Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO 2 ) removal technologies, in particular in the 2040s and onwards. CO 2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands...
Saved in:
Published in | Mitigation and adaptation strategies for global change Vol. 25; no. 1; pp. 43 - 65 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO
2
) removal technologies, in particular in the 2040s and onwards. CO
2
direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO
2
DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/t
CO2
in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO
2
removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement. |
---|---|
AbstractList | Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO
2
) removal technologies, in particular in the 2040s and onwards. CO
2
direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO
2
DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/t
CO2
in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO
2
removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement. Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO₂) removal technologies, in particular in the 2040s and onwards. CO₂ direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO₂ DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/tCO₂ in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO₂ removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement. Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in the 2040s and onwards. CO2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/tCO2 in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement. |
Author | Breyer, Christian Fasihi, Mahdi Aghahosseini, Arman |
Author_xml | – sequence: 1 givenname: Christian orcidid: 0000-0002-7380-1816 surname: Breyer fullname: Breyer, Christian email: Christian.Breyer@lut.fi organization: Lappeenranta University of Technology – sequence: 2 givenname: Mahdi surname: Fasihi fullname: Fasihi, Mahdi organization: Lappeenranta University of Technology – sequence: 3 givenname: Arman surname: Aghahosseini fullname: Aghahosseini, Arman organization: Lappeenranta University of Technology |
BookMark | eNp9kc-KFDEQxhtZwd3VB_AW8OKlNZWkJ4k3GfwHC170HDLpypilp9MmabUfxPe11hGEBT19RfH7KpX6rrqLOc_YdU-BvwDO9csKwIXuOdjeGqX77UF3CYOWPQx2d0G1NNALaXaPuqtabznnEga47H7ufTnkmY0p_0gjkhYMjflUWPBLWwuymAvDGKmdviELUzr5RvrFz0dkp9TS0bdEIw6-4sioKDjjd3-YkOFErpJCatsr5hm1WdsWZDkyYspxY3WrDU-sEkfPhLwuU5qPj7uH0U8Vn_zR6-7z2zef9u_7m4_vPuxf3_RBWtF664MRg-BjGEHAINFG0MNuFD6itsrywYMYkIOMJipzUFxINSgthRLcm5287p6f5y4lf12xNndKNeA0-RnzWp1Q0iowWglCn91Db_NaZtrOCdDGKG4lJ0qfqVByrQWjo7__Pk8rPk0OuLuLy53jchSXu4vLbeSEe86l0KXL9l-POHsqsZRG-bvTv02_ABbzq3c |
CitedBy_id | crossref_primary_10_3389_fenrg_2024_1443974 crossref_primary_10_1016_j_ijggc_2024_104297 crossref_primary_10_1039_D3EE01008B crossref_primary_10_1016_j_egyr_2024_06_070 crossref_primary_10_1016_j_rser_2023_113637 crossref_primary_10_1088_2516_1083_abf1ce crossref_primary_10_1016_j_techfore_2023_122734 crossref_primary_10_1016_j_jup_2023_101627 crossref_primary_10_1016_j_apenergy_2024_123112 crossref_primary_10_1021_acssuschemeng_3c02082 crossref_primary_10_1016_j_apenergy_2023_121216 crossref_primary_10_1088_1748_9326_ac2db0 crossref_primary_10_3390_en15030971 crossref_primary_10_1016_j_isci_2024_109154 crossref_primary_10_1016_j_copbio_2022_102705 crossref_primary_10_1016_j_pecs_2023_101073 crossref_primary_10_1002_pip_3114 crossref_primary_10_1016_j_apenergy_2022_120401 crossref_primary_10_1016_j_egyr_2024_08_011 crossref_primary_10_1039_D2VA00168C crossref_primary_10_1163_1569206X_29012021 crossref_primary_10_2139_ssrn_4184163 crossref_primary_10_1016_j_crsus_2024_100151 crossref_primary_10_1016_j_apenergy_2022_119895 crossref_primary_10_1002_cjce_24397 crossref_primary_10_1016_j_spc_2024_04_003 crossref_primary_10_1021_acs_iecr_2c00681 crossref_primary_10_3389_fclim_2024_1353939 crossref_primary_10_1111_1758_5899_12828 crossref_primary_10_1016_j_renene_2024_121198 crossref_primary_10_1016_j_jclepro_2019_03_086 crossref_primary_10_1016_j_jclepro_2022_133920 crossref_primary_10_1088_1748_9326_ab30aa crossref_primary_10_1016_j_ecmx_2022_100230 crossref_primary_10_1016_j_energy_2022_123419 crossref_primary_10_3389_fclim_2024_1394728 crossref_primary_10_3390_agriculture13071464 crossref_primary_10_1016_j_joule_2023_06_004 crossref_primary_10_1016_j_apenergy_2023_122608 crossref_primary_10_1109_ACCESS_2022_3193402 crossref_primary_10_1016_j_ccst_2024_100311 crossref_primary_10_1016_j_esr_2022_101012 crossref_primary_10_1016_j_rser_2022_112079 crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_3389_fclim_2021_630893 crossref_primary_10_3390_app13074349 crossref_primary_10_1016_j_ijggc_2023_103935 crossref_primary_10_1007_s12398_019_00256_7 crossref_primary_10_1021_acs_est_2c05194 crossref_primary_10_2478_rtuect_2023_0057 crossref_primary_10_1016_j_spc_2025_02_017 crossref_primary_10_1016_j_ccst_2024_100304 crossref_primary_10_1016_j_apenergy_2023_121649 crossref_primary_10_1016_j_oneear_2019_11_006 crossref_primary_10_1021_acs_energyfuels_2c03971 crossref_primary_10_1109_ACCESS_2022_3221155 crossref_primary_10_1002_ghg_2136 crossref_primary_10_1016_j_ccst_2021_100025 crossref_primary_10_1016_j_enconman_2024_118739 crossref_primary_10_1016_j_apenergy_2024_124402 crossref_primary_10_1016_j_esr_2021_100656 crossref_primary_10_1038_s41467_019_10842_5 crossref_primary_10_1016_j_jclepro_2019_01_226 crossref_primary_10_3390_land11122153 crossref_primary_10_1016_j_fuel_2023_128913 crossref_primary_10_1007_s41247_022_00097_y crossref_primary_10_1109_ACCESS_2021_3121000 crossref_primary_10_1016_j_isci_2022_103990 crossref_primary_10_3390_en16093881 crossref_primary_10_1016_j_energy_2023_129252 crossref_primary_10_1016_j_rser_2022_112452 crossref_primary_10_36535_0869_1002_2019_06_1 crossref_primary_10_1039_D1YA00035G crossref_primary_10_3389_fenvs_2022_889428 crossref_primary_10_1016_j_scca_2023_100029 crossref_primary_10_1016_j_scitotenv_2023_161675 crossref_primary_10_1002_adsu_202000101 crossref_primary_10_1007_s11270_020_04933_z crossref_primary_10_1016_j_jclepro_2023_137731 crossref_primary_10_1016_j_esr_2022_101047 crossref_primary_10_3390_en16176183 crossref_primary_10_1039_D1CS00970B crossref_primary_10_1016_j_ijggc_2023_103862 crossref_primary_10_1029_2023EF003639 crossref_primary_10_3389_fclim_2021_647276 crossref_primary_10_1073_pnas_2015025118 crossref_primary_10_1029_2022EF002875 crossref_primary_10_1109_ACCESS_2023_3241686 crossref_primary_10_1016_j_cjche_2021_07_005 crossref_primary_10_1016_j_rser_2024_115189 crossref_primary_10_1016_j_segy_2025_100174 crossref_primary_10_1134_S2517751621050024 crossref_primary_10_1016_j_energy_2024_133572 crossref_primary_10_1021_acs_est_1c03263 crossref_primary_10_1021_acs_est_3c10041 crossref_primary_10_1016_j_enbenv_2022_02_009 crossref_primary_10_3390_resources10080084 crossref_primary_10_1016_j_ynexs_2025_100054 crossref_primary_10_1093_ce_zkae050 crossref_primary_10_1016_j_jcou_2024_102758 crossref_primary_10_3390_commodities1020009 |
Cites_doi | 10.1016/j.enconman.2016.01.019 10.1021/ie300691c 10.1016/j.gloenvcha.2016.05.015 10.1002/pip.2885 10.1039/C7EE03610H 10.1016/j.ijggc.2008.02.005 10.1038/nenergy.2017.140 10.1016/j.rser.2014.07.093 10.1016/j.solener.2017.09.030 10.1038/s41560-018-0116-1 10.1016/j.jcou.2018.09.026 10.1016/j.renene.2018.02.009 10.1038/s41467-018-05340-z 10.1088/1748-9326/aa67a5 10.1126/science.1172246 10.1016/j.rser.2018.03.079 10.1002/pip.2950 10.1038/nenergy.2017.110 10.1016/j.erss.2018.03.019 10.1016/j.rser.2018.04.113 10.1016/j.est.2018.03.009 10.3390/su9020306 10.1016/j.joule.2017.07.005 10.1038/530153a 10.1039/c2ee21586a 10.1038/nenergy.2017.125 10.1038/nclimate2870 10.1016/j.egypro.2011.02.194 10.1063/1.4984535 10.1038/504339a 10.1016/j.renene.2018.09.082 10.1038/s41558-018-0091-3 10.1016/j.joule.2018.06.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO F1W FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ L.- L.G M0C M2P PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11027-019-9847-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global ProQuest Science Database (NC LIVE) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1573-1596 |
EndPage | 65 |
ExternalDocumentID | 10_1007_s11027_019_9847_y |
GeographicLocations | Maghreb |
GeographicLocations_xml | – name: Maghreb |
GrantInformation_xml | – fundername: Lappeenranta University of Technology (LUT) |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 7WY 7XC 88I 8FE 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EIS EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M2P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7V Z7Y Z7Z Z81 Z86 Z8P Z8S Z8T Z8U ZMTXR ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H97 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c392t-9ac82520dcd12153e9f1756d2afe794905a125e013f8f48b4023454732420a863 |
IEDL.DBID | C6C |
ISSN | 1381-2386 |
IngestDate | Fri Jul 11 05:27:54 EDT 2025 Fri Jul 25 20:03:43 EDT 2025 Tue Jul 01 04:12:55 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Fri Feb 21 02:34:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Maghreb Negative emission technology CO direct air capture Energy transition 100% renewable energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-9ac82520dcd12153e9f1756d2afe794905a125e013f8f48b4023454732420a863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7380-1816 |
OpenAccessLink | https://doi.org/10.1007/s11027-019-9847-y |
PQID | 2178840930 |
PQPubID | 54623 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2439418742 proquest_journals_2178840930 crossref_citationtrail_10_1007_s11027_019_9847_y crossref_primary_10_1007_s11027_019_9847_y springer_journals_10_1007_s11027_019_9847_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change |
PublicationTitle | Mitigation and adaptation strategies for global change |
PublicationTitleAbbrev | Mitig Adapt Strateg Glob Change |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | [IPCC] - Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C, IPCC, Geneva, www.ipcc.ch. Accessed 15 Dec 2018 JacobsonMZDelucchiMACameronMAMathiesenBVMatching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposesRenew Energy201812323624810.1016/j.renene.2018.02.009 WorkmanMMcGlashanNChalmersHShahNAn assessment of options for CO2 removal from the atmosphereEnergy Procedia201142877288410.1016/j.egypro.2011.02.194 ChildMKoskinenOLinnanenLBreyerCSustainability guardrails for energy scenarios of the global energy transitionRenew Sust Energ Rev20189132133410.1016/j.rser.2018.03.079 [ISE] - Fraunhofer ISE. (2015) Current and future cost of photovoltaics. long-term scenarios for market development, system prices and LCOE of utility-scale PV systems, study on behalf of Agora Energiewende, Freiburg and Berlin KingLCBergh van denJCJMImplications of net energy-return-on-investment for a low-carbon energy transitionNat Energy2018333434010.1038/s41560-018-0116-1 KeithDWHolmesGAngeloDSHeidelKA process for capturing CO2 from the atmosphereJoule2018212210.1016/j.joule.2018.06.010 KilickaplanABogdanovDPekerOCalderaUAghahosseiniABreyerCAn energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050Sol Energy201715821823510.1016/j.solener.2017.09.030 Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017f) Global 100% RE system: Sub-Saharan Africa - West-West, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/61dFMW (accessed on 1.4.2018) Ping E, Sakwa-Novak M, Eisenberger P (2018) Global thermostat low cost direct air capture technology. International Conference on Negative CO2 Emissions, Gothenburg, May 22–24 Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017a) Global energy system based on 100% renewable energy - power sector. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/7y9sKR (accessed on 1.4.2018) FajardyMDowellNMThe energy return on investment of BECCS: is BECCS a threat to energy security?Energy Environ Sci2018111581159410.1039/C7EE03610H MontasterskyRSeabed scars raise questions over carbon-storage planNature201350433934010.1038/504339a Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017c) Global 100% RE system: MENA - Algeria, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/f32ueS (accessed on 1.4.2018) FogartyJMcCallyMHealth and safety risks of carbon capture and storageJournal of the American Medical Society20103036768 JacobsonMZDelucchiMABauerZAFGoodmanSCChapmanWECameronMA100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the worldJoule2017110812110.1016/j.joule.2017.07.005 ITRPV Working Group (2018) International technology roadmap for photovoltaic (ITRPV) - 2017 Results 9th Edition, Frankfurt, http://itrpv.net/Reports/Downloads/. Accessed 15 Dec 2018 Breyer C, Afanasyeva S, Brakemeier D, Engelhard M, Giuliano S, Puppe M, Schenk H, Hirsch T, Moser M (2017b) Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings1850(1), 160001, doi: https://doi.org/10.1063/1.4984535, https://goo.gl/RTbDDA (accessed on 4.4.2018) [ETIP-PV] - European Technology & Innovation Platform - Photovoltaic (2017) The true competitiveness of Solar PV – a European case study, ETIP-PV, Munich, March 29, https://goo.gl/UjyGuU (accessed on 3.4.2018) Hoffmann W (2014) Importance and evidence for cost effective electricity storage. Paper presented at 29th EU PVSEC. Amsterdam, September 22–26 PV-Tech (2017) Bids in 300MW Saudi solar tender breach two cents, PV-Tech Solar Media Ltd., London, https://www.pv-tech.org/news/technical-bids-for-300mw-of-solar-in-saudi-arabia-already-breach-2-cents, October 3, (accessed on 1.4.2018) BreyerCBogdanovDGulagiAAghahosseiniABarbosaLSNSKoskinenOBarasaMCalderaUAfanasyevaSChildMFarfanJVainikkaPOn the role of solar photovoltaics in global energy transition scenariosProg Photovolt Res Appl20172572774510.1002/pip.2885 Vidal VáquezFKoponenJRuuskanenVBajamundiCKosonenASimellPAholaJFrilundCElfvingJReinikainenMHeikkinenNKauppinenJPiermartiniPPower-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process conceptJournal of CO2 Utilization20182823524610.1016/j.jcou.2018.09.026 FridahlMLehtveerMBioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriersEnergy Res Soc Sci20184215516510.1016/j.erss.2018.03.019 KittnerNLillFKammenDMEnergy storage deployment and innovation for the clean energy transitionNat Energy201721712510.1038/nenergy.2017.125 Bolinger M, Seel J (2016) Utility-scale solar 2015: an empirical analysis of project cost, performance, and pricing trends in the United States, Lawrence Berkeley National Laboratory. Berkley; https://emp.lbl.gov/publications/utility-scale-solar-2015-empirical. Accessed 15 Dec 2018 BrownTWBischof-NiemzTBlokKBreyerCLundHMathiesenBVResponse to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’Renew Sust Energ Rev20189283484710.1016/j.rser.2018.04.113 WilliamsonPScrutinize CO2 removal methodsnature201653015315510.1038/530153a BogdanovDBreyerCNorth-East Asian Super Grid for 100% renewable energy supply: optimal mix of energy technologies for electricity, gas and heat supply optionsEnergy Convers Manag201611217619010.1016/j.enconman.2016.01.019 Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017d) Global 100% RE system: MENA - Tunisia, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/8YYNrF (accessed on 1.4.2018) FasihiMBogdanovDBreyerCLong-term hydrocarbon trade options for the Maghreb region and Europe – renewable energy based synthetic fuels for a net zero emissions worldSustainability2017930610.3390/su9020306 GoeppertACzaunMSurya PrakashGOlahGAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ Sci2012577833785310.1039/c2ee21586a HazeldineRSCarbon capture and storage: how green can black be?Science20093251647165210.1126/science.1172246 [UNFCCC] United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement—proposal by the president, UNFCCC, Paris, December 12, http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf. Accessed 15 Dec 2018 LeungDYCCaramannaGMaroto-ValerMMAn overview of current status of carbon dioxide capture and storage technologiesRenew Sust Energ Rev20143942644310.1016/j.rser.2014.07.093 CreutzigFAgostonPGoldschmidtJCLudererGNemetGPietzckerRCThe underestimated potential of solar energy to mitigate climate changeNat Energy201721714010.1038/nenergy.2017.140 Stackhouse PW (2008) Surface meteorology and solar energy (SSE) Release 6.0, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/ (accessed on 14.3.2017) RogeljJPoppACalvinKVLudererGEmmerlingJGernaatDFujimoriSStreflerJHasegawaTMarangoniGKreyVKrieglerERiahiKvan VuurenDPDoelmanJDrouetLEdmondsJFrickoOHarmsenMHavlíkPHumpenöderFStehfestETavoniMScenarios towards limiting global mean temperature increase below 1.5 °CNat Clim Chang2018832533210.1038/s41558-018-0091-3 SmithPDavisSJCreutzigFFussSMinxJGabrielleBKatoEJacksonRBCowieAKrieglerEvan VuurenDPRogeljJCiaisPMilneJCanadellJGMcCollumDPetersGAndrewRKreyVShresthaGFriedlingsteinPGasserTGrüblerAHeidugWKJonasMJonesCDKraxnerFLittletonELoweJMoreiraJRNakicenovicNObersteinerMPatwardhanARognerMRubinESharifiATorvangerAYamagataYEdmondsJYongsungCBiophysical and economic limits to negative CO2 emissionsNat Clim Chang20166425010.1038/nclimate2870 BreyerCBogdanovDAghahosseiniAGulagiAChildMOyewoASFarfanJSadovskaiaKVainikkaPSolar photovoltaics demand for the global energy transition in the power sectorProg Photovolt Res Appl20182650552310.1002/pip.2950 Climeworks (2018) Capturing CO2 from air. Zurich, Switzerland. Available athttp://www.climeworks.com/co2-removal/ (accessed 1 February 2018) DowellNMFajardyMInefficient power generation as an optimal route to negative emissions via BECCS?Environ Res Lett20171210.1088/1748-9326/aa67a5 StetterDEnhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation2012StuttgartUniversity of Stuttgart [DEA] Danish Energy Agency (2016), Technology data for energy plants updated chapters, August 2016, August, p. 117, Copenhagen, https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf (accessed on 1.4.2018) KulkarniAShollDAnalysis of equilibrium-based TSA processes for direct capture of CO2 from airInd Eng Chem Res201251258631864510.1021/ie300691c SchmidtOHawkesAGambhirAStaffellIThe future cost of electrical energy storage based on experience ratesNat Energy201761711010.1038/nenergy.2017.110 Stackhouse PW (2009) Surface meteorology and solar energy (SSE) Release 6.0 Methodology, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/documents/SSE6Methodology (accessed on 14.3.2017) Global Thermostat (2018) A unique capture process. New York, USA Available at https://globalthermostat.com/a-unique-capture-process/ (accessed 15 May 2018) Aghahosseini A, Bogdanov D, Breyer Ch (2016) The MENA Super Grid towards 100% renewable energy power supply by 2030, 11th International Energy Conference, Tehran, May 30–31, https://bit.ly/2iYvZCO (accessed on 5.6.2018) HarperABPowellTCoxPMHouseJHuntingfordCLentonTMSitchSBurkeEChadburnSECollinsWJComyn-PlattEDaioglouVDoelmanJCHaymanGRob RS Hazeldine (9847_CR26) 2009; 325 F Vidal Váquez (9847_CR54) 2018; 28 A Kulkarni (9847_CR36) 2012; 51 LC King (9847_CR33) 2018; 3 A Goeppert (9847_CR24) 2012; 5 D Stetter (9847_CR53) 2012 MZ Jacobson (9847_CR30) 2018; 123 E Kriegler (9847_CR35) 2017; 42 MZ Jacobson (9847_CR29) 2017; 1 9847_CR47 9847_CR46 M Fridahl (9847_CR22) 2018; 42 9847_CR45 DW Keith (9847_CR31) 2018; 2 9847_CR44 9847_CR43 9847_CR42 9847_CR41 R Montastersky (9847_CR38) 2013; 504 9847_CR40 9847_CR9 9847_CR7 9847_CR39 9847_CR5 9847_CR4 9847_CR3 9847_CR2 9847_CR1 C Breyer (9847_CR8) 2017; 25 C Breyer (9847_CR10) 2018; 26 M Workman (9847_CR56) 2011; 4 TW Brown (9847_CR11) 2018; 92 A Kilickaplan (9847_CR32) 2017; 158 J Fogarty (9847_CR21) 2010; 303 P Williamson (9847_CR55) 2016; 530 N Kittner (9847_CR34) 2017; 2 9847_CR28 P Smith (9847_CR50) 2016; 6 9847_CR27 D Bogdanov (9847_CR6) 2016; 112 DYC Leung (9847_CR37) 2014; 39 9847_CR23 U Caldera (9847_CR12) 2018; 17 M Fajardy (9847_CR19) 2018; 11 AB Harper (9847_CR25) 2018; 9 NM Dowell (9847_CR16) 2017; 12 J Rogelj (9847_CR48) 2018; 8 O Schmidt (9847_CR49) 2017; 6 9847_CR18 M Fasihi (9847_CR20) 2017; 9 IG Enting (9847_CR17) 2008; 2 F Creutzig (9847_CR15) 2017; 2 9847_CR14 M Child (9847_CR13) 2018; 91 9847_CR52 9847_CR51 |
References_xml | – reference: [IPCC] - Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C, IPCC, Geneva, www.ipcc.ch. Accessed 15 Dec 2018 – reference: HazeldineRSCarbon capture and storage: how green can black be?Science20093251647165210.1126/science.1172246 – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017e) Global 100% RE system: MENA - Libya, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/UQ8s3L (accessed on 1.4.2018) – reference: BrownTWBischof-NiemzTBlokKBreyerCLundHMathiesenBVResponse to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’Renew Sust Energ Rev20189283484710.1016/j.rser.2018.04.113 – reference: KingLCBergh van denJCJMImplications of net energy-return-on-investment for a low-carbon energy transitionNat Energy2018333434010.1038/s41560-018-0116-1 – reference: EntingIGEtheridgeDMFieldingMJA perturbation analysis of the climate benefit from geosequestration of carbon dioxideInternational Journal of Greenhouse Gas Control2008228929610.1016/j.ijggc.2008.02.005 – reference: Vidal VáquezFKoponenJRuuskanenVBajamundiCKosonenASimellPAholaJFrilundCElfvingJReinikainenMHeikkinenNKauppinenJPiermartiniPPower-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process conceptJournal of CO2 Utilization20182823524610.1016/j.jcou.2018.09.026 – reference: BogdanovDBreyerCNorth-East Asian Super Grid for 100% renewable energy supply: optimal mix of energy technologies for electricity, gas and heat supply optionsEnergy Convers Manag201611217619010.1016/j.enconman.2016.01.019 – reference: [UNFCCC] United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement—proposal by the president, UNFCCC, Paris, December 12, http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf. Accessed 15 Dec 2018 – reference: FasihiMBogdanovDBreyerCLong-term hydrocarbon trade options for the Maghreb region and Europe – renewable energy based synthetic fuels for a net zero emissions worldSustainability2017930610.3390/su9020306 – reference: Stackhouse PW (2008) Surface meteorology and solar energy (SSE) Release 6.0, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/ (accessed on 14.3.2017) – reference: [ISE] - Fraunhofer ISE. (2015) Current and future cost of photovoltaics. long-term scenarios for market development, system prices and LCOE of utility-scale PV systems, study on behalf of Agora Energiewende, Freiburg and Berlin – reference: JacobsonMZDelucchiMACameronMAMathiesenBVMatching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposesRenew Energy201812323624810.1016/j.renene.2018.02.009 – reference: WilliamsonPScrutinize CO2 removal methodsnature201653015315510.1038/530153a – reference: FogartyJMcCallyMHealth and safety risks of carbon capture and storageJournal of the American Medical Society20103036768 – reference: SmithPDavisSJCreutzigFFussSMinxJGabrielleBKatoEJacksonRBCowieAKrieglerEvan VuurenDPRogeljJCiaisPMilneJCanadellJGMcCollumDPetersGAndrewRKreyVShresthaGFriedlingsteinPGasserTGrüblerAHeidugWKJonasMJonesCDKraxnerFLittletonELoweJMoreiraJRNakicenovicNObersteinerMPatwardhanARognerMRubinESharifiATorvangerAYamagataYEdmondsJYongsungCBiophysical and economic limits to negative CO2 emissionsNat Clim Chang20166425010.1038/nclimate2870 – reference: StetterDEnhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation2012StuttgartUniversity of Stuttgart – reference: ChildMKoskinenOLinnanenLBreyerCSustainability guardrails for energy scenarios of the global energy transitionRenew Sust Energ Rev20189132133410.1016/j.rser.2018.03.079 – reference: RogeljJPoppACalvinKVLudererGEmmerlingJGernaatDFujimoriSStreflerJHasegawaTMarangoniGKreyVKrieglerERiahiKvan VuurenDPDoelmanJDrouetLEdmondsJFrickoOHarmsenMHavlíkPHumpenöderFStehfestETavoniMScenarios towards limiting global mean temperature increase below 1.5 °CNat Clim Chang2018832533210.1038/s41558-018-0091-3 – reference: MontasterskyRSeabed scars raise questions over carbon-storage planNature201350433934010.1038/504339a – reference: FridahlMLehtveerMBioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriersEnergy Res Soc Sci20184215516510.1016/j.erss.2018.03.019 – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017a) Global energy system based on 100% renewable energy - power sector. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/7y9sKR (accessed on 1.4.2018) – reference: CalderaUBreyerCThe role that battery and water storage play in Saudi Arabia’s transition to an integrated 100% renewable energy power systemJournal of Energy Storage20181729931010.1016/j.est.2018.03.009 – reference: Climeworks (2018) Capturing CO2 from air. Zurich, Switzerland. Available athttp://www.climeworks.com/co2-removal/ (accessed 1 February 2018) – reference: WorkmanMMcGlashanNChalmersHShahNAn assessment of options for CO2 removal from the atmosphereEnergy Procedia201142877288410.1016/j.egypro.2011.02.194 – reference: GoeppertACzaunMSurya PrakashGOlahGAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ Sci2012577833785310.1039/c2ee21586a – reference: Stackhouse PW (2009) Surface meteorology and solar energy (SSE) Release 6.0 Methodology, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/documents/SSE6Methodology (accessed on 14.3.2017) – reference: KeithDWHolmesGAngeloDSHeidelKA process for capturing CO2 from the atmosphereJoule2018212210.1016/j.joule.2018.06.010 – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017d) Global 100% RE system: MENA - Tunisia, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/8YYNrF (accessed on 1.4.2018) – reference: KrieglerEBauerNPoppAHumpenöderFLeimbachMStreflerJBaumstarkLBodirskyBLHilaireJKleinDMouratiadouIWeindlIBertramCDietrichJPLudererGPehlMPietzckerRPiontekFLotze-CampenHBiewaldABonschMGiannousakisAKreidenweisUMüllerCRolinskiSSchultesASchwanitzJStevanovicMCalvinKEmmerlingJFujimoriSEdenhoferOFossil-fueled development (SSP5): an emissions, energy and resource intensive reference scenario for the 21st centuryGlob Environ Chang20174229731510.1016/j.gloenvcha.2016.05.015 – reference: Aghahosseini A, Bogdanov D, Breyer Ch (2016) The MENA Super Grid towards 100% renewable energy power supply by 2030, 11th International Energy Conference, Tehran, May 30–31, https://bit.ly/2iYvZCO (accessed on 5.6.2018) – reference: SchmidtOHawkesAGambhirAStaffellIThe future cost of electrical energy storage based on experience ratesNat Energy201761711010.1038/nenergy.2017.110 – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017b) Global 100% RE system: MENA - Morocco, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/qWDM8Q (accessed on 1.4.2018) – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017f) Global 100% RE system: Sub-Saharan Africa - West-West, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/61dFMW (accessed on 1.4.2018) – reference: Ping E, Sakwa-Novak M, Eisenberger P (2018) Global thermostat low cost direct air capture technology. International Conference on Negative CO2 Emissions, Gothenburg, May 22–24 – reference: [ETIP-PV] - European Technology & Innovation Platform - Photovoltaic (2017) The true competitiveness of Solar PV – a European case study, ETIP-PV, Munich, March 29, https://goo.gl/UjyGuU (accessed on 3.4.2018) – reference: [DEA] Danish Energy Agency (2016), Technology data for energy plants updated chapters, August 2016, August, p. 117, Copenhagen, https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf (accessed on 1.4.2018) – reference: JacobsonMZDelucchiMABauerZAFGoodmanSCChapmanWECameronMA100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the worldJoule2017110812110.1016/j.joule.2017.07.005 – reference: Hoffmann W (2014) Importance and evidence for cost effective electricity storage. Paper presented at 29th EU PVSEC. Amsterdam, September 22–26 – reference: LeungDYCCaramannaGMaroto-ValerMMAn overview of current status of carbon dioxide capture and storage technologiesRenew Sust Energ Rev20143942644310.1016/j.rser.2014.07.093 – reference: Breyer C, Afanasyeva S, Brakemeier D, Engelhard M, Giuliano S, Puppe M, Schenk H, Hirsch T, Moser M (2017b) Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings1850(1), 160001, doi: https://doi.org/10.1063/1.4984535, https://goo.gl/RTbDDA (accessed on 4.4.2018) – reference: FajardyMDowellNMThe energy return on investment of BECCS: is BECCS a threat to energy security?Energy Environ Sci2018111581159410.1039/C7EE03610H – reference: KittnerNLillFKammenDMEnergy storage deployment and innovation for the clean energy transitionNat Energy201721712510.1038/nenergy.2017.125 – reference: BreyerCBogdanovDGulagiAAghahosseiniABarbosaLSNSKoskinenOBarasaMCalderaUAfanasyevaSChildMFarfanJVainikkaPOn the role of solar photovoltaics in global energy transition scenariosProg Photovolt Res Appl20172572774510.1002/pip.2885 – reference: CreutzigFAgostonPGoldschmidtJCLudererGNemetGPietzckerRCThe underestimated potential of solar energy to mitigate climate changeNat Energy201721714010.1038/nenergy.2017.140 – reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017c) Global 100% RE system: MENA - Algeria, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/f32ueS (accessed on 1.4.2018) – reference: PV-Tech (2017) Bids in 300MW Saudi solar tender breach two cents, PV-Tech Solar Media Ltd., London, https://www.pv-tech.org/news/technical-bids-for-300mw-of-solar-in-saudi-arabia-already-breach-2-cents, October 3, (accessed on 1.4.2018) – reference: DowellNMFajardyMInefficient power generation as an optimal route to negative emissions via BECCS?Environ Res Lett20171210.1088/1748-9326/aa67a5 – reference: BreyerCBogdanovDAghahosseiniAGulagiAChildMOyewoASFarfanJSadovskaiaKVainikkaPSolar photovoltaics demand for the global energy transition in the power sectorProg Photovolt Res Appl20182650552310.1002/pip.2950 – reference: KulkarniAShollDAnalysis of equilibrium-based TSA processes for direct capture of CO2 from airInd Eng Chem Res201251258631864510.1021/ie300691c – reference: Global Thermostat (2018) A unique capture process. New York, USA Available at https://globalthermostat.com/a-unique-capture-process/ (accessed 15 May 2018) – reference: ITRPV Working Group (2018) International technology roadmap for photovoltaic (ITRPV) - 2017 Results 9th Edition, Frankfurt, http://itrpv.net/Reports/Downloads/. Accessed 15 Dec 2018 – reference: Pursiheimo E, Holttinen H, Koljonen T (2018) Inter-sectoral effects of high renewable energy share in global energy system. Renew Energy. https://doi.org/10.1016/j.renene.2018.09.082 – reference: Bolinger M, Seel J (2016) Utility-scale solar 2015: an empirical analysis of project cost, performance, and pricing trends in the United States, Lawrence Berkeley National Laboratory. Berkley; https://emp.lbl.gov/publications/utility-scale-solar-2015-empirical. Accessed 15 Dec 2018 – reference: KilickaplanABogdanovDPekerOCalderaUAghahosseiniABreyerCAn energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050Sol Energy201715821823510.1016/j.solener.2017.09.030 – reference: HarperABPowellTCoxPMHouseJHuntingfordCLentonTMSitchSBurkeEChadburnSECollinsWJComyn-PlattEDaioglouVDoelmanJCHaymanGRobertsonEvan VuurenDWiltshireAWebberCPBastosABoysenLCiaisPDevarajuNJainAKKrauseAPoulterBShuSLand-use emissions play a critical role in land-based mitigation for Paris climate targetsNat Commun20189293810.1038/s41467-018-05340-z – ident: 9847_CR39 – volume: 112 start-page: 176 year: 2016 ident: 9847_CR6 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.01.019 – ident: 9847_CR45 – ident: 9847_CR41 – ident: 9847_CR4 – volume: 51 start-page: 8631 issue: 25 year: 2012 ident: 9847_CR36 publication-title: Ind Eng Chem Res doi: 10.1021/ie300691c – volume: 42 start-page: 297 year: 2017 ident: 9847_CR35 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2016.05.015 – volume: 25 start-page: 727 year: 2017 ident: 9847_CR8 publication-title: Prog Photovolt Res Appl doi: 10.1002/pip.2885 – ident: 9847_CR51 – volume: 11 start-page: 1581 year: 2018 ident: 9847_CR19 publication-title: Energy Environ Sci doi: 10.1039/C7EE03610H – volume: 2 start-page: 289 year: 2008 ident: 9847_CR17 publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2008.02.005 – ident: 9847_CR42 – volume: 2 start-page: 17140 year: 2017 ident: 9847_CR15 publication-title: Nat Energy doi: 10.1038/nenergy.2017.140 – ident: 9847_CR1 – ident: 9847_CR46 – ident: 9847_CR5 – volume-title: Enhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation year: 2012 ident: 9847_CR53 – volume: 39 start-page: 426 year: 2014 ident: 9847_CR37 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2014.07.093 – volume: 158 start-page: 218 year: 2017 ident: 9847_CR32 publication-title: Sol Energy doi: 10.1016/j.solener.2017.09.030 – volume: 3 start-page: 334 year: 2018 ident: 9847_CR33 publication-title: Nat Energy doi: 10.1038/s41560-018-0116-1 – volume: 28 start-page: 235 year: 2018 ident: 9847_CR54 publication-title: Journal of CO2 Utilization doi: 10.1016/j.jcou.2018.09.026 – ident: 9847_CR52 – volume: 123 start-page: 236 year: 2018 ident: 9847_CR30 publication-title: Renew Energy doi: 10.1016/j.renene.2018.02.009 – volume: 9 start-page: 2938 year: 2018 ident: 9847_CR25 publication-title: Nat Commun doi: 10.1038/s41467-018-05340-z – volume: 12 year: 2017 ident: 9847_CR16 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa67a5 – volume: 325 start-page: 1647 year: 2009 ident: 9847_CR26 publication-title: Science doi: 10.1126/science.1172246 – ident: 9847_CR18 – ident: 9847_CR43 – volume: 91 start-page: 321 year: 2018 ident: 9847_CR13 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2018.03.079 – ident: 9847_CR14 – volume: 26 start-page: 505 year: 2018 ident: 9847_CR10 publication-title: Prog Photovolt Res Appl doi: 10.1002/pip.2950 – volume: 6 start-page: 17110 year: 2017 ident: 9847_CR49 publication-title: Nat Energy doi: 10.1038/nenergy.2017.110 – volume: 42 start-page: 155 year: 2018 ident: 9847_CR22 publication-title: Energy Res Soc Sci doi: 10.1016/j.erss.2018.03.019 – ident: 9847_CR2 – ident: 9847_CR47 – volume: 92 start-page: 834 year: 2018 ident: 9847_CR11 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2018.04.113 – volume: 17 start-page: 299 year: 2018 ident: 9847_CR12 publication-title: Journal of Energy Storage doi: 10.1016/j.est.2018.03.009 – ident: 9847_CR28 – volume: 9 start-page: 306 year: 2017 ident: 9847_CR20 publication-title: Sustainability doi: 10.3390/su9020306 – volume: 1 start-page: 108 year: 2017 ident: 9847_CR29 publication-title: Joule doi: 10.1016/j.joule.2017.07.005 – volume: 530 start-page: 153 year: 2016 ident: 9847_CR55 publication-title: nature doi: 10.1038/530153a – volume: 5 start-page: 7833 issue: 7 year: 2012 ident: 9847_CR24 publication-title: Energy Environ Sci doi: 10.1039/c2ee21586a – ident: 9847_CR44 – ident: 9847_CR23 – volume: 2 start-page: 17125 year: 2017 ident: 9847_CR34 publication-title: Nat Energy doi: 10.1038/nenergy.2017.125 – volume: 6 start-page: 42 year: 2016 ident: 9847_CR50 publication-title: Nat Clim Chang doi: 10.1038/nclimate2870 – ident: 9847_CR3 – volume: 4 start-page: 2877 year: 2011 ident: 9847_CR56 publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.194 – ident: 9847_CR7 – ident: 9847_CR9 doi: 10.1063/1.4984535 – ident: 9847_CR27 – volume: 504 start-page: 339 year: 2013 ident: 9847_CR38 publication-title: Nature doi: 10.1038/504339a – volume: 303 start-page: 67 year: 2010 ident: 9847_CR21 publication-title: Journal of the American Medical Society – ident: 9847_CR40 doi: 10.1016/j.renene.2018.09.082 – volume: 8 start-page: 325 year: 2018 ident: 9847_CR48 publication-title: Nat Clim Chang doi: 10.1038/s41558-018-0091-3 – volume: 2 start-page: 1 year: 2018 ident: 9847_CR31 publication-title: Joule doi: 10.1016/j.joule.2018.06.010 |
SSID | ssj0003151 |
Score | 2.5531313 |
Snippet | Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO
2
) removal technologies, in particular... Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in... Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO₂) removal technologies, in particular in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 43 |
SubjectTerms | 2018 Atmospheric Sciences Biospheric Storage Carbon dioxide Carbon dioxide removal Climate change Climate Change Management and Policy Climate change mitigation Cost analysis cost effectiveness Earth and Environmental Science Earth Sciences Electricity Electricity pricing Energy industry Energy policy Energy resources Energy sources Energy transition Environmental Management Global climate Global temperatures Gothenburg May 22-24 Heat Heat exchangers Heat pumps including: BioEnergy Carbon Capture and Storage Low cost Low temperature Maghreb Mitigation Modelling Modelling and Incentives and Policy Nets Original Article Other Negative Emission Technologies Paris Agreement Photovoltaic cells Photovoltaics Removal Renewable energy Renewable resources Resource management Scaling Solar cells Solar energy Sorbents Spatial discrimination Spatial resolution Temperature Topical Collection on 1st International Conference on Negative CO2 Emissions United Nations Framework Convention on Climate Change Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_a80UopbWK19oyhT4pi0n28tWXUuVECpUiFXwLm92NBM7kvA9a_5D-v53Jbi4o6FNCNsk-zO7Mb2b2NwPwJax0lEQqEZExsZgkRos8VaHIdGVsqVKZBsxG_nmRnF9NflzH1z7gtvTHKnud2Clq02qOkR8TdM7YGZHBt_md4K5RnF31LTRewhap4CwbwdbJ9OLX5UYXyzB2LlcWCjJOSZ_X7MhzZFv52GUuclLR4v6hZRrg5qMMaWd4zt7Aa48Y8bsT8Vt4YZsd2JsOBDUa9Dt0uQOvXBwOHb3oHfw7VYuybdDU7d_aWHQmDFW9QK3mnD5Agq3ojnWQ5kM9qwnE0rWjHeBt7Ypw0C_Y4BmkG66C-YcpV-ia6NSaoPxXVEiPkWO62FZoO1IhukrRuOySA6jbNTOAb3bh6mz6-_Rc-FYMQhOAWolcaXIlo8Bow-UopM0rwh2JiVRlaUfnQawIKVnCk1VWTbKSvFLJpcIYrgUqS-QejJq2sfuAaZJaraSW3CLJ0GCocysVdzyrojLWYwh6MRTa1ynndhmzYqiwzJIrSHIFS664H8Ph5pO5K9Lx3MsHvWwLv1-XxbC6xvB5M0w7jdMnqrHtmt5hEjG3MIzGcNSvieEXT074_vkJP8B2xD58F9Y5gNFqsbYfCeisyk9-Nf8HkTD8cw priority: 102 providerName: ProQuest |
Title | Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling |
URI | https://link.springer.com/article/10.1007/s11027-019-9847-y https://www.proquest.com/docview/2178840930 https://www.proquest.com/docview/2439418742 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB707kUQ0dPD9c5jBJ-UYJts09a33WXXQ3ERceF8KmmSSuFsj_3BeX-I_68zTXcXDxV82SxNmj5Mk_km0-8bgJdxZaWWRgvpXCKG2lmRpyYWma2cL02q0ojZyB_n-nwxfH-RXPRi0cyFuZW_f7Mi9yT548hc5LSRipu7cJjENAPnZfVkt-mqOAmxVRYL8kJ6m8D80xS_u6A9rryVCu08zOwhPOihIY6CLR_BHd8cwfF0z0Sjzn4pro7gfjhww8Ajegw_J2ZZtg26uv1RO4_BV6Gpl2jNFecJkPAphu83aItDe1kTWqW24xfg9zqobdAU7Nkc0h-Wu7xmbhWGajm1Jcz-Fg3SZeTDW2wr9B17EIMkNK66LADadsNU329PYDGbfpmci77mgrCElNYiN5ZiRhk561h3Qvm8IoChnTSVp6WbR4khSOQJOFZZNcxKCj8Va4IxLotMptUxHDRt458Cpjr11iiruBaSo87Y5l4ZLm1WyTKxA4i2ZihsL0jOdTEui72UMluuIMsVbLniZgCvdrdcBTWOfw0-3dq26BfmqqAILOOYVkUDeLHrpiXFeRLT-HZDY5gtzLUK5QBeb9-J_RR_feCz_xp9Avckx-7dcc4pHKyXG_-cAM66PIPD0Ww8nnP77uuHKbXj6fzT57PulaffhRz9ArKC-Z8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_q9UFBRKvFq1VH0BdlMdlc_gkiWq9cbXuItNC3dLO7kUBNrveHeh_Er-FndCab3KFg3_p04TbZPMxk5jcz-5sBeOkXWkZSRUIaE4pBZLRIY-WLRBfG5ioOYo_ZyMfjaHQ6-HIWnm3A744Lw8cqO5vYGGpTa86RvyXonHAwEngfJpeCp0ZxdbUboeHU4tAuryhkm70_-EzyfSXl_vBkbyTaqQJCExaYi1RpioqkZ7ThzgqBTQtyoZGRqrCknKkXKnL6lqBRkRSDJKcAK-CuV4w8PJVEAe17CzYHQeTJHmx-Go6_flvZ_sAPXYiX-IKcYdTVURuyHvlyPuaZipRcglj-7QnX8Pafimzj6Pbvw70WoeJHp1IPYMNWW7A9XBPiaLG1CLMtuOvyfujoTA_h156a5nWFpqx_lsaic5moyilqNeFyBRJMRneMhCwt6ouSQDP9NjQH_FG6ph-0BTtYg3TBXTevmOKFbmhPqSl0eIcK6W_kHDLWBdqGxIiuMzXOmmIE6nrBjOPvj-D0RoS0Db2qruxjwDiKrVaBDngkk6FFX6c2UDxhrZB5qPvgdWLIdNsXncdzXGTrjs4suYwkl7HksmUfXq8embimINfdvNvJNmvtwyxba3MfXqyW6cvmco2qbL2ge5i0zCMTZR_edDqx3uK_L9y5_oXP4fbo5PgoOzoYHz6BO5LzB01KaRd68-nCPiWQNc-ftZqNcH7TH9MfEvA2dQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFUQQ0WrxatUR9EVZmmwu_wQRbe9orR5FLPQt3exuJFCT6_2h3gfxy_jpnMkmdyjYtz7dcZvbPMzszG9m9jcD8NIvtIykioQ0JhSDyGiRxsoXiS6MzVUcxB6zkb-Mo8PTwaez8GwDfndcGL5W2dnExlCbWnOOfI-gc8LBSODtFe21iJOD0fvJpeAJUlxp7cZpOBU5tssrCt9m744OSNavpBwNv-0finbCgNCEC-YiVZoiJOkZbbjLQmDTgtxpZKQqLClq6oWKAIAlmFQkxSDJKdgKuAMWoxBPJVFA-96CzZijoh5sfhyOT76u_EDghy7cS3xBjjHqaqoNcY_8Ol_5TEVK7kEs__aKa6j7T3W2cXqj-3CvRav4wanXA9iw1RZsD9fkOFpsrcNsC-66HCA6atND-LWvpnldoSnrn6Wx6NwnqnKKWk24dIEEmdFdKSGri_qiJABNnw3lAX-UrgEIbcHO1iB94Q6cV0z3QjfAp9QURrxFhfQzcj4Z6wJtQ2hE16UaZ01hAnW9YPbx90dweiNC2oZeVVf2MWAcxVarQAc8nsnQoq9TGyietlbIPNR98DoxZLrtkc6jOi6ydXdnllxGkstYctmyD69Xf5m4BiHXPbzbyTZrbcUsW2t2H16slumUc-lGVbZe0DNMYObxibIPbzqdWG_x3xfuXP_C53CbDlH2-Wh8_ATuSE4lNNmlXejNpwv7lPDWPH_WKjbC-U2fpT-jfTqq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+direct+air+capture+for+effective+climate+change+mitigation+based+on+renewable+electricity%3A+a+new+type+of+energy+system+sector+coupling&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Breyer%2C+Christian&rft.au=Fasihi%2C+Mahdi&rft.au=Aghahosseini%2C+Arman&rft.date=2020-01-01&rft.issn=1381-2386&rft.volume=25&rft.issue=1+p.43-65&rft.spage=43&rft.epage=65&rft_id=info:doi/10.1007%2Fs11027-019-9847-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon |