Tritium extraction in aluminum metal by heating method without melting

Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 °C for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extract...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 54; no. 2; pp. 469 - 478
Main Authors Kang, Ki Joon, Byun, Jaehoon, Kim, Hee Reyoung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2021.10.023

Cover

Abstract Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 °C for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over time were also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with the same thickness, and subsequently heating them. The results revealed that there are most of the hydrated material based on tritium on the surface of aluminum. When the temperature was increased from 200 or 300 °C–400 °C, there are no large differences in the heating duration required for the radioactivity concentration to be lower than the MDA value. Additionally, at the same thickness, because the surface of aluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5, 10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the applied heating temperatures (200, 300, or 400 °C). The proportion of each tritium-release materials (aluminum hydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS).
AbstractList Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 °C for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over time were also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with the same thickness, and subsequently heating them. The results revealed that there are most of the hydrated material based on tritium on the surface of aluminum. When the temperature was increased from 200 or 300 °C–400 °C, there are no large differences in the heating duration required for the radioactivity concentration to be lower than the MDA value. Additionally, at the same thickness, because the surface of aluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5, 10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the applied heating temperatures (200, 300, or 400 °C). The proportion of each tritium-release materials (aluminum hydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS).
Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperaturefurnace at 200, 300, or 400 C for 15 h. The extracted tritium was analyzed by using a liquid scintillationcounter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over timewere also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with thesame thickness, and subsequently heating them. The results revealed that there are most of the hydratedmaterial based on tritium on the surface of aluminum. When the temperature was increased from 200 or300 Ce400 C, there are no large differences in the heating duration required for the radioactivityconcentration to be lower than the MDA value. Additionally, at the same thickness, because the surface ofaluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5,10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the appliedheating temperatures (200, 300, or 400 C). The proportion of each tritium-release materials (aluminumhydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS). KCI Citation Count: 0
Author Kang, Ki Joon
Kim, Hee Reyoung
Byun, Jaehoon
Author_xml – sequence: 1
  givenname: Ki Joon
  orcidid: 0000-0002-8378-2233
  surname: Kang
  fullname: Kang, Ki Joon
– sequence: 2
  givenname: Jaehoon
  surname: Byun
  fullname: Byun, Jaehoon
– sequence: 3
  givenname: Hee Reyoung
  surname: Kim
  fullname: Kim, Hee Reyoung
  email: kimhr@unist.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002809166$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUtr3DAUhUVJoZPHD8jO2y481dOW6CqEpB0IBMIEuhNX8vVEE48cZE3T_PvIM6HLrA73457Dlc4pOYljREIuGV0yypof22XEvOSUszIvKRdfyIJzIWuh9J8TsmCt0LVqhfhGTqdpS2kjZUsX5HadQg77XYX_cgKfwxirECsY9rsQC95hhqFyb9UTQg5xM4OnsateQ5F9LuMw43PytYdhwosPPSOPtzfr69_13f2v1fXVXe2F4bnWBlzrzHxm55pOSao6kBSAeQ9963umRatBKs8bdL3zqhfQSg29A94iF2fk-zE3pt4--2BHCAfdjPY52auH9coaw7VUuuyujrvdCFv7ksIO0tvBcABj2lhIOfgBbSO58gINIDqptdPcdNR7qpUzTedMyWLHLJ_GaUrY_89j1M4F2K0tBdj5ZTMqBRTPz6MHy4f8DZjs5ANGj11I6HO5InzifgcJ2pDd
Cites_doi 10.1016/j.anucene.2011.01.004
10.1023/A:1017997911181
10.1016/j.combustflame.2007.03.004
10.1016/j.jenvrad.2008.05.004
10.1016/j.apradiso.2015.12.031
10.1016/j.apradiso.2009.01.039
10.2172/1219359
10.1023/A:1014303119055
10.4209/aaqr.2009.06.0043
10.1016/S0022-3115(99)00133-6
10.1007/s10967-019-06771-8
10.1021/ac60259a007
10.1016/j.aca.2010.07.017
10.4236/jwarp.2013.59092
10.1002/jctb.5010121206
10.4150/KPMI.2004.11.2.118
ContentType Journal Article
Copyright 2021 Korean Nuclear Society
Copyright_xml – notice: 2021 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2021.10.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 478
ExternalDocumentID oai_kci_go_kr_ARTI_9928458
oai_doaj_org_article_6425c3e9aeeb488b829d0cc085b96db9
10_1016_j_net_2021_10_023
S1738573321006070
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c392t-89ab7b92021db6d5405da40aa1ccaf7cf18378a45c26ebfbc5f3a748afba27e23
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Sun Mar 09 07:51:30 EDT 2025
Mon Sep 08 19:53:04 EDT 2025
Tue Jul 01 01:28:30 EDT 2025
Wed May 17 00:08:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Tritium radioactivity
Tritium analysis
Heating pretreatment
Aluminum contamination
Tritium extraction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-89ab7b92021db6d5405da40aa1ccaf7cf18378a45c26ebfbc5f3a748afba27e23
ORCID 0000-0002-8378-2233
OpenAccessLink https://doaj.org/article/6425c3e9aeeb488b829d0cc085b96db9
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9928458
doaj_primary_oai_doaj_org_article_6425c3e9aeeb488b829d0cc085b96db9
crossref_primary_10_1016_j_net_2021_10_023
elsevier_sciencedirect_doi_10_1016_j_net_2021_10_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
2022-02
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Timothy, Andrzejak, Shafirovich, Varma (bib7) 2007; 150
Abdellah (bib23) 2013
Warwick, Kim, Croudace, Oh (bib5) 2010; 676
Oh, Lee, Park, Rhee, Kim, Kim (bib17) 2004; 11
Blaylock, Hoffman MLF (bib2) 1986
J. Petrovic, G. Thomas, Reaction of Aluminum with Water to Produce Hydrogen-2010 Update, United States. https://doi.org/10.2172/1219359.
Nishikawa, Nakashio, Shiraishi, Odoi, Takeishi, Kamimae (bib12) 2000; 277
Ekambaram, Murugan (bib10) 2015; 5
Song, Choi, Min, Kim, Jung, Oh (bib3) 2005; 3
Kim, Kang, Choi (bib6) 2011; 38
Cossonnet, Neiva Marques, Gurriaran (bib14) 2009; 67
Min, Song, Ahn, Choi, Jung, Oh, Kang (bib4) 2006; 4
Sato (bib19) 1962; 12
Kloprogge, Ruan, Frost (bib20) 2002; 37
Wu, Ou, Hsiao, Shih (bib11) 2010; 10
Du, Shan, Ma, Wang, Qin, Pi, Zeng, Xia, Wang, Liu (bib15) 2016; 110
Schoen, Roberson (bib18) 1970; 55
Choi, Song, Min, Kim, Jung, Oh (bib9) 2004
Currie (bib22) 1968; 40
Il, Gromov, Yablunovskii (bib8) 2001; 37
Kang, Bae, Kim (bib21) 2019; 322
Vichot, Boyer, Boissieux, Losset, Pierrat (bib13) 2008; 99
Antoniazzi, Shmayda, Palma (bib1) 1993; 2
Vichot (10.1016/j.net.2021.10.023_bib13) 2008; 99
Kang (10.1016/j.net.2021.10.023_bib21) 2019; 322
Timothy (10.1016/j.net.2021.10.023_bib7) 2007; 150
Oh (10.1016/j.net.2021.10.023_bib17) 2004; 11
Kim (10.1016/j.net.2021.10.023_bib6) 2011; 38
Abdellah (10.1016/j.net.2021.10.023_bib23) 2013
Blaylock (10.1016/j.net.2021.10.023_bib2) 1986
Cossonnet (10.1016/j.net.2021.10.023_bib14) 2009; 67
Warwick (10.1016/j.net.2021.10.023_bib5) 2010; 676
Currie (10.1016/j.net.2021.10.023_bib22) 1968; 40
Il (10.1016/j.net.2021.10.023_bib8) 2001; 37
Min (10.1016/j.net.2021.10.023_bib4) 2006; 4
Kloprogge (10.1016/j.net.2021.10.023_bib20) 2002; 37
Nishikawa (10.1016/j.net.2021.10.023_bib12) 2000; 277
10.1016/j.net.2021.10.023_bib16
Sato (10.1016/j.net.2021.10.023_bib19) 1962; 12
Song (10.1016/j.net.2021.10.023_bib3) 2005; 3
Choi (10.1016/j.net.2021.10.023_bib9) 2004
Ekambaram (10.1016/j.net.2021.10.023_bib10) 2015; 5
Antoniazzi (10.1016/j.net.2021.10.023_bib1) 1993; 2
Wu (10.1016/j.net.2021.10.023_bib11) 2010; 10
Du (10.1016/j.net.2021.10.023_bib15) 2016; 110
Schoen (10.1016/j.net.2021.10.023_bib18) 1970; 55
References_xml – volume: 110
  start-page: 218
  year: 2016
  end-page: 223
  ident: bib15
  article-title: An improved combustion apparatus for the determination of organically bound tritium in environmental samples
  publication-title: Appl. Radiat. Isot.
– reference: J. Petrovic, G. Thomas, Reaction of Aluminum with Water to Produce Hydrogen-2010 Update, United States. https://doi.org/10.2172/1219359.
– volume: 12
  start-page: 553
  year: 1962
  end-page: 556
  ident: bib19
  article-title: Thermal transformation of alumina trihydrate, bayerite
  publication-title: J. Appl. Chem.
– volume: 150
  start-page: 60
  year: 2007
  end-page: 70
  ident: bib7
  article-title: Ignition mechanism of nickel-coated aluminum particles
  publication-title: Combust. Flame
– volume: 2
  start-page: 979
  year: 1993
  end-page: 982
  ident: bib1
  article-title: Tritium outgassing from solid waste
  publication-title: Proceedings - Symposium on Fusion Engineering
– volume: 38
  start-page: 1074
  year: 2011
  end-page: 1077
  ident: bib6
  article-title: An experiment on the radioactivity characteristics of the tritium contaminated metal sample
  publication-title: Ann. Nucl. Energy
– volume: 277
  start-page: 99
  year: 2000
  end-page: 105
  ident: bib12
  article-title: Tritium trapping capacity on metal surface
  publication-title: J. Nucl. Mater.
– volume: 10
  start-page: 38
  year: 2010
  end-page: 42
  ident: bib11
  article-title: Explosion characteristics of aluminum nanopowders
  publication-title: Aerosol Air Qual. Res.
– volume: 67
  start-page: 809
  year: 2009
  end-page: 811
  ident: bib14
  article-title: Experience acquired on environmental sample combustion for organically bound tritium measurement
  publication-title: Appl. Radiat. Isot.
– volume: 3
  start-page: 95
  year: 2005
  end-page: 104
  ident: bib3
  article-title: Characteristics of the decontamination by the melting of aluminum waste
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
– volume: 4
  start-page: 33
  year: 2006
  end-page: 40
  ident: bib4
  article-title: Melting characteristics for radioactive aluminum wastes in electric arc furnace
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
– volume: 37
  start-page: 418
  year: 2001
  end-page: 422
  ident: bib8
  article-title: Reactivity of aluminum powders A
  publication-title: Combust. Explos. Shock Waves
– year: 2004
  ident: bib9
  article-title: A State of the Art on the Technology for Melting and Recycling of the Radioactive Metallic Wastes
– volume: 11
  start-page: 118
  year: 2004
  end-page: 123
  ident: bib17
  article-title: The effect of pH and temperature on the morphology of aluminum hydroxides formed by hydrolysis reaction
  publication-title: J. Kor. Powder Metall. Inst.
– start-page: 900
  year: 2013
  end-page: 905
  ident: bib23
  article-title: Optimization method to determine gross alpha-beta in water samples using liquid scintillation counter
  publication-title: J. Water Resour. Protect.
– volume: 40
  start-page: 586
  year: 1968
  end-page: 593
  ident: bib22
  article-title: Limits for qualitative detection and quantitative determination: application to radiochemistry
  publication-title: Anal. Chem.
– volume: 676
  start-page: 93
  year: 2010
  end-page: 102
  ident: bib5
  article-title: Effective desorption of tritium from diverse solid matrices and its application to routine analysis of decommissioning materials
  publication-title: Anal. Chim. Acta
– volume: 99
  start-page: 1636
  year: 2008
  end-page: 1643
  ident: bib13
  article-title: Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release
  publication-title: J. Environ. Radioact.
– volume: 37
  start-page: 1121
  year: 2002
  end-page: 1129
  ident: bib20
  article-title: Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore
  publication-title: J. Mater. Sci.
– volume: 322
  start-page: 1417
  year: 2019
  end-page: 1421
  ident: bib21
  article-title: Detection of tritium generated by proton exchange membrane electrolysis by optimization of electrolysis conditions
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 5
  start-page: 3211
  year: 2015
  end-page: 3216
  ident: bib10
  article-title: Synthesis and characterization of aluminium alloy AA6061-alumina metal matrix composite
  publication-title: Int. J. Curr. Eng. Technol.
– year: 1986
  ident: bib2
  article-title: Tritium in the Aquatic Environment
– volume: 55
  start-page: 43
  year: 1970
  end-page: 77
  ident: bib18
  article-title: Structures of aluminum hydroxide and geochemical implications
  publication-title: Am. Mineral. J. Earth Planet. Mater.
– volume: 55
  start-page: 43
  year: 1970
  ident: 10.1016/j.net.2021.10.023_bib18
  article-title: Structures of aluminum hydroxide and geochemical implications
  publication-title: Am. Mineral. J. Earth Planet. Mater.
– volume: 38
  start-page: 1074
  year: 2011
  ident: 10.1016/j.net.2021.10.023_bib6
  article-title: An experiment on the radioactivity characteristics of the tritium contaminated metal sample
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2011.01.004
– volume: 4
  start-page: 33
  year: 2006
  ident: 10.1016/j.net.2021.10.023_bib4
  article-title: Melting characteristics for radioactive aluminum wastes in electric arc furnace
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
– volume: 37
  start-page: 418
  year: 2001
  ident: 10.1016/j.net.2021.10.023_bib8
  article-title: Reactivity of aluminum powders A
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1023/A:1017997911181
– volume: 150
  start-page: 60
  year: 2007
  ident: 10.1016/j.net.2021.10.023_bib7
  article-title: Ignition mechanism of nickel-coated aluminum particles
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2007.03.004
– volume: 99
  start-page: 1636
  year: 2008
  ident: 10.1016/j.net.2021.10.023_bib13
  article-title: Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2008.05.004
– volume: 110
  start-page: 218
  year: 2016
  ident: 10.1016/j.net.2021.10.023_bib15
  article-title: An improved combustion apparatus for the determination of organically bound tritium in environmental samples
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2015.12.031
– volume: 67
  start-page: 809
  year: 2009
  ident: 10.1016/j.net.2021.10.023_bib14
  article-title: Experience acquired on environmental sample combustion for organically bound tritium measurement
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2009.01.039
– ident: 10.1016/j.net.2021.10.023_bib16
  doi: 10.2172/1219359
– volume: 37
  start-page: 1121
  year: 2002
  ident: 10.1016/j.net.2021.10.023_bib20
  article-title: Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014303119055
– volume: 10
  start-page: 38
  year: 2010
  ident: 10.1016/j.net.2021.10.023_bib11
  article-title: Explosion characteristics of aluminum nanopowders
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2009.06.0043
– volume: 277
  start-page: 99
  year: 2000
  ident: 10.1016/j.net.2021.10.023_bib12
  article-title: Tritium trapping capacity on metal surface
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(99)00133-6
– volume: 3
  start-page: 95
  year: 2005
  ident: 10.1016/j.net.2021.10.023_bib3
  article-title: Characteristics of the decontamination by the melting of aluminum waste
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
– volume: 322
  start-page: 1417
  year: 2019
  ident: 10.1016/j.net.2021.10.023_bib21
  article-title: Detection of tritium generated by proton exchange membrane electrolysis by optimization of electrolysis conditions
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-019-06771-8
– volume: 40
  start-page: 586
  year: 1968
  ident: 10.1016/j.net.2021.10.023_bib22
  article-title: Limits for qualitative detection and quantitative determination: application to radiochemistry
  publication-title: Anal. Chem.
  doi: 10.1021/ac60259a007
– volume: 676
  start-page: 93
  year: 2010
  ident: 10.1016/j.net.2021.10.023_bib5
  article-title: Effective desorption of tritium from diverse solid matrices and its application to routine analysis of decommissioning materials
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.07.017
– volume: 5
  start-page: 3211
  year: 2015
  ident: 10.1016/j.net.2021.10.023_bib10
  article-title: Synthesis and characterization of aluminium alloy AA6061-alumina metal matrix composite
  publication-title: Int. J. Curr. Eng. Technol.
– start-page: 900
  year: 2013
  ident: 10.1016/j.net.2021.10.023_bib23
  article-title: Optimization method to determine gross alpha-beta in water samples using liquid scintillation counter
  publication-title: J. Water Resour. Protect.
  doi: 10.4236/jwarp.2013.59092
– year: 2004
  ident: 10.1016/j.net.2021.10.023_bib9
– volume: 12
  start-page: 553
  year: 1962
  ident: 10.1016/j.net.2021.10.023_bib19
  article-title: Thermal transformation of alumina trihydrate, bayerite
  publication-title: J. Appl. Chem.
  doi: 10.1002/jctb.5010121206
– year: 1986
  ident: 10.1016/j.net.2021.10.023_bib2
– volume: 11
  start-page: 118
  year: 2004
  ident: 10.1016/j.net.2021.10.023_bib17
  article-title: The effect of pH and temperature on the morphology of aluminum hydroxides formed by hydrolysis reaction
  publication-title: J. Kor. Powder Metall. Inst.
  doi: 10.4150/KPMI.2004.11.2.118
– volume: 2
  start-page: 979
  year: 1993
  ident: 10.1016/j.net.2021.10.023_bib1
  article-title: Tritium outgassing from solid waste
SSID ssj0064470
Score 2.2316198
Snippet Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 °C for 15 h. The extracted...
Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperaturefurnace at 200, 300, or 400 C for 15 h. The extracted...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 469
SubjectTerms Aluminum contamination
Heating pretreatment
Tritium analysis
Tritium extraction
Tritium radioactivity
원자력공학
Title Tritium extraction in aluminum metal by heating method without melting
URI https://dx.doi.org/10.1016/j.net.2021.10.023
https://doaj.org/article/6425c3e9aeeb488b829d0cc085b96db9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002809166
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2022, 54(2), , pp.469-478
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoJ3qo2kLVpS2yECekQOI4dnxsqyIKAgkJJG6Wnyg8sijKHvj3nbE3aLmUC5dEsZLYmXFmvklmPhOyJyKDuWsxbTCagnOnijZWqhDOslSbKROV0tm5OL7iJ9fN9cpSX5gTlumBs-AOAR83rg7KhGBhstmWKV86B0jBKuFtKt0rVTkFU9kGg5OXuRQSXmdk_Jv-Z6bMLoj5ITBk1QGmdbH6hUdKxP0vHNO7fogrLufoI_mwxIr0Zx7jJ7IW-s_k_QqD4CZB5o-xWzxQsLFDrlGgXU8NmJyuh-aHAOCa2ieKNheuoHnFaIqfX-eLEQ7vsXmLXB39ufx9XCyXRigcAJqxaJWx0ip8Cm-FR9jlDS-NqUAjUbpYIVG84Y1jIthoXRNrI3lrojVMBlZ_Iev9vA9fCRVOxlB71wjDuPS-tdKr2teRc9O4Ss3I_iQe_ZgZMPSUGnarQZYaR4FNIMsZ-YUCfD4RyatTA6hUL1WqX1PpjPBJ_HqJA7J_h1t1_-t7F1Sl71yXusX9zVzfDRoig79aKXDETbv9FgP8RjYYVkGk5O3vZH0cFuEHYJPR7qRpCNvTi_YfNM_hcQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tritium+extraction+in+aluminum+metal+by+heating+method+without+melting&rft.jtitle=Nuclear+engineering+and+technology&rft.au=%EA%B0%95%EA%B8%B0%EC%A4%80&rft.au=%EB%B3%80%EC%9E%AC%ED%9B%88&rft.au=%EA%B9%80%ED%9D%AC%EB%A0%B9&rft.date=2022-02-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9B%90%EC%9E%90%EB%A0%A5%ED%95%99%ED%9A%8C&rft.issn=1738-5733&rft.eissn=2234-358X&rft.spage=469&rft.epage=478&rft_id=info:doi/10.1016%2Fj.net.2021.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9928458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon