Robust speech recognition based on joint model and feature space optimization of hidden Markov models

The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 8; no. 2; pp. 194 - 204
Main Authors MOON, S, HWANG, J.-N
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.1997
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
DOI10.1109/72.557656

Cover

Loading…
Abstract The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters /spl lambda/ subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters /spl lambda/. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.
AbstractList The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters lambda subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters lambda. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.
The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters /spl lambda/ subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters /spl lambda/. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.
The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters lambda subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters lambda. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters lambda subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters lambda. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.
The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorithm stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters lambda subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters lambda. The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e. either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used
The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and applied to the robust speech recognition tasks under general types of mismatch conditions. This algorith11m stems from the gradient-based inversion algorithm of an artificial neural network (ANN) by viewing an HMM as a special type of ANN. Given input speech features s, the forward training of an HMM finds the model parameters lambda subject to an optimization criterion. On the other hand, the inversion of an HMM finds speech features, s, subject to an optimization criterion with given model parameters lambda . The gradient-based HMM inversion and the Baum-Welch HMM inversion algorithms can be successfully integrated with the model space optimization techniques, such as the robust MINIMAX technique, to compensate the mismatch in the joint model and feature space. The joint space mismatch compensation technique achieves better performance than the single space, i.e., either the model space or the feature space alone, mismatch compensation techniques. It is also demonstrated that approximately 10-dB signal-to-noise ratio (SNR) gain is obtained in the low SNR environments when the joint model and feature space mismatch compensation technique is used.
Author Seokyong Moon
Jenq-Neng Hwang
Author_xml – sequence: 1
  givenname: S
  surname: MOON
  fullname: MOON, S
  organization: Communication Systems Research and Development, Samsung Electronics, Seoul, Korea, Republic of
– sequence: 2
  givenname: J.-N
  surname: HWANG
  fullname: HWANG, J.-N
  organization: Information Processing Laboratory, Department of Electrical Engineering, University of Washington, Seattle, WA 98195, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2631536$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18255624$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtrFjEUBuAgFXvRhVsXkoUoLqbNZXJbSvEGFUF0PWSSE5s6M_lMMoL-etPOZwURXeVAnveF5ByjgyUtgNBDSk4pJeZMsVMhlBTyDjqipqcdIYYftJn0ojOMqUN0XMoVIbQXRN5Dh1QzISTrjxB8SONaKi47AHeJM7j0eYk1pgWPtoDHbbhKcal4Th4mbBePA9i6ZmgZ6wCnXY1z_GFvMingy-g9LPidzV_Sty1V7qO7wU4FHuzPE_Tp1cuP52-6i_ev356_uOgcN6x2RjnbA4wk9FQS4NprHQRwIbW0VIGHoCkPRFvtjRGhvcFIoDBaUNT4wE_Qs613l9PXFUod5lgcTJNdIK1lULxnghrCm3z6T8m0YIor8n-oOKWGyQYf7-E6zuCHXY6zzd-HX3_dwJM9sMXZKWS7uFhuXauggl_3PN-Yy6mUDOF3Exmu1z0oNmzrbvbsD-tivdlEzTZOf0082hIRAG6b95c_AaGns50
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TMM_2005_843341
crossref_primary_10_1109_TSA_2002_805644
crossref_primary_10_1016_S0925_2312_00_00308_8
crossref_primary_10_1002__SICI_1098_111X_200005_15_5_365__AID_INT1_3_0_CO_2_P
crossref_primary_10_1109_TCSVT_2004_826760
crossref_primary_10_1109_TNN_2002_1021891
crossref_primary_10_1109_TSP_2004_827153
crossref_primary_10_1109_5_880082
crossref_primary_10_1016_S1052_5149_25_00543_X
crossref_primary_10_1109_TCBB_2016_2520919
crossref_primary_10_1016_j_entcom_2009_09_005
crossref_primary_10_1109_5_687838
crossref_primary_10_1109_TNN_2003_820838
crossref_primary_10_1109_LSP_2011_2179647
crossref_primary_10_1109_TSMCA_2010_2069094
crossref_primary_10_1186_1687_6180_2011_4
crossref_primary_10_1016_S0167_6393_00_00053_4
crossref_primary_10_1109_91_873579
crossref_primary_10_1016_j_neucom_2005_12_130
crossref_primary_10_1109_72_809074
crossref_primary_10_1109_LSP_2006_891326
crossref_primary_10_1109_TSA_2002_800558
Cites_doi 10.1109/89.221371
10.21236/ADA188529
10.1109/29.46548
10.1109/78.157214
10.1109/ICASSP.1993.319183
10.1109/IJCNN.1989.118277
10.1109/72.125870
10.1162/neco.1989.1.4.425
10.1109/ICASSP.1988.196643
10.1109/NNSP.1992.253704
10.1002/j.1538-7305.1985.tb00273.x
10.1016/0885-2308(91)90011-E
10.1109/TASSP.1979.1163209
10.1214/aoms/1177699803
10.1109/78.175747
10.1109/29.45543
10.1109/72.80299
10.1007/978-1-84628-615-5
10.1109/89.260341
10.1109/TASSP.1978.1163086
10.1109/36.239907
10.1109/89.260357
10.1109/NNSP.1991.239512
10.1109/PROC.1979.11540
10.1109/ICASSP.1990.115971
10.1109/72.125866
ContentType Journal Article
Copyright 1997 INIST-CNRS
Copyright_xml – notice: 1997 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/72.557656
DatabaseName CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 204
ExternalDocumentID 18255624
2631536
10_1109_72_557656
557656
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-97ca4eeb0f4160e38d88f5e35686a17edef813f08a8d995f55696e1ebae719df3
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Sun Aug 24 04:12:27 EDT 2025
Fri Jul 11 11:10:13 EDT 2025
Fri Jul 11 04:15:34 EDT 2025
Mon Jul 21 05:53:09 EDT 2025
Mon Jul 21 09:16:50 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Tue Jul 01 02:44:29 EDT 2025
Wed Aug 27 02:29:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Statistical method
Speech recognition
Maximum likelihood
Markov model
Neural network
Algorithm
Gradient method
Optimization
Mean square error
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-97ca4eeb0f4160e38d88f5e35686a17edef813f08a8d995f55696e1ebae719df3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18255624
PQID 27311926
PQPubID 23500
PageCount 11
ParticipantIDs crossref_primary_10_1109_72_557656
proquest_miscellaneous_28527370
pascalfrancis_primary_2631536
pubmed_primary_18255624
crossref_citationtrail_10_1109_72_557656
proquest_miscellaneous_734251903
proquest_miscellaneous_27311926
ieee_primary_557656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-03-01
PublicationDateYYYYMMDD 1997-03-01
PublicationDate_xml – month: 03
  year: 1997
  text: 1997-03-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 1997
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References hwang (ref11) 1990
ref13
ref12
isidori (ref14) 1995
white (ref33) 1989; 1
ref32
ref10
brown (ref4) 1987
ref2
rabiner (ref30) 1993
ref1
ref17
ref16
ref19
rumelhart (ref31) 1986; 1
ref18
juang (ref15) 1985; 64
niles (ref29) 1991
lim (ref21) 1979; 67
ref24
ref23
ref20
ref22
moon (ref28) 1995
ref27
ref8
ref7
ref9
ref3
moon (ref25) 1992
ref6
ref5
moon (ref26) 1993; 2
References_xml – ident: ref24
  doi: 10.1109/89.221371
– year: 1987
  ident: ref4
  publication-title: Acoustic-phonetic modeling problem in automatic speech recognition
  doi: 10.21236/ADA188529
– ident: ref23
  doi: 10.1109/29.46548
– ident: ref17
  doi: 10.1109/78.157214
– ident: ref27
  doi: 10.1109/ICASSP.1993.319183
– year: 1993
  ident: ref30
  publication-title: Fundamentals of speech recognition
– ident: ref22
  doi: 10.1109/IJCNN.1989.118277
– ident: ref8
  doi: 10.1109/72.125870
– year: 1991
  ident: ref29
  publication-title: Modeling and learning in speech recognition The relationship between stochastic pattern classifiers and neural networks
– start-page: 145
  year: 1995
  ident: ref28
  article-title: noisy speech recognition using robust inversion of hidden markov models
  publication-title: Proc EEE Int Conf Acoust Speech Signal Processing
– volume: 1
  start-page: 425
  year: 1989
  ident: ref33
  article-title: learning in artificial neural networks: a statistical perspective
  publication-title: Neural Computa
  doi: 10.1162/neco.1989.1.4.425
– ident: ref32
  doi: 10.1109/ICASSP.1988.196643
– ident: ref13
  doi: 10.1109/NNSP.1992.253704
– start-page: 1086
  year: 1992
  ident: ref25
  article-title: noisy speech recognition via wavelet coefficient enhancement
  publication-title: Proc 27th Asilomar Conf Signals Syst Comput
– volume: 64
  start-page: 1235
  year: 1985
  ident: ref15
  article-title: maximum-likelihood estimation for mixture multivariate stochastic observations of markov chains
  publication-title: AT&amp T Tech J
  doi: 10.1002/j.1538-7305.1985.tb00273.x
– ident: ref16
  doi: 10.1016/0885-2308(91)90011-E
– ident: ref3
  doi: 10.1109/TASSP.1979.1163209
– ident: ref9
  doi: 10.1214/aoms/1177699803
– ident: ref18
  doi: 10.1109/78.175747
– ident: ref10
  doi: 10.1109/29.45543
– ident: ref12
  doi: 10.1109/72.80299
– year: 1995
  ident: ref14
  publication-title: Nonlinear Control Systems
  doi: 10.1007/978-1-84628-615-5
– ident: ref5
  doi: 10.1109/89.260341
– volume: 2
  year: 1993
  ident: ref26
  article-title: robust noisy speech enhancement using wavelets
  publication-title: Proc 1st Asia Pacific Conf Commun
– volume: 1
  start-page: 318
  year: 1986
  ident: ref31
  article-title: learning internal representations by error propagation
  publication-title: Parallel Distributed Processing (PDP) Exploration in the Microstructure of Cognition
– ident: ref20
  doi: 10.1109/TASSP.1978.1163086
– ident: ref6
  doi: 10.1109/36.239907
– ident: ref7
  doi: 10.1109/89.260357
– start-page: 754
  year: 1990
  ident: ref11
  article-title: iterative constrained inversion of neural networks and its applications
  publication-title: Proc 24th Conf Inform Syst Sci
– ident: ref19
  doi: 10.1109/NNSP.1991.239512
– volume: 67
  start-page: 1586
  year: 1979
  ident: ref21
  article-title: enhancement and bandwidth compression of noisy speech
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1979.11540
– ident: ref1
  doi: 10.1109/ICASSP.1990.115971
– ident: ref2
  doi: 10.1109/72.125866
SSID ssj0014506
Score 1.3024223
Snippet The hidden Markov model (HMM) inversion algorithm, based on either the gradient search or the Baum-Welch reestimation of input speech features, is proposed and...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 194
SubjectTerms Applied sciences
Artificial neural networks
Automatic speech recognition
Exact sciences and technology
Filtering
Hidden Markov models
Information, signal and communications theory
Minimax techniques
Moon
Noise robustness
Signal processing
Speech enhancement
Speech processing
Speech recognition
Telecommunications and information theory
Wiener filter
Title Robust speech recognition based on joint model and feature space optimization of hidden Markov models
URI https://ieeexplore.ieee.org/document/557656
https://www.ncbi.nlm.nih.gov/pubmed/18255624
https://www.proquest.com/docview/27311926
https://www.proquest.com/docview/28527370
https://www.proquest.com/docview/734251903
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgsOWxLQULIcQl28SOHzlWiKpCggOiUm-RY49VHk0qkiDRX1-PnU1b1CJuVjyWHHtsz9gz30fIG9sIdGUhEwopzKwus8aCzBTjkpsc4UMw3_nTZ3l0XH48EScTznbMhQGAGHwGKyzGt3zX2RGvyvZFMI6F3CAbwW9LqVrzg0EpIo1mcC5EVjGmJhChIq_2FVulhggQqhFyi5U3TqFIq4JBkaYP4-ITocXdFmc8eQ63Ukp3HwELMeDkx2ocmpW9-AvO8T9_6hF5OFmg9CCpzGNyD9oF2T5og_d99oe-pTEmNF62L8jWmvSBTnvAgjy4hmC4TeBL14z9QPtzAHtK53CkrqV4PjoaCt-7b-1AI-UONa2jHiKYaGhjLNAu7FlnUzIo7Tw9RUyTlmIOUfc7teqfkOPDD1_fH2UTc0Nmg701ZJWypgRoch_svRy4dlp7AVxILU2hwIHXBfe5NtpVlfBhTioJBTQGVFE5z5-SzbZr4TmhOTBQzHHLdVla5wyzSlilBEjudeOW5N16Jms7wZoju8bPOro3eVUrVqcxXpLXs-h5wvK4TWiBczQLrL_u3dCOuZpJHs6MUP9qrS11WJ_46GJa6Ma-DuZhEazof0loBMFT-ZLQOyQULzHBOOdL8ixp4lX_J4XeubXbu-R-gtvFmLkXZHP4NcJeMKKG5mVcPpe31RnL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOUAPFLZQFii1EEJcsk3sOHaOFaJaoO0BtVJvkWOP1QJNKpIgwa_HH9lAUYu4WfFYcuyx59meeQPwStfcH2Ux4cKnMNMyT2qNRSIoK5hKPX2Ij3c-PCqWJ_mHU3468myHWBhEDM5nuPDF8JZvWj34q7Jd7sAxL27DHWf2eRaDtaYng5yHRJrueMGTklIx0ghlabkr6CI29RSh0pNu0fyKHQqJVbxbpOrcyNiY0uJmzBlsz_5GDOruAmWhdzn5shj6eqF__kXo-J-_9QDujxiU7EWleQi3sJnB5l7jzt8XP8hrErxCw3X7DDZWaR_IuAvMYP0PDsNNwE9tPXQ96S4R9RmZHJLahngLaYgrfG7Pm56EpDtENYZYDHSiro3SSFq3a12M4aCkteTMs5o0xEcRtd9jq-4RnOy_O367TMbcDYl2iKtPSqFVjlin1iG-FJk0UlqOjBeyUJlAg1ZmzKZSSVOW3Lo5KQvMsFYostJY9hjWmrbBJ0BSpCioYZrJPNfGKKoF10JwLJiVtZnDm9VMVnokNvf5Nb5W4YCTlpWgVRzjObycRC8jm8d1QjM_R5PA6uv2Fe2YqmnBnNVw9TsrbancCvXPLqrBdugqBxAzh6P_JSE9DZ5I50BukBAs9yHGKZvDVtTE3_0fFfrptd3egbvL48OD6uD90cdncC-S73oPuuew1n8bcNtBqr5-EZbSL4EnHRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+speech+recognition+based+on+joint+model+and+feature+space+optimization+of+hidden+Markov+models&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Seokyong+Moon&rft.au=Jenq-Neng+Hwang&rft.date=1997-03-01&rft.issn=1045-9227&rft.eissn=1941-0093&rft.volume=8&rft.issue=2&rft.spage=194&rft.epage=204&rft_id=info:doi/10.1109%2F72.557656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_72_557656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon