Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants

Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 19; p. 11522
Main Authors Timilsina, Arbindra, Dong, Wenxu, Hasanuzzaman, Mirza, Liu, Binbin, Hu, Chunsheng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
AbstractList Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Oxygen (O 2 ) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O 2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO 3 − ), nitrite (NO 2 − ), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N 2 O) when supplied with NO 3 − and NO 2 − , resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N 2 O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O 2 -limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N 2 O budget.
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Author Dong, Wenxu
Hu, Chunsheng
Timilsina, Arbindra
Liu, Binbin
Hasanuzzaman, Mirza
AuthorAffiliation 1 Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
3 Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, Baoding 071700, China
2 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
AuthorAffiliation_xml – name: 2 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
– name: 3 Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, Baoding 071700, China
– name: 1 Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Author_xml – sequence: 1
  givenname: Arbindra
  orcidid: 0000-0002-1007-229X
  surname: Timilsina
  fullname: Timilsina, Arbindra
– sequence: 2
  givenname: Wenxu
  surname: Dong
  fullname: Dong, Wenxu
– sequence: 3
  givenname: Mirza
  orcidid: 0000-0002-0461-8743
  surname: Hasanuzzaman
  fullname: Hasanuzzaman, Mirza
– sequence: 4
  givenname: Binbin
  orcidid: 0000-0002-5791-1046
  surname: Liu
  fullname: Liu, Binbin
– sequence: 5
  givenname: Chunsheng
  surname: Hu
  fullname: Hu, Chunsheng
BookMark eNptkc1OGzEURi1EVUjaJXtLbNgM9c_YE7NAilBLKtGGBV1bN54b4mjGDuMJkB3vwBvyJDiFqgV15U_yud_V0R2Q3RADEnLA2bGUhn3xyzYJyQ3nSogdss9LIQrGdLX7T94jg5SWjAkplPlI9qTOacTNPrE_fd9Bj08Pj9vk_yZHp_e-RnoJ_eIONid0TH-gW0DwqaVxTiebVbz3QCHUdBx-x6vYYAfBIfWBXjYQ-vSJfJhDk_Dz6zskv759vTqbFBfT8-9n44vCSSP6wshZrbEy5YxVquaArAQhpGTZSmtADRpRoC61cVlWGqNUJSVUM6ndqDZySE5felfrWYu1w5C1GrvqfAvdxkbw9u1P8At7HW-tUdpUpc4FR68FXbxZY-pt65PDJltgXCcrKqG4MUKVGT18hy7jugtZb0uVYqR4yTMlXyjXxZQ6nFvne-h93O73jeXMbg9o3xwwTxXvpv4o_J9_Brdhnxk
CitedBy_id crossref_primary_10_1016_j_jplph_2025_154446
crossref_primary_10_1093_jxb_erae139
crossref_primary_10_1016_j_biortech_2023_129759
crossref_primary_10_1016_j_toxrep_2024_101816
crossref_primary_10_3390_molecules28155819
crossref_primary_10_1016_j_jhazmat_2024_135471
crossref_primary_10_3390_biom14091172
crossref_primary_10_1007_s42247_024_00818_7
crossref_primary_10_1016_j_plantsci_2023_111775
crossref_primary_10_1007_s44372_025_00102_w
crossref_primary_10_3390_ijpb16010029
crossref_primary_10_1371_journal_pone_0319898
crossref_primary_10_3389_fpls_2024_1290700
crossref_primary_10_3389_fpls_2024_1413653
crossref_primary_10_1016_j_scitotenv_2024_175115
crossref_primary_10_1038_s41598_024_70061_x
crossref_primary_10_3390_biomedicines13010064
crossref_primary_10_1186_s12870_024_05834_7
crossref_primary_10_1007_s00299_024_03290_z
crossref_primary_10_3390_biology12070927
crossref_primary_10_1016_j_stress_2024_100486
crossref_primary_10_3390_agronomy14092112
crossref_primary_10_1016_j_foodchem_2025_143841
crossref_primary_10_32628_IJSRST24113238
crossref_primary_10_1165_rcmb_2023_0447OC
crossref_primary_10_1007_s00425_023_04148_6
crossref_primary_10_1007_s42452_023_05470_0
crossref_primary_10_3390_biology13020101
crossref_primary_10_3390_seeds2030019
Cites_doi 10.32604/phyton.2022.018022
10.1093/pcp/pcq022
10.1023/A:1008604410875
10.1016/j.tplants.2010.11.007
10.3390/ijms20092235
10.1007/s00344-009-9104-9
10.1093/jxb/ert358
10.1111/tpj.14422
10.1371/journal.pone.0056345
10.1111/j.1469-8137.2010.03524.x
10.1111/pce.12766
10.1007/s00425-002-0816-3
10.1039/C8NR10514F
10.1016/j.scitotenv.2021.150262
10.3390/ijms23169412
10.1111/nph.15455
10.1093/jxb/erz160
10.1038/s41467-019-12045-4
10.1038/srep11391
10.1016/j.plaphy.2003.09.003
10.1007/s00726-012-1399-3
10.1007/s00425-007-0496-0
10.1016/j.postharvbio.2013.06.021
10.3390/ijms21082796
10.1590/S1677-04202009000100003
10.1105/tpc.19.00748
10.1111/j.1469-8137.2008.02752.x
10.1080/17429145.2014.886728
10.1016/j.envexpbot.2020.104078
10.1093/jxb/erz185
10.1038/s41467-019-12976-y
10.1093/aob/mcw146
10.1016/S0038-0717(99)00175-3
10.1007/s10725-011-9643-5
10.1104/pp.109.140996
10.1093/mp/ssm016
10.1016/j.sajb.2011.06.009
10.1146/annurev.arplant.59.032607.092830
10.1093/jxb/eri252
10.1093/aob/mcn211
10.1007/BF00195089
10.1016/j.plaphy.2017.01.028
10.3390/plants10030595
10.1111/j.1399-3054.1994.tb00414.x
10.2503/jjshs.67.613
10.1016/j.plantsci.2017.10.001
10.1016/j.postharvbio.2011.05.011
10.1016/j.freeradbiomed.2012.07.021
10.1016/j.fcr.2020.107989
10.1007/978-3-319-10079-1_4
10.1111/nph.16378
10.1111/tpj.13544
10.1007/BF01279263
10.1007/s00299-016-2037-4
10.1016/j.tplants.2016.12.001
10.1016/j.scitotenv.2021.148699
10.1371/journal.pone.0136579
10.1093/jxb/ery119
10.1016/j.atmosenv.2014.09.077
10.1104/pp.72.3.787
10.1016/j.scienta.2016.10.008
10.1016/j.biomaterials.2018.09.043
10.1046/j.1469-8137.2003.00907.x
10.1590/S1982-56762010000200005
10.1016/j.freeradbiomed.2012.06.032
10.1016/j.scienta.2019.04.061
10.1093/aob/mcy202
10.1016/j.plaphy.2016.08.009
10.1016/S0005-2728(99)00029-8
10.1016/bs.ampbs.2019.08.001
10.3390/ijms19072039
10.1079/SSR2002118
10.1006/bbrc.1995.2076
10.1038/s41598-020-73613-z
10.1016/j.molp.2021.12.012
10.1104/pp.110.166140
10.1007/s00425-020-03422-1
10.1105/tpc.104.025379
10.1016/j.niox.2019.04.005
10.1007/s11738-018-2790-9
10.1023/B:RUPP.0000003279.40113.27
10.3389/fpls.2020.00566
10.1007/s00425-003-1178-1
10.1038/ncomms9669
10.1021/bi2004312
10.1016/j.cmet.2011.01.004
10.1111/nph.16424
10.1016/S0891-5849(02)01112-7
10.3390/toxins9030100
10.1007/s11240-009-9513-2
10.1016/j.plantsci.2011.05.002
10.1016/j.plaphy.2010.08.016
10.3389/fpls.2013.00029
10.3389/fpls.2020.00970
10.1111/nph.16513
10.1111/pce.12707
10.1002/(SICI)1097-4652(200003)182:3<402::AID-JCP11>3.0.CO;2-D
10.1186/s12870-018-1393-3
10.1016/j.niox.2017.02.004
10.1111/nph.12380
10.1007/s00299-014-1715-3
10.1071/FP17250
10.3389/fpls.2013.00398
10.1007/s11103-012-9979-x
10.1093/jxb/erh258
10.1016/j.tplants.2015.11.004
10.1093/jxb/eraa403
10.1016/j.jplph.2010.06.017
10.1016/j.febslet.2007.01.006
10.1093/jxb/50.334.689
10.1111/nph.16462
10.1007/s11104-017-3197-x
10.1007/s11104-012-1359-4
10.1073/pnas.89.7.3030
10.1073/pnas.131572798
10.1016/0925-5214(94)00030-V
10.1007/s11738-010-0503-0
10.1111/pce.13061
10.1046/j.1365-313X.1999.00494.x
10.1093/jxb/erv030
10.1016/j.plaphy.2013.02.015
10.1007/s00425-012-1773-0
10.1016/B978-0-12-818204-8.00035-7
10.1016/j.foodchem.2005.12.022
10.1007/s13580-012-0481-9
10.1111/pce.12312
10.1111/j.1469-8137.2007.02226.x
10.1016/j.molcel.2018.05.024
10.1111/pce.12739
10.1007/s11368-022-03212-0
10.1007/s00344-020-10212-2
10.1016/j.mito.2014.02.003
10.1093/jxb/erj060
10.1016/j.bbabio.2012.10.002
10.1071/FP15120
10.1002/jsfa.8347
10.1094/MPMI-05-15-0118-R
10.1094/MPMI.2000.13.12.1380
10.1007/s11738-021-03291-5
10.1080/15592324.2020.1771938
10.3390/plants9020180
10.1016/j.pbi.2013.03.013
10.1038/s41598-020-78149-w
10.1093/carcin/23.3.469
10.1016/j.postharvbio.2004.12.008
10.1038/s41438-021-00500-7
10.3389/fpls.2020.01177
10.3389/fpls.2020.00311
10.1016/j.bbrc.2008.10.144
10.1016/j.plantsci.2017.11.004
10.1007/s00425-013-1933-x
10.1002/jnr.21360
10.1002/jsfa.8146
10.1111/tpj.12340
10.1016/S0021-9258(19)76525-9
10.1111/nph.15969
10.1016/j.freeradbiomed.2005.12.006
10.1016/S0176-1617(99)80098-4
10.1007/s00425-013-2015-9
10.1074/jbc.M511635200
10.1007/BF00041290
10.1007/978-3-319-06710-0_4
10.1152/physiol.00051.2014
10.1016/j.niox.2011.12.001
10.1093/jxb/erx011
10.1016/S1734-1140(11)70638-7
10.1007/s11756-021-00749-2
10.1104/pp.106.086918
10.1016/j.mito.2011.03.005
10.1590/1678-992x-2017-0195
10.1016/S1471-4914(03)00028-5
10.21273/HORTSCI.48.10.1283
10.3390/ijms22020549
10.1016/j.plantsci.2010.05.014
10.1016/j.sajb.2021.03.024
10.3389/fpls.2018.00659
10.1023/A:1024591116697
10.1007/s11738-020-03107-y
10.1071/PP98096
10.1073/pnas.1108644108
10.1093/jxb/46.3.285
10.1093/treephys/tpr070
10.3390/antiox9080681
10.1016/0003-9861(88)90292-5
10.3389/fpls.2020.01313
10.1371/journal.pone.0175196
10.1016/j.plgene.2019.100182
10.1038/nrd2466
10.1016/j.plantsci.2011.02.011
10.1111/jipb.12780
10.1016/bs.abr.2015.10.007
10.3389/fpls.2022.865542
10.1126/science.1098837
10.3390/plants9060707
10.1080/01904160802043122
10.1104/pp.106.088898
10.1098/rstb.2013.0122
10.1007/s00425-016-2501-y
10.3389/fphys.2017.00142
10.1007/s10265-020-01176-1
10.1006/anbo.2001.1506
10.2136/sssaj2008.0059
10.5897/AJAR2015.9790
10.1016/j.bbabio.2008.06.002
10.1038/237169b0
10.1007/s11368-021-02903-4
10.17221/3630-PSE
10.3390/plants9050610
10.1007/s00425-003-1172-7
10.1080/01904169909365710
10.1007/s00425-005-0116-9
10.1111/pce.12989
10.3390/horticulturae7100410
10.1093/jxb/erh272
10.1071/FP08029
10.1016/j.plaphy.2020.01.020
10.3390/ijms131115193
10.1007/s00425-014-2198-8
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms231911522
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC9569746
10_3390_ijms231911522
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFD1901104; 2021YFD1700901
– fundername: Key R&D Program of Hebei Province
  grantid: 21323601D; 19227312D
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c392t-93bd6e794b075d1ae04a2233015266ae6a6ee2e6469c31939955733a7b36c8d93
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:40:13 EDT 2025
Mon Jul 21 10:49:29 EDT 2025
Fri Jul 25 20:24:56 EDT 2025
Tue Jul 01 03:40:40 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-93bd6e794b075d1ae04a2233015266ae6a6ee2e6469c31939955733a7b36c8d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0461-8743
0000-0002-1007-229X
0000-0002-5791-1046
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms231911522
PMID 36232819
PQID 2724285141
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9569746
proquest_miscellaneous_2725199254
proquest_journals_2724285141
crossref_citationtrail_10_3390_ijms231911522
crossref_primary_10_3390_ijms231911522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of molecular sciences
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Phoa (ref_175) 2002; 23
ref_136
He (ref_174) 2004; 305
Jayawardhane (ref_151) 2020; 11
Valderrama (ref_36) 2007; 581
Sodek (ref_48) 2009; 21
Berger (ref_85) 2020; 227
Wang (ref_123) 2010; 179
Freschi (ref_225) 2013; 4
Machacova (ref_202) 2013; 364
Greenway (ref_14) 2003; 30
Gupta (ref_23) 2020; 225
Silveira (ref_130) 2016; 244
Li (ref_183) 2017; 97
Singh (ref_45) 2007; 85
Stoimenova (ref_118) 2007; 226
Graziano (ref_171) 2004; 218
Astier (ref_213) 2011; 181
Lamotte (ref_156) 2006; 40
Steffens (ref_9) 2005; 51
ref_120
Kumari (ref_34) 2019; 70
Oliveira (ref_40) 2010; 35
Xu (ref_184) 2019; 254
Hayat (ref_128) 2012; 53
Pugin (ref_155) 2008; 59
Bai (ref_165) 2012; 26
Nawaz (ref_63) 2017; 97
Gibberd (ref_159) 2001; 88
Reda (ref_37) 2018; 267
Igamberdiev (ref_90) 2014; 19
Berger (ref_84) 2020; 11
Llamas (ref_35) 2016; 39
Guo (ref_116) 2014; 9
Serraj (ref_4) 1994; 91
Rockel (ref_172) 2002; 215
Novikova (ref_168) 2017; 8
ref_153
Sainz (ref_224) 2013; 76
ref_77
ref_75
ref_154
Feng (ref_214) 2019; 61
Shi (ref_12) 2008; 35
ref_160
Aridhi (ref_5) 2020; 252
Timilsina (ref_187) 2022; 805
Wu (ref_143) 2013; 81
Nguyen (ref_164) 1992; 89
Guo (ref_103) 1998; 67
ref_147
Evans (ref_17) 2004; 161
Bacanamwo (ref_83) 1999; 50
Valeri (ref_3) 2021; 229
Polyakova (ref_69) 2003; 50
ref_80
ref_149
Zhou (ref_1) 2020; 148
Sodek (ref_50) 2015; 9
Wany (ref_27) 2017; 40
Chen (ref_20) 2016; 43
Deng (ref_162) 2018; 187
Hartman (ref_91) 2021; 229
Chen (ref_219) 2008; 377
Astier (ref_31) 2012; 53
Moore (ref_93) 2016; 21
Kennedy (ref_66) 1983; 72
Jaiswal (ref_135) 2015; 10
Astier (ref_226) 2012; 13
Zhao (ref_127) 2019; 11
ref_210
Rich (ref_158) 2011; 190
ref_211
Zhao (ref_180) 1995; 212
Pugh (ref_8) 1995; 46
Batak (ref_58) 2002; 12
Bethke (ref_139) 2006; 57
Silvestre (ref_99) 2004; 55
Kaur (ref_82) 2021; 76
Gupta (ref_197) 2010; 51
Horchani (ref_95) 2010; 32
Liu (ref_203) 2015; 241
ref_204
Courtois (ref_227) 2008; 1
Blanquet (ref_217) 2015; 28
Wang (ref_148) 2011; 6
Rutten (ref_152) 2019; 75
Berger (ref_86) 2021; 72
Zhang (ref_167) 2017; 40
Gniazdowska (ref_140) 2012; 52
Srinivasan (ref_112) 2012; 53
Guo (ref_121) 2022; 91
Vandelle (ref_169) 2011; 181
Hendricks (ref_57) 1972; 237
Borisjuk (ref_56) 2007; 176
Sun (ref_222) 2021; 8
Kemp (ref_68) 1993; 189
Gupta (ref_220) 2016; 77
Kumar (ref_65) 2021; 140
ref_115
ref_117
Gupta (ref_32) 2022; 15
Gupta (ref_33) 2011; 16
(ref_119) 2016; 108
Kolbert (ref_215) 2017; 113
Wang (ref_132) 2020; 11
Sturms (ref_212) 2011; 50
ref_106
Jasid (ref_44) 2006; 142
Sun (ref_134) 2015; 66
Zheng (ref_107) 2016; 213
Herde (ref_137) 2020; 10
ref_101
Einarsdottir (ref_178) 1988; 263
Bizimana (ref_200) 2021; 21
Smart (ref_190) 2001; 98
Sauter (ref_18) 2013; 16
Posso (ref_11) 2018; 40
Larsen (ref_98) 2011; 13
Botrel (ref_52) 1996; 34
Gupta (ref_111) 2017; 58
ref_13
Libourel (ref_74) 2006; 142
Millar (ref_96) 2014; 37
Clark (ref_145) 2000; 13
Ismail (ref_142) 2009; 103
Timilsina (ref_24) 2020; 11
Lundberg (ref_113) 2008; 7
Ashraf (ref_72) 1999; 22
Castella (ref_170) 2017; 68
Bethke (ref_109) 2006; 223
Sanz (ref_166) 2011; 108
Yan (ref_188) 2000; 32
Fan (ref_73) 1988; 266
Oliveira (ref_49) 2013; 44
Oberson (ref_102) 1999; 155
Timilsina (ref_199) 2020; 10
Board (ref_71) 2008; 31
Corpas (ref_216) 2013; 4
Perazzolli (ref_205) 2004; 16
Gupta (ref_108) 2011; 11
Igamberdiev (ref_16) 2004; 55
Peng (ref_146) 2016; 35
Brown (ref_105) 2002; 33
Fago (ref_114) 2015; 30
Goshima (ref_181) 1999; 19
Deng (ref_61) 2012; 78
Zhang (ref_41) 2011; 31
Gill (ref_76) 2010; 48
Wany (ref_88) 2018; 123
Gupta (ref_206) 2005; 56
Vidal (ref_60) 2020; 32
Oliveira (ref_110) 2013; 237
Wang (ref_124) 2017; 416
Emmanuel (ref_176) 2011; 63
Albertos (ref_144) 2015; 6
Poderoso (ref_26) 2019; 88
Greenway (ref_2) 2018; 45
Chen (ref_70) 2013; 1827
Yasuda (ref_15) 2010; 167
Corpas (ref_25) 2013; 199
Weits (ref_6) 2021; 229
Lichanporn (ref_193) 2013; 86
Bizimana (ref_201) 2022; 22
Rubio (ref_207) 2019; 100
Dong (ref_62) 2012; 66
Bruhn (ref_189) 2014; 99
Lara (ref_59) 2014; 6
Stoimenova (ref_94) 2003; 253
Manoli (ref_131) 2014; 65
Zhao (ref_39) 2009; 151
ref_177
ref_51
Sowa (ref_179) 1991; 27
Limami (ref_7) 2014; 239
Plouviez (ref_209) 2017; 91
Nakamura (ref_81) 2020; 133
ref_182
Hartman (ref_92) 2019; 10
Zhan (ref_223) 2018; 71
Horchani (ref_100) 2011; 155
Benamar (ref_53) 2008; 1777
Lai (ref_122) 2011; 62
Durner (ref_22) 2013; 4
Zhu (ref_186) 2007; 100
Hu (ref_125) 2015; 34
ref_163
ref_64
Fancy (ref_221) 2017; 40
Murphy (ref_161) 1999; 1411
Borella (ref_79) 2019; 76
Cunha (ref_194) 2013; 48
Foster (ref_218) 2003; 9
Youssef (ref_87) 2016; 118
Khan (ref_126) 2020; 40
Machacova (ref_191) 2019; 10
Posso (ref_21) 2020; 42
ref_195
Lindermayr (ref_28) 2006; 281
ref_198
ref_30
Sun (ref_133) 2018; 9
Borisjuk (ref_54) 2009; 182
Shimoia (ref_78) 2021; 43
Cochrane (ref_89) 2017; 265
Hayat (ref_141) 2014; 20
Lenhart (ref_208) 2019; 221
Yamauchi (ref_19) 2016; 39
Gouble (ref_192) 1995; 5
Palomer (ref_185) 2005; 36
Pissolato (ref_43) 2020; 11
Hao (ref_129) 2009; 97
Bai (ref_29) 2009; 28
Huang (ref_38) 2004; 218
ref_46
Vartapetian (ref_97) 1999; 206
Gupta (ref_150) 2018; 69
Oliveira (ref_10) 2013; 66
Monreal (ref_42) 2013; 238
Pandey (ref_55) 2019; 70
Llamas (ref_104) 2017; 22
Kopyra (ref_138) 2003; 41
Lazalt (ref_173) 1997; 103
Fan (ref_47) 2017; 68
Arc (ref_67) 2013; 4
Miller (ref_196) 2009; 73
Loitto (ref_157) 2000; 182
References_xml – volume: 91
  start-page: 409
  year: 2022
  ident: ref_121
  article-title: Nitric Oxide Regulates Mitochondrial Fatty Acids and Promotes CBF Expression of Peach Fruit during Cold Storage
  publication-title: Phyton
  doi: 10.32604/phyton.2022.018022
– volume: 51
  start-page: 576
  year: 2010
  ident: ref_197
  article-title: Production and scavenging of nitric oxide by barley root mitochondria
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq022
– volume: 103
  start-page: 643
  year: 1997
  ident: ref_173
  article-title: Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1023/A:1008604410875
– volume: 16
  start-page: 160
  year: 2011
  ident: ref_33
  article-title: On the origins of nitric oxide
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.11.007
– ident: ref_149
  doi: 10.3390/ijms20092235
– volume: 28
  start-page: 358
  year: 2009
  ident: ref_29
  article-title: Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-009-9104-9
– volume: 65
  start-page: 185
  year: 2014
  ident: ref_131
  article-title: NO homeostasis is a key regulator of early nitrate perception and root elongation in maize
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert358
– volume: 100
  start-page: 38
  year: 2019
  ident: ref_207
  article-title: Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid
  publication-title: Plant J.
  doi: 10.1111/tpj.14422
– ident: ref_147
  doi: 10.1371/journal.pone.0056345
– volume: 190
  start-page: 311
  year: 2011
  ident: ref_158
  article-title: Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize: Implications for root function during flooding
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03524.x
– volume: 39
  start-page: 2145
  year: 2016
  ident: ref_19
  article-title: Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12766
– volume: 215
  start-page: 708
  year: 2002
  ident: ref_172
  article-title: Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco
  publication-title: Planta
  doi: 10.1007/s00425-002-0816-3
– volume: 11
  start-page: 10511
  year: 2019
  ident: ref_127
  article-title: Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity
  publication-title: Nanoscale
  doi: 10.1039/C8NR10514F
– volume: 805
  start-page: 150262
  year: 2022
  ident: ref_187
  article-title: Plants are a natural source of nitrous oxide even in field conditions as explained by 15N site preference
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150262
– ident: ref_182
  doi: 10.3390/ijms23169412
– volume: 221
  start-page: 1398
  year: 2019
  ident: ref_208
  article-title: Nitrous oxide effluxes from plants as a potentially important source to the atmosphere
  publication-title: New Phytol.
  doi: 10.1111/nph.15455
– volume: 70
  start-page: 4345
  year: 2019
  ident: ref_34
  article-title: Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz160
– volume: 10
  start-page: 4020
  year: 2019
  ident: ref_92
  article-title: Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12045-4
– ident: ref_153
  doi: 10.1038/srep11391
– volume: 41
  start-page: 1011
  year: 2003
  ident: ref_138
  article-title: Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2003.09.003
– volume: 44
  start-page: 743
  year: 2013
  ident: ref_49
  article-title: Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments
  publication-title: Amino Acids
  doi: 10.1007/s00726-012-1399-3
– volume: 226
  start-page: 465
  year: 2007
  ident: ref_118
  article-title: Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria
  publication-title: Planta
  doi: 10.1007/s00425-007-0496-0
– volume: 86
  start-page: 62
  year: 2013
  ident: ref_193
  article-title: The effects of nitric oxide and nitrous oxide on enzymatic browning in longkong (Aglaia dookkoo Griff.)
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.06.021
– ident: ref_204
  doi: 10.3390/ijms21082796
– volume: 21
  start-page: 13
  year: 2009
  ident: ref_48
  article-title: Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency
  publication-title: Braz. J. Plant Physiol.
  doi: 10.1590/S1677-04202009000100003
– volume: 32
  start-page: 2094
  year: 2020
  ident: ref_60
  article-title: Nitrate in 2020: Thirty years from transport to signaling networks
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00748
– volume: 182
  start-page: 17
  year: 2009
  ident: ref_54
  article-title: The oxygen status of the developing seed
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02752.x
– volume: 9
  start-page: 640
  year: 2014
  ident: ref_116
  article-title: The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2014.886728
– ident: ref_75
  doi: 10.1016/j.envexpbot.2020.104078
– volume: 70
  start-page: 4539
  year: 2019
  ident: ref_55
  article-title: Nitric oxide accelerates germination via the regulation of respiration in chickpea
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz185
– volume: 10
  start-page: 4989
  year: 2019
  ident: ref_191
  article-title: Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12976-y
– volume: 118
  start-page: 919
  year: 2016
  ident: ref_87
  article-title: Phytoglobin expression influences soil flooding response of corn plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw146
– volume: 32
  start-page: 437
  year: 2000
  ident: ref_188
  article-title: Pathways of N2O emission from rice paddy soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00175-3
– volume: 66
  start-page: 191
  year: 2012
  ident: ref_62
  article-title: Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-011-9643-5
– volume: 151
  start-page: 755
  year: 2009
  ident: ref_39
  article-title: Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.140996
– volume: 1
  start-page: 218
  year: 2008
  ident: ref_227
  article-title: Nitric oxide in plants: Production and cross-talk with Ca2+ signaling
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssm016
– volume: 78
  start-page: 139
  year: 2012
  ident: ref_61
  article-title: Sodium nitroprusside, ferricyanide, nitrite and nitrate decrease the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2011.06.009
– volume: 59
  start-page: 21
  year: 2008
  ident: ref_155
  article-title: New insights into nitric oxide signaling in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092830
– volume: 56
  start-page: 2601
  year: 2005
  ident: ref_206
  article-title: In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri252
– volume: 103
  start-page: 197
  year: 2009
  ident: ref_142
  article-title: Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa)
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcn211
– volume: 189
  start-page: 298
  year: 1993
  ident: ref_68
  article-title: Nitrate and nitrate reductase in Erythrina caffra seeds: Enhancement of induction by anoxia and possible role in germination
  publication-title: Planta
  doi: 10.1007/BF00195089
– volume: 113
  start-page: 56
  year: 2017
  ident: ref_215
  article-title: Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.01.028
– ident: ref_80
  doi: 10.3390/plants10030595
– volume: 91
  start-page: 161
  year: 1994
  ident: ref_4
  article-title: Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1994.tb00414.x
– volume: 67
  start-page: 613
  year: 1998
  ident: ref_103
  article-title: A role for nitrate reductase in the high tolerance of cucumber seedlings to root-zone hypoxia
  publication-title: J. Jpn. Soc. Hortic. Sci.
  doi: 10.2503/jjshs.67.613
– volume: 265
  start-page: 124
  year: 2017
  ident: ref_89
  article-title: Expression of phytoglobin affects nitric oxide metabolism and energy state of barley plants exposed to anoxia
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.10.001
– volume: 62
  start-page: 127
  year: 2011
  ident: ref_122
  article-title: Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2011.05.011
– volume: 53
  start-page: 1252
  year: 2012
  ident: ref_112
  article-title: Cytochrome c oxidase dysfunction in oxidative stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.07.021
– ident: ref_136
  doi: 10.1016/j.fcr.2020.107989
– ident: ref_163
  doi: 10.1007/978-3-319-10079-1_4
– volume: 229
  start-page: 64
  year: 2021
  ident: ref_91
  article-title: The role of ethylene in metabolic acclimations to low oxygen
  publication-title: New Phytol.
  doi: 10.1111/nph.16378
– volume: 91
  start-page: 45
  year: 2017
  ident: ref_209
  article-title: The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii
  publication-title: Plant J.
  doi: 10.1111/tpj.13544
– volume: 206
  start-page: 163
  year: 1999
  ident: ref_97
  article-title: Protective effect of exogenous nitrate on the mitochondrial ultrastructure of Oryza sativa coleoptiles under strict anoxia
  publication-title: Protoplasma
  doi: 10.1007/BF01279263
– volume: 35
  start-page: 2325
  year: 2016
  ident: ref_146
  article-title: Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.)
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2037-4
– volume: 22
  start-page: 163
  year: 2017
  ident: ref_104
  article-title: Nitrate reductase regulates plant nitric oxide homeostasis
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.12.001
– volume: 6
  start-page: 72
  year: 2014
  ident: ref_59
  article-title: Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination
  publication-title: J. Agric. Sci.
– ident: ref_195
  doi: 10.1016/j.scitotenv.2021.148699
– ident: ref_51
  doi: 10.1371/journal.pone.0136579
– volume: 69
  start-page: 3413
  year: 2018
  ident: ref_150
  article-title: Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery119
– volume: 99
  start-page: 206
  year: 2014
  ident: ref_189
  article-title: UV-induced N2O emission from plants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.09.077
– volume: 72
  start-page: 787
  year: 1983
  ident: ref_66
  article-title: Germination of Echinochloa crus-galli (barnyard grass) seeds under anaerobic conditions: Respiration and response to metabolic inhibitors
  publication-title: Plant Physiol.
  doi: 10.1104/pp.72.3.787
– volume: 213
  start-page: 24
  year: 2016
  ident: ref_107
  article-title: Nitric oxide enhances the nitrate stress tolerance of spinach by scavenging ROS and RNS
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2016.10.008
– volume: 187
  start-page: 55
  year: 2018
  ident: ref_162
  article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.043
– volume: 161
  start-page: 35
  year: 2004
  ident: ref_17
  article-title: Aerenchyma formation
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00907.x
– volume: 35
  start-page: 104
  year: 2010
  ident: ref_40
  article-title: Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762010000200005
– volume: 53
  start-page: 1101
  year: 2012
  ident: ref_31
  article-title: Protein S-nitrosylation: What’s going on in plants?
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.06.032
– volume: 254
  start-page: 99
  year: 2019
  ident: ref_184
  article-title: Effect of nitrous oxide against Botrytis cinerea and phenylpropanoid pathway metabolism in table grapes
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.04.061
– volume: 123
  start-page: 691
  year: 2018
  ident: ref_88
  article-title: Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy202
– volume: 108
  start-page: 468
  year: 2016
  ident: ref_119
  article-title: The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to Phytophthora infestans
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.08.009
– volume: 58
  start-page: 175
  year: 2017
  ident: ref_111
  article-title: Nitrite protects mitochondrial structure and function under hypoxia
  publication-title: Plant Cell Physiol.
– volume: 1411
  start-page: 401
  year: 1999
  ident: ref_161
  article-title: Nitric oxide and cell death
  publication-title: Biochim. Biophys. Acta (BBA) Bioenerg.
  doi: 10.1016/S0005-2728(99)00029-8
– volume: 75
  start-page: 325
  year: 2019
  ident: ref_152
  article-title: Oxygen regulatory mechanisms of nitrogen fixation in rhizobia
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/bs.ampbs.2019.08.001
– ident: ref_46
  doi: 10.3390/ijms19072039
– volume: 12
  start-page: 253
  year: 2002
  ident: ref_58
  article-title: The effects of potassium nitrate and NO-donors on phytochrome A-and phytochrome B-specific induced germination of Arabidopsis thaliana seeds
  publication-title: Seed Sci. Res.
  doi: 10.1079/SSR2002118
– volume: 212
  start-page: 1054
  year: 1995
  ident: ref_180
  article-title: Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1995.2076
– volume: 10
  start-page: 16509
  year: 2020
  ident: ref_137
  article-title: Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73613-z
– volume: 15
  start-page: 228
  year: 2022
  ident: ref_32
  article-title: Nitric oxide regulation of plant metabolism
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.12.012
– volume: 155
  start-page: 1023
  year: 2011
  ident: ref_100
  article-title: Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.166140
– volume: 252
  start-page: 22
  year: 2020
  ident: ref_5
  article-title: Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding
  publication-title: Planta
  doi: 10.1007/s00425-020-03422-1
– volume: 16
  start-page: 2785
  year: 2004
  ident: ref_205
  article-title: Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.025379
– volume: 88
  start-page: 61
  year: 2019
  ident: ref_26
  article-title: The effect of nitric oxide on mitochondrial respiration
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2019.04.005
– volume: 40
  start-page: 212
  year: 2018
  ident: ref_11
  article-title: Root flooding-induced changes in the dynamic dissipation of the photosynthetic energy of common bean plants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2790-9
– volume: 50
  start-page: 808
  year: 2003
  ident: ref_69
  article-title: Exogenous nitrate as a terminal acceptor of electrons in rice (Oryza sativa) coleoptiles and wheat (Triticum aestivum) roots under strict anoxia
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1023/B:RUPP.0000003279.40113.27
– volume: 11
  start-page: 566
  year: 2020
  ident: ref_151
  article-title: Roles for plant mitochondrial alternative oxidase under normoxia, hypoxia, and reoxygenation conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00566
– volume: 218
  start-page: 938
  year: 2004
  ident: ref_38
  article-title: Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-003-1178-1
– volume: 6
  start-page: 8669
  year: 2015
  ident: ref_144
  article-title: S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9669
– volume: 50
  start-page: 3873
  year: 2011
  ident: ref_212
  article-title: Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions
  publication-title: Biochemistry
  doi: 10.1021/bi2004312
– volume: 13
  start-page: 149
  year: 2011
  ident: ref_98
  article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.01.004
– volume: 229
  start-page: 24
  year: 2021
  ident: ref_6
  article-title: Molecular oxygen as a signaling component in plant development
  publication-title: New Phytol.
  doi: 10.1111/nph.16424
– volume: 33
  start-page: 1440
  year: 2002
  ident: ref_105
  article-title: Nitric oxide inhibition of mitochondrial respiration and its role in cell death
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)01112-7
– ident: ref_117
  doi: 10.3390/toxins9030100
– volume: 97
  start-page: 175
  year: 2009
  ident: ref_129
  article-title: Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-009-9513-2
– volume: 181
  start-page: 534
  year: 2011
  ident: ref_169
  article-title: Peroxynitrite formation and function in plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2011.05.002
– volume: 48
  start-page: 909
  year: 2010
  ident: ref_76
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
– volume: 4
  start-page: 29
  year: 2013
  ident: ref_216
  article-title: Protein tyrosine nitration in higher plants grown under natural and stress conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00029
– volume: 11
  start-page: 970
  year: 2020
  ident: ref_43
  article-title: Enhanced nitric oxide synthesis through nitrate supply improves drought tolerance of sugarcane plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00970
– volume: 229
  start-page: 173
  year: 2021
  ident: ref_3
  article-title: Botrytis cinerea induces local hypoxia in Arabidopsis leaves
  publication-title: New Phytol.
  doi: 10.1111/nph.16513
– volume: 40
  start-page: 462
  year: 2017
  ident: ref_221
  article-title: Nitric oxide function in plant abiotic stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12707
– volume: 182
  start-page: 402
  year: 2000
  ident: ref_157
  article-title: Nitric oxide induces dose-dependent Ca2+ transients and causes temporal morphological hyperpolarization in human neutrophils
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(200003)182:3<402::AID-JCP11>3.0.CO;2-D
– volume: 20
  start-page: 140
  year: 2014
  ident: ref_141
  article-title: Effect of sodium nitroprusside on the germination and antioxidant activities of tomato (Lycopersicon esculentum Mill)
  publication-title: Bulg. J. Agric. Sci.
– ident: ref_154
  doi: 10.1186/s12870-018-1393-3
– volume: 68
  start-page: 125
  year: 2017
  ident: ref_170
  article-title: Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2017.02.004
– volume: 199
  start-page: 633
  year: 2013
  ident: ref_25
  article-title: Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants
  publication-title: New Phytol.
  doi: 10.1111/nph.12380
– volume: 34
  start-page: 367
  year: 2015
  ident: ref_125
  article-title: Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1715-3
– volume: 45
  start-page: 877
  year: 2018
  ident: ref_2
  article-title: Energy-crises in well-aerated and anoxic tissue: Does tolerance require the same specific proteins and energy-efficient transport?
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP17250
– volume: 4
  start-page: 398
  year: 2013
  ident: ref_225
  article-title: Nitric oxide and phytohormone interactions: Current status and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00398
– volume: 81
  start-page: 27
  year: 2013
  ident: ref_143
  article-title: Heme oxygenase-1 is involved in nitric oxide-and cGMP-induced α-Amy2/54 gene expression in GA-treated wheat aleurone layers
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-012-9979-x
– volume: 55
  start-page: 2625
  year: 2004
  ident: ref_99
  article-title: Nitrate reductase regulation in tomato roots by exogenous nitrate: A possible role in tolerance to long-term root anoxia
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh258
– volume: 21
  start-page: 388
  year: 2016
  ident: ref_93
  article-title: Redox regulation of cytosolic translation in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.11.004
– volume: 72
  start-page: 873
  year: 2021
  ident: ref_86
  article-title: Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa403
– volume: 167
  start-page: 1571
  year: 2010
  ident: ref_15
  article-title: Soluble sugar availability of aerobically germinated barley, oat and rice coleoptiles in anoxia
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.06.017
– volume: 581
  start-page: 453
  year: 2007
  ident: ref_36
  article-title: Nitrosative stress in plants
  publication-title: Febs Lett.
  doi: 10.1016/j.febslet.2007.01.006
– volume: 50
  start-page: 689
  year: 1999
  ident: ref_83
  article-title: Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/50.334.689
– volume: 227
  start-page: 84
  year: 2020
  ident: ref_85
  article-title: Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration
  publication-title: New Phytol.
  doi: 10.1111/nph.16462
– volume: 416
  start-page: 39
  year: 2017
  ident: ref_124
  article-title: Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3197-x
– volume: 364
  start-page: 287
  year: 2013
  ident: ref_202
  article-title: Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1359-4
– volume: 89
  start-page: 3030
  year: 1992
  ident: ref_164
  article-title: DNA damage and mutation in human cells exposed to nitric oxide in vitro
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.7.3030
– volume: 98
  start-page: 7875
  year: 2001
  ident: ref_190
  article-title: Wheat leaves emit nitrous oxide during nitrate assimilation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.131572798
– volume: 5
  start-page: 311
  year: 1995
  ident: ref_192
  article-title: Nitrous oxide inhibition of ethylene production in ripening and senescing climacteric fruits
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/0925-5214(94)00030-V
– volume: 32
  start-page: 1113
  year: 2010
  ident: ref_95
  article-title: Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-010-0503-0
– volume: 40
  start-page: 3002
  year: 2017
  ident: ref_27
  article-title: Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13061
– volume: 19
  start-page: 75
  year: 1999
  ident: ref_181
  article-title: Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00494.x
– volume: 66
  start-page: 2449
  year: 2015
  ident: ref_134
  article-title: Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv030
– volume: 66
  start-page: 141
  year: 2013
  ident: ref_10
  article-title: Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.02.015
– volume: 237
  start-page: 255
  year: 2013
  ident: ref_110
  article-title: Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia
  publication-title: Planta
  doi: 10.1007/s00425-012-1773-0
– ident: ref_210
  doi: 10.1016/B978-0-12-818204-8.00035-7
– volume: 100
  start-page: 1517
  year: 2007
  ident: ref_186
  article-title: Effect of nitric oxide on ethylene production in strawberry fruit during storage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.12.022
– volume: 53
  start-page: 362
  year: 2012
  ident: ref_128
  article-title: Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-012-0481-9
– volume: 37
  start-page: 2260
  year: 2014
  ident: ref_96
  article-title: What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12312
– volume: 176
  start-page: 813
  year: 2007
  ident: ref_56
  article-title: Low oxygen sensing and balancing in plant seeds: A role for nitric oxide
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02226.x
– volume: 71
  start-page: 142
  year: 2018
  ident: ref_223
  article-title: S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.05.024
– volume: 39
  start-page: 2097
  year: 2016
  ident: ref_35
  article-title: A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12739
– volume: 34
  start-page: 645
  year: 1996
  ident: ref_52
  article-title: Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia
  publication-title: Plant Physiol. Biochem.
– volume: 22
  start-page: 2196
  year: 2022
  ident: ref_201
  article-title: Estimating field N2 emissions based on laboratory-quantified N2O/(N2O + N2) ratio and field quantified N2O emissions
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-022-03212-0
– volume: 40
  start-page: 2358
  year: 2020
  ident: ref_126
  article-title: Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10212-2
– volume: 19
  start-page: 329
  year: 2014
  ident: ref_90
  article-title: Plant mitochondria: Source and target for nitric oxide
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2014.02.003
– volume: 57
  start-page: 517
  year: 2006
  ident: ref_139
  article-title: Nitric oxide reduces seed dormancy in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj060
– volume: 1827
  start-page: 136
  year: 2013
  ident: ref_70
  article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution
  publication-title: Biochim. Biophys. Acta (BBA) Bioenerg.
  doi: 10.1016/j.bbabio.2012.10.002
– volume: 43
  start-page: 244
  year: 2016
  ident: ref_20
  article-title: Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP15120
– volume: 97
  start-page: 4780
  year: 2017
  ident: ref_63
  article-title: Seed priming with KNO3-mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.)
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.8347
– volume: 28
  start-page: 1353
  year: 2015
  ident: ref_217
  article-title: Sinorhizobium meliloti controls nitric oxide—Mediated post-translational modification of a Medicago truncatula nodule protein
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-05-15-0118-R
– volume: 13
  start-page: 1380
  year: 2000
  ident: ref_145
  article-title: Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI.2000.13.12.1380
– volume: 43
  start-page: 116
  year: 2021
  ident: ref_78
  article-title: Nitrate nutrition increases foliar levels of nitric oxide and waterlogging tolerance in soybean
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-021-03291-5
– ident: ref_101
  doi: 10.1080/15592324.2020.1771938
– ident: ref_177
  doi: 10.3390/plants9020180
– volume: 16
  start-page: 282
  year: 2013
  ident: ref_18
  article-title: Root responses to flooding
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2013.03.013
– volume: 10
  start-page: 21253
  year: 2020
  ident: ref_199
  article-title: Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline-alkaline soil
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78149-w
– volume: 23
  start-page: 469
  year: 2002
  ident: ref_175
  article-title: Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/23.3.469
– volume: 36
  start-page: 167
  year: 2005
  ident: ref_185
  article-title: Effects of nitrous oxide (N2O) treatment on the postharvest ripening of banana fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2004.12.008
– volume: 8
  start-page: 71
  year: 2021
  ident: ref_222
  article-title: Molecular functions of nitric oxide and its potential applications in horticultural crops
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00500-7
– volume: 11
  start-page: 1177
  year: 2020
  ident: ref_24
  article-title: Potential pathway of nitrous oxide formation in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01177
– volume: 11
  start-page: 311
  year: 2020
  ident: ref_132
  article-title: NO and ABA interaction regulates tuber dormancy and sprouting in potato
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00311
– volume: 377
  start-page: 1274
  year: 2008
  ident: ref_219
  article-title: Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.10.144
– volume: 267
  start-page: 55
  year: 2018
  ident: ref_37
  article-title: Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.11.004
– volume: 238
  start-page: 859
  year: 2013
  ident: ref_42
  article-title: Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: Implication in sorghum responses to salinity
  publication-title: Planta
  doi: 10.1007/s00425-013-1933-x
– volume: 85
  start-page: 2216
  year: 2007
  ident: ref_45
  article-title: Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21360
– volume: 97
  start-page: 3030
  year: 2017
  ident: ref_183
  article-title: Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.8146
– volume: 76
  start-page: 875
  year: 2013
  ident: ref_224
  article-title: Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress
  publication-title: Plant J.
  doi: 10.1111/tpj.12340
– volume: 263
  start-page: 9199
  year: 1988
  ident: ref_178
  article-title: Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase. Effects on protein structure, oxidase activity, and other properties
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)76525-9
– volume: 225
  start-page: 1143
  year: 2020
  ident: ref_23
  article-title: The role of nitrite and nitric oxide under low oxygen conditions in plants
  publication-title: New Phytol.
  doi: 10.1111/nph.15969
– volume: 40
  start-page: 1369
  year: 2006
  ident: ref_156
  article-title: Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2005.12.006
– volume: 9
  start-page: 1278
  year: 2015
  ident: ref_50
  article-title: Nitrogen metabolism in the roots of rubber tree (Hevea brasiliensis) plants supplied with nitrate or ammonium as nitrogen source during hypoxia
  publication-title: Aust. J. Crop Sci.
– volume: 155
  start-page: 792
  year: 1999
  ident: ref_102
  article-title: Nitrate increases membrane stability of potato cells under anoxia
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(99)80098-4
– volume: 239
  start-page: 531
  year: 2014
  ident: ref_7
  article-title: Nitrogen metabolism in plants under low oxygen stress
  publication-title: Planta
  doi: 10.1007/s00425-013-2015-9
– volume: 281
  start-page: 4285
  year: 2006
  ident: ref_28
  article-title: Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511635200
– volume: 27
  start-page: 197
  year: 1991
  ident: ref_179
  article-title: Effects of nitrous oxide on mitochondrial and cell respiration and growth in Distichlis spicata suspension cultures
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/BF00041290
– ident: ref_211
  doi: 10.1007/978-3-319-06710-0_4
– volume: 30
  start-page: 116
  year: 2015
  ident: ref_114
  article-title: Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals
  publication-title: Physiology
  doi: 10.1152/physiol.00051.2014
– volume: 26
  start-page: 54
  year: 2012
  ident: ref_165
  article-title: Nitric oxide restrain root growth by DNA damage induced cell cycle arrest in Arabidopsis thaliana
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2011.12.001
– volume: 68
  start-page: 2463
  year: 2017
  ident: ref_47
  article-title: Plant nitrate transporters: From gene function to application
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx011
– volume: 4
  start-page: 346
  year: 2013
  ident: ref_67
  article-title: Nitric oxide implication in the control of seed dormancy and germination
  publication-title: Front. Plant Sci.
– volume: 63
  start-page: 1189
  year: 2011
  ident: ref_176
  article-title: Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation
  publication-title: Pharmacol. Rep.
  doi: 10.1016/S1734-1140(11)70638-7
– volume: 76
  start-page: 1651
  year: 2021
  ident: ref_82
  article-title: Genotypic variations in nitrate respiration along with potassium nitrate treatment-accountable for water logging tolerance in maize
  publication-title: Biologia
  doi: 10.1007/s11756-021-00749-2
– volume: 142
  start-page: 1246
  year: 2006
  ident: ref_44
  article-title: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.086918
– volume: 11
  start-page: 537
  year: 2011
  ident: ref_108
  article-title: The anoxic plant mitochondrion as a nitrite: NO reductase
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2011.03.005
– volume: 76
  start-page: 51
  year: 2019
  ident: ref_79
  article-title: Nitrogen source influences the antioxidative system of soybean plants under hypoxia and re-oxygenation
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0195
– volume: 9
  start-page: 160
  year: 2003
  ident: ref_218
  article-title: S-nitrosylation in health and disease
  publication-title: Trends Mol. Med.
  doi: 10.1016/S1471-4914(03)00028-5
– volume: 48
  start-page: 1283
  year: 2013
  ident: ref_194
  article-title: Storage of ‘Oso Grande’ Strawberries in Controlled Atmosphere Containing Nitrous Oxide (N2O)
  publication-title: HortScience
  doi: 10.21273/HORTSCI.48.10.1283
– ident: ref_106
  doi: 10.3390/ijms22020549
– volume: 179
  start-page: 281
  year: 2010
  ident: ref_123
  article-title: Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.05.014
– volume: 140
  start-page: 25
  year: 2021
  ident: ref_65
  article-title: Mitigation of heat stress responses in crops using nitrate primed seeds
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2021.03.024
– volume: 9
  start-page: 659
  year: 2018
  ident: ref_133
  article-title: Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00659
– volume: 253
  start-page: 155
  year: 2003
  ident: ref_94
  article-title: The role of nitrate reduction in the anoxic metabolism of roots II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity
  publication-title: Plant Soil
  doi: 10.1023/A:1024591116697
– volume: 42
  start-page: 117
  year: 2020
  ident: ref_21
  article-title: Nitrate-mediated maintenance of photosynthetic process by modulating hypoxic metabolism of common bean plants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-020-03107-y
– volume: 30
  start-page: 999
  year: 2003
  ident: ref_14
  article-title: Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP98096
– volume: 108
  start-page: 18506
  year: 2011
  ident: ref_166
  article-title: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1108644108
– volume: 6
  start-page: 4501
  year: 2011
  ident: ref_148
  article-title: Effects of nitric oxide on some physiological characteristics of maize seedlings under waterlogging
  publication-title: Afr. J. Agric. Res.
– volume: 52
  start-page: 219
  year: 2012
  ident: ref_140
  article-title: Nitric oxide as germination controlling factor in seeds of various plant species
  publication-title: Phyton
– volume: 46
  start-page: 285
  year: 1995
  ident: ref_8
  article-title: The effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/46.3.285
– volume: 31
  start-page: 798
  year: 2011
  ident: ref_41
  article-title: Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpr070
– ident: ref_77
  doi: 10.3390/antiox9080681
– volume: 266
  start-page: 592
  year: 1988
  ident: ref_73
  article-title: An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(88)90292-5
– volume: 11
  start-page: 1313
  year: 2020
  ident: ref_84
  article-title: Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatula—Sinorhizobium meliloti symbiosis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01313
– ident: ref_115
  doi: 10.1371/journal.pone.0175196
– ident: ref_13
  doi: 10.1016/j.plgene.2019.100182
– volume: 7
  start-page: 156
  year: 2008
  ident: ref_113
  article-title: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2466
– volume: 181
  start-page: 527
  year: 2011
  ident: ref_213
  article-title: S-nitrosylation: An emerging post-translational protein modification in plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2011.02.011
– volume: 61
  start-page: 1206
  year: 2019
  ident: ref_214
  article-title: Protein S-nitrosylation in plants: Current progresses and challenges
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12780
– volume: 77
  start-page: 145
  year: 2016
  ident: ref_220
  article-title: The functional role of nitric oxide in plant mitochondrial metabolism
  publication-title: Adv. Bot. Res.
  doi: 10.1016/bs.abr.2015.10.007
– ident: ref_30
  doi: 10.3389/fpls.2022.865542
– volume: 305
  start-page: 1968
  year: 2004
  ident: ref_174
  article-title: Nitric oxide represses the Arabidopsis floral transition
  publication-title: Science
  doi: 10.1126/science.1098837
– ident: ref_64
  doi: 10.3390/plants9060707
– volume: 31
  start-page: 828
  year: 2008
  ident: ref_71
  article-title: Waterlogging effects on plant nutrient concentrations in soybean
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160802043122
– volume: 142
  start-page: 1710
  year: 2006
  ident: ref_74
  article-title: Nitrite reduces cytoplasmic acidosis under anoxia
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.088898
– ident: ref_198
  doi: 10.1098/rstb.2013.0122
– volume: 244
  start-page: 181
  year: 2016
  ident: ref_130
  article-title: Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit
  publication-title: Planta
  doi: 10.1007/s00425-016-2501-y
– volume: 8
  start-page: 142
  year: 2017
  ident: ref_168
  article-title: Nitric oxide has a concentration-dependent effect on the cell cycle acting via EIN2 in Arabidopsis thaliana cultured cells
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00142
– volume: 133
  start-page: 343
  year: 2020
  ident: ref_81
  article-title: Tolerant mechanisms to O2 deficiency under submergence conditions in plants
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-020-01176-1
– volume: 88
  start-page: 579
  year: 2001
  ident: ref_159
  article-title: Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2001.1506
– volume: 73
  start-page: 760
  year: 2009
  ident: ref_196
  article-title: Influence of liquid manure on soil denitrifier abundance, denitrification, and nitrous oxide emissions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0059
– volume: 10
  start-page: 3462
  year: 2015
  ident: ref_135
  article-title: Effect of nitric oxide on some morphological and physiological parameters in maize exposed to waterlogging stress
  publication-title: Afr. J. Agric. Res.
  doi: 10.5897/AJAR2015.9790
– volume: 4
  start-page: 419
  year: 2013
  ident: ref_22
  article-title: Nitric oxide, antioxidants and prooxidants in plant defence responses
  publication-title: Front. Plant Sci.
– volume: 1777
  start-page: 1268
  year: 2008
  ident: ref_53
  article-title: Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia
  publication-title: Biochim. Biophys. Acta (BBA)-Bioenerg.
  doi: 10.1016/j.bbabio.2008.06.002
– volume: 237
  start-page: 169
  year: 1972
  ident: ref_57
  article-title: Promotion of seed germination by nitrates and cyanides
  publication-title: Nature
  doi: 10.1038/237169b0
– volume: 21
  start-page: 1659
  year: 2021
  ident: ref_200
  article-title: Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-021-02903-4
– volume: 51
  start-page: 545
  year: 2005
  ident: ref_9
  article-title: Waterlogging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity
  publication-title: Plant Soil Environ.
  doi: 10.17221/3630-PSE
– ident: ref_160
  doi: 10.3390/plants9050610
– volume: 218
  start-page: 900
  year: 2004
  ident: ref_171
  article-title: Nitric oxide plays a central role in determining lateral root development in tomato
  publication-title: Planta
  doi: 10.1007/s00425-003-1172-7
– volume: 22
  start-page: 1253
  year: 1999
  ident: ref_72
  article-title: Mineral nutrient status of corn in relation to nitrate and long-term waterlogging
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904169909365710
– volume: 223
  start-page: 805
  year: 2006
  ident: ref_109
  article-title: Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner
  publication-title: Planta
  doi: 10.1007/s00425-005-0116-9
– volume: 40
  start-page: 1834
  year: 2017
  ident: ref_167
  article-title: Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12989
– ident: ref_120
  doi: 10.3390/horticulturae7100410
– volume: 55
  start-page: 2473
  year: 2004
  ident: ref_16
  article-title: Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh272
– volume: 35
  start-page: 337
  year: 2008
  ident: ref_12
  article-title: Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: A role for increased nitrate reduction
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP08029
– volume: 148
  start-page: 228
  year: 2020
  ident: ref_1
  article-title: Plant waterlogging/flooding stress responses: From seed germination to maturation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.01.020
– volume: 13
  start-page: 15193
  year: 2012
  ident: ref_226
  article-title: Nitric oxide-dependent posttranslational modification in plants: An update
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms131115193
– volume: 241
  start-page: 579
  year: 2015
  ident: ref_203
  article-title: Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings
  publication-title: Planta
  doi: 10.1007/s00425-014-2198-8
SSID ssj0023259
Score 2.48468
SecondaryResourceType review_article
Snippet Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may...
Oxygen (O 2 ) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 11522
SubjectTerms Abiotic stress
Amino acids
Chloroplasts
Cytochrome
Enzymes
Hypoxia
Metabolism
Mitochondria
Nitrates
Nitric oxide
Nitrogen
Oxidative stress
Pathogens
Plant tolerance
Reactive oxygen species
Respiration
Review
Seeds
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSsNAEF60IngRf7FaZQXxZDDZJJvWixSxFqHqwUJvYbM7xYgm1bTY3nwH39AncSZNW3PQ28IuLJnJ7Hzf7vwwdiIcV9ouCEsH0iBBUcaK8Ey00JJ8hTSoLwLKHe7cyXbXu-35veLCLSvCKmdnYn5Qm1TTHfm5CNCZIDzwnMvBm0Vdo-h1tWihscxWHPQ0FNJVb93MCZcr8mZpDvogS_oNOa2x6SLNP4-fXzOENmjqvhBln7QAmuUwyV9-p7XB1gvAyJtTDW-yJUi22Oq0heRkm4V3cV5f9vvzi0bxYqT5_Tg2wB8Q432oyQVv8g5Qnm-cvfK0z9uTQTqOFVeJ4c0kHz6mL0CNNoDHCad2RsNsh3Vb149XbatommBphDpDq-FGRgJaWYRgwDgKbE8hBEA79lFCCqSSAAIk0mKN30-ZrVQSUQWRK3XdNNxdVknSBPYYt0HafVd5WiAHlIGJGsL0HVv7EhAGmKDKzmZiC3VRUZwaW7yEyCxIymFJylV2Ol8-mJbS-GthbaaDsLCoLFzov8qO59NoC_TAoRJIR_kan8Jpfa_KgpLu5htSNe3yTBI_5VW1kSgit5L7_29-wNYEJUDk4Xw1Vhm-j-AQYckwOsr_vR9pbeN8
  priority: 102
  providerName: ProQuest
Title Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants
URI https://www.proquest.com/docview/2724285141
https://www.proquest.com/docview/2725199254
https://pubmed.ncbi.nlm.nih.gov/PMC9569746
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3battAEB3imEJfQpK21LmYDZQ-Va2sy24cCMEJcUzBrik2-E2stCOqYktO7BD7Lf-QP8yXZEa-RbSFvoiFXSFpdmfnHO3uGYBPTs2VtouOFSlpiKBoY4U0J1rkSb4mGhQ7is8Otzuy1fe-D_zBRlJoacDJX6kd55Pq3w2_zm7nF-Tw58w4ibJ_S36PJgRTyG0JTJSgTEFJcTKDtrdeUCDckOdN4z8eFs_QC7nNP28vhqcN5izumHwVgpq7sLPEjqKx6Ow92MJ0H94ssknO30HQSXKp2efHJy4lm1IkfswSg6JLcO9Bz89EQ7SRj_wmk5HIYtGaj7NZooVOjWikebGXDZFzbqBIUsGZjaaT99BvXveuWtYyf4IVEeqZWnU3NBLJ4ULCBaam0fY0oQFyaZ_CskapJaKDkhhyRN_Ph1xZHVGr0JXRqam7H2A7zVL8CMJGaceu9iKH6KBUJqw7Jq7ZkS-REIFRFfiyMlsQLcXFOcfFMCCSwVYOClauwOd18_FCVeNfDY9WfRCsxkbgKMIVhBS9WgVO1tXkFrzWoVPM7vM2Pu-s9b0KqELfrR_IwtrFmjT5lQtsE2ckmiUP_vctD-Gtw6ci8j1-R7A9vbvHY8Iq07AKJTVQdD1t3lShfHnd6f6scvTwq_n4fAGL5O2D
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hqqpcqv6ASKHtIgGnWthre91UqlDUNg2FpD0EiZtZ705UV2CHOghy6zvwHn2oPkln7DjBB7hxW2lHWml2dub77PkB2Jaer1wfpWMiZYmgaOsk5BMdekmhJho0khHXDvcHqnccfDsJT5bgb10Lw2mVtU8sHbXNDX8j35MRBROCB4G3P75weGoU_12tR2hUZnGI0yuibMXHg890vztSdr8MP_Wc2VQBxxAWmDhtP7EKyQwTipbW0-gGmmIkGXpIwUqj0gpRoiLeaMg-ufSTewbqKPGVeW-5-RK5_EeBT5GcK9O7X-cEz5flcDaPYp6jwraqenqSoLuX_jovCEqRawmlbMbABbBtpmXeinPdZ_B0BlBFp7Ko57CE2Qt4XI2snL6EeJCW_Wz__bnhVbpYGfH9OrUofhCmvNLTD6Ij-sh1xWlxLvKR6E3H-XWqhc6s6GTlcpifIQ_2QJFmgscnTYpVOH4Qda7BcpZnuA7CReWOfB0YSZxTRTZpSzvyXBMqJNhhoxa8q9UWm1kHcx6kcRYTk2Etxw0tt2B3Lj6uWnfcJbhZ30E8e8FFvLC3FmzNt-nt8Q8VnWF-WcqEnL4bBi2IGnc3P5C7dzd3svRn2cWbiClxOfXq_sPfwpPesH8UHx0MDjdgRXLxRZlKuAnLk9-X-Jog0SR5U9qhgNOHNvz_SXIecw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqUBcEL8itMAiASes2Gt7TZAQCrRRSmmIUCv1Zta7Y-GqtQNO1ebGO_A2PA5Pwox_EnyAW28r7Uor7X47M589Mx_AM-n5yvVROiZSlgiKtk5CNtGhlxRqokGpjLh2-GCqJkfBh-PweAN-tbUwnFbZ2sTKUNvC8DfygYzImVB4EHiDtEmLmO2M386_OawgxX9aWzmNGiL7uLwg-la-2duhu34u5Xj38P3EaRQGHENxwcIZ-olVSJBMyHNaT6MbaPKXBPqQHJdGpRWiREUc0hBWuQyU-wfqKPGVeWW5EROZ_82IWVEPNt_tTmefV3TPl5VUm0ce0FHhUNUdPn1_6A6yk7OSAisyNKGUXY-4DnO7SZp_eb3xLbjZhKtiVOPrNmxgfgeu1QKWy7sQT7Oqu-3vHz95lK1HRny6zCyKGUWYF3r5WozEAXKVcVaeiSIVk-W8uMy00LkVo7waHhanyDIfKLJcsJjSorwHR1dyoPehlxc5PgDhonJTXwdGEgNVkU2G0qaea0KFFITYqA8v22OLTdPPnGU1TmPiNXzKceeU-_BitXxeN_L418Lt9g7i5j2X8Rp9fXi6mqaXyL9XdI7FebUm5GTeMOhD1Lm71Ybcy7s7k2dfq57eRFOJ2amH_9_8CVwn0Mcf96b7W3BDciVGlVe4Db3F93N8RPHRInncAFHAl6vG_h9FVSQF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrate%E2%80%93Nitrite%E2%80%93Nitric+Oxide+Pathway%3A+A+Mechanism+of+Hypoxia+and+Anoxia+Tolerance+in+Plants&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Timilsina%2C+Arbindra&rft.au=Dong%2C+Wenxu&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Liu%2C+Binbin&rft.date=2022-10-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=19&rft.spage=11522&rft_id=info:doi/10.3390%2Fijms231911522&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms231911522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon