Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling

Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO 2 ) removal technologies, in particular in the 2040s and onwards. CO 2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands...

Full description

Saved in:
Bibliographic Details
Published inMitigation and adaptation strategies for global change Vol. 25; no. 1; pp. 43 - 65
Main Authors Breyer, Christian, Fasihi, Mahdi, Aghahosseini, Arman
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO 2 ) removal technologies, in particular in the 2040s and onwards. CO 2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO 2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/t CO2 in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO 2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.
AbstractList Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO 2 ) removal technologies, in particular in the 2040s and onwards. CO 2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO 2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/t CO2 in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO 2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.
Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO₂) removal technologies, in particular in the 2040s and onwards. CO₂ direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO₂ DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/tCO₂ in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO₂ removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.
Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in the 2040s and onwards. CO2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 °C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 €/tCO2 in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.
Author Breyer, Christian
Fasihi, Mahdi
Aghahosseini, Arman
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0002-7380-1816
  surname: Breyer
  fullname: Breyer, Christian
  email: Christian.Breyer@lut.fi
  organization: Lappeenranta University of Technology
– sequence: 2
  givenname: Mahdi
  surname: Fasihi
  fullname: Fasihi, Mahdi
  organization: Lappeenranta University of Technology
– sequence: 3
  givenname: Arman
  surname: Aghahosseini
  fullname: Aghahosseini, Arman
  organization: Lappeenranta University of Technology
BookMark eNp9kc-KFDEQxhtZwd3VB_AW8OKlNZWkJ4k3GfwHC170HDLpypilp9MmabUfxPe11hGEBT19RfH7KpX6rrqLOc_YdU-BvwDO9csKwIXuOdjeGqX77UF3CYOWPQx2d0G1NNALaXaPuqtabznnEga47H7ufTnkmY0p_0gjkhYMjflUWPBLWwuymAvDGKmdviELUzr5RvrFz0dkp9TS0bdEIw6-4sioKDjjd3-YkOFErpJCatsr5hm1WdsWZDkyYspxY3WrDU-sEkfPhLwuU5qPj7uH0U8Vn_zR6-7z2zef9u_7m4_vPuxf3_RBWtF664MRg-BjGEHAINFG0MNuFD6itsrywYMYkIOMJipzUFxINSgthRLcm5287p6f5y4lf12xNndKNeA0-RnzWp1Q0iowWglCn91Db_NaZtrOCdDGKG4lJ0qfqVByrQWjo7__Pk8rPk0OuLuLy53jchSXu4vLbeSEe86l0KXL9l-POHsqsZRG-bvTv02_ABbzq3c
CitedBy_id crossref_primary_10_3389_fenrg_2024_1443974
crossref_primary_10_1016_j_ijggc_2024_104297
crossref_primary_10_1039_D3EE01008B
crossref_primary_10_1016_j_egyr_2024_06_070
crossref_primary_10_1016_j_rser_2023_113637
crossref_primary_10_1088_2516_1083_abf1ce
crossref_primary_10_1016_j_techfore_2023_122734
crossref_primary_10_1016_j_jup_2023_101627
crossref_primary_10_1016_j_apenergy_2024_123112
crossref_primary_10_1021_acssuschemeng_3c02082
crossref_primary_10_1016_j_apenergy_2023_121216
crossref_primary_10_1088_1748_9326_ac2db0
crossref_primary_10_3390_en15030971
crossref_primary_10_1016_j_isci_2024_109154
crossref_primary_10_1016_j_copbio_2022_102705
crossref_primary_10_1016_j_pecs_2023_101073
crossref_primary_10_1002_pip_3114
crossref_primary_10_1016_j_apenergy_2022_120401
crossref_primary_10_1016_j_egyr_2024_08_011
crossref_primary_10_1039_D2VA00168C
crossref_primary_10_1163_1569206X_29012021
crossref_primary_10_2139_ssrn_4184163
crossref_primary_10_1016_j_crsus_2024_100151
crossref_primary_10_1016_j_apenergy_2022_119895
crossref_primary_10_1002_cjce_24397
crossref_primary_10_1016_j_spc_2024_04_003
crossref_primary_10_1021_acs_iecr_2c00681
crossref_primary_10_3389_fclim_2024_1353939
crossref_primary_10_1111_1758_5899_12828
crossref_primary_10_1016_j_renene_2024_121198
crossref_primary_10_1016_j_jclepro_2019_03_086
crossref_primary_10_1016_j_jclepro_2022_133920
crossref_primary_10_1088_1748_9326_ab30aa
crossref_primary_10_1016_j_ecmx_2022_100230
crossref_primary_10_1016_j_energy_2022_123419
crossref_primary_10_3389_fclim_2024_1394728
crossref_primary_10_3390_agriculture13071464
crossref_primary_10_1016_j_joule_2023_06_004
crossref_primary_10_1016_j_apenergy_2023_122608
crossref_primary_10_1109_ACCESS_2022_3193402
crossref_primary_10_1016_j_ccst_2024_100311
crossref_primary_10_1016_j_esr_2022_101012
crossref_primary_10_1016_j_rser_2022_112079
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_3389_fclim_2021_630893
crossref_primary_10_3390_app13074349
crossref_primary_10_1016_j_ijggc_2023_103935
crossref_primary_10_1007_s12398_019_00256_7
crossref_primary_10_1021_acs_est_2c05194
crossref_primary_10_2478_rtuect_2023_0057
crossref_primary_10_1016_j_spc_2025_02_017
crossref_primary_10_1016_j_ccst_2024_100304
crossref_primary_10_1016_j_apenergy_2023_121649
crossref_primary_10_1016_j_oneear_2019_11_006
crossref_primary_10_1021_acs_energyfuels_2c03971
crossref_primary_10_1109_ACCESS_2022_3221155
crossref_primary_10_1002_ghg_2136
crossref_primary_10_1016_j_ccst_2021_100025
crossref_primary_10_1016_j_enconman_2024_118739
crossref_primary_10_1016_j_apenergy_2024_124402
crossref_primary_10_1016_j_esr_2021_100656
crossref_primary_10_1038_s41467_019_10842_5
crossref_primary_10_1016_j_jclepro_2019_01_226
crossref_primary_10_3390_land11122153
crossref_primary_10_1016_j_fuel_2023_128913
crossref_primary_10_1007_s41247_022_00097_y
crossref_primary_10_1109_ACCESS_2021_3121000
crossref_primary_10_1016_j_isci_2022_103990
crossref_primary_10_3390_en16093881
crossref_primary_10_1016_j_energy_2023_129252
crossref_primary_10_1016_j_rser_2022_112452
crossref_primary_10_36535_0869_1002_2019_06_1
crossref_primary_10_1039_D1YA00035G
crossref_primary_10_3389_fenvs_2022_889428
crossref_primary_10_1016_j_scca_2023_100029
crossref_primary_10_1016_j_scitotenv_2023_161675
crossref_primary_10_1002_adsu_202000101
crossref_primary_10_1007_s11270_020_04933_z
crossref_primary_10_1016_j_jclepro_2023_137731
crossref_primary_10_1016_j_esr_2022_101047
crossref_primary_10_3390_en16176183
crossref_primary_10_1039_D1CS00970B
crossref_primary_10_1016_j_ijggc_2023_103862
crossref_primary_10_1029_2023EF003639
crossref_primary_10_3389_fclim_2021_647276
crossref_primary_10_1073_pnas_2015025118
crossref_primary_10_1029_2022EF002875
crossref_primary_10_1109_ACCESS_2023_3241686
crossref_primary_10_1016_j_cjche_2021_07_005
crossref_primary_10_1016_j_rser_2024_115189
crossref_primary_10_1016_j_segy_2025_100174
crossref_primary_10_1134_S2517751621050024
crossref_primary_10_1016_j_energy_2024_133572
crossref_primary_10_1021_acs_est_1c03263
crossref_primary_10_1021_acs_est_3c10041
crossref_primary_10_1016_j_enbenv_2022_02_009
crossref_primary_10_3390_resources10080084
crossref_primary_10_1016_j_ynexs_2025_100054
crossref_primary_10_1093_ce_zkae050
crossref_primary_10_1016_j_jcou_2024_102758
crossref_primary_10_3390_commodities1020009
Cites_doi 10.1016/j.enconman.2016.01.019
10.1021/ie300691c
10.1016/j.gloenvcha.2016.05.015
10.1002/pip.2885
10.1039/C7EE03610H
10.1016/j.ijggc.2008.02.005
10.1038/nenergy.2017.140
10.1016/j.rser.2014.07.093
10.1016/j.solener.2017.09.030
10.1038/s41560-018-0116-1
10.1016/j.jcou.2018.09.026
10.1016/j.renene.2018.02.009
10.1038/s41467-018-05340-z
10.1088/1748-9326/aa67a5
10.1126/science.1172246
10.1016/j.rser.2018.03.079
10.1002/pip.2950
10.1038/nenergy.2017.110
10.1016/j.erss.2018.03.019
10.1016/j.rser.2018.04.113
10.1016/j.est.2018.03.009
10.3390/su9020306
10.1016/j.joule.2017.07.005
10.1038/530153a
10.1039/c2ee21586a
10.1038/nenergy.2017.125
10.1038/nclimate2870
10.1016/j.egypro.2011.02.194
10.1063/1.4984535
10.1038/504339a
10.1016/j.renene.2018.09.082
10.1038/s41558-018-0091-3
10.1016/j.joule.2018.06.010
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
L.-
L.G
M0C
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11027-019-9847-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
ProQuest Science Database (NC LIVE)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1573-1596
EndPage 65
ExternalDocumentID 10_1007_s11027_019_9847_y
GeographicLocations Maghreb
GeographicLocations_xml – name: Maghreb
GrantInformation_xml – fundername: Lappeenranta University of Technology (LUT)
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
7WY
7XC
88I
8FE
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M2P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7V
Z7Y
Z7Z
Z81
Z86
Z8P
Z8S
Z8T
Z8U
ZMTXR
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H97
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c392t-9ac82520dcd12153e9f1756d2afe794905a125e013f8f48b4023454732420a863
IEDL.DBID C6C
ISSN 1381-2386
IngestDate Fri Jul 11 05:27:54 EDT 2025
Fri Jul 25 20:03:43 EDT 2025
Tue Jul 01 04:12:55 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Fri Feb 21 02:34:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Maghreb
Negative emission technology
CO
direct air capture
Energy transition
100% renewable energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9ac82520dcd12153e9f1756d2afe794905a125e013f8f48b4023454732420a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7380-1816
OpenAccessLink https://doi.org/10.1007/s11027-019-9847-y
PQID 2178840930
PQPubID 54623
PageCount 23
ParticipantIDs proquest_miscellaneous_2439418742
proquest_journals_2178840930
crossref_citationtrail_10_1007_s11027_019_9847_y
crossref_primary_10_1007_s11027_019_9847_y
springer_journals_10_1007_s11027_019_9847_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change
PublicationTitle Mitigation and adaptation strategies for global change
PublicationTitleAbbrev Mitig Adapt Strateg Glob Change
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References [IPCC] - Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C, IPCC, Geneva, www.ipcc.ch. Accessed 15 Dec 2018
JacobsonMZDelucchiMACameronMAMathiesenBVMatching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposesRenew Energy201812323624810.1016/j.renene.2018.02.009
WorkmanMMcGlashanNChalmersHShahNAn assessment of options for CO2 removal from the atmosphereEnergy Procedia201142877288410.1016/j.egypro.2011.02.194
ChildMKoskinenOLinnanenLBreyerCSustainability guardrails for energy scenarios of the global energy transitionRenew Sust Energ Rev20189132133410.1016/j.rser.2018.03.079
[ISE] - Fraunhofer ISE. (2015) Current and future cost of photovoltaics. long-term scenarios for market development, system prices and LCOE of utility-scale PV systems, study on behalf of Agora Energiewende, Freiburg and Berlin
KingLCBergh van denJCJMImplications of net energy-return-on-investment for a low-carbon energy transitionNat Energy2018333434010.1038/s41560-018-0116-1
KeithDWHolmesGAngeloDSHeidelKA process for capturing CO2 from the atmosphereJoule2018212210.1016/j.joule.2018.06.010
KilickaplanABogdanovDPekerOCalderaUAghahosseiniABreyerCAn energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050Sol Energy201715821823510.1016/j.solener.2017.09.030
Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017f) Global 100% RE system: Sub-Saharan Africa - West-West, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/61dFMW (accessed on 1.4.2018)
Ping E, Sakwa-Novak M, Eisenberger P (2018) Global thermostat low cost direct air capture technology. International Conference on Negative CO2 Emissions, Gothenburg, May 22–24
Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017a) Global energy system based on 100% renewable energy - power sector. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/7y9sKR (accessed on 1.4.2018)
FajardyMDowellNMThe energy return on investment of BECCS: is BECCS a threat to energy security?Energy Environ Sci2018111581159410.1039/C7EE03610H
MontasterskyRSeabed scars raise questions over carbon-storage planNature201350433934010.1038/504339a
Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017c) Global 100% RE system: MENA - Algeria, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/f32ueS (accessed on 1.4.2018)
FogartyJMcCallyMHealth and safety risks of carbon capture and storageJournal of the American Medical Society20103036768
JacobsonMZDelucchiMABauerZAFGoodmanSCChapmanWECameronMA100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the worldJoule2017110812110.1016/j.joule.2017.07.005
ITRPV Working Group (2018) International technology roadmap for photovoltaic (ITRPV) - 2017 Results 9th Edition, Frankfurt, http://itrpv.net/Reports/Downloads/. Accessed 15 Dec 2018
Breyer C, Afanasyeva S, Brakemeier D, Engelhard M, Giuliano S, Puppe M, Schenk H, Hirsch T, Moser M (2017b) Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings1850(1), 160001, doi: https://doi.org/10.1063/1.4984535, https://goo.gl/RTbDDA (accessed on 4.4.2018)
[ETIP-PV] - European Technology & Innovation Platform - Photovoltaic (2017) The true competitiveness of Solar PV – a European case study, ETIP-PV, Munich, March 29, https://goo.gl/UjyGuU (accessed on 3.4.2018)
Hoffmann W (2014) Importance and evidence for cost effective electricity storage. Paper presented at 29th EU PVSEC. Amsterdam, September 22–26
PV-Tech (2017) Bids in 300MW Saudi solar tender breach two cents, PV-Tech Solar Media Ltd., London, https://www.pv-tech.org/news/technical-bids-for-300mw-of-solar-in-saudi-arabia-already-breach-2-cents, October 3, (accessed on 1.4.2018)
BreyerCBogdanovDGulagiAAghahosseiniABarbosaLSNSKoskinenOBarasaMCalderaUAfanasyevaSChildMFarfanJVainikkaPOn the role of solar photovoltaics in global energy transition scenariosProg Photovolt Res Appl20172572774510.1002/pip.2885
Vidal VáquezFKoponenJRuuskanenVBajamundiCKosonenASimellPAholaJFrilundCElfvingJReinikainenMHeikkinenNKauppinenJPiermartiniPPower-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process conceptJournal of CO2 Utilization20182823524610.1016/j.jcou.2018.09.026
FridahlMLehtveerMBioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriersEnergy Res Soc Sci20184215516510.1016/j.erss.2018.03.019
KittnerNLillFKammenDMEnergy storage deployment and innovation for the clean energy transitionNat Energy201721712510.1038/nenergy.2017.125
Bolinger M, Seel J (2016) Utility-scale solar 2015: an empirical analysis of project cost, performance, and pricing trends in the United States, Lawrence Berkeley National Laboratory. Berkley; https://emp.lbl.gov/publications/utility-scale-solar-2015-empirical. Accessed 15 Dec 2018
BrownTWBischof-NiemzTBlokKBreyerCLundHMathiesenBVResponse to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’Renew Sust Energ Rev20189283484710.1016/j.rser.2018.04.113
WilliamsonPScrutinize CO2 removal methodsnature201653015315510.1038/530153a
BogdanovDBreyerCNorth-East Asian Super Grid for 100% renewable energy supply: optimal mix of energy technologies for electricity, gas and heat supply optionsEnergy Convers Manag201611217619010.1016/j.enconman.2016.01.019
Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017d) Global 100% RE system: MENA - Tunisia, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/8YYNrF (accessed on 1.4.2018)
FasihiMBogdanovDBreyerCLong-term hydrocarbon trade options for the Maghreb region and Europe – renewable energy based synthetic fuels for a net zero emissions worldSustainability2017930610.3390/su9020306
GoeppertACzaunMSurya PrakashGOlahGAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ Sci2012577833785310.1039/c2ee21586a
HazeldineRSCarbon capture and storage: how green can black be?Science20093251647165210.1126/science.1172246
[UNFCCC] United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement—proposal by the president, UNFCCC, Paris, December 12, http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf. Accessed 15 Dec 2018
LeungDYCCaramannaGMaroto-ValerMMAn overview of current status of carbon dioxide capture and storage technologiesRenew Sust Energ Rev20143942644310.1016/j.rser.2014.07.093
CreutzigFAgostonPGoldschmidtJCLudererGNemetGPietzckerRCThe underestimated potential of solar energy to mitigate climate changeNat Energy201721714010.1038/nenergy.2017.140
Stackhouse PW (2008) Surface meteorology and solar energy (SSE) Release 6.0, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/ (accessed on 14.3.2017)
RogeljJPoppACalvinKVLudererGEmmerlingJGernaatDFujimoriSStreflerJHasegawaTMarangoniGKreyVKrieglerERiahiKvan VuurenDPDoelmanJDrouetLEdmondsJFrickoOHarmsenMHavlíkPHumpenöderFStehfestETavoniMScenarios towards limiting global mean temperature increase below 1.5 °CNat Clim Chang2018832533210.1038/s41558-018-0091-3
SmithPDavisSJCreutzigFFussSMinxJGabrielleBKatoEJacksonRBCowieAKrieglerEvan VuurenDPRogeljJCiaisPMilneJCanadellJGMcCollumDPetersGAndrewRKreyVShresthaGFriedlingsteinPGasserTGrüblerAHeidugWKJonasMJonesCDKraxnerFLittletonELoweJMoreiraJRNakicenovicNObersteinerMPatwardhanARognerMRubinESharifiATorvangerAYamagataYEdmondsJYongsungCBiophysical and economic limits to negative CO2 emissionsNat Clim Chang20166425010.1038/nclimate2870
BreyerCBogdanovDAghahosseiniAGulagiAChildMOyewoASFarfanJSadovskaiaKVainikkaPSolar photovoltaics demand for the global energy transition in the power sectorProg Photovolt Res Appl20182650552310.1002/pip.2950
Climeworks (2018) Capturing CO2 from air. Zurich, Switzerland. Available athttp://www.climeworks.com/co2-removal/ (accessed 1 February 2018)
DowellNMFajardyMInefficient power generation as an optimal route to negative emissions via BECCS?Environ Res Lett20171210.1088/1748-9326/aa67a5
StetterDEnhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation2012StuttgartUniversity of Stuttgart
[DEA] Danish Energy Agency (2016), Technology data for energy plants updated chapters, August 2016, August, p. 117, Copenhagen, https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf (accessed on 1.4.2018)
KulkarniAShollDAnalysis of equilibrium-based TSA processes for direct capture of CO2 from airInd Eng Chem Res201251258631864510.1021/ie300691c
SchmidtOHawkesAGambhirAStaffellIThe future cost of electrical energy storage based on experience ratesNat Energy201761711010.1038/nenergy.2017.110
Stackhouse PW (2009) Surface meteorology and solar energy (SSE) Release 6.0 Methodology, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/documents/SSE6Methodology (accessed on 14.3.2017)
Global Thermostat (2018) A unique capture process. New York, USA Available at https://globalthermostat.com/a-unique-capture-process/ (accessed 15 May 2018)
Aghahosseini A, Bogdanov D, Breyer Ch (2016) The MENA Super Grid towards 100% renewable energy power supply by 2030, 11th International Energy Conference, Tehran, May 30–31, https://bit.ly/2iYvZCO (accessed on 5.6.2018)
HarperABPowellTCoxPMHouseJHuntingfordCLentonTMSitchSBurkeEChadburnSECollinsWJComyn-PlattEDaioglouVDoelmanJCHaymanGRob
RS Hazeldine (9847_CR26) 2009; 325
F Vidal Váquez (9847_CR54) 2018; 28
A Kulkarni (9847_CR36) 2012; 51
LC King (9847_CR33) 2018; 3
A Goeppert (9847_CR24) 2012; 5
D Stetter (9847_CR53) 2012
MZ Jacobson (9847_CR30) 2018; 123
E Kriegler (9847_CR35) 2017; 42
MZ Jacobson (9847_CR29) 2017; 1
9847_CR47
9847_CR46
M Fridahl (9847_CR22) 2018; 42
9847_CR45
DW Keith (9847_CR31) 2018; 2
9847_CR44
9847_CR43
9847_CR42
9847_CR41
R Montastersky (9847_CR38) 2013; 504
9847_CR40
9847_CR9
9847_CR7
9847_CR39
9847_CR5
9847_CR4
9847_CR3
9847_CR2
9847_CR1
C Breyer (9847_CR8) 2017; 25
C Breyer (9847_CR10) 2018; 26
M Workman (9847_CR56) 2011; 4
TW Brown (9847_CR11) 2018; 92
A Kilickaplan (9847_CR32) 2017; 158
J Fogarty (9847_CR21) 2010; 303
P Williamson (9847_CR55) 2016; 530
N Kittner (9847_CR34) 2017; 2
9847_CR28
P Smith (9847_CR50) 2016; 6
9847_CR27
D Bogdanov (9847_CR6) 2016; 112
DYC Leung (9847_CR37) 2014; 39
9847_CR23
U Caldera (9847_CR12) 2018; 17
M Fajardy (9847_CR19) 2018; 11
AB Harper (9847_CR25) 2018; 9
NM Dowell (9847_CR16) 2017; 12
J Rogelj (9847_CR48) 2018; 8
O Schmidt (9847_CR49) 2017; 6
9847_CR18
M Fasihi (9847_CR20) 2017; 9
IG Enting (9847_CR17) 2008; 2
F Creutzig (9847_CR15) 2017; 2
9847_CR14
M Child (9847_CR13) 2018; 91
9847_CR52
9847_CR51
References_xml – reference: [IPCC] - Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C, IPCC, Geneva, www.ipcc.ch. Accessed 15 Dec 2018
– reference: HazeldineRSCarbon capture and storage: how green can black be?Science20093251647165210.1126/science.1172246
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017e) Global 100% RE system: MENA - Libya, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/UQ8s3L (accessed on 1.4.2018)
– reference: BrownTWBischof-NiemzTBlokKBreyerCLundHMathiesenBVResponse to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’Renew Sust Energ Rev20189283484710.1016/j.rser.2018.04.113
– reference: KingLCBergh van denJCJMImplications of net energy-return-on-investment for a low-carbon energy transitionNat Energy2018333434010.1038/s41560-018-0116-1
– reference: EntingIGEtheridgeDMFieldingMJA perturbation analysis of the climate benefit from geosequestration of carbon dioxideInternational Journal of Greenhouse Gas Control2008228929610.1016/j.ijggc.2008.02.005
– reference: Vidal VáquezFKoponenJRuuskanenVBajamundiCKosonenASimellPAholaJFrilundCElfvingJReinikainenMHeikkinenNKauppinenJPiermartiniPPower-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process conceptJournal of CO2 Utilization20182823524610.1016/j.jcou.2018.09.026
– reference: BogdanovDBreyerCNorth-East Asian Super Grid for 100% renewable energy supply: optimal mix of energy technologies for electricity, gas and heat supply optionsEnergy Convers Manag201611217619010.1016/j.enconman.2016.01.019
– reference: [UNFCCC] United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement—proposal by the president, UNFCCC, Paris, December 12, http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf. Accessed 15 Dec 2018
– reference: FasihiMBogdanovDBreyerCLong-term hydrocarbon trade options for the Maghreb region and Europe – renewable energy based synthetic fuels for a net zero emissions worldSustainability2017930610.3390/su9020306
– reference: Stackhouse PW (2008) Surface meteorology and solar energy (SSE) Release 6.0, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/ (accessed on 14.3.2017)
– reference: [ISE] - Fraunhofer ISE. (2015) Current and future cost of photovoltaics. long-term scenarios for market development, system prices and LCOE of utility-scale PV systems, study on behalf of Agora Energiewende, Freiburg and Berlin
– reference: JacobsonMZDelucchiMACameronMAMathiesenBVMatching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposesRenew Energy201812323624810.1016/j.renene.2018.02.009
– reference: WilliamsonPScrutinize CO2 removal methodsnature201653015315510.1038/530153a
– reference: FogartyJMcCallyMHealth and safety risks of carbon capture and storageJournal of the American Medical Society20103036768
– reference: SmithPDavisSJCreutzigFFussSMinxJGabrielleBKatoEJacksonRBCowieAKrieglerEvan VuurenDPRogeljJCiaisPMilneJCanadellJGMcCollumDPetersGAndrewRKreyVShresthaGFriedlingsteinPGasserTGrüblerAHeidugWKJonasMJonesCDKraxnerFLittletonELoweJMoreiraJRNakicenovicNObersteinerMPatwardhanARognerMRubinESharifiATorvangerAYamagataYEdmondsJYongsungCBiophysical and economic limits to negative CO2 emissionsNat Clim Chang20166425010.1038/nclimate2870
– reference: StetterDEnhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation2012StuttgartUniversity of Stuttgart
– reference: ChildMKoskinenOLinnanenLBreyerCSustainability guardrails for energy scenarios of the global energy transitionRenew Sust Energ Rev20189132133410.1016/j.rser.2018.03.079
– reference: RogeljJPoppACalvinKVLudererGEmmerlingJGernaatDFujimoriSStreflerJHasegawaTMarangoniGKreyVKrieglerERiahiKvan VuurenDPDoelmanJDrouetLEdmondsJFrickoOHarmsenMHavlíkPHumpenöderFStehfestETavoniMScenarios towards limiting global mean temperature increase below 1.5 °CNat Clim Chang2018832533210.1038/s41558-018-0091-3
– reference: MontasterskyRSeabed scars raise questions over carbon-storage planNature201350433934010.1038/504339a
– reference: FridahlMLehtveerMBioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriersEnergy Res Soc Sci20184215516510.1016/j.erss.2018.03.019
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017a) Global energy system based on 100% renewable energy - power sector. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/7y9sKR (accessed on 1.4.2018)
– reference: CalderaUBreyerCThe role that battery and water storage play in Saudi Arabia’s transition to an integrated 100% renewable energy power systemJournal of Energy Storage20181729931010.1016/j.est.2018.03.009
– reference: Climeworks (2018) Capturing CO2 from air. Zurich, Switzerland. Available athttp://www.climeworks.com/co2-removal/ (accessed 1 February 2018)
– reference: WorkmanMMcGlashanNChalmersHShahNAn assessment of options for CO2 removal from the atmosphereEnergy Procedia201142877288410.1016/j.egypro.2011.02.194
– reference: GoeppertACzaunMSurya PrakashGOlahGAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ Sci2012577833785310.1039/c2ee21586a
– reference: Stackhouse PW (2009) Surface meteorology and solar energy (SSE) Release 6.0 Methodology, NASA SSE 6.0, Earth Science Enterprise Program, http://eosweb.larc.nasa.gov/sse/documents/SSE6Methodology (accessed on 14.3.2017)
– reference: KeithDWHolmesGAngeloDSHeidelKA process for capturing CO2 from the atmosphereJoule2018212210.1016/j.joule.2018.06.010
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017d) Global 100% RE system: MENA - Tunisia, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/8YYNrF (accessed on 1.4.2018)
– reference: KrieglerEBauerNPoppAHumpenöderFLeimbachMStreflerJBaumstarkLBodirskyBLHilaireJKleinDMouratiadouIWeindlIBertramCDietrichJPLudererGPehlMPietzckerRPiontekFLotze-CampenHBiewaldABonschMGiannousakisAKreidenweisUMüllerCRolinskiSSchultesASchwanitzJStevanovicMCalvinKEmmerlingJFujimoriSEdenhoferOFossil-fueled development (SSP5): an emissions, energy and resource intensive reference scenario for the 21st centuryGlob Environ Chang20174229731510.1016/j.gloenvcha.2016.05.015
– reference: Aghahosseini A, Bogdanov D, Breyer Ch (2016) The MENA Super Grid towards 100% renewable energy power supply by 2030, 11th International Energy Conference, Tehran, May 30–31, https://bit.ly/2iYvZCO (accessed on 5.6.2018)
– reference: SchmidtOHawkesAGambhirAStaffellIThe future cost of electrical energy storage based on experience ratesNat Energy201761711010.1038/nenergy.2017.110
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017b) Global 100% RE system: MENA - Morocco, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/qWDM8Q (accessed on 1.4.2018)
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017f) Global 100% RE system: Sub-Saharan Africa - West-West, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/61dFMW (accessed on 1.4.2018)
– reference: Ping E, Sakwa-Novak M, Eisenberger P (2018) Global thermostat low cost direct air capture technology. International Conference on Negative CO2 Emissions, Gothenburg, May 22–24
– reference: [ETIP-PV] - European Technology & Innovation Platform - Photovoltaic (2017) The true competitiveness of Solar PV – a European case study, ETIP-PV, Munich, March 29, https://goo.gl/UjyGuU (accessed on 3.4.2018)
– reference: [DEA] Danish Energy Agency (2016), Technology data for energy plants updated chapters, August 2016, August, p. 117, Copenhagen, https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf (accessed on 1.4.2018)
– reference: JacobsonMZDelucchiMABauerZAFGoodmanSCChapmanWECameronMA100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the worldJoule2017110812110.1016/j.joule.2017.07.005
– reference: Hoffmann W (2014) Importance and evidence for cost effective electricity storage. Paper presented at 29th EU PVSEC. Amsterdam, September 22–26
– reference: LeungDYCCaramannaGMaroto-ValerMMAn overview of current status of carbon dioxide capture and storage technologiesRenew Sust Energ Rev20143942644310.1016/j.rser.2014.07.093
– reference: Breyer C, Afanasyeva S, Brakemeier D, Engelhard M, Giuliano S, Puppe M, Schenk H, Hirsch T, Moser M (2017b) Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings1850(1), 160001, doi: https://doi.org/10.1063/1.4984535, https://goo.gl/RTbDDA (accessed on 4.4.2018)
– reference: FajardyMDowellNMThe energy return on investment of BECCS: is BECCS a threat to energy security?Energy Environ Sci2018111581159410.1039/C7EE03610H
– reference: KittnerNLillFKammenDMEnergy storage deployment and innovation for the clean energy transitionNat Energy201721712510.1038/nenergy.2017.125
– reference: BreyerCBogdanovDGulagiAAghahosseiniABarbosaLSNSKoskinenOBarasaMCalderaUAfanasyevaSChildMFarfanJVainikkaPOn the role of solar photovoltaics in global energy transition scenariosProg Photovolt Res Appl20172572774510.1002/pip.2885
– reference: CreutzigFAgostonPGoldschmidtJCLudererGNemetGPietzckerRCThe underestimated potential of solar energy to mitigate climate changeNat Energy201721714010.1038/nenergy.2017.140
– reference: Ram M, Bogdanov D, Aghahosseini A, Oyewo S, Gulagi A, Child M, et al. (2017c) Global 100% RE system: MENA - Algeria, study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta and Berlin, https://goo.gl/f32ueS (accessed on 1.4.2018)
– reference: PV-Tech (2017) Bids in 300MW Saudi solar tender breach two cents, PV-Tech Solar Media Ltd., London, https://www.pv-tech.org/news/technical-bids-for-300mw-of-solar-in-saudi-arabia-already-breach-2-cents, October 3, (accessed on 1.4.2018)
– reference: DowellNMFajardyMInefficient power generation as an optimal route to negative emissions via BECCS?Environ Res Lett20171210.1088/1748-9326/aa67a5
– reference: BreyerCBogdanovDAghahosseiniAGulagiAChildMOyewoASFarfanJSadovskaiaKVainikkaPSolar photovoltaics demand for the global energy transition in the power sectorProg Photovolt Res Appl20182650552310.1002/pip.2950
– reference: KulkarniAShollDAnalysis of equilibrium-based TSA processes for direct capture of CO2 from airInd Eng Chem Res201251258631864510.1021/ie300691c
– reference: Global Thermostat (2018) A unique capture process. New York, USA Available at https://globalthermostat.com/a-unique-capture-process/ (accessed 15 May 2018)
– reference: ITRPV Working Group (2018) International technology roadmap for photovoltaic (ITRPV) - 2017 Results 9th Edition, Frankfurt, http://itrpv.net/Reports/Downloads/. Accessed 15 Dec 2018
– reference: Pursiheimo E, Holttinen H, Koljonen T (2018) Inter-sectoral effects of high renewable energy share in global energy system. Renew Energy. https://doi.org/10.1016/j.renene.2018.09.082
– reference: Bolinger M, Seel J (2016) Utility-scale solar 2015: an empirical analysis of project cost, performance, and pricing trends in the United States, Lawrence Berkeley National Laboratory. Berkley; https://emp.lbl.gov/publications/utility-scale-solar-2015-empirical. Accessed 15 Dec 2018
– reference: KilickaplanABogdanovDPekerOCalderaUAghahosseiniABreyerCAn energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050Sol Energy201715821823510.1016/j.solener.2017.09.030
– reference: HarperABPowellTCoxPMHouseJHuntingfordCLentonTMSitchSBurkeEChadburnSECollinsWJComyn-PlattEDaioglouVDoelmanJCHaymanGRobertsonEvan VuurenDWiltshireAWebberCPBastosABoysenLCiaisPDevarajuNJainAKKrauseAPoulterBShuSLand-use emissions play a critical role in land-based mitigation for Paris climate targetsNat Commun20189293810.1038/s41467-018-05340-z
– ident: 9847_CR39
– volume: 112
  start-page: 176
  year: 2016
  ident: 9847_CR6
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.01.019
– ident: 9847_CR45
– ident: 9847_CR41
– ident: 9847_CR4
– volume: 51
  start-page: 8631
  issue: 25
  year: 2012
  ident: 9847_CR36
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie300691c
– volume: 42
  start-page: 297
  year: 2017
  ident: 9847_CR35
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2016.05.015
– volume: 25
  start-page: 727
  year: 2017
  ident: 9847_CR8
  publication-title: Prog Photovolt Res Appl
  doi: 10.1002/pip.2885
– ident: 9847_CR51
– volume: 11
  start-page: 1581
  year: 2018
  ident: 9847_CR19
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03610H
– volume: 2
  start-page: 289
  year: 2008
  ident: 9847_CR17
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2008.02.005
– ident: 9847_CR42
– volume: 2
  start-page: 17140
  year: 2017
  ident: 9847_CR15
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.140
– ident: 9847_CR1
– ident: 9847_CR46
– ident: 9847_CR5
– volume-title: Enhancement of the REMix energy system model: global renewable energy potentials optimized power plant siting and scenario validation, doctoral dissertation
  year: 2012
  ident: 9847_CR53
– volume: 39
  start-page: 426
  year: 2014
  ident: 9847_CR37
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2014.07.093
– volume: 158
  start-page: 218
  year: 2017
  ident: 9847_CR32
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.09.030
– volume: 3
  start-page: 334
  year: 2018
  ident: 9847_CR33
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0116-1
– volume: 28
  start-page: 235
  year: 2018
  ident: 9847_CR54
  publication-title: Journal of CO2 Utilization
  doi: 10.1016/j.jcou.2018.09.026
– ident: 9847_CR52
– volume: 123
  start-page: 236
  year: 2018
  ident: 9847_CR30
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.02.009
– volume: 9
  start-page: 2938
  year: 2018
  ident: 9847_CR25
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05340-z
– volume: 12
  year: 2017
  ident: 9847_CR16
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa67a5
– volume: 325
  start-page: 1647
  year: 2009
  ident: 9847_CR26
  publication-title: Science
  doi: 10.1126/science.1172246
– ident: 9847_CR18
– ident: 9847_CR43
– volume: 91
  start-page: 321
  year: 2018
  ident: 9847_CR13
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2018.03.079
– ident: 9847_CR14
– volume: 26
  start-page: 505
  year: 2018
  ident: 9847_CR10
  publication-title: Prog Photovolt Res Appl
  doi: 10.1002/pip.2950
– volume: 6
  start-page: 17110
  year: 2017
  ident: 9847_CR49
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.110
– volume: 42
  start-page: 155
  year: 2018
  ident: 9847_CR22
  publication-title: Energy Res Soc Sci
  doi: 10.1016/j.erss.2018.03.019
– ident: 9847_CR2
– ident: 9847_CR47
– volume: 92
  start-page: 834
  year: 2018
  ident: 9847_CR11
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2018.04.113
– volume: 17
  start-page: 299
  year: 2018
  ident: 9847_CR12
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2018.03.009
– ident: 9847_CR28
– volume: 9
  start-page: 306
  year: 2017
  ident: 9847_CR20
  publication-title: Sustainability
  doi: 10.3390/su9020306
– volume: 1
  start-page: 108
  year: 2017
  ident: 9847_CR29
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.005
– volume: 530
  start-page: 153
  year: 2016
  ident: 9847_CR55
  publication-title: nature
  doi: 10.1038/530153a
– volume: 5
  start-page: 7833
  issue: 7
  year: 2012
  ident: 9847_CR24
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee21586a
– ident: 9847_CR44
– ident: 9847_CR23
– volume: 2
  start-page: 17125
  year: 2017
  ident: 9847_CR34
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.125
– volume: 6
  start-page: 42
  year: 2016
  ident: 9847_CR50
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2870
– ident: 9847_CR3
– volume: 4
  start-page: 2877
  year: 2011
  ident: 9847_CR56
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.194
– ident: 9847_CR7
– ident: 9847_CR9
  doi: 10.1063/1.4984535
– ident: 9847_CR27
– volume: 504
  start-page: 339
  year: 2013
  ident: 9847_CR38
  publication-title: Nature
  doi: 10.1038/504339a
– volume: 303
  start-page: 67
  year: 2010
  ident: 9847_CR21
  publication-title: Journal of the American Medical Society
– ident: 9847_CR40
  doi: 10.1016/j.renene.2018.09.082
– volume: 8
  start-page: 325
  year: 2018
  ident: 9847_CR48
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-018-0091-3
– volume: 2
  start-page: 1
  year: 2018
  ident: 9847_CR31
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.010
SSID ssj0003151
Score 2.5531313
Snippet Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO 2 ) removal technologies, in particular...
Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in...
Pathways for achieving the 1.5–2 °C global temperature moderation target imply a massive scaling of carbon dioxide (CO₂) removal technologies, in particular in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms 2018
Atmospheric Sciences
Biospheric Storage
Carbon dioxide
Carbon dioxide removal
Climate change
Climate Change Management and Policy
Climate change mitigation
Cost analysis
cost effectiveness
Earth and Environmental Science
Earth Sciences
Electricity
Electricity pricing
Energy industry
Energy policy
Energy resources
Energy sources
Energy transition
Environmental Management
Global climate
Global temperatures
Gothenburg May 22-24
Heat
Heat exchangers
Heat pumps
including: BioEnergy Carbon Capture and Storage
Low cost
Low temperature
Maghreb
Mitigation
Modelling
Modelling and Incentives and Policy
Nets
Original Article
Other Negative Emission Technologies
Paris Agreement
Photovoltaic cells
Photovoltaics
Removal
Renewable energy
Renewable resources
Resource management
Scaling
Solar cells
Solar energy
Sorbents
Spatial discrimination
Spatial resolution
Temperature
Topical Collection on 1st International Conference on Negative CO2 Emissions
United Nations Framework Convention on Climate Change
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_a80UopbWK19oyhT4pi0n28tWXUuVECpUiFXwLm92NBM7kvA9a_5D-v53Jbi4o6FNCNsk-zO7Mb2b2NwPwJax0lEQqEZExsZgkRos8VaHIdGVsqVKZBsxG_nmRnF9NflzH1z7gtvTHKnud2Clq02qOkR8TdM7YGZHBt_md4K5RnF31LTRewhap4CwbwdbJ9OLX5UYXyzB2LlcWCjJOSZ_X7MhzZFv52GUuclLR4v6hZRrg5qMMaWd4zt7Aa48Y8bsT8Vt4YZsd2JsOBDUa9Dt0uQOvXBwOHb3oHfw7VYuybdDU7d_aWHQmDFW9QK3mnD5Agq3ojnWQ5kM9qwnE0rWjHeBt7Ypw0C_Y4BmkG66C-YcpV-ia6NSaoPxXVEiPkWO62FZoO1IhukrRuOySA6jbNTOAb3bh6mz6-_Rc-FYMQhOAWolcaXIlo8Bow-UopM0rwh2JiVRlaUfnQawIKVnCk1VWTbKSvFLJpcIYrgUqS-QejJq2sfuAaZJaraSW3CLJ0GCocysVdzyrojLWYwh6MRTa1ynndhmzYqiwzJIrSHIFS664H8Ph5pO5K9Lx3MsHvWwLv1-XxbC6xvB5M0w7jdMnqrHtmt5hEjG3MIzGcNSvieEXT074_vkJP8B2xD58F9Y5gNFqsbYfCeisyk9-Nf8HkTD8cw
  priority: 102
  providerName: ProQuest
Title Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
URI https://link.springer.com/article/10.1007/s11027-019-9847-y
https://www.proquest.com/docview/2178840930
https://www.proquest.com/docview/2439418742
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB707kUQ0dPD9c5jBJ-UYJts09a33WXXQ3ERceF8KmmSSuFsj_3BeX-I_68zTXcXDxV82SxNmj5Mk_km0-8bgJdxZaWWRgvpXCKG2lmRpyYWma2cL02q0ojZyB_n-nwxfH-RXPRi0cyFuZW_f7Mi9yT548hc5LSRipu7cJjENAPnZfVkt-mqOAmxVRYL8kJ6m8D80xS_u6A9rryVCu08zOwhPOihIY6CLR_BHd8cwfF0z0Sjzn4pro7gfjhww8Ajegw_J2ZZtg26uv1RO4_BV6Gpl2jNFecJkPAphu83aItDe1kTWqW24xfg9zqobdAU7Nkc0h-Wu7xmbhWGajm1Jcz-Fg3SZeTDW2wr9B17EIMkNK66LADadsNU329PYDGbfpmci77mgrCElNYiN5ZiRhk561h3Qvm8IoChnTSVp6WbR4khSOQJOFZZNcxKCj8Va4IxLotMptUxHDRt458Cpjr11iiruBaSo87Y5l4ZLm1WyTKxA4i2ZihsL0jOdTEui72UMluuIMsVbLniZgCvdrdcBTWOfw0-3dq26BfmqqAILOOYVkUDeLHrpiXFeRLT-HZDY5gtzLUK5QBeb9-J_RR_feCz_xp9Avckx-7dcc4pHKyXG_-cAM66PIPD0Ww8nnP77uuHKbXj6fzT57PulaffhRz9ArKC-Z8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_q9UFBRKvFq1VH0BdlMdlc_gkiWq9cbXuItNC3dLO7kUBNrveHeh_Er-FndCab3KFg3_p04TbZPMxk5jcz-5sBeOkXWkZSRUIaE4pBZLRIY-WLRBfG5ioOYo_ZyMfjaHQ6-HIWnm3A744Lw8cqO5vYGGpTa86RvyXonHAwEngfJpeCp0ZxdbUboeHU4tAuryhkm70_-EzyfSXl_vBkbyTaqQJCExaYi1RpioqkZ7ThzgqBTQtyoZGRqrCknKkXKnL6lqBRkRSDJKcAK-CuV4w8PJVEAe17CzYHQeTJHmx-Go6_flvZ_sAPXYiX-IKcYdTVURuyHvlyPuaZipRcglj-7QnX8Pafimzj6Pbvw70WoeJHp1IPYMNWW7A9XBPiaLG1CLMtuOvyfujoTA_h156a5nWFpqx_lsaic5moyilqNeFyBRJMRneMhCwt6ouSQDP9NjQH_FG6ph-0BTtYg3TBXTevmOKFbmhPqSl0eIcK6W_kHDLWBdqGxIiuMzXOmmIE6nrBjOPvj-D0RoS0Db2qruxjwDiKrVaBDngkk6FFX6c2UDxhrZB5qPvgdWLIdNsXncdzXGTrjs4suYwkl7HksmUfXq8embimINfdvNvJNmvtwyxba3MfXqyW6cvmco2qbL2ge5i0zCMTZR_edDqx3uK_L9y5_oXP4fbo5PgoOzoYHz6BO5LzB01KaRd68-nCPiWQNc-ftZqNcH7TH9MfEvA2dQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFUQQ0WrxatUR9EVZmmwu_wQRbe9orR5FLPQt3exuJFCT6_2h3gfxy_jpnMkmdyjYtz7dcZvbPMzszG9m9jcD8NIvtIykioQ0JhSDyGiRxsoXiS6MzVUcxB6zkb-Mo8PTwaez8GwDfndcGL5W2dnExlCbWnOOfI-gc8LBSODtFe21iJOD0fvJpeAJUlxp7cZpOBU5tssrCt9m744OSNavpBwNv-0finbCgNCEC-YiVZoiJOkZbbjLQmDTgtxpZKQqLClq6oWKAIAlmFQkxSDJKdgKuAMWoxBPJVFA-96CzZijoh5sfhyOT76u_EDghy7cS3xBjjHqaqoNcY_8Ol_5TEVK7kEs__aKa6j7T3W2cXqj-3CvRav4wanXA9iw1RZsD9fkOFpsrcNsC-66HCA6atND-LWvpnldoSnrn6Wx6NwnqnKKWk24dIEEmdFdKSGri_qiJABNnw3lAX-UrgEIbcHO1iB94Q6cV0z3QjfAp9QURrxFhfQzcj4Z6wJtQ2hE16UaZ01hAnW9YPbx90dweiNC2oZeVVf2MWAcxVarQAc8nsnQoq9TGyietlbIPNR98DoxZLrtkc6jOi6ydXdnllxGkstYctmyD69Xf5m4BiHXPbzbyTZrbcUsW2t2H16slumUc-lGVbZe0DNMYObxibIPbzqdWG_x3xfuXP_C53CbDlH2-Wh8_ATuSE4lNNmlXejNpwv7lPDWPH_WKjbC-U2fpT-jfTqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+direct+air+capture+for+effective+climate+change+mitigation+based+on+renewable+electricity%3A+a+new+type+of+energy+system+sector+coupling&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Breyer%2C+Christian&rft.au=Fasihi%2C+Mahdi&rft.au=Aghahosseini%2C+Arman&rft.date=2020-01-01&rft.issn=1381-2386&rft.volume=25&rft.issue=1+p.43-65&rft.spage=43&rft.epage=65&rft_id=info:doi/10.1007%2Fs11027-019-9847-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon