Face-Specific Data Augmentation for Unconstrained Face Recognition
We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of training images and minimizing appearance variations in test images. The former is required to train the system for whatever appearance variations it will ultimately encounter and...
Saved in:
Published in | International journal of computer vision Vol. 127; no. 6-7; pp. 642 - 667 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of
training
images and minimizing appearance variations in
test
images. The former is required to train the system for whatever appearance variations it will ultimately encounter and is often addressed by collecting massive training sets with millions of face images. The latter involves various forms of appearance normalization for removing distracting nuisance factors at test time and making test faces easier to compare. We describe novel, efficient
face-specific
data augmentation techniques and show them to be ideally suited for
both
purposes. By using knowledge of faces, their 3D shapes, and appearances, we show the following: (a) We can artificially enrich training data for face recognition with face-specific appearance variations. (b) This synthetic training data can be efficiently produced online, thereby reducing the massive storage requirements of large-scale training sets and simplifying training for many appearance variations. Finally, (c) The same, fast data augmentation techniques can be applied at test time to reduce appearance variations and improve face representations. Together, with additional technical novelties, we describe a highly effective face recognition pipeline which, at the time of submission, obtains state-of-the-art results across multiple benchmarks. Portions of this paper were previously published by Masi et al. (European conference on computer vision, Springer, pp 579–596,
2016b
, International conference on automatic face and gesture recognition,
2017
). |
---|---|
AbstractList | We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of training images and minimizing appearance variations in test images. The former is required to train the system for whatever appearance variations it will ultimately encounter and is often addressed by collecting massive training sets with millions of face images. The latter involves various forms of appearance normalization for removing distracting nuisance factors at test time and making test faces easier to compare. We describe novel, efficient face-specific data augmentation techniques and show them to be ideally suited for both purposes. By using knowledge of faces, their 3D shapes, and appearances, we show the following: (a) We can artificially enrich training data for face recognition with face-specific appearance variations. (b) This synthetic training data can be efficiently produced online, thereby reducing the massive storage requirements of large-scale training sets and simplifying training for many appearance variations. Finally, (c) The same, fast data augmentation techniques can be applied at test time to reduce appearance variations and improve face representations. Together, with additional technical novelties, we describe a highly effective face recognition pipeline which, at the time of submission, obtains state-of-the-art results across multiple benchmarks. Portions of this paper were previously published by Masi et al. (European conference on computer vision, Springer, pp 579–596, 2016b, International conference on automatic face and gesture recognition, 2017). We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of training images and minimizing appearance variations in test images. The former is required to train the system for whatever appearance variations it will ultimately encounter and is often addressed by collecting massive training sets with millions of face images. The latter involves various forms of appearance normalization for removing distracting nuisance factors at test time and making test faces easier to compare. We describe novel, efficient face-specific data augmentation techniques and show them to be ideally suited for both purposes. By using knowledge of faces, their 3D shapes, and appearances, we show the following: (a) We can artificially enrich training data for face recognition with face-specific appearance variations. (b) This synthetic training data can be efficiently produced online, thereby reducing the massive storage requirements of large-scale training sets and simplifying training for many appearance variations. Finally, (c) The same, fast data augmentation techniques can be applied at test time to reduce appearance variations and improve face representations. Together, with additional technical novelties, we describe a highly effective face recognition pipeline which, at the time of submission, obtains state-of-the-art results across multiple benchmarks. Portions of this paper were previously published by Masi et al. (European conference on computer vision, Springer, pp 579–596, 2016b , International conference on automatic face and gesture recognition, 2017 ). We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of training images and minimizing appearance variations in test images. The former is required to train the system for whatever appearance variations it will ultimately encounter and is often addressed by collecting massive training sets with millions of face images. The latter involves various forms of appearance normalization for removing distracting nuisance factors at test time and making test faces easier to compare. We describe novel, efficient face-specific data augmentation techniques and show them to be ideally suited for both purposes. By using knowledge of faces, their 3D shapes, and appearances, we show the following: (a) We can artificially enrich training data for face recognition with face-specific appearance variations. (b) This synthetic training data can be efficiently produced online, thereby reducing the massive storage requirements of large-scale training sets and simplifying training for many appearance variations. Finally, (c) The same, fast data augmentation techniques can be applied at test time to reduce appearance variations and improve face representations. Together, with additional technical novelties, we describe a highly effective face recognition pipeline which, at the time of submission, obtains state-of-the-art results across multiple benchmarks. Portions of this paper were previously published by Masi et al. (European conference on computer vision, Springer, pp 579-596, 2016b (See CR43), International conference on automatic face and gesture recognition, 2017 (See CR44)). |
Audience | Academic |
Author | Masi, Iacopo Sahin, Gozde Medioni, Gérard Trần, Anh Tuấn Hassner, Tal |
Author_xml | – sequence: 1 givenname: Iacopo surname: Masi fullname: Masi, Iacopo email: iacopo@isi.edu organization: Information Sciences Institute (ISI), USC – sequence: 2 givenname: Anh Tuấn surname: Trần fullname: Trần, Anh Tuấn organization: Institute for Robotics and Intelligent Systems, USC – sequence: 3 givenname: Tal surname: Hassner fullname: Hassner, Tal organization: Open University of Israel – sequence: 4 givenname: Gozde surname: Sahin fullname: Sahin, Gozde organization: Institute for Robotics and Intelligent Systems, USC – sequence: 5 givenname: Gérard surname: Medioni fullname: Medioni, Gérard organization: Institute for Robotics and Intelligent Systems, USC |
BookMark | eNp9kU1LAzEQhoNUsFX_gKcFTx5W87HZzR7rd6EgtHoO2WSyRGxSky3ovzd1BfEiIQSG58nM8M7QxAcPCJ0RfEkwbq4SIbRmJSZtvqQRJT5AU8IbVpIK8wma4pbiktctOUKzlF4xxlRQNkXX90pDud6Cdtbp4lYNqpjv-g34QQ0u-MKGWLx4HXwaonIeTLE3ihXo0Hu3R07QoVVvCU5_3mP0cn_3fPNYLp8eFjfzZalZS4dSWGFYq5S2rG46bJSobWdMVUPDa9sKoRQRFbGM4ooKRruuUaaDGkhjuqoz7Bidj_9uY3jfQRrka9hFn1tKSjGpuOCEZupypHr1BtJ5G_LcOh8DG5fXAOtyfc5FTTjlDGfh4o-QmQE-hl7tUpKL9eovS0dWx5BSBCu30W1U_JQEy30QcgxC5iDkdxByL7FRShn2PcTfuf-xvgD_KItz |
CitedBy_id | crossref_primary_10_1109_TPAMI_2021_3087709 crossref_primary_10_1016_j_aca_2023_341763 crossref_primary_10_3390_s22062388 crossref_primary_10_1007_s11263_021_01467_7 crossref_primary_10_3390_bdcc5040049 crossref_primary_10_3390_s23218914 crossref_primary_10_1109_TIP_2021_3120313 crossref_primary_10_1016_j_fsidi_2021_301119 crossref_primary_10_1088_1742_6596_1575_1_012009 crossref_primary_10_32628_CSEIT217433 crossref_primary_10_1007_s11042_022_13167_6 crossref_primary_10_1109_TPAMI_2024_3362821 crossref_primary_10_1109_TBIOM_2019_2949364 crossref_primary_10_1109_TPAMI_2022_3164131 crossref_primary_10_1109_TCSVT_2021_3078517 crossref_primary_10_1109_TMM_2021_3072786 crossref_primary_10_1109_TPAMI_2023_3239736 crossref_primary_10_1109_TPAMI_2023_3244023 crossref_primary_10_1007_s11831_021_09560_3 crossref_primary_10_1016_j_eswa_2023_122266 |
Cites_doi | 10.1109/FG.2018.00024 10.1109/ICCVW.2017.188 10.1109/CVPR.2018.00092 10.1109/WACV.2016.7477555 10.1109/ICCV.2015.290 10.1109/BTAS.2017.8272731 10.1007/s11263-013-0636-x 10.1109/CVPRW.2017.87 10.1109/CVPR.2016.23 10.1109/WACV.2016.7477557 10.1109/BTAS.2017.8272686 10.1109/ICCVW.2015.55 10.1109/CVPRW.2013.116 10.1109/CVPR.2016.90 10.1109/CVPR.2017.713 10.1109/CVPR.2015.7298682 10.1016/j.imavis.2018.09.002 10.1111/j.1467-8659.2008.01160.x 10.5244/C.29.41 10.1109/CVPR.2014.426 10.1109/CVPR.2014.244 10.1109/ICCV.2017.405 10.1109/FG.2017.76 10.1109/BTAS.2016.7791205 10.1109/CVPR.2015.7298880 10.1109/ICCVW.2013.54 10.1007/978-3-319-46478-7_31 10.1109/72.554195 10.1109/CVPR.2015.7299100 10.1109/FG.2017.11 10.1109/FG.2017.137 10.1109/CVPR.2017.554 10.1109/FG.2018.00027 10.1109/CVPRW.2016.23 10.1109/ICCV.2013.448 10.1109/CVPR.2016.527 10.1109/TPAMI.2010.230 10.1109/CVPR.2014.220 10.1109/TIFS.2018.2846617 10.1109/CVPR.2014.242 10.1109/AVSS.2015.7301739 10.1109/TPAMI.2008.291 10.1109/CVPR.2014.219 10.1109/FG.2017.22 10.1109/CVPR.2018.00414 10.1109/AVSS.2009.58 10.1007/s11263-019-01151-x. 10.1109/CVPR.2016.523 10.1109/ICCV.2015.304 10.1109/CVPR.2015.7298907 10.1109/CVPR.2011.5995566 10.1109/WACV.2016.7477593 10.1007/s00138-013-0571-4 10.1007/978-3-319-46454-1_35 10.1109/CVPR.2017.163 10.5244/C.28.6 10.1109/CVPR.2015.7298803 10.1109/CVPR.2016.514 10.1109/CVPR.2013.75 10.1109/ICCV.2015.164 10.1109/CVPR.2015.7298891 10.2352/ISSN.2470-1173.2016.11.IMAWM-463 10.1109/WACV.2018.00011 10.1109/CVPRW.2017.86 10.1007/978-3-319-16811-1_17 10.1109/CVPR.2018.00544 10.1109/CVPR.2015.7299058 10.1016/j.neucom.2018.10.041 10.1007/s11263-018-01142-4 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYYUZ Q9U |
DOI | 10.1007/s11263-019-01178-0 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 667 |
ExternalDocumentID | A586152530 10_1007_s11263_019_01178_0 |
GrantInformation_xml | – fundername: Intelligence Advanced Research Projects Activity grantid: 2014-14071600011 funderid: http://dx.doi.org/10.13039/100011039 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACBMV ACBRV ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3V. 5QI 6TJ AACDK AAEOY AAJBT AAOBN AARHV AASML AAYTO AAYXX ABAKF ABULA ACAOD ACBXY ACDTI ACZOJ AEBTG AEFIE AEFQL AEKMD AEMSY AFBBN AFEXP AFGCZ AGGDS AGQEE AGRTI AIGIU AJBLW BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PQBZA R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI AAYZH 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c392t-8f8d39aacf367b0da86fbdd46e756f988aa1841f32042832bb7adbe6e17db4bd3 |
IEDL.DBID | AGYKE |
ISSN | 0920-5691 |
IngestDate | Tue Nov 05 16:12:24 EST 2024 Tue Nov 12 22:57:09 EST 2024 Thu Aug 01 19:04:40 EDT 2024 Thu Sep 12 16:55:21 EDT 2024 Sat Dec 16 12:00:22 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | Deep learning Face recognition Data augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-8f8d39aacf367b0da86fbdd46e756f988aa1841f32042832bb7adbe6e17db4bd3 |
PQID | 2201458512 |
PQPubID | 1456341 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2201458512 gale_infotracacademiconefile_A586152530 gale_incontextgauss_ISR_A586152530 crossref_primary_10_1007_s11263_019_01178_0 springer_journals_10_1007_s11263_019_01178_0 |
PublicationCentury | 2000 |
PublicationDate | 6-1-2019 2019-6-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 6-1-2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | YagerNDunstoneTThe biometric menagerieTransactions on Pattern Analysis and Machine Intelligence201032222023010.1109/TPAMI.2008.291 Hassner, T., Harel, S., Paz, E., & Enbar, R. (2015). Effective face frontalization in unconstrained images. In Proceedings of international conference on computer vision recognition. Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014a). Deep learning face representation by joint identification-verification. In Neural information processing systems, pp. 1988–1996. Crispell, D. E., Biris, O., Crosswhite, N., Byrne, J., & Mundy, J. L. (2016). Dataset augmentation for pose and lighting invariant face recognition. In Applied imagery pattern recognition workshop (AIPR). Sankaranarayanan, S., Alavi, A., Castillo, C., & Chellappa, R. (2016a). Triplet probabilistic embedding for face verification and clustering. In International conference on biometrics: Theory, applications and systems. Hassner, T. (2013). Viewing real-world faces in 3d. In Proceedings of international conference on computer vision, pp. 3607–3614. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of conference on computer vision pattern recognition, pp. 815–823. Wolf, L., Hassner, T., & Maoz, I. (2011a). Face recognition in unconstrained videos with matched background similarity. In Proceedings of IEEE conference on computer vision pattern recognition, pp. 529–534. Yang, H., & Patras, I. (2015). Mirror, mirror on the wall, tell me, is the error small? In Proceedings of conference on computer vision pattern recognition. NevesJProençaH“A leopard cannot change its spots” : Improving face recognition using 3d-based caricaturesIEEE Transactions on Information Forensics and Security201914115116110.1109/TIFS.2018.2846617 Sun, Y., Liang, D., Wang, X., & Tang, X. (2015). Deepid3: Face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873. Masi, I., Lisanti, G., Bagdanov, A., Pala, P., & Del Bimbo, A. (2013). Using 3D models to recognize 2D faces in the wild. In Proceedings of international conference on computer vision pattern recognition workshops. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3d face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, AVSS ’09, pp. 296–301. Tran, A. T., Hassner, T., Masi, I., & Medioni, G. (2017). Regressing robust and discriminative 3d morphable models with a very deep neural network. In Proceedings of conference on computer vision pattern recognition. Hu, J., Lu, J., Tan, Y. P. (2014a). Discriminative deep metric learning for face verification in the wild. In Proceedings of international conference on computer vision pattern recognition, pp. 1875–1882. Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In Proceedings of British machnical vision conference. Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of international conference on computer vision. Yang, J., Ren, P., Zhang, D., Chen, D., Wen, F., Li, H., & Hua, G. (2017). Neural aggregation network for video face recognition. In Proceedings of conference on computer. vision pattern recognition. Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2018). Feature transfer learning for deep face recognition with long-tail data. CoRR arXiv:1803.09014 SzeliskiRComputer vision: algorithms and applications2010BerlinSpringer1219.68009 Tran, A. T., Hassner, T., Masi, I., Paz, E., Nirkin, Y., & Medioni, G. (2018). Extreme 3d face reconstruction: Seeing through occlusions. In Proceedings of conference on computer vision pattern recognition. Chang, F., Tran, A., Hassner, T., Masi, I., Nevatia, R., & Medioni, G. (2017). FacePoseNet: Making a case for landmark-free face alignment. In 7th IEEE international workshop on analysis and modeling of faces and, gestures, ICCV workshops. Masi, I., Tra^`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\hat{{\rm a}}}$$\end{document}n, A. T., Hassner, T., Leksut, J. T., & Medioni, G. (2016b). Do we really need to collect millions of faces for effective face recognition? In European conference on computer vision, Springer, pp. 579–596. Liu, X., Li, S., Kan, M., Shan, S., & Chen, X. (2017b). Self-error-correcting convolutional neural network for learning with noisy labels. In International IEEE conference on automatic face and gesture recognition, pp. 111–117. NguyenMHLalondeJFEfrosAADe la TorreFImage-based shavingComputer Graphics Forum200827262763510.1111/j.1467-8659.2008.01160.x Xie, L., Wang, J., Wei, Z., Wang, M., & Tian, Q. (2016). DisturbLabel: Regularizing CNN on the loss layer. In Proceedings of conference computer vision pattern recognition. AbdAlmageed, W., Wu, Y., Rawls, S., Harel, S., Hassner, T., Masi, I., Choi, J., Leksut, J., Kim, J., Natarajan, P., Nevatia, R., & Medioni, G. (2016). Face recognition using deep multi-pose representations. In Winter conference on applications of computer vision. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of international conference on computer vision pattern recognition. Chen, J. C., Patel, V. M., & Chellappa, R. (2016). Unconstrained face verification using deep CNN features. In Winter conference on application of computer vision. HughesJFVan DamAFoleyJDFeinerSKComputer graphics: Principles and practice2014LondonPearson Education0875.68891 SánchezJPerronninFMensinkTVerbeekJImage classification with the fisher vector: Theory and practiceInternational Journal of Computer Vision20131053222245310402010.1007/s11263-013-0636-x1286.68447 Chang, F. J., Tran, A. T., Hassner, T., Masi, I., Nevatia, R., & Medioni, G. (2019). Deep, landmark-free FAME: Face alignment, modeling, and expression estimation. International Journal of Computer Vision. https://doi.org/10.1007/s11263-019-01151-x. Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2019). A comprehensive study on center loss for deep face recognition. International Journal of Computer Vision.https://doi.org/10.1007/s11263-018-01142-4. Kim, K., Yang, Z., Masi, I., Nevatia, R., & Medioni, G. (2018). Face and body association for video-based face recognition. In Winter conference on application of computer vision, pp. 39–48. Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923. Available: http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html. Chowdhury, A. R., Lin, T. Y., Maji, S., & Learned-Miller, E. (2016). One-to-many face recognition with bilinear CNNs. In Winter conference on application of computer vision, IEEE, pp. 1–9. CrosswhiteNByrneJStaufferCParkhiOCaoQZissermanATemplate adaptation for face verification and identificationImage and Vision Computing201879354810.1016/j.imavis.2018.09.002 Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. In Proceedings of international conference on computer vision pattern recognition workshops. http://www.openu.ac.il/home/hassner/projects/cnn_agegender. Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother P, Mah, A., Burge, M., & Jain, A. K. (2015). Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. In Proceedings of international conference on computer vision pattern recognition, pp. 1931–1939. Kemelmacher-Shlizerman, I., Suwajanakorn, S., & Seitz, S. M. (2014). Illumination-aware age progression. In Proceedings of IEEE conference on computer vision pattern recognition, pp. 3334–3341. Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. (2016). Face alignment across large poses: A 3d solution. In Proceedings of IEEE computer vision and pattern recognition, Las Vegas, NV Klontz, J., Klare, B., Klum, S., Taborsky, E., Burge, M., & Jain, A. K. (2013). Open source biometric recognition. In International conference on biometrics: Theory, applications and systems. Crosswhite, N., Byrne, J., Stauffer, C., Parkhi, O., Cao, Q., & Zisserman, A. (2017). Template adaptation for face verification and identification. In International conference on automatic face and gesture recognition. Cao, K., Rong, Y., Li, C., Tang, X., & Change Loy, C. (2018). Pose-robust face recognition via deep residual equivariant mapping. In Proceedings of conference on computer vision pattern recognition, pp. 5187–5196. Chang, F. J., Tran, A. T., Hassner, T., Masi, I., Nevatia, R., & Medioni, G. (2018). Expnet: Landmark-free, deep, 3d facial expressions. In Automatic face and gesture recognition, pp. 122–129. Ranjan, R., Bansal, A., Zheng, J., Xu, H., Gleason, J., Lu, B., Nanduri, A., Chen, J., Castillo, C. D., & Chellappa, R. (2018). A fast and accurate system for face detection, identification, and verification. CoRR arXiv:1809.07586. Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In Proceedings of international conference on computer vision. Masi, I., Hassner, T., Tra^`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\hat{{\rm a}}}$$\end{document}n, A. T., & Medioni, G. (2017). Rapid synthesis of massive face sets for improved face recognition. In International conference on automatic face and gesture recognition. Sun, Y., Wang, X., & Tang, X. (2014c). Deeply learned face representations are sparse, selective, and robust. arXiv preprint arXiv:1412.1265. Xie, S., Yang, T., Wang, X., & Lin, Y. (2015). Hyper-class augmented and regularized deep learning for fine-grained image classification. In Proceedings 1178_CR39 1178_CR38 1178_CR37 R Szeliski (1178_CR67) 2010 1178_CR71 1178_CR70 1178_CR31 1178_CR75 1178_CR30 1178_CR74 1178_CR73 1178_CR72 1178_CR35 1178_CR79 1178_CR34 1178_CR78 1178_CR33 1178_CR32 1178_CR76 1178_CR3 1178_CR4 1178_CR1 1178_CR2 1178_CR47 1178_CR9 N Yager (1178_CR83) 2010; 32 S Lawrence (1178_CR36) 1997; 8 1178_CR7 1178_CR8 1178_CR5 1178_CR6 1178_CR82 J Sánchez (1178_CR57) 2013; 105 1178_CR81 1178_CR80 1178_CR42 1178_CR86 1178_CR41 1178_CR85 1178_CR40 1178_CR84 MH Nguyen (1178_CR49) 2008; 27 1178_CR46 1178_CR89 1178_CR44 1178_CR88 JF Hughes (1178_CR28) 2014 1178_CR43 J Neves (1178_CR48) 2019; 14 1178_CR87 1178_CR17 1178_CR16 1178_CR15 1178_CR59 1178_CR58 1178_CR19 1178_CR18 1178_CR92 1178_CR91 1178_CR90 1178_CR53 1178_CR52 E Rashedi (1178_CR56) 2019; 329 1178_CR51 1178_CR50 1178_CR13 1178_CR12 1178_CR11 1178_CR55 1178_CR10 1178_CR54 N Crosswhite (1178_CR14) 2018; 79 1178_CR27 1178_CR26 1178_CR25 1178_CR69 I Masi (1178_CR45) 2018; 99 L Wolf (1178_CR77) 2011; 33 1178_CR29 1178_CR60 1178_CR20 1178_CR64 1178_CR63 1178_CR62 1178_CR61 1178_CR24 1178_CR68 1178_CR23 1178_CR22 1178_CR66 1178_CR21 1178_CR65 |
References_xml | – ident: 1178_CR50 doi: 10.1109/FG.2018.00024 – ident: 1178_CR47 – ident: 1178_CR72 – ident: 1178_CR5 doi: 10.1109/ICCVW.2017.188 – ident: 1178_CR61 doi: 10.1109/CVPR.2018.00092 – ident: 1178_CR1 doi: 10.1109/WACV.2016.7477555 – ident: 1178_CR82 doi: 10.1109/ICCV.2015.290 – ident: 1178_CR3 doi: 10.1109/BTAS.2017.8272731 – volume: 105 start-page: 222 issue: 3 year: 2013 ident: 1178_CR57 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0636-x contributor: fullname: J Sánchez – ident: 1178_CR38 – ident: 1178_CR63 – ident: 1178_CR75 doi: 10.1109/CVPRW.2017.87 – ident: 1178_CR91 – ident: 1178_CR92 doi: 10.1109/CVPR.2016.23 – ident: 1178_CR34 – ident: 1178_CR10 doi: 10.1109/WACV.2016.7477557 – ident: 1178_CR18 doi: 10.1109/BTAS.2017.8272686 – ident: 1178_CR9 doi: 10.1109/ICCVW.2015.55 – ident: 1178_CR41 doi: 10.1109/CVPRW.2013.116 – ident: 1178_CR24 doi: 10.1109/CVPR.2016.90 – ident: 1178_CR29 – ident: 1178_CR39 doi: 10.1109/CVPR.2017.713 – ident: 1178_CR60 doi: 10.1109/CVPR.2015.7298682 – volume: 79 start-page: 35 year: 2018 ident: 1178_CR14 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2018.09.002 contributor: fullname: N Crosswhite – volume: 27 start-page: 627 issue: 2 year: 2008 ident: 1178_CR49 publication-title: Computer Graphics Forum doi: 10.1111/j.1467-8659.2008.01160.x contributor: fullname: MH Nguyen – ident: 1178_CR52 doi: 10.5244/C.29.41 – ident: 1178_CR30 doi: 10.1109/CVPR.2014.426 – ident: 1178_CR64 doi: 10.1109/CVPR.2014.244 – ident: 1178_CR90 doi: 10.1109/ICCV.2017.405 – ident: 1178_CR87 – ident: 1178_CR44 doi: 10.1109/FG.2017.76 – ident: 1178_CR59 doi: 10.1109/BTAS.2016.7791205 – ident: 1178_CR66 – ident: 1178_CR62 – ident: 1178_CR79 doi: 10.1109/CVPR.2015.7298880 – ident: 1178_CR2 doi: 10.1109/ICCVW.2013.54 – ident: 1178_CR35 – ident: 1178_CR73 doi: 10.1007/978-3-319-46478-7_31 – volume: 8 start-page: 98 issue: 1 year: 1997 ident: 1178_CR36 publication-title: Transactions on Neural Networks doi: 10.1109/72.554195 contributor: fullname: S Lawrence – ident: 1178_CR84 doi: 10.1109/CVPR.2015.7299100 – ident: 1178_CR13 doi: 10.1109/FG.2017.11 – ident: 1178_CR54 doi: 10.1109/FG.2017.137 – ident: 1178_CR86 doi: 10.1109/CVPR.2017.554 – ident: 1178_CR55 – ident: 1178_CR6 doi: 10.1109/FG.2018.00027 – ident: 1178_CR23 doi: 10.1109/CVPRW.2016.23 – ident: 1178_CR20 doi: 10.1109/ICCV.2013.448 – ident: 1178_CR31 doi: 10.1109/CVPR.2016.527 – volume: 33 start-page: 1978 issue: 10 year: 2011 ident: 1178_CR77 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.230 contributor: fullname: L Wolf – volume-title: Computer vision: algorithms and applications year: 2010 ident: 1178_CR67 contributor: fullname: R Szeliski – ident: 1178_CR68 doi: 10.1109/CVPR.2014.220 – volume: 14 start-page: 151 issue: 1 year: 2019 ident: 1178_CR48 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2846617 contributor: fullname: J Neves – ident: 1178_CR58 doi: 10.1109/BTAS.2016.7791205 – ident: 1178_CR88 – ident: 1178_CR25 doi: 10.1109/CVPR.2014.242 – ident: 1178_CR46 doi: 10.1109/AVSS.2015.7301739 – volume: 32 start-page: 220 issue: 2 year: 2010 ident: 1178_CR83 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.291 contributor: fullname: N Yager – ident: 1178_CR17 – ident: 1178_CR51 doi: 10.1109/CVPR.2014.219 – ident: 1178_CR40 doi: 10.1109/FG.2017.22 – ident: 1178_CR71 doi: 10.1109/CVPR.2018.00414 – ident: 1178_CR53 doi: 10.1109/AVSS.2009.58 – ident: 1178_CR7 doi: 10.1007/s11263-019-01151-x. – ident: 1178_CR42 doi: 10.1109/CVPR.2016.523 – ident: 1178_CR15 doi: 10.1109/ICCV.2015.304 – ident: 1178_CR65 doi: 10.1109/CVPR.2015.7298907 – ident: 1178_CR76 doi: 10.1109/CVPR.2011.5995566 – ident: 1178_CR11 doi: 10.1109/WACV.2016.7477593 – ident: 1178_CR21 doi: 10.1007/s00138-013-0571-4 – ident: 1178_CR43 doi: 10.1007/978-3-319-46454-1_35 – ident: 1178_CR70 doi: 10.1109/CVPR.2017.163 – ident: 1178_CR27 – ident: 1178_CR8 doi: 10.5244/C.28.6 – ident: 1178_CR33 doi: 10.1109/CVPR.2015.7298803 – ident: 1178_CR80 doi: 10.1109/CVPR.2016.514 – ident: 1178_CR81 doi: 10.1109/CVPR.2013.75 – ident: 1178_CR78 doi: 10.1109/ICCV.2015.164 – ident: 1178_CR69 doi: 10.1109/CVPR.2015.7298891 – ident: 1178_CR19 doi: 10.2352/ISSN.2470-1173.2016.11.IMAWM-463 – volume: 99 start-page: 1 year: 2018 ident: 1178_CR45 publication-title: Transactions on Pattern Analysis and Machine Intelligence contributor: fullname: I Masi – ident: 1178_CR12 – ident: 1178_CR32 doi: 10.1109/WACV.2018.00011 – ident: 1178_CR37 – ident: 1178_CR16 doi: 10.1109/CVPRW.2017.86 – volume-title: Computer graphics: Principles and practice year: 2014 ident: 1178_CR28 contributor: fullname: JF Hughes – ident: 1178_CR85 – ident: 1178_CR26 doi: 10.1007/978-3-319-16811-1_17 – ident: 1178_CR4 doi: 10.1109/CVPR.2018.00544 – ident: 1178_CR22 doi: 10.1109/CVPR.2015.7299058 – volume: 329 start-page: 311 year: 2019 ident: 1178_CR56 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.041 contributor: fullname: E Rashedi – ident: 1178_CR74 doi: 10.1007/s11263-018-01142-4 – ident: 1178_CR89 |
SSID | ssj0002823 |
Score | 2.5591743 |
Snippet | We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of
training
images and minimizing... We identify two issues as key to developing effective face recognition systems: maximizing the appearance variations of training images and minimizing... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 642 |
SubjectTerms | Artificial Intelligence Computer Imaging Computer Science Computer vision Consumer goods Data augmentation Face recognition Facial recognition technology Gesture recognition Image Processing and Computer Vision Machine vision Object recognition Pattern Recognition Pattern Recognition and Graphics System effectiveness Training Vision |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECY-Ll58G-srG2PiQYmFZYGeTH3UR6IHtYk3wrPx4Fbd9v_LbFkbNXplgbADDN8wzHwIHVgfj5mcECyt8JgRT7G2TONAveFAEmhqSpa7e37dZ7fPxXO6cKvSs8pGJ9aK2g0t3JGfUAoOsIgP6OnbOwbWKPCuJgqNWTRPqBBgfMne1ZcmjubEhEo-mkgF75AUNDMJnSMUPJgQwkMIZJn9djD9VM-__KT18dNbRosJN2bdyUSvoBlfrqKlhCGztEOrWNTQNDRla-isp63HNdF8eLHZhR7prDsevKaoozKLuDXrlxaQIhBGxP6gRfbQvC0aluuo37t8Or_GiToB2wh4RlgG6fKO1jbkXJi205IH4xzjXhQ8dKTUOpp2JOQUbKacGiO0M557IpxhxuUbaK4cln4TZZI7Z30nD8EUjLZNBDRtJ4SWlrGI7lgLHTVyU2-TDBlqmgsZpKyilFUtZdVuoX0QrYLUEyW8bRnocVWpm8cH1S0kBzamPFY6TJXCMP641SlUIA4IslV9q7nTTJFKm69S06XSQsfNtE0__z24rf9720YLtF4wcAezg-ZGH2O_GyHJyOzV6-4Tu9zavg priority: 102 providerName: ProQuest |
Title | Face-Specific Data Augmentation for Unconstrained Face Recognition |
URI | https://link.springer.com/article/10.1007/s11263-019-01178-0 https://www.proquest.com/docview/2201458512 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuPQClLZiy0MRQuoBgtaO43iPAXahVEVoYSV6svxcIdQsYrMXfj3jrMOK0h44RXImlu3x45t4Zj6AfePwmMkISYUpXMqIo6kyTKWeOs0DSaBuKFl-XfLzEbu4zW8XcdyNs3t7I9ls1ItYN0LDlWOIuSEkpIVdgpUYeLpSnv3-2X_ZgNGKmDPIo2WU8x6JsTL_ruXVefT3rvzmerQ5dQZrcNPG7sydTe6PZrU-Mk9vUzm-p0PrsBpRaFLOp80n-OCqDViLiDSJ632KRS3pQ1v2GY4Hyri0oa33dyY5VbVKytn4T4xhqhJEwcmoMgF3BvoJrC98kQxbT6VJ9QVGg_7NyXkaiRhSg_CpToUXNuspZXzGC921SnCvrWXcFTn3PSGUQkOR-IwGCyyjWhfKascdKaxm2mZfYbmaVG4TEsGtNa6Xea9zRrsa4VHXFoUShjHEiqwDB6065MM834ZcZFYOIyZxxGQzYrLbgb2gMRkSWVTBU2asZtOp_HE9lGUueOB2ylDoexTyE-y4UTHwABsUcl-9ktxuNS_jUp5KSsPNKwJT2oHDVpOL1_9v3Lf3iW_BR9pMhvCHZxuW68eZ20HAU-tdWBKDs904zfF53L-8GmLpiJbPlFf3JA |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoOcAFChQRaGGFkDi0FvFjvc6pCo-QPpJDmki9WX5WHNgUNvn_zGy8jQqi112v5R3bM994PPMR8sFHMDOCMap9FalkkVPrpaWJR6eQJNC1lCyTqRov5NlVeZUP3Jp8rbLTia2iDkuPZ-SfOMcAGOADfnLziyJrFEZXM4XGDnkoBdhqzBQffb_VxOBObKjkwUUq1YDlpJlN6hzjGMHEFB7GsMrsHcP0t3r-J07amp_RHnmScWMx3Ez0M_Ig1s_J04whi7xDG3jU0TR0z16QzyPrI22J5tMPX3y1K1sM19c_c9ZRXQBuLRa1R6SIhBHQH35RzLq7Rct6nyxG3-ZfxjRTJ1APgGdFddJBDKz1SajK9YPVKrkQpIpVqdJAa2vBtWNJcPSZBHeussFFFVkVnHRBvCS79bKOr0ihVQg-DkRKrpS87wDQ9ENVWe2lBHQne-Sok5u52VTIMNtayChlA1I2rZRNv0feo2gNlp6o8W7LtV03jTm9nJlhqRWyMQlo9DE3Skv4cW9zqgAMCKtV3Wl50E2RyZuvMdul0iPH3bRtX_9_cK_v7-0deTSeTy7Mxen0_A15zNvFg-cxB2R39XsdDwGerNzbdg3-AQra3aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZT9wwELY4pIqXlh6I5WpUVepDsVg7juN9QsuR7vZAFXQl3iyfiIdmgez-_85kna5oBa-JYznj8cxnj2c-Qj66AG4mZ4wqVwYqWODUOGFo5MFKJAm0LSXLjws5moiv18V1uv_UpGuVnU1sDbWfOjwjP-IcA2CAD_hRTNcifp5Vx3f3FBmkMNKa6DRWyTp4RYk6r6ovf60ybC0WtPKwXSrkgKUEmkUaHeMYzcR0Hsaw4uwjJ_Wvqf4vZtq6omqTvEwYMhsuJv01WQn1G_Iq4cksrdYGHnWUDd2zt-SkMi7QlnQ-3rrszMxMNpzf_E4ZSHUGGDab1A5RI5JHQH_4RXbZ3TOa1u_IpDr_dTqiiUaBOgA_M6qi8vnAGBdzWdq-N0pG672QoSxkHChlDGzzWMw57p9ybm1pvA0ysNJbYX2-RdbqaR22Saak9y4M8hhtIXjfArjp-7I0ygkBSE_0yOdObvpuUS1DL-sio5Q1SFm3Utb9HvmAotVYhqLGCb0x86bR46tLPSyURGamHBp9So3iFH7cmZQ2AAPCylWPWu51U6TTQmz0Um165LCbtuXrpwe383xv78kLUD_9fXzxbZds8FZ38Ghmj6zNHuZhH5DKzB60KvgHpm_h2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face-Specific+Data+Augmentation+for+Unconstrained+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Masi%2C+Iacopo&rft.au=Tr%C3%A1%C2%BA%C2%A7n%2C+Anh+Tu%C3%A1%C2%BA%C2%A5n&rft.au=Hassner%2C+Tal&rft.au=Sahin%2C+Gozde&rft.date=2019-06-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=127&rft.issue=6-7&rft.spage=642&rft_id=info:doi/10.1007%2Fs11263-019-01178-0&rft.externalDocID=A586152530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |