Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization
In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (B...
Saved in:
Published in | Genomics (San Diego, Calif.) Vol. 111; no. 4; pp. 669 - 686 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-7543 1089-8646 1089-8646 |
DOI | 10.1016/j.ygeno.2018.04.004 |
Cover
Abstract | In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets.
•We have proposed a novel hybrid evolutionary approach based on BPSO (4-2) and BBHA for gene selection.•We have tested the effectiveness of BPSO (4-2)-BBHA with three classifiers, on two benchmark and three GEO datasets from NCBI.•The developed approach (BPSO (4-2)-BBHA/SPLSDA) compare with several state-of-the-art methods leads to a better performance.•We have found the optimal subset of genes in each dataset and have used FURIA to find the relation between candidate genes.•Applying BBHA as the local optimizer for BPSO (4-2) helps it to avoid being trapped in a local optimum. |
---|---|
AbstractList | In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets.In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. •We have proposed a novel hybrid evolutionary approach based on BPSO (4-2) and BBHA for gene selection.•We have tested the effectiveness of BPSO (4-2)-BBHA with three classifiers, on two benchmark and three GEO datasets from NCBI.•The developed approach (BPSO (4-2)-BBHA/SPLSDA) compare with several state-of-the-art methods leads to a better performance.•We have found the optimal subset of genes in each dataset and have used FURIA to find the relation between candidate genes.•Applying BBHA as the local optimizer for BPSO (4-2) helps it to avoid being trapped in a local optimum. |
Author | Pashaei, Elnaz Aydin, Nizamettin Pashaei, Elham |
Author_xml | – sequence: 1 givenname: Elnaz surname: Pashaei fullname: Pashaei, Elnaz email: elnaz.pashaei@std.yildiz.edu.tr – sequence: 2 givenname: Elham surname: Pashaei fullname: Pashaei, Elham – sequence: 3 givenname: Nizamettin orcidid: 0000-0003-0022-2247 surname: Aydin fullname: Aydin, Nizamettin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29660477$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vFDEURa0oiGwCvyASckkzg7_WYxcUKIIkUqQ0UFse-82ulxl7sWeJll-PN5tQUCTVa8650n33HJ3GFAGhS0paSqj8tGn3K4ipZYSqloiWEHGCFpQo3Sgp5ClaEKVU0y0FP0PnpWwIIZor9hadMS0lEV23QKtriIALjODmkCLelRBXeL3vc_C4D9HmPe5H637idRoB23GVcpjXE7bR4yn5MAT4B25tnoOrWHmwecJpO4cp_LGH4HfozWDHAu-f7gX68e3r96ub5u7--vbqy13juGZzo5kEqtxgQTEvlkvfQS-t6qT0wwBeODkMWnrBtKKcLLUnfc-1lpwL7Wzn-AX6eMzd5vRrB2U2UygOxtFGSLtiWLUYl6Kjr6OEScEE5byiH57QXT-BN9scplrYPP-xAvoIuJxKyTAYF-bH4nO2YTSUmMNmZmMeNzOHzQwRpm5WXf6f-xz_svX5aEH95u8A2RQXIDrwIdctjU_hRf8v-sWykg |
CitedBy_id | crossref_primary_10_1038_s41598_024_54515_w crossref_primary_10_1186_s40537_020_00398_3 crossref_primary_10_1109_ACCESS_2021_3124710 crossref_primary_10_1007_s12652_024_04853_4 crossref_primary_10_1109_ACCESS_2024_3402652 crossref_primary_10_1155_2022_5143757 crossref_primary_10_1093_bib_bbab097 crossref_primary_10_3390_en11071833 crossref_primary_10_1016_j_artmed_2021_102228 crossref_primary_10_1007_s10489_021_02980_5 crossref_primary_10_1007_s10586_024_04614_0 crossref_primary_10_1038_s41598_021_82796_y crossref_primary_10_1186_s12864_020_07038_3 crossref_primary_10_1016_j_chemolab_2021_104305 crossref_primary_10_1016_j_ab_2021_114242 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_1186_s40529_024_00433_z crossref_primary_10_1109_ACCESS_2019_2959064 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1007_s11831_025_10255_2 crossref_primary_10_1007_s00357_024_09468_0 crossref_primary_10_1111_itor_13164 crossref_primary_10_1007_s00500_023_07988_2 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_1002_ima_23007 crossref_primary_10_1007_s40819_021_01061_y crossref_primary_10_1186_s40537_021_00415_z crossref_primary_10_1007_s00521_021_06406_8 crossref_primary_10_1016_j_compbiomed_2022_105766 crossref_primary_10_1186_s12911_021_01696_3 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1016_j_chemolab_2020_104104 crossref_primary_10_1109_ACCESS_2021_3056407 crossref_primary_10_1007_s11227_023_05138_x crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1007_s40747_024_01420_4 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_1007_s40747_023_01041_3 crossref_primary_10_1016_j_chemolab_2018_12_003 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1016_j_cmpb_2023_107933 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1016_j_cose_2022_102717 crossref_primary_10_1007_s43674_022_00047_7 crossref_primary_10_1016_j_asoc_2020_106870 crossref_primary_10_1016_j_asoc_2021_107346 crossref_primary_10_1016_j_knosys_2022_110250 crossref_primary_10_1016_j_mtcomm_2023_107053 |
Cites_doi | 10.1002/pros.20961 10.4238/2015.August.28.14 10.1080/14737140.2017.1372198 10.15252/embj.201490497 10.1530/JME-13-0270 10.1016/j.ins.2012.08.023 10.1016/j.asoc.2017.04.061 10.1038/ncb2142 10.5732/cjc.011.10405 10.3892/ijo.2015.2855 10.1158/1541-7786.MCR-16-0392 10.1002/mc.22652 10.2147/OTT.S131386 10.1089/cmb.2010.0064 10.1371/journal.pone.0012336 10.1016/j.jprot.2015.04.005 10.2217/clp.10.37 10.1016/j.cca.2012.12.012 10.1186/1471-2105-12-253 10.3892/ol.2017.6233 10.1155/2016/3572705 10.1038/cddis.2015.401 10.1053/j.gastro.2016.12.002 10.1134/S0026893307040061 10.1073/pnas.0805636105 10.1016/j.saa.2016.07.016 10.3390/ijms17030285 10.1158/1078-0432.CCR-11-2271 10.1200/JCO.2017.74.7444 10.1016/j.asoc.2013.09.018 10.1109/TCBB.2015.2465906 10.1007/978-3-319-13563-2_43 10.1007/s00500-007-0272-x 10.1016/j.asoc.2014.08.032 10.1002/mc.22691 10.1016/j.ins.2013.10.012 10.1093/hmg/ddv054 10.1016/j.ebiom.2015.07.017 10.1007/s12664-015-0534-y 10.1016/j.sigpro.2016.07.035 10.1016/j.ygeno.2016.05.001 10.1016/j.neubiorev.2017.08.006 10.1007/s10552-013-0305-y 10.1111/bjh.13921 10.1158/0008-5472.CAN-16-0562 10.1371/journal.pone.0117518 10.3346/jkms.2011.26.11.1428 10.18632/oncotarget.5275 10.1016/j.lfs.2017.08.018 10.1109/TEVC.2015.2504420 10.1016/j.molonc.2015.07.001 10.1016/j.eswa.2011.08.069 10.2174/1389450117666160101120703 10.3892/ijo.2016.3535 10.1109/IJCNN.2012.6252640 10.4103/2228-7477.157610 10.1007/s11064-010-0301-5 10.1186/1471-2105-13-53 10.1073/pnas.102102699 10.1080/09540091.2012.737765 10.1007/978-3-319-28031-8_20 10.1016/j.compbiolchem.2007.09.005 10.1007/s10549-009-0620-x 10.1016/j.asoc.2017.03.002 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ygeno.2018.04.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1089-8646 |
EndPage | 686 |
ExternalDocumentID | 29660477 10_1016_j_ygeno_2018_04_004 S0888754318302295 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM AAFWJ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c392t-926e18cfae82d455d7eb6a8766dffed4c6ff96d429813059d0bb39963349ca7c3 |
IEDL.DBID | AIKHN |
ISSN | 0888-7543 1089-8646 |
IngestDate | Thu Sep 04 23:58:20 EDT 2025 Thu Sep 04 23:42:12 EDT 2025 Wed Feb 19 02:32:12 EST 2025 Tue Jul 01 01:48:20 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 Fri Feb 23 02:27:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Binary particle swarm optimization Gene selection Gene expression Binary black hole algorithm Sparse partial least squares discriminant analysis |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-926e18cfae82d455d7eb6a8766dffed4c6ff96d429813059d0bb39963349ca7c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0003-0022-2247 |
PMID | 29660477 |
PQID | 2026424133 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2305236471 proquest_miscellaneous_2026424133 pubmed_primary_29660477 crossref_citationtrail_10_1016_j_ygeno_2018_04_004 crossref_primary_10_1016_j_ygeno_2018_04_004 elsevier_sciencedirect_doi_10_1016_j_ygeno_2018_04_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genomics (San Diego, Calif.) |
PublicationTitleAlternate | Genomics |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wan, Cheng, Wang, Xiao, Zeng, Xing, Chen, Wang, Li, Zhang, Xiang, Zhu, Johnson, Zhu (bb0405) 2015; 10 Vafaee-Sharbaf, Mosafer, Moattar (bb0020) 2016; 107 Riester, Taylor, Feifer, Koppie, Rosenberg, Downey, Bochner, Michor (bb0175) 2012; 18 Serão, Delfino, Southey, Beever, Rodriguez-Zas (bb0355) 2011; 4 Jin, Li, Li, Sun, Fang, Li (bb0305) 2014; 52 Han, Yang, Wu, Zhu, Ling, Song, Huang (bb0065) 2017; 14 Ye, Tao, Cao, Zhu, Wang, Wang, Lu, Chen, Li (bb0365) 2016; 49 Chuanga, Changb, Tuc, Yang (bb0125) 2008; 32 Calvete, Reyes, Zuñiga, Paumard-Hernández, Fernández, Bujanda, Rodriguez-Pinilla, Palacios, Heine-Suñer, Banka, Newman, Cañamero, Pritchard, Benítez (bb0275) 2015; 24 MV. Kesari, VL. Gaopande, AR. Joshi, SV. Babanagare, BP. Gogate, AV. Khadilkar, Immunohistochemical study of MUC1, MUC2 and MUC5AC in colorectal carcinoma and review of literature, Indian J. Gastroenterol. 34(1) (2015) 63–7. doi Kluth, Galal, Krohn, Weischenfeldt, Tsourlakis, Paustian, Ahrary, Ahmed, Scherzai, Meyer, Sirma, Korbel, Sauter, Schlomm, Simon, Minner (bb0320) 2015; 46 Baize, Monnet, Greillier, Quere, Kerjouan, Janicot, Vergnenegre, Auliac, Chouaid (bb0330) 2017; 17 Alomari, Khader, Albetar, Abualigah (bb0030) 2017; 95 Liu, Jiang, Han, He, Zhang, Ren (bb0225) 2015; 14 Zhai, Chang, Hu, Wu, Lin (bb0340) 2017; 56 Moteghaed, Maghooli, Pirhadi, Garshasbi (bb0090) 2015; 5 Jeanmougin, Reynies, Marisa, Paccard, Nuel, Guedj (bb0040) 2010; 5 H. Deng, G. Runger, “Feature selection via regularized trees”, Proceedings of of the 2012 International Joint Conference on Neural Networks (IJCNN), (6252640). doi Attia, Nassar, El-Zeiny, Serag (bb0015) 2017; 170 Elliott, Weickert, Garner (bb0235) 2010; 51 Pashaei, Ozen, Aydin (bb0080) 2015 Zhang, Osisami, Dai, Keller, Escara-Wilke, Mizokami, Keller (bb0380) 2017; 15 . Kherrouche, Monte, Werkmeister, Stoven, De Launoit, Cortot, Tulasne, Chotteau-Lelievre (bb0265) 2015; 9 Luo, Guo, Chen, Yang, Qu, Cheng (bb0360) 2016; 7 Chuang, CHU, Li, Yang (bb0085) 2012; 19 Alfieri, Bossi, Galbiati, Giannoccaro, Pilotti, Perrone, Paielli, Tonella, Bergamini, Granata, Resteghini, Cavalieri, Iacovelli, Orlandi, Locati, Licitra, Canevari, De Cecco (bb0095) 2017; 28 Pashaei, Aydin (bb0035) 2017; 56 Ross-Adams, Lamb, Dunning, Halim, Lindberg, Massie, Egevad (bb0170) 2015; 2 Khandelwal, Ruiz, Balestreire-Hawryluk, Weisz, Goldenring, Apodaca (bb0395) 2008; 105 Ambroise, Mclachlan (bb0180) 2002; 99 Xu, Rao, Xia, Shi, Shi, Ma, Lu, Chen, Zhou (bb0335) 2015; 8 Jóźwicki, Brożyna, Siekiera, Slominski (bb0385) 2016; 17 Jóźwicki, Brożyna, Siekiera, Slominski (bb0415) 2016; 17 Xue, Zhang, Browne, Yao (bb0005) 2016; 20 Bobrowski, Łukaszuk (bb0200) 2011 Pamarthy, Jaiswal, Kulshreshtha, Katara, Gilman-Sachs, Beaman (bb0300) 2015; 6 Ning, Deng (bb0410) 2017; 10 Li, Wu, Tan (bb0135) 2008; 12 Epping, Meijer, Krijgsman, Bos, Pandolfi, Bernards (bb0195) 2011; 13 Tran, Xue, Zhang (bb0115) 2017; 99 Pashaei, Ozen, Aydin (bb0150) 2016 Shahbeig, Helfroush, Rahideh (bb0010) 2017; 131 Güllü, Karabulut, Akkiprik (bb0205) 2012; 31 Liu, Li, Zheng, Ge, Li, Yu (bb0310) 2017; 188 Cattaneo, Guerra, Ammendola (bb0270) 2010; 35 Chen, Wang, Wang, Angelia (bb0075) 2014; 24 Omalu, Nnebe-Agumadu (bb0240) 2009; 12 Liddelow, Hoyer (bb0245) 2016; 17 Sun, Goodison (bb0165) 2009; 69 Sharpe (bb0280) 2016 Le Cao, Boitard, Besse (bb0100) 2011; 12 Teng, Qin, Bahassan, Bendzunas, Kennedy, Cowell (bb0325) 2016; 76 Xue, Cervante, Shang, Browne, Zhang (bb0190) 2012; 24 Wang, Peng, Fan (bb0120) 2016; 2016 Yang, Seol, Leem, Kim, Sun, Lee, Thorgeirsson, Chu, Roberts, Kang (bb0215) 2011; 26 Kumar, Victoire, Renukadevi, Devaraj (bb0140) 2012; 39 Li, Li, Yin (bb0185) 2016 Kuznetsova, Kekeeva, Larin, Emliakova, Babenko, Nemtsova, Zaletaev, Strel'nikov (bb0350) 2007; 41 Madden, Anic, Thompson, Nabors, Olson, Browning, Monteiro, Egan (bb0220) 2014; 25 Selvadurai, Harding, Corben, Georgiou-Karistianis (bb0255) 2017; 84 Guo, Liu, Wang, Sun, Greenaway (bb0290) 2013; 417 Chinnaswamy, Srinivasan (bb0045) 2016; 424 Shreem, Abdullah, Nazri, Alzaqebah (bb0050) 2012; 46 Nim, Furtado, Ramialison, Boyd (bb0315) 2017; 7 Shreem, Abdullah, Nazri (bb0025) 2014; 258 Xi, Sun, Liu, Fan, Wu (bb0110) 2016; 2016 Fang, Hong, Dai, Qian, Zhu, Wu, Li (bb0285) 2017; 56 Zhao, Majid, Soll, Brickner, Dango, Mosammaparast (bb0370) 2015; 34 Iacopetta, Lappano, Cappello, Madeo, De Francesco, Santoro, Curcio, Capobianco, Pezzi, Maggiolini, Dolce (bb0210) 2010; 122 Shen, Chen, Yang, Chen, Liu, Ni (bb0260) 2015; 123 Yamamoto, Suehiro, Suzuki, Nawata, Kawai, Inoue, Hirata, Matsumoto, Yamasaki, Sasaki, Matsuyama (bb0400) 2017; 14 Shen, Szankasi, Sederberg, Schumacher, Frizzell, Gee, Patel, South, Xu, Kelley (bb0375) 2016; 173 Hatamlou (bb0145) 2013; 222 Bleeker, Lamba, Zanon, Molenaar, Hulsebos, Troost, Van-Tilborg, Vandertop, Leenstra, Van-Noorden, Bardelli (bb0345) 2014; 14 Wang, Sun, Hageman, Smith, Singh, Desai, Hawkins, Hudson, Mascarenhas, Neglia, Oeffinger, Ritchey, Robison, Villaluna, Landier, Bhatia (bb0250) 2017; 35 Pashaei, Ozen, Aydin (bb0155) 2016 (Epub 2016 Dec 10). Xue, Zhang, Browne (bb0055) 2014; 18 Sahua, Mishrab (bb0105) 2012 Luo, Zhao, Wan, Huang, Wu (bb0390) 2014; 7 Wei, Zhang, Yu, Hu, Tang, Gui, Yuan (bb0070) 2017; 58 Logsdon, Hoffman, Mezey (bb0060) 2012; 13 Epub 2015 Mar 4. CQ. Song, Y. Li, H. Mou, J. Moore, A. Park, Y. Pomyen, S. Hough, Z. Kennedy, A. Fischer, H. Yin, DG. Anderson, Jr D. Conte, L. Zender, XW. Wang, S. Thorgeirsson, Z. Weng, W. Xue, Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice, Gastroenterology.152(5) (2017) 1161–1173.e1. doi Tran, Xue, Zhang (bb0130) 2014; 8886 10.1016/j.ygeno.2018.04.004_bb0295 Selvadurai (10.1016/j.ygeno.2018.04.004_bb0255) 2017; 84 Chen (10.1016/j.ygeno.2018.04.004_bb0075) 2014; 24 Bleeker (10.1016/j.ygeno.2018.04.004_bb0345) 2014; 14 Zhang (10.1016/j.ygeno.2018.04.004_bb0380) 2017; 15 Sharpe (10.1016/j.ygeno.2018.04.004_bb0280) 2016 Shen (10.1016/j.ygeno.2018.04.004_bb0375) 2016; 173 Baize (10.1016/j.ygeno.2018.04.004_bb0330) 2017; 17 Xu (10.1016/j.ygeno.2018.04.004_bb0335) 2015; 8 Li (10.1016/j.ygeno.2018.04.004_bb0135) 2008; 12 Iacopetta (10.1016/j.ygeno.2018.04.004_bb0210) 2010; 122 Ambroise (10.1016/j.ygeno.2018.04.004_bb0180) 2002; 99 Guo (10.1016/j.ygeno.2018.04.004_bb0290) 2013; 417 Bobrowski (10.1016/j.ygeno.2018.04.004_bb0200) 2011 Hatamlou (10.1016/j.ygeno.2018.04.004_bb0145) 2013; 222 Wan (10.1016/j.ygeno.2018.04.004_bb0405) 2015; 10 Pamarthy (10.1016/j.ygeno.2018.04.004_bb0300) 2015; 6 Kherrouche (10.1016/j.ygeno.2018.04.004_bb0265) 2015; 9 Luo (10.1016/j.ygeno.2018.04.004_bb0360) 2016; 7 Wei (10.1016/j.ygeno.2018.04.004_bb0070) 2017; 58 Shreem (10.1016/j.ygeno.2018.04.004_bb0050) 2012; 46 Wang (10.1016/j.ygeno.2018.04.004_bb0250) 2017; 35 Xue (10.1016/j.ygeno.2018.04.004_bb0055) 2014; 18 Liddelow (10.1016/j.ygeno.2018.04.004_bb0245) 2016; 17 Sun (10.1016/j.ygeno.2018.04.004_bb0165) 2009; 69 Ning (10.1016/j.ygeno.2018.04.004_bb0410) 2017; 10 Han (10.1016/j.ygeno.2018.04.004_bb0065) 2017; 14 Jóźwicki (10.1016/j.ygeno.2018.04.004_bb0415) 2016; 17 Luo (10.1016/j.ygeno.2018.04.004_bb0390) 2014; 7 Khandelwal (10.1016/j.ygeno.2018.04.004_bb0395) 2008; 105 Wang (10.1016/j.ygeno.2018.04.004_bb0120) 2016; 2016 Attia (10.1016/j.ygeno.2018.04.004_bb0015) 2017; 170 Calvete (10.1016/j.ygeno.2018.04.004_bb0275) 2015; 24 Kumar (10.1016/j.ygeno.2018.04.004_bb0140) 2012; 39 Chuang (10.1016/j.ygeno.2018.04.004_bb0085) 2012; 19 Jóźwicki (10.1016/j.ygeno.2018.04.004_bb0385) 2016; 17 Logsdon (10.1016/j.ygeno.2018.04.004_bb0060) 2012; 13 10.1016/j.ygeno.2018.04.004_bb0230 Xue (10.1016/j.ygeno.2018.04.004_bb0005) 2016; 20 Jeanmougin (10.1016/j.ygeno.2018.04.004_bb0040) 2010; 5 Nim (10.1016/j.ygeno.2018.04.004_bb0315) 2017; 7 Tran (10.1016/j.ygeno.2018.04.004_bb0130) 2014; 8886 Pashaei (10.1016/j.ygeno.2018.04.004_bb0155) 2016 Alomari (10.1016/j.ygeno.2018.04.004_bb0030) 2017; 95 Fang (10.1016/j.ygeno.2018.04.004_bb0285) 2017; 56 Zhao (10.1016/j.ygeno.2018.04.004_bb0370) 2015; 34 Liu (10.1016/j.ygeno.2018.04.004_bb0310) 2017; 188 Teng (10.1016/j.ygeno.2018.04.004_bb0325) 2016; 76 Shahbeig (10.1016/j.ygeno.2018.04.004_bb0010) 2017; 131 Tran (10.1016/j.ygeno.2018.04.004_bb0115) 2017; 99 Xue (10.1016/j.ygeno.2018.04.004_bb0190) 2012; 24 Zhai (10.1016/j.ygeno.2018.04.004_bb0340) 2017; 56 Ye (10.1016/j.ygeno.2018.04.004_bb0365) 2016; 49 Shen (10.1016/j.ygeno.2018.04.004_bb0260) 2015; 123 Xi (10.1016/j.ygeno.2018.04.004_bb0110) 2016; 2016 Le Cao (10.1016/j.ygeno.2018.04.004_bb0100) 2011; 12 10.1016/j.ygeno.2018.04.004_bb0160 Ross-Adams (10.1016/j.ygeno.2018.04.004_bb0170) 2015; 2 Elliott (10.1016/j.ygeno.2018.04.004_bb0235) 2010; 51 Vafaee-Sharbaf (10.1016/j.ygeno.2018.04.004_bb0020) 2016; 107 Yamamoto (10.1016/j.ygeno.2018.04.004_bb0400) 2017; 14 Moteghaed (10.1016/j.ygeno.2018.04.004_bb0090) 2015; 5 Sahua (10.1016/j.ygeno.2018.04.004_bb0105) 2012 Madden (10.1016/j.ygeno.2018.04.004_bb0220) 2014; 25 Liu (10.1016/j.ygeno.2018.04.004_bb0225) 2015; 14 Chinnaswamy (10.1016/j.ygeno.2018.04.004_bb0045) 2016; 424 Yang (10.1016/j.ygeno.2018.04.004_bb0215) 2011; 26 Pashaei (10.1016/j.ygeno.2018.04.004_bb0035) 2017; 56 Alfieri (10.1016/j.ygeno.2018.04.004_bb0095) 2017; 28 Kuznetsova (10.1016/j.ygeno.2018.04.004_bb0350) 2007; 41 Shreem (10.1016/j.ygeno.2018.04.004_bb0025) 2014; 258 Jin (10.1016/j.ygeno.2018.04.004_bb0305) 2014; 52 Chuanga (10.1016/j.ygeno.2018.04.004_bb0125) 2008; 32 Li (10.1016/j.ygeno.2018.04.004_bb0185) 2016 Cattaneo (10.1016/j.ygeno.2018.04.004_bb0270) 2010; 35 Epping (10.1016/j.ygeno.2018.04.004_bb0195) 2011; 13 Riester (10.1016/j.ygeno.2018.04.004_bb0175) 2012; 18 Güllü (10.1016/j.ygeno.2018.04.004_bb0205) 2012; 31 Serão (10.1016/j.ygeno.2018.04.004_bb0355) 2011; 4 Kluth (10.1016/j.ygeno.2018.04.004_bb0320) 2015; 46 Pashaei (10.1016/j.ygeno.2018.04.004_bb0080) 2015 Omalu (10.1016/j.ygeno.2018.04.004_bb0240) 2009; 12 Pashaei (10.1016/j.ygeno.2018.04.004_bb0150) 2016 |
References_xml | – start-page: 308 year: 2016 end-page: 311 ident: bb0150 article-title: Gene selection and classification approach for microarray data based on Random Forest Ranking and BBHA publication-title: Proceedings of 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) – volume: 9 start-page: 1852 year: 2015 end-page: 1867 ident: bb0265 article-title: PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells publication-title: Mol. Oncol. – volume: 123 start-page: 101 year: 2015 end-page: 113 ident: bb0260 article-title: Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage publication-title: J. Proteomics. – volume: 2016 start-page: 16 year: 2016 end-page: 19 ident: bb0110 article-title: Cancer feature selection and classification using a binary quantum-behaved particle swarm optimization and support vector machine publication-title: Comput. Math. Meth. Med. – volume: 14 start-page: 1193 year: 2017 end-page: 1199 ident: bb0400 article-title: Germline DNA copy number variations as potential prognostic markers for non-muscle invasive bladder cancer progression publication-title: Oncol Lett. – volume: 10 start-page: e0117518 year: 2015 ident: bb0405 article-title: SATB1 overexpression regulates the development and progression in bladder cancer through EMT publication-title: PLoS One – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: bb0005 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput – volume: 258 start-page: 108 year: 2014 end-page: 121 ident: bb0025 article-title: Hybridizing harmony search with a Markov blanket for gene selection problems publication-title: Inf. Sci. – volume: 13 start-page: 53 year: 2012 ident: bb0060 article-title: Mouse obesity network reconstruction with a variational bayes algorithm to employ aggressive false positive control publication-title: BMC Bioinforma. – reference: H. Deng, G. Runger, “Feature selection via regularized trees”, Proceedings of of the 2012 International Joint Conference on Neural Networks (IJCNN), (6252640). doi: – volume: 56 start-page: 94 year: 2017 end-page: 106 ident: bb0035 article-title: Binary black hole algorithm for feature selection and classification on biological data publication-title: Appl. Soft Comput. – volume: 32 start-page: 29 year: 2008 end-page: 38 ident: bb0125 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. – volume: 35 start-page: 3688 year: 2017 end-page: 3696 ident: bb0250 article-title: Clinical and genetic risk prediction of subsequent CNS tumors in survivors of childhood cancer: a report from the COG ALTE03N1 study publication-title: J. Clin. Oncol. – reference: MV. Kesari, VL. Gaopande, AR. Joshi, SV. Babanagare, BP. Gogate, AV. Khadilkar, Immunohistochemical study of MUC1, MUC2 and MUC5AC in colorectal carcinoma and review of literature, Indian J. Gastroenterol. 34(1) (2015) 63–7. doi: – volume: 95 start-page: 2610 year: 2017 end-page: 2618 ident: bb0030 article-title: MRMR BA: a hybrid gene selection algorithm for cancer classification publication-title: J. Theor. Appl. Informa. Technol. – volume: 46 start-page: 1034 year: 2012 end-page: 1039 ident: bb0050 article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection publication-title: J. Theor. Appl. Inf. Technol. – volume: 14 start-page: 85 year: 2017 end-page: 96 ident: bb0065 article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB) – start-page: 1 year: 2015 end-page: 6 ident: bb0080 article-title: A novel gene selection algorithm for cancer identification based on random Forest and particle swarm optimization publication-title: Proceedings of 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) – volume: 131 start-page: 58 year: 2017 end-page: 65 ident: bb0010 article-title: A fuzzy multi-objective hybrid TLBO–PSO approach to select the associated genes with breast cancer publication-title: Signal Process. – volume: 58 start-page: 176 year: 2017 end-page: 192 ident: bb0070 article-title: A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection publication-title: Appl. Soft Comput. – volume: 14 year: 2014 ident: bb0345 article-title: Mutational profiling of kinases in glioblastoma publication-title: BMC Cancer – volume: 24 start-page: 773 year: 2014 end-page: 780 ident: bb0075 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl. Soft Comput. – reference: CQ. Song, Y. Li, H. Mou, J. Moore, A. Park, Y. Pomyen, S. Hough, Z. Kennedy, A. Fischer, H. Yin, DG. Anderson, Jr D. Conte, L. Zender, XW. Wang, S. Thorgeirsson, Z. Weng, W. Xue, Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice, Gastroenterology.152(5) (2017) 1161–1173.e1. doi: – volume: 7 year: 2017 ident: bb0315 article-title: Combinatorial ranking of gene sets to predict disease relapse: the retinoic acid pathway in early prostate cancer publication-title: Front. Oncol. – volume: 2 start-page: 1133 year: 2015 end-page: 1144 ident: bb0170 article-title: Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study publication-title: EBioMedicine – volume: 84 start-page: 394 year: 2017 end-page: 406 ident: bb0255 article-title: Cerebral abnormalities in Friedreich ataxia: a review publication-title: Neurosci. Biobehav. Rev. – volume: 76 start-page: 5133 year: 2016 end-page: 5142 ident: bb0325 article-title: The WASF3-NCKAP1-CYFIP1 complex is essential for breast cancer metastasis publication-title: Cancer Res. – volume: 12 start-page: 1039 year: 2008 end-page: 1048 ident: bb0135 article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm publication-title: Soft. Comput. – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: bb0055 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. – volume: 49 start-page: 589 year: 2016 end-page: 602 ident: bb0365 article-title: Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma publication-title: Int. J. Oncol. – volume: 8886 start-page: 503 year: 2014 end-page: 515 ident: bb0130 article-title: Improved PSO for feature selection on high-dimensional datasets simulated evolution and learning. SEAL 2014 publication-title: Lecture Notes Comput. Sci. – volume: 222 start-page: 175 year: 2013 end-page: 184 ident: bb0145 article-title: Black hole: a new heuristic optimization approach for data clustering publication-title: Inf. Sci. – volume: 12 start-page: 200 year: 2009 end-page: 204 ident: bb0240 article-title: Occurrence of anaplastic oligodendroglioma in a patient with Williams's syndrome: a case report with analysis of mutational profile of tumor publication-title: Niger. J. Clin. Pract. – volume: 8 start-page: 2690 year: 2015 end-page: 2699 ident: bb0335 article-title: TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma publication-title: Int. J. Clin. Exp. Pathol. – volume: 5 year: 2010 ident: bb0040 article-title: Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies publication-title: PLoS One – volume: 424 start-page: 229 year: 2016 end-page: 239 ident: bb0045 article-title: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data publication-title: Innov. Bio Inspired Comput. Appl. – volume: 99 year: 2017 ident: bb0115 article-title: A new representation in PSO for discretisation-based feature selection publication-title: IEEE Trans. Cybernetics – start-page: 1 year: 2016 end-page: 16 ident: bb0185 article-title: Multi objective ranking binary artificial bee colony for gene selection problems using microarray datasets publication-title: IEEE/CAA J. Automat. Sin. – volume: 107 start-page: 231 year: 2016 end-page: 238 ident: bb0020 article-title: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization publication-title: Genomics – volume: 188 start-page: 87 year: 2017 end-page: 95 ident: bb0310 article-title: MiR-542-3p exerts tumor suppressive functions in non-small cell lung cancer cells by upregulating FTSJ2 publication-title: Life Sci – volume: 69 start-page: 1119 year: 2009 end-page: 1127 ident: bb0165 article-title: Optimizing molecular signatures for predicting prostate Cancer recurrence publication-title: Prostate – volume: 25 start-page: 25 year: 2014 end-page: 32 ident: bb0220 article-title: Circadian pathway genes in relation to glioma risk and outcome publication-title: Cancer Causes Control – volume: 34 start-page: 1687 year: 2015 end-page: 1703 ident: bb0370 article-title: Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase publication-title: EMBO J. – volume: 26 start-page: 1428 year: 2011 end-page: 1438 ident: bb0215 article-title: Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling publication-title: J. Korean Med. Sci. – reference: . (Epub 2016 Dec 10). – volume: 4 start-page: 49 year: 2011 ident: bb0355 article-title: Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival publication-title: BMC Med. Genet. – volume: 7 start-page: 1244 year: 2014 end-page: 1254 ident: bb0390 article-title: Gene microarray analysis of the lncRNA expression profile in human urothelial carcinoma of the bladder publication-title: Int. J. Clin. Exp. Med. – volume: 105 start-page: 15773 year: 2008 end-page: 15778 ident: bb0395 article-title: Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 170 start-page: 117 year: 2017 end-page: 123 ident: bb0015 article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 5 start-page: 88 year: 2015 end-page: 96 ident: bb0090 article-title: Biomarker Discovery based on hybrid optimization algorithm and artificial neural networks on microarray data for cancer classification publication-title: J Med. Signals Sensors – volume: 15 start-page: 457 year: 2017 end-page: 466 ident: bb0380 article-title: Bone microenvironment changes in latexin expression promote chemoresistance publication-title: Mol. Cancer Res. – year: 2011 ident: bb0200 publication-title: Relaxed linear separability (RLS) approach to feature (Gene) subset selection, selected works in bioinformatics – volume: 13 start-page: 102 year: 2011 end-page: 108 ident: bb0195 article-title: TSPYL5 suppresses p53 levels and function by physical interaction with USP7 publication-title: Nat. Cell Biol. – reference: . Epub 2015 Mar 4. – year: 2016 ident: bb0280 article-title: Prostate Cancer Stem Cells: Potential New Biomarkers – volume: 56 start-page: 2434 year: 2017 end-page: 2445 ident: bb0285 article-title: CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis publication-title: Mol. Carcinog. – volume: 173 start-page: 49 year: 2016 end-page: 58 ident: bb0375 article-title: Concurrent detection of targeted copy number variants and mutations using a myeloid malignancy next generation sequencing panel allows comprehensive genetic analysis using a single testing strategy publication-title: Br. J. Haematol. – volume: 17 start-page: 1033 year: 2017 end-page: 1043 ident: bb0330 article-title: Second-line treatments of small-cell lung cancers publication-title: Expert Rev. Anticancer Ther. – start-page: 3080 year: 2016 end-page: 3083 ident: bb0155 article-title: Biomarker discovery based on BHA and AdaboostM1 on microarray data for cancer classification publication-title: Proceedings of 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 17 start-page: 285 year: 2016 ident: bb0385 article-title: Changes in immunogenicity during the development of urinary bladder Cancer: a preliminary study publication-title: Int. J. Mol. Sci. – volume: 46 start-page: 1637 year: 2015 end-page: 1642 ident: bb0320 article-title: Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer publication-title: Int J Oncol. – volume: 122 start-page: 755 year: 2010 end-page: 764 ident: bb0210 article-title: SLC37A1 gene expression is up-regulated by epidermal growth factor in breast cancer cells publication-title: Breast Cancer Res. Treat. – volume: 14 start-page: 10288 year: 2015 end-page: 10297 ident: bb0225 article-title: Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma publication-title: Genet. Mol. Res. – volume: 35 start-page: 2018 year: 2010 end-page: 2026 ident: bb0270 article-title: Expression and signaling of formyl-peptide receptors in the brain publication-title: Neurochem. Res. – volume: 56 start-page: 1945 year: 2017 end-page: 1952 ident: bb0340 article-title: Germline variation in the 3′-untranslated region of the POU2AF1 gene is associated with susceptibility to lymphoma publication-title: Mol. Carcinog. – volume: 24 start-page: 2914 year: 2015 end-page: 2922 ident: bb0275 article-title: Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric neuroendocrine tumor publication-title: Hum. Mol. Genet. – volume: 18 start-page: 1323 year: 2012 end-page: 1333 ident: bb0175 article-title: Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer publication-title: Clin. Cancer Res. – volume: 41 start-page: 624 year: 2007 end-page: 633 ident: bb0350 article-title: Novel methylation and expression markers associated with breast cancer publication-title: Mol. Biol. (Mosk) – volume: 7 year: 2016 ident: bb0360 article-title: ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells publication-title: Cell Death Dis. – volume: 417 start-page: 39 year: 2013 end-page: 44 ident: bb0290 article-title: ACTB in cancer publication-title: Clin. Chim. Acta – volume: 31 start-page: 266 year: 2012 end-page: 280 ident: bb0205 article-title: Functional roles and clinical values of insulin-like growth factor-binding protein-5 (IGFBPs) in different types of cancers publication-title: Chin. J. Cancer – volume: 24 start-page: 91 year: 2012 end-page: 116 ident: bb0190 article-title: A multiobjective particle swarm optimisation for filter-based feature selection in classification problems publication-title: Connect. Sci. – volume: 52 start-page: 255 year: 2014 end-page: 267 ident: bb0305 article-title: Corticotropin-releasing hormone receptors mediate apoptosis via cytosolic calcium-dependent phospholipase A and migration in prostate cancer cell RM-1 publication-title: J. Mol. Endocrinol. – volume: 12 start-page: 253 year: 2011 ident: bb0100 article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems publication-title: BMC Bioinforma. – volume: 6 start-page: 34206 year: 2015 end-page: 34220 ident: bb0300 article-title: The Vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells publication-title: Oncotarget – volume: 17 start-page: 1871 year: 2016 end-page: 1881 ident: bb0245 article-title: Astrocytes: adhesion molecules and immunomodulation publication-title: Curr. Drug Targets – volume: 99 start-page: 6562 year: 2002 end-page: 6566 ident: bb0180 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PNAS – volume: 2016 year: 2016 ident: bb0120 article-title: Detecting susceptibility to breast cancer with SNP-SNP interaction using BPSOHS and emotional neural networks publication-title: BioMed. Res. Int. – reference: . – start-page: 27 year: 2012 end-page: 31 ident: bb0105 article-title: A novel feature selection algorithm using particle swarm optimization for cancer microarray data – volume: 28 year: 2017 ident: bb0095 article-title: L2Gene-expression profiles of primary and metastatic lesions in head and neck squamous cell carcinoma publication-title: Ann. Oncol. – volume: 17 start-page: 285 year: 2016 ident: bb0415 article-title: Identification and characterization of human MPP7 gene and mouse Mpp7 gene in silico publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 1673 year: 2017 end-page: 1686 ident: bb0410 article-title: Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma publication-title: Onco Targets Ther. – volume: 51 start-page: 555 year: 2010 end-page: 573 ident: bb0235 article-title: Apolipoproteins in the brain: implications for neurological and psychiatric disorders publication-title: Clin. Lipidol. – volume: 19 start-page: 68 year: 2012 end-page: 82 ident: bb0085 article-title: A hybrid BPSO-CGA approach for gene selection and classification of microarray data publication-title: J. Comput. Biol. – volume: 39 start-page: 1811 year: 2012 end-page: 1821 ident: bb0140 article-title: Design of fuzzy expert system for microarray data classification using a novel Genetic Swarm Algorithm publication-title: Expert Syst. Appl. – volume: 69 start-page: 1119 issue: 10 year: 2009 ident: 10.1016/j.ygeno.2018.04.004_bb0165 article-title: Optimizing molecular signatures for predicting prostate Cancer recurrence publication-title: Prostate doi: 10.1002/pros.20961 – volume: 14 start-page: 10288 issue: 3 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0225 article-title: Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma publication-title: Genet. Mol. Res. doi: 10.4238/2015.August.28.14 – volume: 17 start-page: 1033 issue: 11 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0330 article-title: Second-line treatments of small-cell lung cancers publication-title: Expert Rev. Anticancer Ther. doi: 10.1080/14737140.2017.1372198 – volume: 34 start-page: 1687 issue: 12 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0370 article-title: Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase publication-title: EMBO J. doi: 10.15252/embj.201490497 – volume: 12 start-page: 200 issue: 2 year: 2009 ident: 10.1016/j.ygeno.2018.04.004_bb0240 article-title: Occurrence of anaplastic oligodendroglioma in a patient with Williams's syndrome: a case report with analysis of mutational profile of tumor publication-title: Niger. J. Clin. Pract. – volume: 52 start-page: 255 issue: 3 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0305 article-title: Corticotropin-releasing hormone receptors mediate apoptosis via cytosolic calcium-dependent phospholipase A and migration in prostate cancer cell RM-1 publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-13-0270 – volume: 222 start-page: 175 year: 2013 ident: 10.1016/j.ygeno.2018.04.004_bb0145 article-title: Black hole: a new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 58 start-page: 176 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0070 article-title: A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.061 – volume: 13 start-page: 102 issue: 1 year: 2011 ident: 10.1016/j.ygeno.2018.04.004_bb0195 article-title: TSPYL5 suppresses p53 levels and function by physical interaction with USP7 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2142 – volume: 31 start-page: 266 issue: 6 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0205 article-title: Functional roles and clinical values of insulin-like growth factor-binding protein-5 (IGFBPs) in different types of cancers publication-title: Chin. J. Cancer doi: 10.5732/cjc.011.10405 – volume: 46 start-page: 1637 issue: 4 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0320 article-title: Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer publication-title: Int J Oncol. doi: 10.3892/ijo.2015.2855 – volume: 7 issue: 30 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0315 article-title: Combinatorial ranking of gene sets to predict disease relapse: the retinoic acid pathway in early prostate cancer publication-title: Front. Oncol. – volume: 15 start-page: 457 issue: 4 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0380 article-title: Bone microenvironment changes in latexin expression promote chemoresistance publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-16-0392 – volume: 2016 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0120 article-title: Detecting susceptibility to breast cancer with SNP-SNP interaction using BPSOHS and emotional neural networks publication-title: BioMed. Res. Int. – volume: 56 start-page: 1945 issue: 8 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0340 article-title: Germline variation in the 3′-untranslated region of the POU2AF1 gene is associated with susceptibility to lymphoma publication-title: Mol. Carcinog. doi: 10.1002/mc.22652 – volume: 10 start-page: 1673 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0410 article-title: Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma publication-title: Onco Targets Ther. doi: 10.2147/OTT.S131386 – volume: 19 start-page: 68 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0085 article-title: A hybrid BPSO-CGA approach for gene selection and classification of microarray data publication-title: J. Comput. Biol. doi: 10.1089/cmb.2010.0064 – volume: 5 issue: 9 year: 2010 ident: 10.1016/j.ygeno.2018.04.004_bb0040 article-title: Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies publication-title: PLoS One doi: 10.1371/journal.pone.0012336 – start-page: 1 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0080 article-title: A novel gene selection algorithm for cancer identification based on random Forest and particle swarm optimization – volume: 123 start-page: 101 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0260 article-title: Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage publication-title: J. Proteomics. doi: 10.1016/j.jprot.2015.04.005 – volume: 51 start-page: 555 issue: 4 year: 2010 ident: 10.1016/j.ygeno.2018.04.004_bb0235 article-title: Apolipoproteins in the brain: implications for neurological and psychiatric disorders publication-title: Clin. Lipidol. doi: 10.2217/clp.10.37 – volume: 417 start-page: 39 year: 2013 ident: 10.1016/j.ygeno.2018.04.004_bb0290 article-title: ACTB in cancer publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2012.12.012 – volume: 12 start-page: 253 year: 2011 ident: 10.1016/j.ygeno.2018.04.004_bb0100 article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-12-253 – volume: 14 start-page: 1193 issue: 1 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0400 article-title: Germline DNA copy number variations as potential prognostic markers for non-muscle invasive bladder cancer progression publication-title: Oncol Lett. doi: 10.3892/ol.2017.6233 – volume: 2016 start-page: 16 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0110 article-title: Cancer feature selection and classification using a binary quantum-behaved particle swarm optimization and support vector machine publication-title: Comput. Math. Meth. Med. doi: 10.1155/2016/3572705 – volume: 14 issue: 718 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0345 article-title: Mutational profiling of kinases in glioblastoma publication-title: BMC Cancer – volume: 7 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0360 article-title: ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.401 – ident: 10.1016/j.ygeno.2018.04.004_bb0230 doi: 10.1053/j.gastro.2016.12.002 – start-page: 308 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0150 article-title: Gene selection and classification approach for microarray data based on Random Forest Ranking and BBHA – volume: 41 start-page: 624 issue: 4 year: 2007 ident: 10.1016/j.ygeno.2018.04.004_bb0350 article-title: Novel methylation and expression markers associated with breast cancer publication-title: Mol. Biol. (Mosk) doi: 10.1134/S0026893307040061 – volume: 105 start-page: 15773 issue: 41 year: 2008 ident: 10.1016/j.ygeno.2018.04.004_bb0395 article-title: Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805636105 – volume: 170 start-page: 117 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0015 article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.07.016 – volume: 17 start-page: 285 issue: 3 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0385 article-title: Changes in immunogenicity during the development of urinary bladder Cancer: a preliminary study publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17030285 – volume: 18 start-page: 1323 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0175 article-title: Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-2271 – volume: 35 start-page: 3688 issue: 32 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0250 article-title: Clinical and genetic risk prediction of subsequent CNS tumors in survivors of childhood cancer: a report from the COG ALTE03N1 study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.74.7444 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0055 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 14 start-page: 85 issue: 1 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0065 article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB) doi: 10.1109/TCBB.2015.2465906 – volume: 8886 start-page: 503 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0130 article-title: Improved PSO for feature selection on high-dimensional datasets simulated evolution and learning. SEAL 2014 publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-13563-2_43 – volume: 12 start-page: 1039 year: 2008 ident: 10.1016/j.ygeno.2018.04.004_bb0135 article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm publication-title: Soft. Comput. doi: 10.1007/s00500-007-0272-x – volume: 24 start-page: 773 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0075 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.032 – volume: 56 start-page: 2434 issue: 11 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0285 article-title: CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis publication-title: Mol. Carcinog. doi: 10.1002/mc.22691 – volume: 258 start-page: 108 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0025 article-title: Hybridizing harmony search with a Markov blanket for gene selection problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.10.012 – volume: 24 start-page: 2914 issue: 10 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0275 article-title: Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric neuroendocrine tumor publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv054 – volume: 2 start-page: 1133 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0170 article-title: Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2015.07.017 – ident: 10.1016/j.ygeno.2018.04.004_bb0295 doi: 10.1007/s12664-015-0534-y – volume: 28 issue: 6 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0095 article-title: L2Gene-expression profiles of primary and metastatic lesions in head and neck squamous cell carcinoma publication-title: Ann. Oncol. – volume: 95 start-page: 2610 issue: 12 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0030 article-title: MRMR BA: a hybrid gene selection algorithm for cancer classification publication-title: J. Theor. Appl. Informa. Technol. – volume: 131 start-page: 58 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0010 article-title: A fuzzy multi-objective hybrid TLBO–PSO approach to select the associated genes with breast cancer publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.035 – volume: 107 start-page: 231 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0020 article-title: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization publication-title: Genomics doi: 10.1016/j.ygeno.2016.05.001 – volume: 46 start-page: 1034 issue: 2 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0050 article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection publication-title: J. Theor. Appl. Inf. Technol. – start-page: 1 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0185 article-title: Multi objective ranking binary artificial bee colony for gene selection problems using microarray datasets publication-title: IEEE/CAA J. Automat. Sin. – volume: 84 start-page: 394 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0255 article-title: Cerebral abnormalities in Friedreich ataxia: a review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.08.006 – volume: 4 start-page: 49 year: 2011 ident: 10.1016/j.ygeno.2018.04.004_bb0355 article-title: Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival publication-title: BMC Med. Genet. – volume: 25 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0220 article-title: Circadian pathway genes in relation to glioma risk and outcome publication-title: Cancer Causes Control doi: 10.1007/s10552-013-0305-y – volume: 173 start-page: 49 issue: 1 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0375 article-title: Concurrent detection of targeted copy number variants and mutations using a myeloid malignancy next generation sequencing panel allows comprehensive genetic analysis using a single testing strategy publication-title: Br. J. Haematol. doi: 10.1111/bjh.13921 – volume: 76 start-page: 5133 issue: 17 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0325 article-title: The WASF3-NCKAP1-CYFIP1 complex is essential for breast cancer metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-0562 – volume: 10 start-page: e0117518 issue: 2 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0405 article-title: SATB1 overexpression regulates the development and progression in bladder cancer through EMT publication-title: PLoS One doi: 10.1371/journal.pone.0117518 – volume: 26 start-page: 1428 issue: 11 year: 2011 ident: 10.1016/j.ygeno.2018.04.004_bb0215 article-title: Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2011.26.11.1428 – volume: 6 start-page: 34206 issue: 33 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0300 article-title: The Vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.5275 – start-page: 3080 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0155 article-title: Biomarker discovery based on BHA and AdaboostM1 on microarray data for cancer classification – year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0280 – volume: 188 start-page: 87 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0310 article-title: MiR-542-3p exerts tumor suppressive functions in non-small cell lung cancer cells by upregulating FTSJ2 publication-title: Life Sci doi: 10.1016/j.lfs.2017.08.018 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0005 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput doi: 10.1109/TEVC.2015.2504420 – volume: 9 start-page: 1852 issue: 9 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0265 article-title: PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2015.07.001 – volume: 39 start-page: 1811 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0140 article-title: Design of fuzzy expert system for microarray data classification using a novel Genetic Swarm Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.069 – volume: 17 start-page: 1871 issue: 16 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0245 article-title: Astrocytes: adhesion molecules and immunomodulation publication-title: Curr. Drug Targets doi: 10.2174/1389450117666160101120703 – volume: 99 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0115 article-title: A new representation in PSO for discretisation-based feature selection publication-title: IEEE Trans. Cybernetics – volume: 49 start-page: 589 issue: 2 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0365 article-title: Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3535 – year: 2011 ident: 10.1016/j.ygeno.2018.04.004_bb0200 – ident: 10.1016/j.ygeno.2018.04.004_bb0160 doi: 10.1109/IJCNN.2012.6252640 – volume: 5 start-page: 88 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0090 article-title: Biomarker Discovery based on hybrid optimization algorithm and artificial neural networks on microarray data for cancer classification publication-title: J Med. Signals Sensors doi: 10.4103/2228-7477.157610 – volume: 35 start-page: 2018 issue: 12 year: 2010 ident: 10.1016/j.ygeno.2018.04.004_bb0270 article-title: Expression and signaling of formyl-peptide receptors in the brain publication-title: Neurochem. Res. doi: 10.1007/s11064-010-0301-5 – volume: 8 start-page: 2690 issue: 3 year: 2015 ident: 10.1016/j.ygeno.2018.04.004_bb0335 article-title: TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma publication-title: Int. J. Clin. Exp. Pathol. – volume: 13 start-page: 53 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0060 article-title: Mouse obesity network reconstruction with a variational bayes algorithm to employ aggressive false positive control publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-53 – volume: 99 start-page: 6562 issue: 10 year: 2002 ident: 10.1016/j.ygeno.2018.04.004_bb0180 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PNAS doi: 10.1073/pnas.102102699 – volume: 24 start-page: 91 issue: 2–3 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0190 article-title: A multiobjective particle swarm optimisation for filter-based feature selection in classification problems publication-title: Connect. Sci. doi: 10.1080/09540091.2012.737765 – volume: 17 start-page: 285 issue: 3 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0415 article-title: Identification and characterization of human MPP7 gene and mouse Mpp7 gene in silico publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17030285 – volume: 424 start-page: 229 year: 2016 ident: 10.1016/j.ygeno.2018.04.004_bb0045 article-title: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data publication-title: Innov. Bio Inspired Comput. Appl. doi: 10.1007/978-3-319-28031-8_20 – start-page: 27 year: 2012 ident: 10.1016/j.ygeno.2018.04.004_bb0105 – volume: 32 start-page: 29 year: 2008 ident: 10.1016/j.ygeno.2018.04.004_bb0125 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 122 start-page: 755 issue: 3 year: 2010 ident: 10.1016/j.ygeno.2018.04.004_bb0210 article-title: SLC37A1 gene expression is up-regulated by epidermal growth factor in breast cancer cells publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-009-0620-x – volume: 7 start-page: 1244 issue: 5 year: 2014 ident: 10.1016/j.ygeno.2018.04.004_bb0390 article-title: Gene microarray analysis of the lncRNA expression profile in human urothelial carcinoma of the bladder publication-title: Int. J. Clin. Exp. Med. – volume: 56 start-page: 94 year: 2017 ident: 10.1016/j.ygeno.2018.04.004_bb0035 article-title: Binary black hole algorithm for feature selection and classification on biological data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.002 |
SSID | ssj0009382 |
Score | 2.525169 |
Snippet | In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 669 |
SubjectTerms | Algorithms Binary black hole algorithm Binary particle swarm optimization data collection discriminant analysis Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic Gene selection genes Humans least squares microarray technology neoplasms Neoplasms - classification Neoplasms - genetics Sparse partial least squares discriminant analysis |
Title | Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization |
URI | https://dx.doi.org/10.1016/j.ygeno.2018.04.004 https://www.ncbi.nlm.nih.gov/pubmed/29660477 https://www.proquest.com/docview/2026424133 https://www.proquest.com/docview/2305236471 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5B0Qo4IOjyKC95JY6bbYkdJzlCBSqslssuUm-WYyeliCZVW4R64bczkzjAStADR0fjyPJMZib2zPcBnBjtS5Np4WWBCT1BN4UxN9ZDVxhpv5MYn1O_858b2bsV1_2gvwTduheGyiqd7698eumt3ZO22832eDhs_8XvA5NtQUbZIVLqZVjxeSyDBqycXf3u3bxh7_KSM4rkPZpQgw-VZV5zwkKlEq-ohDx1hG0fBKjPEtAyEF1uwobLINlZtcgtWErzJnyrOCXnTVjt1hRuTVh_hzb4HQYEMc2mJfENaoNRyfuA3c2pZ4slZV8uS-g8jxFnLtMPg2IynN2NmM4tGxV2mGG6WguO3Sax6ZOejFiBnmfkWjq34fby4l-35zmeBc9gdjTzYl-mpxFqLI18K4LAEk-KRjcpbZalVhiZZbG0GLkijHhBbDtJgnmN5FzERoeG70AjL_J0D1igI0Hdrsbif0rCbWx1FJgspLemSSha4Nebq4wDIScujAdVV5vdq1IjijSiOkKhRlrw83XSuMLgWCwua62p_0xJYZRYPPFHrWOFiqKbE52nxeMUhTBvpBtIvkCG0wm7xGDfgt3KQF5X6xMGqgjD_a8u7QDWcBRXdcKH0JhNHtMjzIZmyTEs_3o-PXY2j6Or_vkLOesLQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4BE4I9oFF-dWzDSDwStcSOkzxu1VAZP14AqW-WYyeliCZVWzT1v9-d48CQWB_2mpwjy-fcfYnvvg_gxOhQmkKLoIhMHAg6KUy5sQGGwkSH3cyEnPqdr29k_178GkSDFeg1vTBUVuljfx3TXbT2Vzp-NTuT0ahzi-8Hgm1Bm7JLotSr8AHRgCQC_YvBj1fmXe4Uo8g6IPOGesgVeS2ICZUKvBJHeOrl2t5JT_-Cny4NnX-CLY8f2fd6ituwkpctWK8VJRct2Og1Am4t-PgX1-AODIlgms2c7A36glHB-5A9LKhji2WuK5dl9DePkWIu00_DajqaP4yZLi0bV3ZUIFhtDCd-idjst56OWYVxZ-wbOnfh_vznXa8feJWFwCA2mgdpKPOzBP2VJ6EVUWRJJUVjkJS2KHIrjCyKVFrMWwnmuyi13SxDVCM5F6nRseF7sFZWZX4ALNKJoF5XY_ErJeM2tTqJTBHTU_MsFm0Im8VVxlOQkxLGk2pqzR6V84gij6iuUOiRNpy-DJrUDBzLzWXjNfVmIynMEcsHHjc-VugoOjfRZV49z9AIUSOdP_IlNpz-r0tM9W3YrzfIy2xDYkAVcfz5f6d2BBv9u-srdXVxc3kIm3gnrSuGv8DafPqcf0VcNM--uX3_B1MRCxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+using+hybrid+binary+black+hole+algorithm+and+modified+binary+particle+swarm+optimization&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Pashaei%2C+Elnaz&rft.au=Pashaei%2C+Elham&rft.au=Aydin%2C+Nizamettin&rft.date=2019-07-01&rft.issn=0888-7543&rft.volume=111&rft.issue=4&rft.spage=669&rft.epage=686&rft_id=info:doi/10.1016%2Fj.ygeno.2018.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ygeno_2018_04_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |