Machine learning of cellular metabolic rewiring

Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning fra...

Full description

Saved in:
Bibliographic Details
Published inBiology methods and protocols Vol. 9; no. 1; p. bpae048
Main Author Xavier, Joao B
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2024
Subjects
Online AccessGet full text
ISSN2396-8923
2396-8923
DOI10.1093/biomethods/bpae048

Cover

Loading…
Abstract Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. 
AbstractList Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner , a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. 
Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.
Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations. 
Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce , a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.
Author Xavier, Joao B
Author_xml – sequence: 1
  givenname: Joao B
  orcidid: 0000-0003-3592-1689
  surname: Xavier
  fullname: Xavier, Joao B
  email: xavierj@mskcc.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39011352$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOwzAQRS1UREvpD7BAWbIJ9SNx7RVCFS-piA2sLduZtEZJHOwGxN-TqqWUHasZac7ca889RYPGN4DQOcFXBEs2Nc7XsF75Ik5NqwFn4giNKJM8FZKywUE_RJMY3zDGRGQ5weQEDZnEhLCcjtD0SduVayCpQIfGNcvEl4mFquoqHZLeQRtfOZsE-HShH5-h41JXESa7Okavd7cv84d08Xz_OL9ZpJZJuk5lwSUFUnBN8KzEeYFtkev-BbzMLNNgqDFcQK45J5KKHFsAURLNLMfAjGZjdL3VbTtTQ2GhWQddqTa4Wocv5bVTfyeNW6ml_1CE0EwyMesVLncKwb93ENeqdnHzM92A76JiWBDWX2WGe_Ti0Gzv8nOmHqBbwAYfY4ByjxCsNnGo3zjULo5-Kd0u-a79D_8N78SRoA
Cites_doi 10.1016/j.immuni.2021.12.012
10.1038/nature08021
10.1002/mas.21518
10.1073/pnas.1203689109
10.1146/annurev-biochem-061516-044952
10.1007/s11306-007-0081-3
10.1016/j.copbio.2014.12.007
10.3389/fgene.2022.1017340
10.1016/0169-7439(93)85002-X
10.1038/s41598-017-01924-9
10.1002/bit.22890
10.1073/pnas.0811091106
10.1371/journal.pcbi.1000761
10.1093/nar/28.1.27
10.1016/j.cell.2018.05.015
10.1038/nprot.2010.50
10.1242/dev.131110
10.1158/0008-5472.CAN-23-0153
10.1038/s41556-022-00965-1
10.1007/s11306-012-0434-4
10.3390/metabo12050447
10.1007/BF02616120
10.1371/journal.pcbi.1009105
10.1007/978-0-387-84858-7
10.1038/s41589-020-00677-3
10.1016/j.cell.2018.03.055
10.1038/nature03799
10.1021/ac9019522
10.1186/s40170-022-00289-6
10.3322/caac.21670
10.1038/s41592-022-01486-3
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/biomethods/bpae048
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2396-8923
ExternalDocumentID PMC11249387
39011352
10_1093_biomethods_bpae048
10.1093/biomethods/bpae048
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA266068
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ACUHS
AENZO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AVWKF
BAYMD
BBNVY
BENPR
BHPHI
CCPQU
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IHR
ISR
ITC
KSI
M7P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PHGZM
PHGZT
PIMPY
RPM
TOX
AAYXX
CITATION
NPM
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c392t-9d692e1d6a107f05d0cd5a0186f4c3aeb2bb68e5a66192850cee8f1a3c60e3ba3
IEDL.DBID TOX
ISSN 2396-8923
IngestDate Thu Aug 21 18:33:12 EDT 2025
Fri Sep 05 10:21:10 EDT 2025
Mon Jul 21 05:33:15 EDT 2025
Tue Jul 01 03:32:51 EDT 2025
Mon Jun 30 08:34:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9d692e1d6a107f05d0cd5a0186f4c3aeb2bb68e5a66192850cee8f1a3c60e3ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3592-1689
OpenAccessLink https://dx.doi.org/10.1093/biomethods/bpae048
PMID 39011352
PQID 3081300070
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249387
proquest_miscellaneous_3081300070
pubmed_primary_39011352
crossref_primary_10_1093_biomethods_bpae048
oup_primary_10_1093_biomethods_bpae048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biology methods and protocols
PublicationTitleAlternate Biol Methods Protoc
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hastie (2024071520404741100_bpae048-B19) 2009
Xavier (2024071520404741100_bpae048-B24) 2023
Hadi (2024071520404741100_bpae048-B28) 2017; 7
An (2024071520404741100_bpae048-B30) 2022; 10
Stravs (2024071520404741100_bpae048-B33) 2022; 19
Goodacre (2024071520404741100_bpae048-B11) 2007; 3
2024071520404741100_bpae048-B18
Schmidt (2024071520404741100_bpae048-B6) 2021; 71
Da Cunha (2024071520404741100_bpae048-B29) 2022; 12
Li (2024071520404741100_bpae048-B27) 2010; 6
Camacho (2024071520404741100_bpae048-B13) 2018; 173
Hsiao (2024071520404741100_bpae048-B21)
Kind (2024071520404741100_bpae048-B23) 2009; 81
Moxley (2024071520404741100_bpae048-B2) 2009; 106
Chapman (2024071520404741100_bpae048-B4) 2022; 55
Cailleau (2024071520404741100_bpae048-B14) 1978; 14
Dunn (2024071520404741100_bpae048-B9) 2013; 9
Diehl (2024071520404741100_bpae048-B34) 2022; 24
Lai (2024071520404741100_bpae048-B26) 2016; 37
Watrous (2024071520404741100_bpae048-B31) 2012; 109
Gomes (2024071520404741100_bpae048-B1) 2015; 34
Jang (2024071520404741100_bpae048-B35) 2018; 173
Sengupta (2024071520404741100_bpae048-B5) 2011; 108
Lu (2024071520404741100_bpae048-B7) 2017; 86
Galal (2024071520404741100_bpae048-B12) 2022; 13
Bos (2024071520404741100_bpae048-B16) 2009; 459
Mathur (2024071520404741100_bpae048-B17) 2023; 83
Wieder (2024071520404741100_bpae048-B8) 2021; 17
Minn (2024071520404741100_bpae048-B15) 2005; 436
de Jong (2024071520404741100_bpae048-B20) 1993; 18
Tripathi (2024071520404741100_bpae048-B32) 2021; 17
Miyazawa (2024071520404741100_bpae048-B3) 2018; 145
Xavier (2024071520404741100_bpae048-B25) 2023
Kanehisa (2024071520404741100_bpae048-B22) 2000; 28
Want (2024071520404741100_bpae048-B10) 2010; 5
37645838 - bioRxiv. 2023 Oct 10:2023.08.11.552957. doi: 10.1101/2023.08.11.552957
References_xml – volume: 55
  start-page: 14
  year: 2022
  ident: 2024071520404741100_bpae048-B4
  article-title: Metabolic adaptation of lymphocytes in immunity and disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.12.012
– volume: 459
  start-page: 1005
  year: 2009
  ident: 2024071520404741100_bpae048-B16
  article-title: Genes that mediate breast cancer metastasis to the brain
  publication-title: Nature
  doi: 10.1038/nature08021
– start-page: 1341
  ident: 2024071520404741100_bpae048-B21
  article-title: The implementation of partial least squares with artificial neural network architecture
– volume: 37
  start-page: 245
  year: 2016
  ident: 2024071520404741100_bpae048-B26
  article-title: Mass spectral fragmentation of trimethylsilylated small molecules
  publication-title: Mass Spectrom Rev
  doi: 10.1002/mas.21518
– volume: 109
  start-page: E1743
  year: 2012
  ident: 2024071520404741100_bpae048-B31
  article-title: Mass spectral molecular networking of living microbial colonies
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1203689109
– volume: 86
  start-page: 277
  year: 2017
  ident: 2024071520404741100_bpae048-B7
  article-title: Metabolite measurement: pitfalls to avoid and practices to follow
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-061516-044952
– volume: 3
  start-page: 231
  year: 2007
  ident: 2024071520404741100_bpae048-B11
  article-title: Proposed minimum reporting standards for data analysis in metabolomics
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0081-3
– year: 2023
  ident: 2024071520404741100_bpae048-B24
  article-title: Raw GC/MS data used for MLOD (MetaboLiteLearner)
  publication-title: Zenodo
– volume: 34
  start-page: 110
  year: 2015
  ident: 2024071520404741100_bpae048-B1
  article-title: A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2014.12.007
– volume: 13
  start-page: 1017340
  year: 2022
  ident: 2024071520404741100_bpae048-B12
  article-title: Applications of machine learning in metabolomics: disease modeling and classification
  publication-title: Front Genet
  doi: 10.3389/fgene.2022.1017340
– volume: 18
  start-page: 251
  year: 1993
  ident: 2024071520404741100_bpae048-B20
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(93)85002-X
– volume: 7
  start-page: 1715
  year: 2017
  ident: 2024071520404741100_bpae048-B28
  article-title: Serum metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01924-9
– volume: 108
  start-page: 82
  year: 2011
  ident: 2024071520404741100_bpae048-B5
  article-title: Metabolic flux analysis of CHO cell metabolism in the late non-growth phase
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22890
– volume: 106
  start-page: 6477
  year: 2009
  ident: 2024071520404741100_bpae048-B2
  article-title: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811091106
– volume: 6
  start-page: e1000761
  year: 2010
  ident: 2024071520404741100_bpae048-B27
  article-title: Learning “graph-mer” motifs that predict gene expression trajectories in development
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000761
– volume: 28
  start-page: 27
  year: 2000
  ident: 2024071520404741100_bpae048-B22
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– ident: 2024071520404741100_bpae048-B18
– volume: 173
  start-page: 1581
  year: 2018
  ident: 2024071520404741100_bpae048-B13
  article-title: Next-generation machine learning for biological networks
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.015
– year: 2023
  ident: 2024071520404741100_bpae048-B25
  article-title: joaobxavier/learn_metabolic_rewiring_matlab: metaboLiteLearner08032023
  publication-title: Zenodo
– volume: 5
  start-page: 1005
  year: 2010
  ident: 2024071520404741100_bpae048-B10
  article-title: Global metabolic profiling procedures for urine using UPLC-MS
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2010.50
– volume: 145
  year: 2018
  ident: 2024071520404741100_bpae048-B3
  article-title: Revisiting the role of metabolism during development
  publication-title: Development
  doi: 10.1242/dev.131110
– volume: 83
  start-page: 3478
  year: 2023
  ident: 2024071520404741100_bpae048-B17
  article-title: The ratio of key metabolic transcripts is a predictive biomarker of breast cancer metastasis to the lung
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-23-0153
– volume: 24
  start-page: 1252
  year: 2022
  ident: 2024071520404741100_bpae048-B34
  article-title: Nucleotide imbalance decouples cell growth from cell proliferation
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-022-00965-1
– volume: 9
  start-page: 44
  year: 2013
  ident: 2024071520404741100_bpae048-B9
  article-title: Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0434-4
– volume: 12
  issue: 5
  year: 2022
  ident: 2024071520404741100_bpae048-B29
  article-title: Metabolomic analysis of plasma from breast cancer patients using ultra-high-performance liquid chromatography coupled with mass spectrometry: an untargeted study
  publication-title: Metabolites
  doi: 10.3390/metabo12050447
– volume: 14
  start-page: 911
  year: 1978
  ident: 2024071520404741100_bpae048-B14
  article-title: Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization
  publication-title: In Vitro
  doi: 10.1007/BF02616120
– volume: 17
  start-page: e1009105
  year: 2021
  ident: 2024071520404741100_bpae048-B8
  article-title: Pathway analysis in metabolomics: recommendations for the use of over-representation analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1009105
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: 2024071520404741100_bpae048-B19
  doi: 10.1007/978-0-387-84858-7
– volume: 17
  start-page: 146
  year: 2021
  ident: 2024071520404741100_bpae048-B32
  article-title: Chemically informed analyses of metabolomics mass spectrometry data with Qemistree
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-00677-3
– volume: 173
  start-page: 822
  year: 2018
  ident: 2024071520404741100_bpae048-B35
  article-title: Metabolomics and isotope tracing
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.055
– volume: 436
  start-page: 518
  year: 2005
  ident: 2024071520404741100_bpae048-B15
  article-title: Genes that mediate breast cancer metastasis to lung
  publication-title: Nature
  doi: 10.1038/nature03799
– volume: 81
  start-page: 10038
  year: 2009
  ident: 2024071520404741100_bpae048-B23
  article-title: FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry
  publication-title: Anal Chem
  doi: 10.1021/ac9019522
– volume: 10
  start-page: 13
  year: 2022
  ident: 2024071520404741100_bpae048-B30
  article-title: Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer
  publication-title: Cancer Metab
  doi: 10.1186/s40170-022-00289-6
– volume: 71
  start-page: 333
  year: 2021
  ident: 2024071520404741100_bpae048-B6
  article-title: Metabolomics in cancer research and emerging applications in clinical oncology
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21670
– volume: 19
  start-page: 865
  year: 2022
  ident: 2024071520404741100_bpae048-B33
  article-title: MSNovelist: de novo structure generation from mass spectra
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01486-3
– reference: 37645838 - bioRxiv. 2023 Oct 10:2023.08.11.552957. doi: 10.1101/2023.08.11.552957
SSID ssj0001845101
Score 2.2429352
Snippet Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage bpae048
SubjectTerms Methods
Title Machine learning of cellular metabolic rewiring
URI https://www.ncbi.nlm.nih.gov/pubmed/39011352
https://www.proquest.com/docview/3081300070
https://pubmed.ncbi.nlm.nih.gov/PMC11249387
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kIngR38ZHiSBeJDTJZjebo0pLEVpFWugt7G42Wihp6QPx3zubpI9IDz1ns2y-GTLfzM4D4EGZjo-Mu44KeOAEfkIcqdBLEZ6KPEEiQfLZgJ0ua_eDtwEdlMXqsy1X-BFp5HXoZpryrCEnQqPK4R8XrbDR6t77YB1R4YFRsLIyZvubFetTqWjbIJb_8yM3DE7rGI5Kpmg_F6I9gT2dncJBMTvy9wwanTwNUtvl3Icve5zaJgxv8kptPBBKdzRU9lT_DE3s7hz6rWbvte2U0w8chZxl7kQJi3ztJUygh5a6NHFVQgV-JUsDRQR6xFIyrqlgxgfi1EVzx1PEVzFXEynIBdSycaavwNZhIij6wGiMZEBTX5CQM0kT32M85G5qwdMSlXhSNLmIi8tpEq8xjEsMLXhE4HZaeL_ENkalNRCITI8Xs5ggESGGnrgWXBZYr_YzQRgPaaEFvCKF1QLTELv6JBt-542xPTNJm_DwetcT3sChjySlCKncQm0-Xeg7JBlzWYf9l2b347OeO-n1XNP-AMaL1nU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+of+cellular+metabolic+rewiring&rft.jtitle=Biology+methods+and+protocols&rft.au=Xavier%2C+Joao+B&rft.date=2024&rft.eissn=2396-8923&rft.volume=9&rft.issue=1&rft.spage=bpae048&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpae048&rft_id=info%3Apmid%2F39011352&rft.externalDocID=39011352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon