_9912325 crossref_citationtrail_10_1109_JSEN_2022_3210773 proquest_journals_2735384569 crossref_primary_10_1109_JSEN_2022_3210773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationTitleAlternate | IEEE Sens J |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref208 ref205 ref206 ref203 gupta (ref58) 2017 ref52 ref204 ref55 ref201 ref202 greydanus (ref238) 2019; 32 stamoulis (ref144) 2019 beutel (ref190) 2020 saha (ref60) 2020; 33 sandha (ref245) 2019 baker (ref127) 2017 hardy (ref209) 2020 ref211 ref50 ref218 ref45 ref219 ref216 ref217 mehta (ref117) 2022 ref214 ref212 bradski (ref41) 2008 ref213 elsken (ref142) 2018 hammerla (ref228) 2016 banbury (ref8) 2021; 3 ref7 pham (ref143) 2018 ref4 ref3 ref100 ref221 ref101 ref222 ref220 ref37 ref30 mathur (ref191) 2021 ref39 ref38 chen (ref230) 2018; 2 (ref54) 2022 blouw (ref207) 2020 arjovsky (ref105) 2016 wen (ref115) 2021 ref24 ref23 ref26 howard (ref12) 2017 ref25 (ref32) 2022 ref20 ref22 pedregosa (ref44) 2012; 12 ref21 ray (ref6) 2021; 34 ref28 ref27 zhang (ref13) 2017 gupta (ref77) 2015 ref29 bannink (ref53) 2021; 3 gielda (ref157) 2017 fedorov (ref86) 2019; 32 kusupati (ref59) 2018 ref200 goyal (ref171) 2020 ref128 ref97 ref247 ref96 ref248 ref124 ref98 ref125 ref246 han (ref76) 2015; 28 liu (ref87) 2018 ma (ref235) 2020; 33 zoph (ref126) 2017 chen (ref130) 2018 bochkovskiy (ref99) 2020 ref133 ref254 ref95 ref131 ref252 ref94 ref132 ref250 ref251 guyon (ref73) 2008; 207 zhou (ref215) 2020 wang (ref154) 2019 ref90 cai (ref19) 2020; 33 ref258 ref85 ref259 ref88 ref136 ref257 tan (ref168) 2022 van der maaten (ref70) 2008; 9 wong (ref114) 2020 banbury (ref9) 2021 ref82 ref81 ref145 jose (ref106) 2018 ref263 nguyen (ref193) 2019 ref140 ref261 (ref179) 2022 clark (ref43) 2015; 6 2 0 ref141 ref262 ref80 ref260 ref229 ref78 ref109 ref75 ref225 ref104 ref226 ref223 ref102 li (ref135) 2021; 20 ref103 (ref35) 2022 ref71 ref232 ref111 ref233 ref231 ref110 ref68 ref119 ref67 vaswani (ref112) 0; 2017 ref69 ref118 ref236 ref63 ref66 ref234 ref65 (ref34) 2022 jagielski (ref253) 2020 lin (ref121) 2021 han (ref49) 2016 dudziak (ref149) 2020; 33 voelker (ref107) 2019; 32 ref243 ref122 ref244 ref123 ref62 ref241 ref120 ref242 lin (ref255) 2018 ref240 (ref172) 2022 elsken (ref134) 2019; 20 mao (ref237) 2018 lin (ref31) 2020; 33 van den oord (ref108) 2016 siddegowda (ref51) 2022 saha (ref227) 2020 daulton (ref148) 2022 wong (ref113) 2020 morawiec (ref174) 2022 ref175 ref176 whaley (ref181) 1998 denton (ref61) 2014 mermelstein (ref210) 1976; 116 dennis (ref169) 2019; 32 cai (ref5) 2019 jung (ref42) 2019; 25 sutton (ref138) 2018 wu (ref116) 2019 (ref36) 2022 guyon (ref74) 2003; 3 ref188 ref189 gui (ref256) 2019; 32 ref186 mazumder (ref33) 2021 ref187 ref184 ref185 ref182 ref183 zemlyanikin (ref224) 2019 abdelfattah (ref152) 2020 ref146 ref147 (ref177) 2022 kumar (ref57) 2017 warden (ref46) 2019 abadi (ref79) 2016 tanaka (ref155) 2020; 33 lee (ref153) 2018 cranmer (ref239) 2020 mellor (ref151) 2021 ref150 ref159 chowdhery (ref14) 2019 (ref178) 2022 ref158 liberis (ref89) 2022 balakrishnama (ref64) 1998; 18 tauzin (ref40) 2021; 22 ganin (ref249) 2016; 17 ref166 krishnamoorthi (ref47) 2018 ref165 ref162 ref163 ref160 ref161 iandola (ref92) 2016 dennis (ref170) 2018 mcmahan (ref198) 2017 ref11 ref17 ref16 ref18 thakker (ref91) 2021; 3 silver (ref137) 2014 liu (ref139) 2018 (ref72) 2022 warden (ref10) 2018 (ref173) 2021 lai (ref164) 2018 zhu (ref48) 2018 hubara (ref84) 2016; 29 ref2 ref1 ref192 ref199 krizhevsky (ref15) 2009 (ref180) 2022 ref197 ref195 ref196 krizhevsky (ref93) 2012; 25 ref194 david (ref167) 2021; 3 chen (ref156) 2020 rusci (ref83) 2020; 2 cai (ref129) 2018 |
References_xml | – ident: ref25 doi: 10.1145/3417308.3430273 – ident: ref39 doi: 10.1137/1.9780898717952 – ident: ref184 doi: 10.1109/IJCNN52387.2021.9533927 – year: 2022 ident: ref54 publication-title: Microsoft/Nni An Open Source Automl Toolkit for Automate Machine Learning Lifecycle Including Feature Engineering Neural Architecture Search Model Compression and Hyper-Parameter Tuning – volume: 2017 start-page: 5998 year: 0 ident: ref112 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – volume: 3 start-page: 1 year: 2021 ident: ref8 article-title: MicroNets: Neural network architectures for deploying TinyML applications on commodity microcontrollers publication-title: Proc Mach Learn Syst – volume: 2 start-page: 326 year: 2020 ident: ref83 article-title: Memory-driven mixed low precision quantization for enabling deep network inference on microcontrollers publication-title: Proc Mach Learn Syst – ident: ref259 doi: 10.1109/CVPR42600.2020.00071 – year: 2022 ident: ref35 publication-title: Qeexo Automl – year: 2022 ident: ref180 publication-title: Reality AI – ident: ref206 doi: 10.1162/neco_a_00990 – ident: ref159 doi: 10.1109/CVPR.2018.00591 – ident: ref24 doi: 10.1145/3297858.3304011 – volume: 3 start-page: 680 year: 2021 ident: ref53 article-title: Larq compute engine: Design, benchmark and deploy state-of-the-art binarized neural networks publication-title: Proc Mach Learn Syst – ident: ref132 doi: 10.1109/CVPR.2019.00293 – ident: ref204 doi: 10.1109/MSEC.2020.3039941 – volume: 25 start-page: 1097 year: 2012 ident: ref93 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref251 doi: 10.1109/CVPR46437.2021.01407 – ident: ref214 doi: 10.1109/ET52713.2021.9579991 – ident: ref233 doi: 10.2514/1.43270 – ident: ref136 doi: 10.1007/BF00992698 – start-page: 1 year: 2021 ident: ref121 article-title: MCUNetV2: Memory-efficient patch-based inference for tiny deep learning publication-title: Proc Annu Conf Neural Inf Process Syst (NeurIPS) – ident: ref2 doi: 10.1145/3534586 – start-page: 1 year: 2019 ident: ref224 article-title: 512 KiB RAM is enough! Live camera face recognition DNN on MCU publication-title: Proc IEEE/CVF Int Conf Comput Vis Workshop (ICCVW) – ident: ref222 doi: 10.1109/ISCAS51556.2021.9401300 – ident: ref189 doi: 10.1007/978-3-030-95498-7_20 – volume: 3 start-page: 1 year: 2021 ident: ref167 article-title: TensorFlow Lite Micro: Embedded machine learning for TinyML systems publication-title: Proc Mach Learn Syst – start-page: 1737 year: 2015 ident: ref77 article-title: Deep learning with limited numerical precision publication-title: Proc Int Conf Mach Learn – ident: ref208 doi: 10.21437/Interspeech.2020-1864 – start-page: 265 year: 2016 ident: ref79 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) – ident: ref104 doi: 10.3115/v1/W14-4012 – year: 2020 ident: ref190 article-title: Flower: A friendly federated learning research framework publication-title: arXiv 2007 14390 – ident: ref101 doi: 10.1109/BigData.2018.8621865 – ident: ref162 doi: 10.1145/3358198 – ident: ref218 doi: 10.1109/ICCVW.2013.37 – ident: ref236 doi: 10.1145/3384419.3431158 – ident: ref221 doi: 10.1109/SenSysML50931.2020.00011 – year: 2022 ident: ref36 publication-title: Plumerai – start-page: 1 year: 2018 ident: ref139 article-title: DARTS: Differentiable architecture search publication-title: Proc Int Conf Learn Represent – ident: ref202 doi: 10.1109/CVPR46437.2021.01346 – ident: ref165 doi: 10.1109/TC.2021.3066883 – ident: ref63 doi: 10.1016/0165-1684(94)90029-9 – ident: ref96 doi: 10.1109/CVPR.2017.243 – volume: 2 start-page: 3l year: 2018 ident: ref230 article-title: Understanding the limitations of existing energy-efficient design approaches for deep neural networks publication-title: Energy – ident: ref20 doi: 10.1145/3384419.3430898 – ident: ref158 doi: 10.1145/3458864.3467882 – ident: ref7 doi: 10.1109/DAC18074.2021.9586232 – ident: ref141 doi: 10.1007/978-3-030-58517-4_32 – year: 2022 ident: ref172 publication-title: X-CUBE-AI-AI Expansion Pack for STM32CubeMX-Stmicroelectronics – year: 2022 ident: ref168 publication-title: Utensor/Utensor TinyML Ai Inference Library – ident: ref192 doi: 10.3389/frcmn.2021.657653 – ident: ref196 doi: 10.1109/JIOT.2020.3007662 – ident: ref261 doi: 10.1109/TNNLS.2020.3009047 – ident: ref183 doi: 10.1145/3417313.3429382 – volume: 3 start-page: 533 year: 2021 ident: ref91 article-title: Doping: A technique for extreme compression of LSTM models using sparse structured additive matrices publication-title: Proc Mach Learn Syst – start-page: 1 year: 2018 ident: ref142 article-title: Efficient multi-objective neural architecture search via Lamarckian evolution publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2020 ident: ref215 article-title: Memory-efficient, limb position-aware hand gesture recognition using hyperdimensional computing publication-title: Proc Res Symp Tiny Mach Learn – ident: ref145 doi: 10.1609/aaai.v33i01.33014780 – start-page: 1 year: 2017 ident: ref126 article-title: Neural architecture search with reinforcement learning publication-title: Proc Int Conf Learn Represent (ICLR) – start-page: 1 year: 2016 ident: ref108 article-title: WaveNet: A generative model for raw audio publication-title: Proc 9th ISCA WKSH Speech Synth WKSH (SSW) – ident: ref217 doi: 10.1109/JSEN.2021.3113908 – year: 2018 ident: ref47 article-title: Quantizing deep convolutional networks for efficient inference: A whitepaper publication-title: arXiv 1806 08342 – ident: ref250 doi: 10.1145/3394486.3403379 – start-page: 1 year: 2021 ident: ref33 article-title: Multilingual spoken words Corpus publication-title: Proc 35th Conf Neural Inf Process Syst Datasets Benchmarks Track (Round) – ident: ref163 doi: 10.1145/3358189 – ident: ref213 doi: 10.1145/3460418.3479287 – ident: ref241 doi: 10.1145/3485730.3485942 – ident: ref186 doi: 10.1109/SWC50871.2021.00023 – ident: ref75 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref110 doi: 10.3390/s16010115 – start-page: 1 year: 2021 ident: ref9 article-title: MLPerf Tiny benchmark publication-title: Proc Adv Neural Inf Process Syst – ident: ref118 doi: 10.18653/v1/2020.findings-emnlp.372 – ident: ref56 doi: 10.1145/3314221.3314597 – ident: ref94 doi: 10.1109/CVPR.2018.00474 – ident: ref254 doi: 10.1109/CVPR42600.2020.00640 – start-page: 1 year: 2017 ident: ref157 article-title: Renode: A flexible, open-source simulation framework for building scalable, well-tested RISC-V systems publication-title: Proc 7th RISC-V Workshop – ident: ref248 doi: 10.1109/TPAMI.2013.50 – ident: ref109 doi: 10.1007/978-3-319-49409-8_7 – ident: ref216 doi: 10.3390/electronics10212640 – ident: ref231 doi: 10.1109/JIOT.2020.2966773 – ident: ref82 doi: 10.1109/CVPR.2019.00881 – year: 2020 ident: ref113 article-title: TinySpeech: Attention condensers for deep speech recognition neural networks on edge devices publication-title: arXiv 2008 04245 – volume: 9 start-page: 1 year: 2008 ident: ref70 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref16 doi: 10.1109/CVPR.2016.90 – ident: ref78 doi: 10.1145/3131672.3131675 – volume: 33 start-page: 1 year: 2020 ident: ref60 article-title: RNNPool: Efficient non-linear pooling for RAM constrained inference publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1016/j.iot.2021.100461 – start-page: 9031 year: 2018 ident: ref59 article-title: FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network publication-title: Proc 32nd Int Conf Neural Inf Process Syst – volume: 32 start-page: 1285 year: 2019 ident: ref256 article-title: Model compression with adversarial robustness: A unified optimization framework publication-title: Proc Adv Neural Inf Process Syst – start-page: 10976 year: 2018 ident: ref170 article-title: Multiple instance learning for efficient sequential data classification on resource-constrained devices publication-title: Proc 32nd Int Conf Neural Inf Process Syst – ident: ref260 doi: 10.1038/s41928-018-0059-3 – ident: ref185 doi: 10.1109/JIOT.2021.3098166 – ident: ref146 doi: 10.1109/ICASSP40776.2020.9054609 – ident: ref71 doi: 10.21236/ADA164453 – ident: ref69 doi: 10.1007/BFb0020217 – year: 2019 ident: ref14 article-title: Visual wake words dataset publication-title: arXiv 1906 05721 – ident: ref175 doi: 10.1109/ICTAI.2019.00238 – year: 2017 ident: ref12 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – start-page: 1 year: 2020 ident: ref156 article-title: Neural architecture search on ImageNet in four GPU hours: A theoretically inspired perspective publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2018 ident: ref129 article-title: ProxylessNAS: Direct neural architecture search on target task and hardware publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2020 ident: ref239 article-title: Lagrangian neural networks publication-title: Proc ICLR WKSH Integr Deep Neural Models Differ Equ – ident: ref30 doi: 10.1016/j.neunet.2014.09.003 – start-page: 1 year: 2019 ident: ref116 article-title: Lite transformer with long-short range attention publication-title: Proc Int Conf Learn Represent – year: 2017 ident: ref13 article-title: Hello edge: Keyword spotting on microcontrollers publication-title: arXiv 1711 07128 – ident: ref68 doi: 10.1126/science.290.5500.2323 – ident: ref97 doi: 10.1109/CVPR42600.2020.01079 – year: 2022 ident: ref72 publication-title: Eloquentarduino – start-page: 1 year: 2018 ident: ref255 article-title: Defensive quantization: When efficiency meets robustness publication-title: Proc Int Conf Learn Represent – volume: 28 start-page: 1 year: 2015 ident: ref76 article-title: Learning both weights and connections for efficient neural network publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2016 ident: ref49 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref161 doi: 10.1145/195470.195557 – ident: ref55 doi: 10.1109/TCSII.2020.2983648 – ident: ref123 doi: 10.1109/CogMI52975.2021.00041 – volume: 34 start-page: 1595 year: 2021 ident: ref6 article-title: A review on TinyML: State-of-the-art and prospects publication-title: J King Saud Univ Comput Inf Sci – ident: ref131 doi: 10.1109/CVPR42600.2020.01195 – ident: ref252 doi: 10.1609/aaai.v33i01.33012429 – ident: ref95 doi: 10.1109/CVPR.2018.00716 – start-page: 1935 year: 2017 ident: ref57 article-title: Resource-efficient machine learning in 2 KB RAM for the Internet of Things publication-title: Proc Int Conf Mach Learn – start-page: 1273 year: 2017 ident: ref198 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – start-page: 2380 year: 2018 ident: ref106 article-title: Kronecker recurrent units publication-title: Proc Int Conf Mach Learn – year: 2021 ident: ref173 publication-title: Nanoedge AI Library – start-page: 507 year: 2022 ident: ref148 article-title: Multi-objective Bayesian optimization over high-dimensional search spaces publication-title: Proc Conf Uncertainty of Artificial Intelligence – year: 2022 ident: ref51 article-title: Neural network quantization with AI model efficiency toolkit (AIMET) publication-title: arXiv 2201 08442 – volume: 6 2 0 start-page: 1 year: 2015 ident: ref43 article-title: Pillow (pil fork) documentation publication-title: Readthedocs io – ident: ref246 doi: 10.1145/3450494 – ident: ref103 doi: 10.1162/neco.1997.9.8.1735 – start-page: 1 year: 2018 ident: ref237 article-title: The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision publication-title: Proc Int Conf Learn Represent – ident: ref81 doi: 10.3390/s21092984 – ident: ref18 doi: 10.33682/m76f-d618 – ident: ref85 doi: 10.1109/JPROC.2021.3098483 – year: 2022 ident: ref32 publication-title: Edge Impulse – volume: 33 start-page: 6377 year: 2020 ident: ref155 article-title: Pruning neural networks without any data by iteratively conserving synaptic flow publication-title: Proc Adv Neural Inf Process Syst – volume: 207 year: 2008 ident: ref73 publication-title: Feature Extraction Foundations and Applications – start-page: 1533 year: 2016 ident: ref228 article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables publication-title: Proc 25th Int Joint Conf Artif Intell – ident: ref247 doi: 10.1109/TCAD.2020.3012216 – year: 2009 ident: ref15 publication-title: Learning multiple layers of features from tiny images – ident: ref150 doi: 10.1007/978-3-030-58526-6_39 – start-page: 1120 year: 2016 ident: ref105 article-title: Unitary evolution recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref17 doi: 10.1109/WASPAA.2019.8937164 – ident: ref102 doi: 10.1109/CVPR.2016.91 – start-page: 1345 year: 2020 ident: ref253 article-title: High accuracy and high fidelity extraction of neural networks publication-title: Proc 29th USENIX Secur Symp (USENIX Secur ) – ident: ref226 doi: 10.1016/j.neucom.2020.10.081 – ident: ref244 doi: 10.3390/s20143811 – ident: ref50 doi: 10.1038/s42256-021-00356-5 – ident: ref182 doi: 10.1145/1375581.1375595 – start-page: 1 year: 2018 ident: ref153 article-title: SNIP: Single-shot network pruning based on connection sensitivity publication-title: Proc Int Conf Learn Represent – ident: ref140 doi: 10.1109/CVPR.2019.01099 – volume: 116 start-page: 374 year: 1976 ident: ref210 article-title: Distance measures for speech recognition, psychological and instrumental publication-title: Pattern Recognit Artif Intell – start-page: 578 year: 2018 ident: ref130 article-title: TVM: An automated end-to-end optimizing compiler for deep learning publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) – ident: ref211 doi: 10.1016/j.iot.2021.100437 – ident: ref21 doi: 10.3390/s21041339 – ident: ref147 doi: 10.1145/3097983.3098043 – ident: ref120 doi: 10.3390/s21144805 – year: 2022 ident: ref34 publication-title: Sensiml Making Sensor Data Sensible – start-page: 1 year: 2019 ident: ref5 article-title: Once-for-all: Train one network and specialize it for efficient deployment publication-title: Proc Int Conf Learn Represent – ident: ref166 doi: 10.1098/rsta.2019.0155 – ident: ref225 doi: 10.3390/s19092158 – ident: ref160 doi: 10.1007/978-1-4615-4337-4 – ident: ref37 doi: 10.1109/TKDE.2019.2946162 – ident: ref26 doi: 10.1145/3369837 – ident: ref199 doi: 10.1109/VLSID.2019.00056 – ident: ref80 doi: 10.1109/CVPR.2018.00286 – start-page: 7588 year: 2021 ident: ref151 article-title: Neural architecture search without training publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2017 ident: ref127 article-title: Designing neural network architectures using reinforcement learning publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref128 doi: 10.1109/CVPR.2018.00907 – ident: ref232 doi: 10.1109/ICRA40945.2020.9196860 – volume: 3 start-page: 1157 year: 2003 ident: ref74 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref223 doi: 10.1109/MIEL52794.2021.9569099 – start-page: 1 year: 2022 ident: ref89 article-title: Differentiable network pruning to enable smart applications publication-title: Proc 4th U K Mobile Wearable Ubiquitous Syst Res Symp – year: 2018 ident: ref10 article-title: Speech commands: A dataset for limited-vocabulary speech recognition publication-title: arXiv 1804 03209 – ident: ref111 doi: 10.1109/CVPR.2015.7298878 – volume: 18 start-page: 1 year: 1998 ident: ref64 article-title: Linear discriminant analysis-a brief tutorial publication-title: Inst Signal Inf Process – year: 2019 ident: ref46 publication-title: Tinyml Machine Learning with tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers – ident: ref203 doi: 10.1109/SP.2019.00065 – volume: 32 start-page: 15379 year: 2019 ident: ref238 article-title: Hamiltonian neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/IROS.2018.8593722 – year: 2008 ident: ref41 publication-title: Learning OpenCV Computer Vision With the OpenCV Library – volume: 22 start-page: 1 year: 2021 ident: ref40 article-title: giotto-tda: A topological data analysis toolkit for machine learning and data exploration publication-title: J Mach Learn Res – ident: ref124 doi: 10.1145/3476995 – start-page: 4095 year: 2018 ident: ref143 article-title: Efficient neural architecture search via parameters sharing publication-title: Proc Int Conf Mach Learn – start-page: 756 year: 2019 ident: ref193 article-title: DïOT: A federated self-learning anomaly detection system for IoT publication-title: Proc IEEE 39th Int Conf Distrib Comput Syst (ICDCS) – start-page: 481 year: 2019 ident: ref144 article-title: Single-path NAS: Designing hardware-efficient ConvNets in less than 4 hours publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – start-page: 1 year: 2020 ident: ref209 article-title: An ultra-low power RNN classifier for always-on voice wake-up detection robust to real-world scenarios publication-title: Proc Res Symp Tiny Mach Learn – ident: ref66 doi: 10.21105/joss.00861 – start-page: 1 year: 2020 ident: ref207 article-title: Hardware aware training for efficient keyword spotting on general purpose and specialized hardware publication-title: Proc Res Symp Tiny Mach Learn – ident: ref67 doi: 10.1214/aoms/1177729694 – volume: 25 start-page: 1 year: 2019 ident: ref42 article-title: Imgaug documentation publication-title: Readthedocs io – ident: ref98 doi: 10.1109/CVPR46437.2021.01283 – ident: ref219 doi: 10.1109/LRA.2018.2795643 – ident: ref3 doi: 10.1109/MCAS.2020.3005467 – start-page: 1 year: 2021 ident: ref191 article-title: On-device federated learning with Flower publication-title: Proc Device Intell Workshop MLSys – ident: ref220 doi: 10.1109/JIOT.2019.2917066 – ident: ref133 doi: 10.1109/ICCV.2019.00140 – ident: ref258 doi: 10.1109/ACCESS.2019.2924045 – start-page: 1 year: 2022 ident: ref117 article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref11 doi: 10.1109/CVPR.2017.195 – ident: ref229 doi: 10.21437/Interspeech.2015-352 – ident: ref195 doi: 10.1109/PerComWorkshops53856.2022.9767250 – ident: ref176 doi: 10.1109/JIOT.2020.2976702 – volume: 20 start-page: 1997 year: 2019 ident: ref134 article-title: Neural architecture search: A survey publication-title: J Mach Learn Res – year: 2018 ident: ref138 publication-title: Reinforcement Learning An Introduction – start-page: 1331 year: 2017 ident: ref58 article-title: ProtoNN: Compressed and accurate KNN for resource-scarce devices publication-title: Proc Int Conf Mach Learn – ident: ref188 doi: 10.1109/JETCAS.2021.3121554 – volume: 33 start-page: 1 year: 2020 ident: ref19 article-title: TinyTL: Reduce memory, not parameters for efficient on-device learning publication-title: Proc Adv Neural Inf Process Syst – volume: 32 start-page: 1 year: 2019 ident: ref169 article-title: Shallow RNN: Accurate time-series classification on resource constrained devices publication-title: Proc Adv Neural Inf Process Syst – start-page: 387 year: 2014 ident: ref137 article-title: Deterministic policy gradient algorithms publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2019 ident: ref245 article-title: Exploiting smartphone peripherals for precise time synchronization publication-title: Proc IEEE Global Conf Signal Inf Process (GlobalSIP) – volume: 33 start-page: 10480 year: 2020 ident: ref149 article-title: BRP-NAS: Prediction-based NAS using GCNs publication-title: Proc Adv Neural Inf Process Syst – ident: ref205 doi: 10.1145/3488659.3493776 – ident: ref242 doi: 10.1109/IoTDI49375.2020.00022 – volume: 17 start-page: 2030 year: 2016 ident: ref249 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: ref62 doi: 10.1038/44565 – year: 2022 ident: ref174 publication-title: sklearn-porter – start-page: 1 year: 2019 ident: ref154 article-title: Picking winning tickets before training by preserving gradient flow publication-title: Proc Int Conf Learn Represent – ident: ref65 doi: 10.1109/TVCG.2019.2944182 – ident: ref197 doi: 10.1109/OJCS.2020.2993259 – ident: ref187 doi: 10.1109/BigData52589.2021.9671765 – ident: ref27 doi: 10.1109/MSP.2020.2975749 – ident: ref29 doi: 10.1145/2046660.2046682 – start-page: 1269 year: 2014 ident: ref61 article-title: Exploiting linear structure within convolutional networks for efficient evaluation publication-title: Proc Adv Neural Inf Process Syst – ident: ref240 doi: 10.1145/3308558.3313426 – year: 2022 ident: ref178 publication-title: Edge Ai/TinyML SAAS Deep Learning – volume: 20 start-page: 1 year: 2021 ident: ref135 article-title: FLASH: Fast neural architecture search with hardware optimization publication-title: ACM Trans Embedded Comput Syst doi: 10.1145/3477034 – volume: 33 start-page: 14604 year: 2020 ident: ref235 article-title: STLnet: Signal temporal logic enforced multivariate recurrent neural networks publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – ident: ref125 doi: 10.1145/3447582 – volume: 12 start-page: 2825 year: 2012 ident: ref44 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – year: 2022 ident: ref177 publication-title: AI-Driven Deep Neural Network Optimizer – ident: ref257 doi: 10.1109/ICCV.2019.00020 – start-page: 1 year: 2018 ident: ref48 article-title: To prune, or not to prune: Exploring the efficacy of pruning for model compression publication-title: Proc Int Conf Learn Represent – ident: ref194 doi: 10.1109/TNNLS.2022.3166101 – year: 2020 ident: ref99 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv 2004 10934 – ident: ref22 doi: 10.1109/DCOSS.2019.00111 – volume: 32 start-page: 1 year: 2019 ident: ref86 article-title: SpArSe: Sparse architecture search for CNNs on resource-constrained microcontrollers publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1145/3133956.3133982 – ident: ref263 doi: 10.1109/TCAD.2020.2986127 – ident: ref45 doi: 10.1038/s41592-019-0686-2 – ident: ref212 doi: 10.1145/3332165.3347881 – ident: ref119 doi: 10.1109/COINS51742.2021.9524173 – start-page: 3711 year: 2020 ident: ref171 article-title: DROCC: Deep robust one-class classification publication-title: Proc Int Conf Mach Learn – volume: 29 start-page: 1 year: 2016 ident: ref84 article-title: Binarized neural networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2020 ident: ref152 article-title: Zero-cost proxies for lightweight NAS publication-title: Proc Int Conf Learn Represent – ident: ref90 doi: 10.1145/3440016 – ident: ref200 doi: 10.1109/RAICS51191.2020.9332480 – start-page: 1 year: 2018 ident: ref87 article-title: Rethinking the value of network pruning publication-title: Proc Int Conf Learn Represent – year: 2022 ident: ref179 publication-title: Neuton AI-No-Code Artificial Intelligence for All – ident: ref100 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref38 doi: 10.1186/s40537-015-0032-1 – start-page: 1 year: 2020 ident: ref114 article-title: AttendNets: Tiny deep image recognition neural networks for the edge via visual attention condensers publication-title: Proc 6th WKSH Energy Efficient Mach Learn Cognit Comput (EMC2) – ident: ref122 doi: 10.1145/3437984.3458836 – ident: ref88 doi: 10.1145/3079856.3080215 – volume: 32 start-page: 15570 year: 2019 ident: ref107 article-title: Legendre memory units: Continuous-time representation in recurrent neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref234 doi: 10.1109/CVPR.2012.6247801 – year: 2016 ident: ref92 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size publication-title: arXiv 1602 07360 – ident: ref52 doi: 10.21105/joss.01746 – ident: ref1 doi: 10.1145/3534594 – year: 2018 ident: ref164 article-title: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs publication-title: arXiv 1801 06601 [cs] – volume: 33 start-page: 11711 year: 2020 ident: ref31 article-title: MCUNet: Tiny deep learning on IoT devices publication-title: Proc Adv Neural Inf Process Syst – start-page: 39 year: 2020 ident: ref227 article-title: Deep convolutional bidirectional LSTM for complex activity recognition with missing data publication-title: Human Activity Recognition Challenge – start-page: 1 year: 1998 ident: ref181 article-title: Automatically tuned linear algebra software publication-title: Proc 1998 ACM/IEEE Supercomputing 98 Conf – year: 2021 ident: ref115 article-title: AttendSeg: A tiny attention condenser neural network for semantic segmentation on the edge publication-title: arXiv 2104 14623 – ident: ref243 doi: 10.1145/2809695.2809718 – ident: ref262 doi: 10.1145/3316781.3317757 – ident: ref201 doi: 10.1007/978-981-16-0749-3_52 |
SSID | ssj0019757 |
Score | 2.6531262 |
SecondaryResourceType | review_article |
Snippet | The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers.... The advancements in machine learning (ML) opened a new opportunity to bring intelligence to the low-end Internet-of-Things (IoT) nodes, such as... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling Data models Feature projection Hardware Internet of Things Machine learning Mathematical models Microcontrollers model compression neural architecture search neural networks optimization Random access memory Sensors TinyML Workflow |
Title | Machine Learning for Microcontroller-Class Hardware - A Review |
URI | https://ieeexplore.ieee.org/document/9912325 https://www.ncbi.nlm.nih.gov/pubmed/36439060 https://www.proquest.com/docview/2735384569 https://www.proquest.com/docview/2740906198 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT9swFMCfgAvswFfZFijISDshUpw4iZMLUoVACKlcWKXeItt53iRQO3Wt0PbX8-y40YbYxC1SnC8_O_49vy-AL0ZK0rmE27UhTSejBTnWVmMseJMIRC2NL_c2ui9ux9ndJJ-swXkXC4OI3vkMB-7Q2_KbmVm6rbILYhkCgHwd1klxa2O1OotBJX1WT5rAPM6EnAQLZsKri7uH63vSBNN04AJWpBR_rUG-qMq_-dKvMzc7MFq9Yete8jhYLvTA_H6VvPG9n7AL2wE42bAdIXuwhtN9-PBHGsJ92AyV0L__6sHlyHtXIguJV78xolo2cm57wav9CeexL6XJnNX_Wc2RxWzIWiPDAYxvrr9e3cahxkJsiIwWseISS2IurU2RYJrpBotM2aRqBJFVlZs0JaDgViorS9Tccq2M5Y02pWpkqsRH2JjOpvgZGOocCyWtSjRmVcmVbVSRy8wqoRNtiwj4qtdrExKQuzoYT7VXRHhVO0HVTlB1EFQEZ90lP9rsG_9r3HP93TUMXR1BfyXaOszPnzVBG_3pCR6rCE670zSznLlETXG2dG1I9yXcqcoIPrVDoru3cCDHC3749jOPYMu9mYtZTPI-bCzmSzwmeFnoEz9qXwCHTukI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigceLQ8AgWMBBekbB07iZMDSBW02j52L7TS3oLtjEGi2kXbXVXlt_BX-G-MHW8ECLhV4hYpjpN4xjPfeF4AL6xSZHNJf2pDlk5OCjk1zmAqeZtJRKNsaPc2GpfD0_xwUkzW4FufC4OIIfgMB_4y-PLbmV36o7IdwjIEAFYhlEd4eUEG2vnrg3dEzZdC7O-dvB2msYdAaknzL1LNFVaEKYyxZYYiNy2WuXZZ3UpCDnVhhSCFyZ3STlVouONGW8dbYyvdKqElzXsNrhPOKESXHdb7KGoV6oiSyOBpLtUk-kwzXu8cvt8bk-0pxMCnyCglf9F6oY3L3xFt0Gz7t-H7ak26gJbPg-XCDOzX38pF_q-LdgduRUjNdrs9cBfWcLoJN38qtLgJG7HX-6fLLXgzCvGjyGJp2Y-McDsb-cDEGLd_hvM0NAtlPq7hQs-RpWyXdW6Ue3B6JT9zH9ansyk-BIamwFIrpzODeV1x7VpdFip3WprMuDIBvqJyY2OJdd_p46wJphavG88YjWeMJjJGAq_6R7509UX-NXjL07cfGEmbwPaKlZoogc4bgqWkywge1wk872-T7PAOIT3F2dKPIeueAF1dJfCgY8F-bumhKi_5oz-_8xlsDE9Gx83xwfjoMdzwX-kzNLNiG9YX8yU-Iai2ME_DjmHw4aq57QcNOUi7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Microcontroller-Class+Hardware%3A+A+Review&rft.jtitle=IEEE+sensors+journal&rft.au=Swapnil+Sayan+Saha&rft.au=Sandeep+Singh+Sandha&rft.au=Srivastava%2C+Mani&rft.date=2022-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=22&rft.spage=21362&rft_id=info:doi/10.1109%2FJSEN.2022.3210773&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |