Machine learning of cellular metabolic rewiring
Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning fra...
Saved in:
Published in | Biology methods and protocols Vol. 9; no. 1; p. bpae048 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2396-8923 2396-8923 |
DOI | 10.1093/biomethods/bpae048 |
Cover
Loading…
Abstract | Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. |
---|---|
AbstractList | Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce
MetaboLiteLearner
, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs,
MetaboLiteLearner
predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce , a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. |
Author | Xavier, Joao B |
Author_xml | – sequence: 1 givenname: Joao B orcidid: 0000-0003-3592-1689 surname: Xavier fullname: Xavier, Joao B email: xavierj@mskcc.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39011352$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctOwzAQRS1UREvpD7BAWbIJ9SNx7RVCFS-piA2sLduZtEZJHOwGxN-TqqWUHasZac7ca889RYPGN4DQOcFXBEs2Nc7XsF75Ik5NqwFn4giNKJM8FZKywUE_RJMY3zDGRGQ5weQEDZnEhLCcjtD0SduVayCpQIfGNcvEl4mFquoqHZLeQRtfOZsE-HShH5-h41JXESa7Okavd7cv84d08Xz_OL9ZpJZJuk5lwSUFUnBN8KzEeYFtkev-BbzMLNNgqDFcQK45J5KKHFsAURLNLMfAjGZjdL3VbTtTQ2GhWQddqTa4Wocv5bVTfyeNW6ml_1CE0EwyMesVLncKwb93ENeqdnHzM92A76JiWBDWX2WGe_Ti0Gzv8nOmHqBbwAYfY4ByjxCsNnGo3zjULo5-Kd0u-a79D_8N78SRoA |
Cites_doi | 10.1016/j.immuni.2021.12.012 10.1038/nature08021 10.1002/mas.21518 10.1073/pnas.1203689109 10.1146/annurev-biochem-061516-044952 10.1007/s11306-007-0081-3 10.1016/j.copbio.2014.12.007 10.3389/fgene.2022.1017340 10.1016/0169-7439(93)85002-X 10.1038/s41598-017-01924-9 10.1002/bit.22890 10.1073/pnas.0811091106 10.1371/journal.pcbi.1000761 10.1093/nar/28.1.27 10.1016/j.cell.2018.05.015 10.1038/nprot.2010.50 10.1242/dev.131110 10.1158/0008-5472.CAN-23-0153 10.1038/s41556-022-00965-1 10.1007/s11306-012-0434-4 10.3390/metabo12050447 10.1007/BF02616120 10.1371/journal.pcbi.1009105 10.1007/978-0-387-84858-7 10.1038/s41589-020-00677-3 10.1016/j.cell.2018.03.055 10.1038/nature03799 10.1021/ac9019522 10.1186/s40170-022-00289-6 10.3322/caac.21670 10.1038/s41592-022-01486-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/biomethods/bpae048 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2396-8923 |
ExternalDocumentID | PMC11249387 39011352 10_1093_biomethods_bpae048 10.1093/biomethods/bpae048 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA266068 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACUHS AENZO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL AVWKF BAYMD BBNVY BENPR BHPHI CCPQU EBS EJD ESX GROUPED_DOAJ H13 HCIFZ IAO IHR ISR ITC KSI M7P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY RPM TOX AAYXX CITATION NPM PQGLB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c392t-9d692e1d6a107f05d0cd5a0186f4c3aeb2bb68e5a66192850cee8f1a3c60e3ba3 |
IEDL.DBID | TOX |
ISSN | 2396-8923 |
IngestDate | Thu Aug 21 18:33:12 EDT 2025 Fri Sep 05 10:21:10 EDT 2025 Mon Jul 21 05:33:15 EDT 2025 Tue Jul 01 03:32:51 EDT 2025 Mon Jun 30 08:34:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-9d692e1d6a107f05d0cd5a0186f4c3aeb2bb68e5a66192850cee8f1a3c60e3ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3592-1689 |
OpenAccessLink | https://dx.doi.org/10.1093/biomethods/bpae048 |
PMID | 39011352 |
PQID | 3081300070 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249387 proquest_miscellaneous_3081300070 pubmed_primary_39011352 crossref_primary_10_1093_biomethods_bpae048 oup_primary_10_1093_biomethods_bpae048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biology methods and protocols |
PublicationTitleAlternate | Biol Methods Protoc |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hastie (2024071520404741100_bpae048-B19) 2009 Xavier (2024071520404741100_bpae048-B24) 2023 Hadi (2024071520404741100_bpae048-B28) 2017; 7 An (2024071520404741100_bpae048-B30) 2022; 10 Stravs (2024071520404741100_bpae048-B33) 2022; 19 Goodacre (2024071520404741100_bpae048-B11) 2007; 3 2024071520404741100_bpae048-B18 Schmidt (2024071520404741100_bpae048-B6) 2021; 71 Da Cunha (2024071520404741100_bpae048-B29) 2022; 12 Li (2024071520404741100_bpae048-B27) 2010; 6 Camacho (2024071520404741100_bpae048-B13) 2018; 173 Hsiao (2024071520404741100_bpae048-B21) Kind (2024071520404741100_bpae048-B23) 2009; 81 Moxley (2024071520404741100_bpae048-B2) 2009; 106 Chapman (2024071520404741100_bpae048-B4) 2022; 55 Cailleau (2024071520404741100_bpae048-B14) 1978; 14 Dunn (2024071520404741100_bpae048-B9) 2013; 9 Diehl (2024071520404741100_bpae048-B34) 2022; 24 Lai (2024071520404741100_bpae048-B26) 2016; 37 Watrous (2024071520404741100_bpae048-B31) 2012; 109 Gomes (2024071520404741100_bpae048-B1) 2015; 34 Jang (2024071520404741100_bpae048-B35) 2018; 173 Sengupta (2024071520404741100_bpae048-B5) 2011; 108 Lu (2024071520404741100_bpae048-B7) 2017; 86 Galal (2024071520404741100_bpae048-B12) 2022; 13 Bos (2024071520404741100_bpae048-B16) 2009; 459 Mathur (2024071520404741100_bpae048-B17) 2023; 83 Wieder (2024071520404741100_bpae048-B8) 2021; 17 Minn (2024071520404741100_bpae048-B15) 2005; 436 de Jong (2024071520404741100_bpae048-B20) 1993; 18 Tripathi (2024071520404741100_bpae048-B32) 2021; 17 Miyazawa (2024071520404741100_bpae048-B3) 2018; 145 Xavier (2024071520404741100_bpae048-B25) 2023 Kanehisa (2024071520404741100_bpae048-B22) 2000; 28 Want (2024071520404741100_bpae048-B10) 2010; 5 37645838 - bioRxiv. 2023 Oct 10:2023.08.11.552957. doi: 10.1101/2023.08.11.552957 |
References_xml | – volume: 55 start-page: 14 year: 2022 ident: 2024071520404741100_bpae048-B4 article-title: Metabolic adaptation of lymphocytes in immunity and disease publication-title: Immunity doi: 10.1016/j.immuni.2021.12.012 – volume: 459 start-page: 1005 year: 2009 ident: 2024071520404741100_bpae048-B16 article-title: Genes that mediate breast cancer metastasis to the brain publication-title: Nature doi: 10.1038/nature08021 – start-page: 1341 ident: 2024071520404741100_bpae048-B21 article-title: The implementation of partial least squares with artificial neural network architecture – volume: 37 start-page: 245 year: 2016 ident: 2024071520404741100_bpae048-B26 article-title: Mass spectral fragmentation of trimethylsilylated small molecules publication-title: Mass Spectrom Rev doi: 10.1002/mas.21518 – volume: 109 start-page: E1743 year: 2012 ident: 2024071520404741100_bpae048-B31 article-title: Mass spectral molecular networking of living microbial colonies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1203689109 – volume: 86 start-page: 277 year: 2017 ident: 2024071520404741100_bpae048-B7 article-title: Metabolite measurement: pitfalls to avoid and practices to follow publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-061516-044952 – volume: 3 start-page: 231 year: 2007 ident: 2024071520404741100_bpae048-B11 article-title: Proposed minimum reporting standards for data analysis in metabolomics publication-title: Metabolomics doi: 10.1007/s11306-007-0081-3 – year: 2023 ident: 2024071520404741100_bpae048-B24 article-title: Raw GC/MS data used for MLOD (MetaboLiteLearner) publication-title: Zenodo – volume: 34 start-page: 110 year: 2015 ident: 2024071520404741100_bpae048-B1 article-title: A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2014.12.007 – volume: 13 start-page: 1017340 year: 2022 ident: 2024071520404741100_bpae048-B12 article-title: Applications of machine learning in metabolomics: disease modeling and classification publication-title: Front Genet doi: 10.3389/fgene.2022.1017340 – volume: 18 start-page: 251 year: 1993 ident: 2024071520404741100_bpae048-B20 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(93)85002-X – volume: 7 start-page: 1715 year: 2017 ident: 2024071520404741100_bpae048-B28 article-title: Serum metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry publication-title: Sci Rep doi: 10.1038/s41598-017-01924-9 – volume: 108 start-page: 82 year: 2011 ident: 2024071520404741100_bpae048-B5 article-title: Metabolic flux analysis of CHO cell metabolism in the late non-growth phase publication-title: Biotechnol Bioeng doi: 10.1002/bit.22890 – volume: 106 start-page: 6477 year: 2009 ident: 2024071520404741100_bpae048-B2 article-title: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811091106 – volume: 6 start-page: e1000761 year: 2010 ident: 2024071520404741100_bpae048-B27 article-title: Learning “graph-mer” motifs that predict gene expression trajectories in development publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000761 – volume: 28 start-page: 27 year: 2000 ident: 2024071520404741100_bpae048-B22 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – ident: 2024071520404741100_bpae048-B18 – volume: 173 start-page: 1581 year: 2018 ident: 2024071520404741100_bpae048-B13 article-title: Next-generation machine learning for biological networks publication-title: Cell doi: 10.1016/j.cell.2018.05.015 – year: 2023 ident: 2024071520404741100_bpae048-B25 article-title: joaobxavier/learn_metabolic_rewiring_matlab: metaboLiteLearner08032023 publication-title: Zenodo – volume: 5 start-page: 1005 year: 2010 ident: 2024071520404741100_bpae048-B10 article-title: Global metabolic profiling procedures for urine using UPLC-MS publication-title: Nat Protoc doi: 10.1038/nprot.2010.50 – volume: 145 year: 2018 ident: 2024071520404741100_bpae048-B3 article-title: Revisiting the role of metabolism during development publication-title: Development doi: 10.1242/dev.131110 – volume: 83 start-page: 3478 year: 2023 ident: 2024071520404741100_bpae048-B17 article-title: The ratio of key metabolic transcripts is a predictive biomarker of breast cancer metastasis to the lung publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-23-0153 – volume: 24 start-page: 1252 year: 2022 ident: 2024071520404741100_bpae048-B34 article-title: Nucleotide imbalance decouples cell growth from cell proliferation publication-title: Nat Cell Biol doi: 10.1038/s41556-022-00965-1 – volume: 9 start-page: 44 year: 2013 ident: 2024071520404741100_bpae048-B9 article-title: Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics publication-title: Metabolomics doi: 10.1007/s11306-012-0434-4 – volume: 12 issue: 5 year: 2022 ident: 2024071520404741100_bpae048-B29 article-title: Metabolomic analysis of plasma from breast cancer patients using ultra-high-performance liquid chromatography coupled with mass spectrometry: an untargeted study publication-title: Metabolites doi: 10.3390/metabo12050447 – volume: 14 start-page: 911 year: 1978 ident: 2024071520404741100_bpae048-B14 article-title: Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization publication-title: In Vitro doi: 10.1007/BF02616120 – volume: 17 start-page: e1009105 year: 2021 ident: 2024071520404741100_bpae048-B8 article-title: Pathway analysis in metabolomics: recommendations for the use of over-representation analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1009105 – volume-title: The Elements of Statistical Learning year: 2009 ident: 2024071520404741100_bpae048-B19 doi: 10.1007/978-0-387-84858-7 – volume: 17 start-page: 146 year: 2021 ident: 2024071520404741100_bpae048-B32 article-title: Chemically informed analyses of metabolomics mass spectrometry data with Qemistree publication-title: Nat Chem Biol doi: 10.1038/s41589-020-00677-3 – volume: 173 start-page: 822 year: 2018 ident: 2024071520404741100_bpae048-B35 article-title: Metabolomics and isotope tracing publication-title: Cell doi: 10.1016/j.cell.2018.03.055 – volume: 436 start-page: 518 year: 2005 ident: 2024071520404741100_bpae048-B15 article-title: Genes that mediate breast cancer metastasis to lung publication-title: Nature doi: 10.1038/nature03799 – volume: 81 start-page: 10038 year: 2009 ident: 2024071520404741100_bpae048-B23 article-title: FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry publication-title: Anal Chem doi: 10.1021/ac9019522 – volume: 10 start-page: 13 year: 2022 ident: 2024071520404741100_bpae048-B30 article-title: Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer publication-title: Cancer Metab doi: 10.1186/s40170-022-00289-6 – volume: 71 start-page: 333 year: 2021 ident: 2024071520404741100_bpae048-B6 article-title: Metabolomics in cancer research and emerging applications in clinical oncology publication-title: CA Cancer J Clin doi: 10.3322/caac.21670 – volume: 19 start-page: 865 year: 2022 ident: 2024071520404741100_bpae048-B33 article-title: MSNovelist: de novo structure generation from mass spectra publication-title: Nat Methods doi: 10.1038/s41592-022-01486-3 – reference: 37645838 - bioRxiv. 2023 Oct 10:2023.08.11.552957. doi: 10.1101/2023.08.11.552957 |
SSID | ssj0001845101 |
Score | 2.2429352 |
Snippet | Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | bpae048 |
SubjectTerms | Methods |
Title | Machine learning of cellular metabolic rewiring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39011352 https://www.proquest.com/docview/3081300070 https://pubmed.ncbi.nlm.nih.gov/PMC11249387 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kIngR38ZHiSBeJDTJZjebo0pLEVpFWugt7G42Wihp6QPx3zubpI9IDz1ns2y-GTLfzM4D4EGZjo-Mu44KeOAEfkIcqdBLEZ6KPEEiQfLZgJ0ua_eDtwEdlMXqsy1X-BFp5HXoZpryrCEnQqPK4R8XrbDR6t77YB1R4YFRsLIyZvubFetTqWjbIJb_8yM3DE7rGI5Kpmg_F6I9gT2dncJBMTvy9wwanTwNUtvl3Icve5zaJgxv8kptPBBKdzRU9lT_DE3s7hz6rWbvte2U0w8chZxl7kQJi3ztJUygh5a6NHFVQgV-JUsDRQR6xFIyrqlgxgfi1EVzx1PEVzFXEynIBdSycaavwNZhIij6wGiMZEBTX5CQM0kT32M85G5qwdMSlXhSNLmIi8tpEq8xjEsMLXhE4HZaeL_ENkalNRCITI8Xs5ggESGGnrgWXBZYr_YzQRgPaaEFvCKF1QLTELv6JBt-542xPTNJm_DwetcT3sChjySlCKncQm0-Xeg7JBlzWYf9l2b347OeO-n1XNP-AMaL1nU |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+of+cellular+metabolic+rewiring&rft.jtitle=Biology+methods+and+protocols&rft.au=Xavier%2C+Joao+B&rft.date=2024&rft.eissn=2396-8923&rft.volume=9&rft.issue=1&rft.spage=bpae048&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpae048&rft_id=info%3Apmid%2F39011352&rft.externalDocID=39011352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon |