Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in...
Saved in:
Published in | International journal of molecular sciences Vol. 23; no. 19; p. 11522 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget. |
---|---|
AbstractList | Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget. Oxygen (O 2 ) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O 2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO 3 − ), nitrite (NO 2 − ), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N 2 O) when supplied with NO 3 − and NO 2 − , resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N 2 O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O 2 -limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N 2 O budget. Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget. |
Author | Dong, Wenxu Hu, Chunsheng Timilsina, Arbindra Liu, Binbin Hasanuzzaman, Mirza |
AuthorAffiliation | 1 Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China 3 Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, Baoding 071700, China 2 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh |
AuthorAffiliation_xml | – name: 2 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh – name: 3 Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, Baoding 071700, China – name: 1 Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China |
Author_xml | – sequence: 1 givenname: Arbindra orcidid: 0000-0002-1007-229X surname: Timilsina fullname: Timilsina, Arbindra – sequence: 2 givenname: Wenxu surname: Dong fullname: Dong, Wenxu – sequence: 3 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza – sequence: 4 givenname: Binbin orcidid: 0000-0002-5791-1046 surname: Liu fullname: Liu, Binbin – sequence: 5 givenname: Chunsheng surname: Hu fullname: Hu, Chunsheng |
BookMark | eNptkc1OGzEURi1EVUjaJXtLbNgM9c_YE7NAilBLKtGGBV1bN54b4mjGDuMJkB3vwBvyJDiFqgV15U_yud_V0R2Q3RADEnLA2bGUhn3xyzYJyQ3nSogdss9LIQrGdLX7T94jg5SWjAkplPlI9qTOacTNPrE_fd9Bj08Pj9vk_yZHp_e-RnoJ_eIONid0TH-gW0DwqaVxTiebVbz3QCHUdBx-x6vYYAfBIfWBXjYQ-vSJfJhDk_Dz6zskv759vTqbFBfT8-9n44vCSSP6wshZrbEy5YxVquaArAQhpGTZSmtADRpRoC61cVlWGqNUJSVUM6ndqDZySE5felfrWYu1w5C1GrvqfAvdxkbw9u1P8At7HW-tUdpUpc4FR68FXbxZY-pt65PDJltgXCcrKqG4MUKVGT18hy7jugtZb0uVYqR4yTMlXyjXxZQ6nFvne-h93O73jeXMbg9o3xwwTxXvpv4o_J9_Brdhnxk |
CitedBy_id | crossref_primary_10_1016_j_jplph_2025_154446 crossref_primary_10_1093_jxb_erae139 crossref_primary_10_1016_j_biortech_2023_129759 crossref_primary_10_1016_j_toxrep_2024_101816 crossref_primary_10_3390_molecules28155819 crossref_primary_10_1016_j_jhazmat_2024_135471 crossref_primary_10_3390_biom14091172 crossref_primary_10_1007_s42247_024_00818_7 crossref_primary_10_1016_j_plantsci_2023_111775 crossref_primary_10_1007_s44372_025_00102_w crossref_primary_10_3390_ijpb16010029 crossref_primary_10_1371_journal_pone_0319898 crossref_primary_10_3389_fpls_2024_1290700 crossref_primary_10_3389_fpls_2024_1413653 crossref_primary_10_1016_j_scitotenv_2024_175115 crossref_primary_10_1038_s41598_024_70061_x crossref_primary_10_3390_biomedicines13010064 crossref_primary_10_1186_s12870_024_05834_7 crossref_primary_10_1007_s00299_024_03290_z crossref_primary_10_3390_biology12070927 crossref_primary_10_1016_j_stress_2024_100486 crossref_primary_10_3390_agronomy14092112 crossref_primary_10_1016_j_foodchem_2025_143841 crossref_primary_10_32628_IJSRST24113238 crossref_primary_10_1165_rcmb_2023_0447OC crossref_primary_10_1007_s00425_023_04148_6 crossref_primary_10_1007_s42452_023_05470_0 crossref_primary_10_3390_biology13020101 crossref_primary_10_3390_seeds2030019 |
Cites_doi | 10.32604/phyton.2022.018022 10.1093/pcp/pcq022 10.1023/A:1008604410875 10.1016/j.tplants.2010.11.007 10.3390/ijms20092235 10.1007/s00344-009-9104-9 10.1093/jxb/ert358 10.1111/tpj.14422 10.1371/journal.pone.0056345 10.1111/j.1469-8137.2010.03524.x 10.1111/pce.12766 10.1007/s00425-002-0816-3 10.1039/C8NR10514F 10.1016/j.scitotenv.2021.150262 10.3390/ijms23169412 10.1111/nph.15455 10.1093/jxb/erz160 10.1038/s41467-019-12045-4 10.1038/srep11391 10.1016/j.plaphy.2003.09.003 10.1007/s00726-012-1399-3 10.1007/s00425-007-0496-0 10.1016/j.postharvbio.2013.06.021 10.3390/ijms21082796 10.1590/S1677-04202009000100003 10.1105/tpc.19.00748 10.1111/j.1469-8137.2008.02752.x 10.1080/17429145.2014.886728 10.1016/j.envexpbot.2020.104078 10.1093/jxb/erz185 10.1038/s41467-019-12976-y 10.1093/aob/mcw146 10.1016/S0038-0717(99)00175-3 10.1007/s10725-011-9643-5 10.1104/pp.109.140996 10.1093/mp/ssm016 10.1016/j.sajb.2011.06.009 10.1146/annurev.arplant.59.032607.092830 10.1093/jxb/eri252 10.1093/aob/mcn211 10.1007/BF00195089 10.1016/j.plaphy.2017.01.028 10.3390/plants10030595 10.1111/j.1399-3054.1994.tb00414.x 10.2503/jjshs.67.613 10.1016/j.plantsci.2017.10.001 10.1016/j.postharvbio.2011.05.011 10.1016/j.freeradbiomed.2012.07.021 10.1016/j.fcr.2020.107989 10.1007/978-3-319-10079-1_4 10.1111/nph.16378 10.1111/tpj.13544 10.1007/BF01279263 10.1007/s00299-016-2037-4 10.1016/j.tplants.2016.12.001 10.1016/j.scitotenv.2021.148699 10.1371/journal.pone.0136579 10.1093/jxb/ery119 10.1016/j.atmosenv.2014.09.077 10.1104/pp.72.3.787 10.1016/j.scienta.2016.10.008 10.1016/j.biomaterials.2018.09.043 10.1046/j.1469-8137.2003.00907.x 10.1590/S1982-56762010000200005 10.1016/j.freeradbiomed.2012.06.032 10.1016/j.scienta.2019.04.061 10.1093/aob/mcy202 10.1016/j.plaphy.2016.08.009 10.1016/S0005-2728(99)00029-8 10.1016/bs.ampbs.2019.08.001 10.3390/ijms19072039 10.1079/SSR2002118 10.1006/bbrc.1995.2076 10.1038/s41598-020-73613-z 10.1016/j.molp.2021.12.012 10.1104/pp.110.166140 10.1007/s00425-020-03422-1 10.1105/tpc.104.025379 10.1016/j.niox.2019.04.005 10.1007/s11738-018-2790-9 10.1023/B:RUPP.0000003279.40113.27 10.3389/fpls.2020.00566 10.1007/s00425-003-1178-1 10.1038/ncomms9669 10.1021/bi2004312 10.1016/j.cmet.2011.01.004 10.1111/nph.16424 10.1016/S0891-5849(02)01112-7 10.3390/toxins9030100 10.1007/s11240-009-9513-2 10.1016/j.plantsci.2011.05.002 10.1016/j.plaphy.2010.08.016 10.3389/fpls.2013.00029 10.3389/fpls.2020.00970 10.1111/nph.16513 10.1111/pce.12707 10.1002/(SICI)1097-4652(200003)182:3<402::AID-JCP11>3.0.CO;2-D 10.1186/s12870-018-1393-3 10.1016/j.niox.2017.02.004 10.1111/nph.12380 10.1007/s00299-014-1715-3 10.1071/FP17250 10.3389/fpls.2013.00398 10.1007/s11103-012-9979-x 10.1093/jxb/erh258 10.1016/j.tplants.2015.11.004 10.1093/jxb/eraa403 10.1016/j.jplph.2010.06.017 10.1016/j.febslet.2007.01.006 10.1093/jxb/50.334.689 10.1111/nph.16462 10.1007/s11104-017-3197-x 10.1007/s11104-012-1359-4 10.1073/pnas.89.7.3030 10.1073/pnas.131572798 10.1016/0925-5214(94)00030-V 10.1007/s11738-010-0503-0 10.1111/pce.13061 10.1046/j.1365-313X.1999.00494.x 10.1093/jxb/erv030 10.1016/j.plaphy.2013.02.015 10.1007/s00425-012-1773-0 10.1016/B978-0-12-818204-8.00035-7 10.1016/j.foodchem.2005.12.022 10.1007/s13580-012-0481-9 10.1111/pce.12312 10.1111/j.1469-8137.2007.02226.x 10.1016/j.molcel.2018.05.024 10.1111/pce.12739 10.1007/s11368-022-03212-0 10.1007/s00344-020-10212-2 10.1016/j.mito.2014.02.003 10.1093/jxb/erj060 10.1016/j.bbabio.2012.10.002 10.1071/FP15120 10.1002/jsfa.8347 10.1094/MPMI-05-15-0118-R 10.1094/MPMI.2000.13.12.1380 10.1007/s11738-021-03291-5 10.1080/15592324.2020.1771938 10.3390/plants9020180 10.1016/j.pbi.2013.03.013 10.1038/s41598-020-78149-w 10.1093/carcin/23.3.469 10.1016/j.postharvbio.2004.12.008 10.1038/s41438-021-00500-7 10.3389/fpls.2020.01177 10.3389/fpls.2020.00311 10.1016/j.bbrc.2008.10.144 10.1016/j.plantsci.2017.11.004 10.1007/s00425-013-1933-x 10.1002/jnr.21360 10.1002/jsfa.8146 10.1111/tpj.12340 10.1016/S0021-9258(19)76525-9 10.1111/nph.15969 10.1016/j.freeradbiomed.2005.12.006 10.1016/S0176-1617(99)80098-4 10.1007/s00425-013-2015-9 10.1074/jbc.M511635200 10.1007/BF00041290 10.1007/978-3-319-06710-0_4 10.1152/physiol.00051.2014 10.1016/j.niox.2011.12.001 10.1093/jxb/erx011 10.1016/S1734-1140(11)70638-7 10.1007/s11756-021-00749-2 10.1104/pp.106.086918 10.1016/j.mito.2011.03.005 10.1590/1678-992x-2017-0195 10.1016/S1471-4914(03)00028-5 10.21273/HORTSCI.48.10.1283 10.3390/ijms22020549 10.1016/j.plantsci.2010.05.014 10.1016/j.sajb.2021.03.024 10.3389/fpls.2018.00659 10.1023/A:1024591116697 10.1007/s11738-020-03107-y 10.1071/PP98096 10.1073/pnas.1108644108 10.1093/jxb/46.3.285 10.1093/treephys/tpr070 10.3390/antiox9080681 10.1016/0003-9861(88)90292-5 10.3389/fpls.2020.01313 10.1371/journal.pone.0175196 10.1016/j.plgene.2019.100182 10.1038/nrd2466 10.1016/j.plantsci.2011.02.011 10.1111/jipb.12780 10.1016/bs.abr.2015.10.007 10.3389/fpls.2022.865542 10.1126/science.1098837 10.3390/plants9060707 10.1080/01904160802043122 10.1104/pp.106.088898 10.1098/rstb.2013.0122 10.1007/s00425-016-2501-y 10.3389/fphys.2017.00142 10.1007/s10265-020-01176-1 10.1006/anbo.2001.1506 10.2136/sssaj2008.0059 10.5897/AJAR2015.9790 10.1016/j.bbabio.2008.06.002 10.1038/237169b0 10.1007/s11368-021-02903-4 10.17221/3630-PSE 10.3390/plants9050610 10.1007/s00425-003-1172-7 10.1080/01904169909365710 10.1007/s00425-005-0116-9 10.1111/pce.12989 10.3390/horticulturae7100410 10.1093/jxb/erh272 10.1071/FP08029 10.1016/j.plaphy.2020.01.020 10.3390/ijms131115193 10.1007/s00425-014-2198-8 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms231911522 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC9569746 10_3390_ijms231911522 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFD1901104; 2021YFD1700901 – fundername: Key R&D Program of Hebei Province grantid: 21323601D; 19227312D |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c392t-93bd6e794b075d1ae04a2233015266ae6a6ee2e6469c31939955733a7b36c8d93 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:40:13 EDT 2025 Mon Jul 21 10:49:29 EDT 2025 Fri Jul 25 20:24:56 EDT 2025 Tue Jul 01 03:40:40 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-93bd6e794b075d1ae04a2233015266ae6a6ee2e6469c31939955733a7b36c8d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0461-8743 0000-0002-1007-229X 0000-0002-5791-1046 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms231911522 |
PMID | 36232819 |
PQID | 2724285141 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9569746 proquest_miscellaneous_2725199254 proquest_journals_2724285141 crossref_citationtrail_10_3390_ijms231911522 crossref_primary_10_3390_ijms231911522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Phoa (ref_175) 2002; 23 ref_136 He (ref_174) 2004; 305 Jayawardhane (ref_151) 2020; 11 Valderrama (ref_36) 2007; 581 Sodek (ref_48) 2009; 21 Berger (ref_85) 2020; 227 Wang (ref_123) 2010; 179 Freschi (ref_225) 2013; 4 Machacova (ref_202) 2013; 364 Greenway (ref_14) 2003; 30 Gupta (ref_23) 2020; 225 Silveira (ref_130) 2016; 244 Li (ref_183) 2017; 97 Singh (ref_45) 2007; 85 Stoimenova (ref_118) 2007; 226 Graziano (ref_171) 2004; 218 Astier (ref_213) 2011; 181 Lamotte (ref_156) 2006; 40 Steffens (ref_9) 2005; 51 ref_120 Kumari (ref_34) 2019; 70 Oliveira (ref_40) 2010; 35 Xu (ref_184) 2019; 254 Hayat (ref_128) 2012; 53 Pugin (ref_155) 2008; 59 Bai (ref_165) 2012; 26 Nawaz (ref_63) 2017; 97 Gibberd (ref_159) 2001; 88 Reda (ref_37) 2018; 267 Igamberdiev (ref_90) 2014; 19 Berger (ref_84) 2020; 11 Llamas (ref_35) 2016; 39 Guo (ref_116) 2014; 9 Serraj (ref_4) 1994; 91 Rockel (ref_172) 2002; 215 Novikova (ref_168) 2017; 8 ref_153 Sainz (ref_224) 2013; 76 ref_77 ref_75 ref_154 Feng (ref_214) 2019; 61 Shi (ref_12) 2008; 35 ref_160 Aridhi (ref_5) 2020; 252 Timilsina (ref_187) 2022; 805 Wu (ref_143) 2013; 81 Nguyen (ref_164) 1992; 89 Guo (ref_103) 1998; 67 ref_147 Evans (ref_17) 2004; 161 Bacanamwo (ref_83) 1999; 50 Valeri (ref_3) 2021; 229 Polyakova (ref_69) 2003; 50 ref_80 ref_149 Zhou (ref_1) 2020; 148 Sodek (ref_50) 2015; 9 Wany (ref_27) 2017; 40 Chen (ref_20) 2016; 43 Deng (ref_162) 2018; 187 Hartman (ref_91) 2021; 229 Chen (ref_219) 2008; 377 Astier (ref_31) 2012; 53 Moore (ref_93) 2016; 21 Kennedy (ref_66) 1983; 72 Jaiswal (ref_135) 2015; 10 Astier (ref_226) 2012; 13 Zhao (ref_127) 2019; 11 ref_210 Rich (ref_158) 2011; 190 ref_211 Zhao (ref_180) 1995; 212 Pugh (ref_8) 1995; 46 Batak (ref_58) 2002; 12 Bethke (ref_139) 2006; 57 Silvestre (ref_99) 2004; 55 Kaur (ref_82) 2021; 76 Gupta (ref_197) 2010; 51 Horchani (ref_95) 2010; 32 Liu (ref_203) 2015; 241 ref_204 Courtois (ref_227) 2008; 1 Blanquet (ref_217) 2015; 28 Wang (ref_148) 2011; 6 Rutten (ref_152) 2019; 75 Berger (ref_86) 2021; 72 Zhang (ref_167) 2017; 40 Gniazdowska (ref_140) 2012; 52 Srinivasan (ref_112) 2012; 53 Guo (ref_121) 2022; 91 Vandelle (ref_169) 2011; 181 Hendricks (ref_57) 1972; 237 Borisjuk (ref_56) 2007; 176 Sun (ref_222) 2021; 8 Kemp (ref_68) 1993; 189 Gupta (ref_220) 2016; 77 Kumar (ref_65) 2021; 140 ref_115 ref_117 Gupta (ref_32) 2022; 15 Gupta (ref_33) 2011; 16 (ref_119) 2016; 108 Kolbert (ref_215) 2017; 113 Wang (ref_132) 2020; 11 Sturms (ref_212) 2011; 50 ref_106 Jasid (ref_44) 2006; 142 Sun (ref_134) 2015; 66 Zheng (ref_107) 2016; 213 Herde (ref_137) 2020; 10 ref_101 Einarsdottir (ref_178) 1988; 263 Bizimana (ref_200) 2021; 21 Smart (ref_190) 2001; 98 Sauter (ref_18) 2013; 16 Posso (ref_11) 2018; 40 Larsen (ref_98) 2011; 13 Botrel (ref_52) 1996; 34 Gupta (ref_111) 2017; 58 ref_13 Libourel (ref_74) 2006; 142 Millar (ref_96) 2014; 37 Clark (ref_145) 2000; 13 Ismail (ref_142) 2009; 103 Timilsina (ref_24) 2020; 11 Lundberg (ref_113) 2008; 7 Ashraf (ref_72) 1999; 22 Castella (ref_170) 2017; 68 Bethke (ref_109) 2006; 223 Sanz (ref_166) 2011; 108 Yan (ref_188) 2000; 32 Fan (ref_73) 1988; 266 Oliveira (ref_49) 2013; 44 Oberson (ref_102) 1999; 155 Timilsina (ref_199) 2020; 10 Board (ref_71) 2008; 31 Corpas (ref_216) 2013; 4 Perazzolli (ref_205) 2004; 16 Gupta (ref_108) 2011; 11 Igamberdiev (ref_16) 2004; 55 Peng (ref_146) 2016; 35 Brown (ref_105) 2002; 33 Fago (ref_114) 2015; 30 Goshima (ref_181) 1999; 19 Deng (ref_61) 2012; 78 Zhang (ref_41) 2011; 31 Gill (ref_76) 2010; 48 Wany (ref_88) 2018; 123 Gupta (ref_206) 2005; 56 Vidal (ref_60) 2020; 32 Oliveira (ref_110) 2013; 237 Wang (ref_124) 2017; 416 Emmanuel (ref_176) 2011; 63 Albertos (ref_144) 2015; 6 Poderoso (ref_26) 2019; 88 Greenway (ref_2) 2018; 45 Chen (ref_70) 2013; 1827 Yasuda (ref_15) 2010; 167 Corpas (ref_25) 2013; 199 Weits (ref_6) 2021; 229 Lichanporn (ref_193) 2013; 86 Bizimana (ref_201) 2022; 22 Rubio (ref_207) 2019; 100 Dong (ref_62) 2012; 66 Bruhn (ref_189) 2014; 99 Lara (ref_59) 2014; 6 Stoimenova (ref_94) 2003; 253 Manoli (ref_131) 2014; 65 Zhao (ref_39) 2009; 151 ref_177 ref_51 Sowa (ref_179) 1991; 27 Limami (ref_7) 2014; 239 Plouviez (ref_209) 2017; 91 Nakamura (ref_81) 2020; 133 ref_182 Hartman (ref_92) 2019; 10 Zhan (ref_223) 2018; 71 Horchani (ref_100) 2011; 155 Benamar (ref_53) 2008; 1777 Lai (ref_122) 2011; 62 Durner (ref_22) 2013; 4 Zhu (ref_186) 2007; 100 Hu (ref_125) 2015; 34 ref_163 ref_64 Fancy (ref_221) 2017; 40 Murphy (ref_161) 1999; 1411 Borella (ref_79) 2019; 76 Cunha (ref_194) 2013; 48 Foster (ref_218) 2003; 9 Youssef (ref_87) 2016; 118 Khan (ref_126) 2020; 40 Machacova (ref_191) 2019; 10 Posso (ref_21) 2020; 42 ref_195 Lindermayr (ref_28) 2006; 281 ref_198 ref_30 Sun (ref_133) 2018; 9 Borisjuk (ref_54) 2009; 182 Shimoia (ref_78) 2021; 43 Cochrane (ref_89) 2017; 265 Hayat (ref_141) 2014; 20 Lenhart (ref_208) 2019; 221 Yamauchi (ref_19) 2016; 39 Gouble (ref_192) 1995; 5 Palomer (ref_185) 2005; 36 Pissolato (ref_43) 2020; 11 Hao (ref_129) 2009; 97 Bai (ref_29) 2009; 28 Huang (ref_38) 2004; 218 ref_46 Vartapetian (ref_97) 1999; 206 Gupta (ref_150) 2018; 69 Oliveira (ref_10) 2013; 66 Monreal (ref_42) 2013; 238 Pandey (ref_55) 2019; 70 Llamas (ref_104) 2017; 22 Kopyra (ref_138) 2003; 41 Lazalt (ref_173) 1997; 103 Fan (ref_47) 2017; 68 Arc (ref_67) 2013; 4 Miller (ref_196) 2009; 73 Loitto (ref_157) 2000; 182 |
References_xml | – volume: 91 start-page: 409 year: 2022 ident: ref_121 article-title: Nitric Oxide Regulates Mitochondrial Fatty Acids and Promotes CBF Expression of Peach Fruit during Cold Storage publication-title: Phyton doi: 10.32604/phyton.2022.018022 – volume: 51 start-page: 576 year: 2010 ident: ref_197 article-title: Production and scavenging of nitric oxide by barley root mitochondria publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq022 – volume: 103 start-page: 643 year: 1997 ident: ref_173 article-title: Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans publication-title: Eur. J. Plant Pathol. doi: 10.1023/A:1008604410875 – volume: 16 start-page: 160 year: 2011 ident: ref_33 article-title: On the origins of nitric oxide publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.11.007 – ident: ref_149 doi: 10.3390/ijms20092235 – volume: 28 start-page: 358 year: 2009 ident: ref_29 article-title: Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-009-9104-9 – volume: 65 start-page: 185 year: 2014 ident: ref_131 article-title: NO homeostasis is a key regulator of early nitrate perception and root elongation in maize publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert358 – volume: 100 start-page: 38 year: 2019 ident: ref_207 article-title: Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid publication-title: Plant J. doi: 10.1111/tpj.14422 – ident: ref_147 doi: 10.1371/journal.pone.0056345 – volume: 190 start-page: 311 year: 2011 ident: ref_158 article-title: Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize: Implications for root function during flooding publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03524.x – volume: 39 start-page: 2145 year: 2016 ident: ref_19 article-title: Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize publication-title: Plant Cell Environ. doi: 10.1111/pce.12766 – volume: 215 start-page: 708 year: 2002 ident: ref_172 article-title: Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco publication-title: Planta doi: 10.1007/s00425-002-0816-3 – volume: 11 start-page: 10511 year: 2019 ident: ref_127 article-title: Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity publication-title: Nanoscale doi: 10.1039/C8NR10514F – volume: 805 start-page: 150262 year: 2022 ident: ref_187 article-title: Plants are a natural source of nitrous oxide even in field conditions as explained by 15N site preference publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150262 – ident: ref_182 doi: 10.3390/ijms23169412 – volume: 221 start-page: 1398 year: 2019 ident: ref_208 article-title: Nitrous oxide effluxes from plants as a potentially important source to the atmosphere publication-title: New Phytol. doi: 10.1111/nph.15455 – volume: 70 start-page: 4345 year: 2019 ident: ref_34 article-title: Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz160 – volume: 10 start-page: 4020 year: 2019 ident: ref_92 article-title: Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress publication-title: Nat. Commun. doi: 10.1038/s41467-019-12045-4 – ident: ref_153 doi: 10.1038/srep11391 – volume: 41 start-page: 1011 year: 2003 ident: ref_138 article-title: Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2003.09.003 – volume: 44 start-page: 743 year: 2013 ident: ref_49 article-title: Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments publication-title: Amino Acids doi: 10.1007/s00726-012-1399-3 – volume: 226 start-page: 465 year: 2007 ident: ref_118 article-title: Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria publication-title: Planta doi: 10.1007/s00425-007-0496-0 – volume: 86 start-page: 62 year: 2013 ident: ref_193 article-title: The effects of nitric oxide and nitrous oxide on enzymatic browning in longkong (Aglaia dookkoo Griff.) publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2013.06.021 – ident: ref_204 doi: 10.3390/ijms21082796 – volume: 21 start-page: 13 year: 2009 ident: ref_48 article-title: Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202009000100003 – volume: 32 start-page: 2094 year: 2020 ident: ref_60 article-title: Nitrate in 2020: Thirty years from transport to signaling networks publication-title: Plant Cell doi: 10.1105/tpc.19.00748 – volume: 182 start-page: 17 year: 2009 ident: ref_54 article-title: The oxygen status of the developing seed publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02752.x – volume: 9 start-page: 640 year: 2014 ident: ref_116 article-title: The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress publication-title: J. Plant Interact. doi: 10.1080/17429145.2014.886728 – ident: ref_75 doi: 10.1016/j.envexpbot.2020.104078 – volume: 70 start-page: 4539 year: 2019 ident: ref_55 article-title: Nitric oxide accelerates germination via the regulation of respiration in chickpea publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz185 – volume: 10 start-page: 4989 year: 2019 ident: ref_191 article-title: Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees publication-title: Nat. Commun. doi: 10.1038/s41467-019-12976-y – volume: 118 start-page: 919 year: 2016 ident: ref_87 article-title: Phytoglobin expression influences soil flooding response of corn plants publication-title: Ann. Bot. doi: 10.1093/aob/mcw146 – volume: 32 start-page: 437 year: 2000 ident: ref_188 article-title: Pathways of N2O emission from rice paddy soil publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00175-3 – volume: 66 start-page: 191 year: 2012 ident: ref_62 article-title: Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9643-5 – volume: 151 start-page: 755 year: 2009 ident: ref_39 article-title: Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.140996 – volume: 1 start-page: 218 year: 2008 ident: ref_227 article-title: Nitric oxide in plants: Production and cross-talk with Ca2+ signaling publication-title: Mol. Plant doi: 10.1093/mp/ssm016 – volume: 78 start-page: 139 year: 2012 ident: ref_61 article-title: Sodium nitroprusside, ferricyanide, nitrite and nitrate decrease the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2011.06.009 – volume: 59 start-page: 21 year: 2008 ident: ref_155 article-title: New insights into nitric oxide signaling in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092830 – volume: 56 start-page: 2601 year: 2005 ident: ref_206 article-title: In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri252 – volume: 103 start-page: 197 year: 2009 ident: ref_142 article-title: Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa) publication-title: Ann. Bot. doi: 10.1093/aob/mcn211 – volume: 189 start-page: 298 year: 1993 ident: ref_68 article-title: Nitrate and nitrate reductase in Erythrina caffra seeds: Enhancement of induction by anoxia and possible role in germination publication-title: Planta doi: 10.1007/BF00195089 – volume: 113 start-page: 56 year: 2017 ident: ref_215 article-title: Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.01.028 – ident: ref_80 doi: 10.3390/plants10030595 – volume: 91 start-page: 161 year: 1994 ident: ref_4 article-title: Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1994.tb00414.x – volume: 67 start-page: 613 year: 1998 ident: ref_103 article-title: A role for nitrate reductase in the high tolerance of cucumber seedlings to root-zone hypoxia publication-title: J. Jpn. Soc. Hortic. Sci. doi: 10.2503/jjshs.67.613 – volume: 265 start-page: 124 year: 2017 ident: ref_89 article-title: Expression of phytoglobin affects nitric oxide metabolism and energy state of barley plants exposed to anoxia publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.10.001 – volume: 62 start-page: 127 year: 2011 ident: ref_122 article-title: Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2011.05.011 – volume: 53 start-page: 1252 year: 2012 ident: ref_112 article-title: Cytochrome c oxidase dysfunction in oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.07.021 – ident: ref_136 doi: 10.1016/j.fcr.2020.107989 – ident: ref_163 doi: 10.1007/978-3-319-10079-1_4 – volume: 229 start-page: 64 year: 2021 ident: ref_91 article-title: The role of ethylene in metabolic acclimations to low oxygen publication-title: New Phytol. doi: 10.1111/nph.16378 – volume: 91 start-page: 45 year: 2017 ident: ref_209 article-title: The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii publication-title: Plant J. doi: 10.1111/tpj.13544 – volume: 206 start-page: 163 year: 1999 ident: ref_97 article-title: Protective effect of exogenous nitrate on the mitochondrial ultrastructure of Oryza sativa coleoptiles under strict anoxia publication-title: Protoplasma doi: 10.1007/BF01279263 – volume: 35 start-page: 2325 year: 2016 ident: ref_146 article-title: Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.) publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2037-4 – volume: 22 start-page: 163 year: 2017 ident: ref_104 article-title: Nitrate reductase regulates plant nitric oxide homeostasis publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.12.001 – volume: 6 start-page: 72 year: 2014 ident: ref_59 article-title: Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination publication-title: J. Agric. Sci. – ident: ref_195 doi: 10.1016/j.scitotenv.2021.148699 – ident: ref_51 doi: 10.1371/journal.pone.0136579 – volume: 69 start-page: 3413 year: 2018 ident: ref_150 article-title: Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery119 – volume: 99 start-page: 206 year: 2014 ident: ref_189 article-title: UV-induced N2O emission from plants publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.09.077 – volume: 72 start-page: 787 year: 1983 ident: ref_66 article-title: Germination of Echinochloa crus-galli (barnyard grass) seeds under anaerobic conditions: Respiration and response to metabolic inhibitors publication-title: Plant Physiol. doi: 10.1104/pp.72.3.787 – volume: 213 start-page: 24 year: 2016 ident: ref_107 article-title: Nitric oxide enhances the nitrate stress tolerance of spinach by scavenging ROS and RNS publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2016.10.008 – volume: 187 start-page: 55 year: 2018 ident: ref_162 article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.043 – volume: 161 start-page: 35 year: 2004 ident: ref_17 article-title: Aerenchyma formation publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00907.x – volume: 35 start-page: 104 year: 2010 ident: ref_40 article-title: Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762010000200005 – volume: 53 start-page: 1101 year: 2012 ident: ref_31 article-title: Protein S-nitrosylation: What’s going on in plants? publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.06.032 – volume: 254 start-page: 99 year: 2019 ident: ref_184 article-title: Effect of nitrous oxide against Botrytis cinerea and phenylpropanoid pathway metabolism in table grapes publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.04.061 – volume: 123 start-page: 691 year: 2018 ident: ref_88 article-title: Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis publication-title: Ann. Bot. doi: 10.1093/aob/mcy202 – volume: 108 start-page: 468 year: 2016 ident: ref_119 article-title: The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to Phytophthora infestans publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.08.009 – volume: 58 start-page: 175 year: 2017 ident: ref_111 article-title: Nitrite protects mitochondrial structure and function under hypoxia publication-title: Plant Cell Physiol. – volume: 1411 start-page: 401 year: 1999 ident: ref_161 article-title: Nitric oxide and cell death publication-title: Biochim. Biophys. Acta (BBA) Bioenerg. doi: 10.1016/S0005-2728(99)00029-8 – volume: 75 start-page: 325 year: 2019 ident: ref_152 article-title: Oxygen regulatory mechanisms of nitrogen fixation in rhizobia publication-title: Adv. Microb. Physiol. doi: 10.1016/bs.ampbs.2019.08.001 – ident: ref_46 doi: 10.3390/ijms19072039 – volume: 12 start-page: 253 year: 2002 ident: ref_58 article-title: The effects of potassium nitrate and NO-donors on phytochrome A-and phytochrome B-specific induced germination of Arabidopsis thaliana seeds publication-title: Seed Sci. Res. doi: 10.1079/SSR2002118 – volume: 212 start-page: 1054 year: 1995 ident: ref_180 article-title: Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1995.2076 – volume: 10 start-page: 16509 year: 2020 ident: ref_137 article-title: Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root publication-title: Sci. Rep. doi: 10.1038/s41598-020-73613-z – volume: 15 start-page: 228 year: 2022 ident: ref_32 article-title: Nitric oxide regulation of plant metabolism publication-title: Mol. Plant doi: 10.1016/j.molp.2021.12.012 – volume: 155 start-page: 1023 year: 2011 ident: ref_100 article-title: Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules publication-title: Plant Physiol. doi: 10.1104/pp.110.166140 – volume: 252 start-page: 22 year: 2020 ident: ref_5 article-title: Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding publication-title: Planta doi: 10.1007/s00425-020-03422-1 – volume: 16 start-page: 2785 year: 2004 ident: ref_205 article-title: Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity publication-title: Plant Cell doi: 10.1105/tpc.104.025379 – volume: 88 start-page: 61 year: 2019 ident: ref_26 article-title: The effect of nitric oxide on mitochondrial respiration publication-title: Nitric Oxide doi: 10.1016/j.niox.2019.04.005 – volume: 40 start-page: 212 year: 2018 ident: ref_11 article-title: Root flooding-induced changes in the dynamic dissipation of the photosynthetic energy of common bean plants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2790-9 – volume: 50 start-page: 808 year: 2003 ident: ref_69 article-title: Exogenous nitrate as a terminal acceptor of electrons in rice (Oryza sativa) coleoptiles and wheat (Triticum aestivum) roots under strict anoxia publication-title: Russ. J. Plant Physiol. doi: 10.1023/B:RUPP.0000003279.40113.27 – volume: 11 start-page: 566 year: 2020 ident: ref_151 article-title: Roles for plant mitochondrial alternative oxidase under normoxia, hypoxia, and reoxygenation conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00566 – volume: 218 start-page: 938 year: 2004 ident: ref_38 article-title: Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-003-1178-1 – volume: 6 start-page: 8669 year: 2015 ident: ref_144 article-title: S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth publication-title: Nat. Commun. doi: 10.1038/ncomms9669 – volume: 50 start-page: 3873 year: 2011 ident: ref_212 article-title: Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions publication-title: Biochemistry doi: 10.1021/bi2004312 – volume: 13 start-page: 149 year: 2011 ident: ref_98 article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.01.004 – volume: 229 start-page: 24 year: 2021 ident: ref_6 article-title: Molecular oxygen as a signaling component in plant development publication-title: New Phytol. doi: 10.1111/nph.16424 – volume: 33 start-page: 1440 year: 2002 ident: ref_105 article-title: Nitric oxide inhibition of mitochondrial respiration and its role in cell death publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)01112-7 – ident: ref_117 doi: 10.3390/toxins9030100 – volume: 97 start-page: 175 year: 2009 ident: ref_129 article-title: Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-009-9513-2 – volume: 181 start-page: 534 year: 2011 ident: ref_169 article-title: Peroxynitrite formation and function in plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.05.002 – volume: 48 start-page: 909 year: 2010 ident: ref_76 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 4 start-page: 29 year: 2013 ident: ref_216 article-title: Protein tyrosine nitration in higher plants grown under natural and stress conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00029 – volume: 11 start-page: 970 year: 2020 ident: ref_43 article-title: Enhanced nitric oxide synthesis through nitrate supply improves drought tolerance of sugarcane plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00970 – volume: 229 start-page: 173 year: 2021 ident: ref_3 article-title: Botrytis cinerea induces local hypoxia in Arabidopsis leaves publication-title: New Phytol. doi: 10.1111/nph.16513 – volume: 40 start-page: 462 year: 2017 ident: ref_221 article-title: Nitric oxide function in plant abiotic stress publication-title: Plant Cell Environ. doi: 10.1111/pce.12707 – volume: 182 start-page: 402 year: 2000 ident: ref_157 article-title: Nitric oxide induces dose-dependent Ca2+ transients and causes temporal morphological hyperpolarization in human neutrophils publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(200003)182:3<402::AID-JCP11>3.0.CO;2-D – volume: 20 start-page: 140 year: 2014 ident: ref_141 article-title: Effect of sodium nitroprusside on the germination and antioxidant activities of tomato (Lycopersicon esculentum Mill) publication-title: Bulg. J. Agric. Sci. – ident: ref_154 doi: 10.1186/s12870-018-1393-3 – volume: 68 start-page: 125 year: 2017 ident: ref_170 article-title: Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide publication-title: Nitric Oxide doi: 10.1016/j.niox.2017.02.004 – volume: 199 start-page: 633 year: 2013 ident: ref_25 article-title: Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants publication-title: New Phytol. doi: 10.1111/nph.12380 – volume: 34 start-page: 367 year: 2015 ident: ref_125 article-title: Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1715-3 – volume: 45 start-page: 877 year: 2018 ident: ref_2 article-title: Energy-crises in well-aerated and anoxic tissue: Does tolerance require the same specific proteins and energy-efficient transport? publication-title: Funct. Plant Biol. doi: 10.1071/FP17250 – volume: 4 start-page: 398 year: 2013 ident: ref_225 article-title: Nitric oxide and phytohormone interactions: Current status and perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00398 – volume: 81 start-page: 27 year: 2013 ident: ref_143 article-title: Heme oxygenase-1 is involved in nitric oxide-and cGMP-induced α-Amy2/54 gene expression in GA-treated wheat aleurone layers publication-title: Plant Mol. Biol. doi: 10.1007/s11103-012-9979-x – volume: 55 start-page: 2625 year: 2004 ident: ref_99 article-title: Nitrate reductase regulation in tomato roots by exogenous nitrate: A possible role in tolerance to long-term root anoxia publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh258 – volume: 21 start-page: 388 year: 2016 ident: ref_93 article-title: Redox regulation of cytosolic translation in plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.11.004 – volume: 72 start-page: 873 year: 2021 ident: ref_86 article-title: Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa403 – volume: 167 start-page: 1571 year: 2010 ident: ref_15 article-title: Soluble sugar availability of aerobically germinated barley, oat and rice coleoptiles in anoxia publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2010.06.017 – volume: 581 start-page: 453 year: 2007 ident: ref_36 article-title: Nitrosative stress in plants publication-title: Febs Lett. doi: 10.1016/j.febslet.2007.01.006 – volume: 50 start-page: 689 year: 1999 ident: ref_83 article-title: Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia publication-title: J. Exp. Bot. doi: 10.1093/jxb/50.334.689 – volume: 227 start-page: 84 year: 2020 ident: ref_85 article-title: Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration publication-title: New Phytol. doi: 10.1111/nph.16462 – volume: 416 start-page: 39 year: 2017 ident: ref_124 article-title: Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration publication-title: Plant Soil doi: 10.1007/s11104-017-3197-x – volume: 364 start-page: 287 year: 2013 ident: ref_202 article-title: Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa publication-title: Plant Soil doi: 10.1007/s11104-012-1359-4 – volume: 89 start-page: 3030 year: 1992 ident: ref_164 article-title: DNA damage and mutation in human cells exposed to nitric oxide in vitro publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.7.3030 – volume: 98 start-page: 7875 year: 2001 ident: ref_190 article-title: Wheat leaves emit nitrous oxide during nitrate assimilation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.131572798 – volume: 5 start-page: 311 year: 1995 ident: ref_192 article-title: Nitrous oxide inhibition of ethylene production in ripening and senescing climacteric fruits publication-title: Postharvest Biol. Technol. doi: 10.1016/0925-5214(94)00030-V – volume: 32 start-page: 1113 year: 2010 ident: ref_95 article-title: Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-010-0503-0 – volume: 40 start-page: 3002 year: 2017 ident: ref_27 article-title: Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress publication-title: Plant Cell Environ. doi: 10.1111/pce.13061 – volume: 19 start-page: 75 year: 1999 ident: ref_181 article-title: Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00494.x – volume: 66 start-page: 2449 year: 2015 ident: ref_134 article-title: Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv030 – volume: 66 start-page: 141 year: 2013 ident: ref_10 article-title: Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.02.015 – volume: 237 start-page: 255 year: 2013 ident: ref_110 article-title: Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia publication-title: Planta doi: 10.1007/s00425-012-1773-0 – ident: ref_210 doi: 10.1016/B978-0-12-818204-8.00035-7 – volume: 100 start-page: 1517 year: 2007 ident: ref_186 article-title: Effect of nitric oxide on ethylene production in strawberry fruit during storage publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.12.022 – volume: 53 start-page: 362 year: 2012 ident: ref_128 article-title: Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress publication-title: Hortic. Environ. Biotechnol. doi: 10.1007/s13580-012-0481-9 – volume: 37 start-page: 2260 year: 2014 ident: ref_96 article-title: What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation publication-title: Plant Cell Environ. doi: 10.1111/pce.12312 – volume: 176 start-page: 813 year: 2007 ident: ref_56 article-title: Low oxygen sensing and balancing in plant seeds: A role for nitric oxide publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02226.x – volume: 71 start-page: 142 year: 2018 ident: ref_223 article-title: S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.05.024 – volume: 39 start-page: 2097 year: 2016 ident: ref_35 article-title: A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas publication-title: Plant Cell Environ. doi: 10.1111/pce.12739 – volume: 34 start-page: 645 year: 1996 ident: ref_52 article-title: Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia publication-title: Plant Physiol. Biochem. – volume: 22 start-page: 2196 year: 2022 ident: ref_201 article-title: Estimating field N2 emissions based on laboratory-quantified N2O/(N2O + N2) ratio and field quantified N2O emissions publication-title: J. Soils Sediments doi: 10.1007/s11368-022-03212-0 – volume: 40 start-page: 2358 year: 2020 ident: ref_126 article-title: Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10212-2 – volume: 19 start-page: 329 year: 2014 ident: ref_90 article-title: Plant mitochondria: Source and target for nitric oxide publication-title: Mitochondrion doi: 10.1016/j.mito.2014.02.003 – volume: 57 start-page: 517 year: 2006 ident: ref_139 article-title: Nitric oxide reduces seed dormancy in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj060 – volume: 1827 start-page: 136 year: 2013 ident: ref_70 article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution publication-title: Biochim. Biophys. Acta (BBA) Bioenerg. doi: 10.1016/j.bbabio.2012.10.002 – volume: 43 start-page: 244 year: 2016 ident: ref_20 article-title: Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa publication-title: Funct. Plant Biol. doi: 10.1071/FP15120 – volume: 97 start-page: 4780 year: 2017 ident: ref_63 article-title: Seed priming with KNO3-mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.) publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.8347 – volume: 28 start-page: 1353 year: 2015 ident: ref_217 article-title: Sinorhizobium meliloti controls nitric oxide—Mediated post-translational modification of a Medicago truncatula nodule protein publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-05-15-0118-R – volume: 13 start-page: 1380 year: 2000 ident: ref_145 article-title: Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2000.13.12.1380 – volume: 43 start-page: 116 year: 2021 ident: ref_78 article-title: Nitrate nutrition increases foliar levels of nitric oxide and waterlogging tolerance in soybean publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-021-03291-5 – ident: ref_101 doi: 10.1080/15592324.2020.1771938 – ident: ref_177 doi: 10.3390/plants9020180 – volume: 16 start-page: 282 year: 2013 ident: ref_18 article-title: Root responses to flooding publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2013.03.013 – volume: 10 start-page: 21253 year: 2020 ident: ref_199 article-title: Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline-alkaline soil publication-title: Sci. Rep. doi: 10.1038/s41598-020-78149-w – volume: 23 start-page: 469 year: 2002 ident: ref_175 article-title: Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells publication-title: Carcinogenesis doi: 10.1093/carcin/23.3.469 – volume: 36 start-page: 167 year: 2005 ident: ref_185 article-title: Effects of nitrous oxide (N2O) treatment on the postharvest ripening of banana fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2004.12.008 – volume: 8 start-page: 71 year: 2021 ident: ref_222 article-title: Molecular functions of nitric oxide and its potential applications in horticultural crops publication-title: Hortic. Res. doi: 10.1038/s41438-021-00500-7 – volume: 11 start-page: 1177 year: 2020 ident: ref_24 article-title: Potential pathway of nitrous oxide formation in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01177 – volume: 11 start-page: 311 year: 2020 ident: ref_132 article-title: NO and ABA interaction regulates tuber dormancy and sprouting in potato publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00311 – volume: 377 start-page: 1274 year: 2008 ident: ref_219 article-title: Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.10.144 – volume: 267 start-page: 55 year: 2018 ident: ref_37 article-title: Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.11.004 – volume: 238 start-page: 859 year: 2013 ident: ref_42 article-title: Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: Implication in sorghum responses to salinity publication-title: Planta doi: 10.1007/s00425-013-1933-x – volume: 85 start-page: 2216 year: 2007 ident: ref_45 article-title: Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21360 – volume: 97 start-page: 3030 year: 2017 ident: ref_183 article-title: Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.8146 – volume: 76 start-page: 875 year: 2013 ident: ref_224 article-title: Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress publication-title: Plant J. doi: 10.1111/tpj.12340 – volume: 263 start-page: 9199 year: 1988 ident: ref_178 article-title: Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase. Effects on protein structure, oxidase activity, and other properties publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)76525-9 – volume: 225 start-page: 1143 year: 2020 ident: ref_23 article-title: The role of nitrite and nitric oxide under low oxygen conditions in plants publication-title: New Phytol. doi: 10.1111/nph.15969 – volume: 40 start-page: 1369 year: 2006 ident: ref_156 article-title: Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.12.006 – volume: 9 start-page: 1278 year: 2015 ident: ref_50 article-title: Nitrogen metabolism in the roots of rubber tree (Hevea brasiliensis) plants supplied with nitrate or ammonium as nitrogen source during hypoxia publication-title: Aust. J. Crop Sci. – volume: 155 start-page: 792 year: 1999 ident: ref_102 article-title: Nitrate increases membrane stability of potato cells under anoxia publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(99)80098-4 – volume: 239 start-page: 531 year: 2014 ident: ref_7 article-title: Nitrogen metabolism in plants under low oxygen stress publication-title: Planta doi: 10.1007/s00425-013-2015-9 – volume: 281 start-page: 4285 year: 2006 ident: ref_28 article-title: Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511635200 – volume: 27 start-page: 197 year: 1991 ident: ref_179 article-title: Effects of nitrous oxide on mitochondrial and cell respiration and growth in Distichlis spicata suspension cultures publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/BF00041290 – ident: ref_211 doi: 10.1007/978-3-319-06710-0_4 – volume: 30 start-page: 116 year: 2015 ident: ref_114 article-title: Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals publication-title: Physiology doi: 10.1152/physiol.00051.2014 – volume: 26 start-page: 54 year: 2012 ident: ref_165 article-title: Nitric oxide restrain root growth by DNA damage induced cell cycle arrest in Arabidopsis thaliana publication-title: Nitric Oxide doi: 10.1016/j.niox.2011.12.001 – volume: 68 start-page: 2463 year: 2017 ident: ref_47 article-title: Plant nitrate transporters: From gene function to application publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx011 – volume: 4 start-page: 346 year: 2013 ident: ref_67 article-title: Nitric oxide implication in the control of seed dormancy and germination publication-title: Front. Plant Sci. – volume: 63 start-page: 1189 year: 2011 ident: ref_176 article-title: Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(11)70638-7 – volume: 76 start-page: 1651 year: 2021 ident: ref_82 article-title: Genotypic variations in nitrate respiration along with potassium nitrate treatment-accountable for water logging tolerance in maize publication-title: Biologia doi: 10.1007/s11756-021-00749-2 – volume: 142 start-page: 1246 year: 2006 ident: ref_44 article-title: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins publication-title: Plant Physiol. doi: 10.1104/pp.106.086918 – volume: 11 start-page: 537 year: 2011 ident: ref_108 article-title: The anoxic plant mitochondrion as a nitrite: NO reductase publication-title: Mitochondrion doi: 10.1016/j.mito.2011.03.005 – volume: 76 start-page: 51 year: 2019 ident: ref_79 article-title: Nitrogen source influences the antioxidative system of soybean plants under hypoxia and re-oxygenation publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0195 – volume: 9 start-page: 160 year: 2003 ident: ref_218 article-title: S-nitrosylation in health and disease publication-title: Trends Mol. Med. doi: 10.1016/S1471-4914(03)00028-5 – volume: 48 start-page: 1283 year: 2013 ident: ref_194 article-title: Storage of ‘Oso Grande’ Strawberries in Controlled Atmosphere Containing Nitrous Oxide (N2O) publication-title: HortScience doi: 10.21273/HORTSCI.48.10.1283 – ident: ref_106 doi: 10.3390/ijms22020549 – volume: 179 start-page: 281 year: 2010 ident: ref_123 article-title: Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.05.014 – volume: 140 start-page: 25 year: 2021 ident: ref_65 article-title: Mitigation of heat stress responses in crops using nitrate primed seeds publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2021.03.024 – volume: 9 start-page: 659 year: 2018 ident: ref_133 article-title: Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00659 – volume: 253 start-page: 155 year: 2003 ident: ref_94 article-title: The role of nitrate reduction in the anoxic metabolism of roots II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity publication-title: Plant Soil doi: 10.1023/A:1024591116697 – volume: 42 start-page: 117 year: 2020 ident: ref_21 article-title: Nitrate-mediated maintenance of photosynthetic process by modulating hypoxic metabolism of common bean plants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-020-03107-y – volume: 30 start-page: 999 year: 2003 ident: ref_14 article-title: Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes publication-title: Funct. Plant Biol. doi: 10.1071/PP98096 – volume: 108 start-page: 18506 year: 2011 ident: ref_166 article-title: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1108644108 – volume: 6 start-page: 4501 year: 2011 ident: ref_148 article-title: Effects of nitric oxide on some physiological characteristics of maize seedlings under waterlogging publication-title: Afr. J. Agric. Res. – volume: 52 start-page: 219 year: 2012 ident: ref_140 article-title: Nitric oxide as germination controlling factor in seeds of various plant species publication-title: Phyton – volume: 46 start-page: 285 year: 1995 ident: ref_8 article-title: The effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.) publication-title: J. Exp. Bot. doi: 10.1093/jxb/46.3.285 – volume: 31 start-page: 798 year: 2011 ident: ref_41 article-title: Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling publication-title: Tree Physiol. doi: 10.1093/treephys/tpr070 – ident: ref_77 doi: 10.3390/antiox9080681 – volume: 266 start-page: 592 year: 1988 ident: ref_73 article-title: An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(88)90292-5 – volume: 11 start-page: 1313 year: 2020 ident: ref_84 article-title: Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatula—Sinorhizobium meliloti symbiosis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01313 – ident: ref_115 doi: 10.1371/journal.pone.0175196 – ident: ref_13 doi: 10.1016/j.plgene.2019.100182 – volume: 7 start-page: 156 year: 2008 ident: ref_113 article-title: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2466 – volume: 181 start-page: 527 year: 2011 ident: ref_213 article-title: S-nitrosylation: An emerging post-translational protein modification in plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.02.011 – volume: 61 start-page: 1206 year: 2019 ident: ref_214 article-title: Protein S-nitrosylation in plants: Current progresses and challenges publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12780 – volume: 77 start-page: 145 year: 2016 ident: ref_220 article-title: The functional role of nitric oxide in plant mitochondrial metabolism publication-title: Adv. Bot. Res. doi: 10.1016/bs.abr.2015.10.007 – ident: ref_30 doi: 10.3389/fpls.2022.865542 – volume: 305 start-page: 1968 year: 2004 ident: ref_174 article-title: Nitric oxide represses the Arabidopsis floral transition publication-title: Science doi: 10.1126/science.1098837 – ident: ref_64 doi: 10.3390/plants9060707 – volume: 31 start-page: 828 year: 2008 ident: ref_71 article-title: Waterlogging effects on plant nutrient concentrations in soybean publication-title: J. Plant Nutr. doi: 10.1080/01904160802043122 – volume: 142 start-page: 1710 year: 2006 ident: ref_74 article-title: Nitrite reduces cytoplasmic acidosis under anoxia publication-title: Plant Physiol. doi: 10.1104/pp.106.088898 – ident: ref_198 doi: 10.1098/rstb.2013.0122 – volume: 244 start-page: 181 year: 2016 ident: ref_130 article-title: Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit publication-title: Planta doi: 10.1007/s00425-016-2501-y – volume: 8 start-page: 142 year: 2017 ident: ref_168 article-title: Nitric oxide has a concentration-dependent effect on the cell cycle acting via EIN2 in Arabidopsis thaliana cultured cells publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00142 – volume: 133 start-page: 343 year: 2020 ident: ref_81 article-title: Tolerant mechanisms to O2 deficiency under submergence conditions in plants publication-title: J. Plant Res. doi: 10.1007/s10265-020-01176-1 – volume: 88 start-page: 579 year: 2001 ident: ref_159 article-title: Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’ publication-title: Ann. Bot. doi: 10.1006/anbo.2001.1506 – volume: 73 start-page: 760 year: 2009 ident: ref_196 article-title: Influence of liquid manure on soil denitrifier abundance, denitrification, and nitrous oxide emissions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0059 – volume: 10 start-page: 3462 year: 2015 ident: ref_135 article-title: Effect of nitric oxide on some morphological and physiological parameters in maize exposed to waterlogging stress publication-title: Afr. J. Agric. Res. doi: 10.5897/AJAR2015.9790 – volume: 4 start-page: 419 year: 2013 ident: ref_22 article-title: Nitric oxide, antioxidants and prooxidants in plant defence responses publication-title: Front. Plant Sci. – volume: 1777 start-page: 1268 year: 2008 ident: ref_53 article-title: Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia publication-title: Biochim. Biophys. Acta (BBA)-Bioenerg. doi: 10.1016/j.bbabio.2008.06.002 – volume: 237 start-page: 169 year: 1972 ident: ref_57 article-title: Promotion of seed germination by nitrates and cyanides publication-title: Nature doi: 10.1038/237169b0 – volume: 21 start-page: 1659 year: 2021 ident: ref_200 article-title: Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem publication-title: J. Soils Sediments doi: 10.1007/s11368-021-02903-4 – volume: 51 start-page: 545 year: 2005 ident: ref_9 article-title: Waterlogging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity publication-title: Plant Soil Environ. doi: 10.17221/3630-PSE – ident: ref_160 doi: 10.3390/plants9050610 – volume: 218 start-page: 900 year: 2004 ident: ref_171 article-title: Nitric oxide plays a central role in determining lateral root development in tomato publication-title: Planta doi: 10.1007/s00425-003-1172-7 – volume: 22 start-page: 1253 year: 1999 ident: ref_72 article-title: Mineral nutrient status of corn in relation to nitrate and long-term waterlogging publication-title: J. Plant Nutr. doi: 10.1080/01904169909365710 – volume: 223 start-page: 805 year: 2006 ident: ref_109 article-title: Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner publication-title: Planta doi: 10.1007/s00425-005-0116-9 – volume: 40 start-page: 1834 year: 2017 ident: ref_167 article-title: Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation publication-title: Plant Cell Environ. doi: 10.1111/pce.12989 – ident: ref_120 doi: 10.3390/horticulturae7100410 – volume: 55 start-page: 2473 year: 2004 ident: ref_16 article-title: Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh272 – volume: 35 start-page: 337 year: 2008 ident: ref_12 article-title: Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: A role for increased nitrate reduction publication-title: Funct. Plant Biol. doi: 10.1071/FP08029 – volume: 148 start-page: 228 year: 2020 ident: ref_1 article-title: Plant waterlogging/flooding stress responses: From seed germination to maturation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.01.020 – volume: 13 start-page: 15193 year: 2012 ident: ref_226 article-title: Nitric oxide-dependent posttranslational modification in plants: An update publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms131115193 – volume: 241 start-page: 579 year: 2015 ident: ref_203 article-title: Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings publication-title: Planta doi: 10.1007/s00425-014-2198-8 |
SSID | ssj0023259 |
Score | 2.48468 |
SecondaryResourceType | review_article |
Snippet | Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may... Oxygen (O 2 ) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 11522 |
SubjectTerms | Abiotic stress Amino acids Chloroplasts Cytochrome Enzymes Hypoxia Metabolism Mitochondria Nitrates Nitric oxide Nitrogen Oxidative stress Pathogens Plant tolerance Reactive oxygen species Respiration Review Seeds |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSsNAEF60IngRf7FaZQXxZDDZJJvWixSxFqHqwUJvYbM7xYgm1bTY3nwH39AncSZNW3PQ28IuLJnJ7Hzf7vwwdiIcV9ouCEsH0iBBUcaK8Ey00JJ8hTSoLwLKHe7cyXbXu-35veLCLSvCKmdnYn5Qm1TTHfm5CNCZIDzwnMvBm0Vdo-h1tWihscxWHPQ0FNJVb93MCZcr8mZpDvogS_oNOa2x6SLNP4-fXzOENmjqvhBln7QAmuUwyV9-p7XB1gvAyJtTDW-yJUi22Oq0heRkm4V3cV5f9vvzi0bxYqT5_Tg2wB8Q432oyQVv8g5Qnm-cvfK0z9uTQTqOFVeJ4c0kHz6mL0CNNoDHCad2RsNsh3Vb149XbatommBphDpDq-FGRgJaWYRgwDgKbE8hBEA79lFCCqSSAAIk0mKN30-ZrVQSUQWRK3XdNNxdVknSBPYYt0HafVd5WiAHlIGJGsL0HVv7EhAGmKDKzmZiC3VRUZwaW7yEyCxIymFJylV2Ol8-mJbS-GthbaaDsLCoLFzov8qO59NoC_TAoRJIR_kan8Jpfa_KgpLu5htSNe3yTBI_5VW1kSgit5L7_29-wNYEJUDk4Xw1Vhm-j-AQYckwOsr_vR9pbeN8 priority: 102 providerName: ProQuest |
Title | Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants |
URI | https://www.proquest.com/docview/2724285141 https://www.proquest.com/docview/2725199254 https://pubmed.ncbi.nlm.nih.gov/PMC9569746 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3battAEB3imEJfQpK21LmYDZQ-Va2sy24cCMEJcUzBrik2-E2stCOqYktO7BD7Lf-QP8yXZEa-RbSFvoiFXSFpdmfnHO3uGYBPTs2VtouOFSlpiKBoY4U0J1rkSb4mGhQ7is8Otzuy1fe-D_zBRlJoacDJX6kd55Pq3w2_zm7nF-Tw58w4ibJ_S36PJgRTyG0JTJSgTEFJcTKDtrdeUCDckOdN4z8eFs_QC7nNP28vhqcN5izumHwVgpq7sLPEjqKx6Ow92MJ0H94ssknO30HQSXKp2efHJy4lm1IkfswSg6JLcO9Bz89EQ7SRj_wmk5HIYtGaj7NZooVOjWikebGXDZFzbqBIUsGZjaaT99BvXveuWtYyf4IVEeqZWnU3NBLJ4ULCBaam0fY0oQFyaZ_CskapJaKDkhhyRN_Ph1xZHVGr0JXRqam7H2A7zVL8CMJGaceu9iKH6KBUJqw7Jq7ZkS-REIFRFfiyMlsQLcXFOcfFMCCSwVYOClauwOd18_FCVeNfDY9WfRCsxkbgKMIVhBS9WgVO1tXkFrzWoVPM7vM2Pu-s9b0KqELfrR_IwtrFmjT5lQtsE2ckmiUP_vctD-Gtw6ci8j1-R7A9vbvHY8Iq07AKJTVQdD1t3lShfHnd6f6scvTwq_n4fAGL5O2D |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hqqpcqv6ASKHtIgGnWthre91UqlDUNg2FpD0EiZtZ705UV2CHOghy6zvwHn2oPkln7DjBB7hxW2lHWml2dub77PkB2Jaer1wfpWMiZYmgaOsk5BMdekmhJho0khHXDvcHqnccfDsJT5bgb10Lw2mVtU8sHbXNDX8j35MRBROCB4G3P75weGoU_12tR2hUZnGI0yuibMXHg890vztSdr8MP_Wc2VQBxxAWmDhtP7EKyQwTipbW0-gGmmIkGXpIwUqj0gpRoiLeaMg-ufSTewbqKPGVeW-5-RK5_EeBT5GcK9O7X-cEz5flcDaPYp6jwraqenqSoLuX_jovCEqRawmlbMbABbBtpmXeinPdZ_B0BlBFp7Ko57CE2Qt4XI2snL6EeJCW_Wz__bnhVbpYGfH9OrUofhCmvNLTD6Ij-sh1xWlxLvKR6E3H-XWqhc6s6GTlcpifIQ_2QJFmgscnTYpVOH4Qda7BcpZnuA7CReWOfB0YSZxTRTZpSzvyXBMqJNhhoxa8q9UWm1kHcx6kcRYTk2Etxw0tt2B3Lj6uWnfcJbhZ30E8e8FFvLC3FmzNt-nt8Q8VnWF-WcqEnL4bBi2IGnc3P5C7dzd3svRn2cWbiClxOfXq_sPfwpPesH8UHx0MDjdgRXLxRZlKuAnLk9-X-Jog0SR5U9qhgNOHNvz_SXIecw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqUBcEL8itMAiASes2Gt7TZAQCrRRSmmIUCv1Zta7Y-GqtQNO1ebGO_A2PA5Pwox_EnyAW28r7Uor7X47M589Mx_AM-n5yvVROiZSlgiKtk5CNtGhlxRqokGpjLh2-GCqJkfBh-PweAN-tbUwnFbZ2sTKUNvC8DfygYzImVB4EHiDtEmLmO2M386_OawgxX9aWzmNGiL7uLwg-la-2duhu34u5Xj38P3EaRQGHENxwcIZ-olVSJBMyHNaT6MbaPKXBPqQHJdGpRWiREUc0hBWuQyU-wfqKPGVeWW5EROZ_82IWVEPNt_tTmefV3TPl5VUm0ce0FHhUNUdPn1_6A6yk7OSAisyNKGUXY-4DnO7SZp_eb3xLbjZhKtiVOPrNmxgfgeu1QKWy7sQT7Oqu-3vHz95lK1HRny6zCyKGUWYF3r5WozEAXKVcVaeiSIVk-W8uMy00LkVo7waHhanyDIfKLJcsJjSorwHR1dyoPehlxc5PgDhonJTXwdGEgNVkU2G0qaea0KFFITYqA8v22OLTdPPnGU1TmPiNXzKceeU-_BitXxeN_L418Lt9g7i5j2X8Rp9fXi6mqaXyL9XdI7FebUm5GTeMOhD1Lm71Ybcy7s7k2dfq57eRFOJ2amH_9_8CVwn0Mcf96b7W3BDciVGlVe4Db3F93N8RPHRInncAFHAl6vG_h9FVSQF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrate%E2%80%93Nitrite%E2%80%93Nitric+Oxide+Pathway%3A+A+Mechanism+of+Hypoxia+and+Anoxia+Tolerance+in+Plants&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Timilsina%2C+Arbindra&rft.au=Dong%2C+Wenxu&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Liu%2C+Binbin&rft.date=2022-10-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=19&rft.spage=11522&rft_id=info:doi/10.3390%2Fijms231911522&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms231911522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |