Protective effects of high-density lipoprotein against oxidative stress are impaired in haemodialysis patients

Introduction. Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major cardiovascular risk factor, implicated in atherosclerotic plaque formation. It has been suggested that high-density lipoprotein (HD) has t...

Full description

Saved in:
Bibliographic Details
Published inNephrology, dialysis, transplantation Vol. 15; no. 3; pp. 389 - 395
Main Authors Morena, Marion, Cristol, Jean-Paul, Dantoine, Thierry, Carbonneau, Marie-Annette, Descomps, Bernard, Canaud, Bernard
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.03.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction. Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major cardiovascular risk factor, implicated in atherosclerotic plaque formation. It has been suggested that high-density lipoprotein (HD) has the capacity to reduce the oxidative modifications of LDL. The aim of this study is to analyse the protective effects of HDL in HD patients. Methods.In vitro copper-induced LDL oxidation was evaluated in 12 patients with chronic renal failure (mean age 61.0±12.8 years) and compared to 25 healthy subjects (mean age 57.3±19.2 years). LDL were incubated in oxygen-saturated PBS, LDL oxidation was initiated by Cu (II) in the presence and absence of HDL and assessed by measuring the absorbance (abs) increase at 234 nm due to conjugated diene formation. Duration of lag time, maximum velocity (Vmax.) of lipid peroxidation, oxidation slope and half-time of maximum diene formation (T ½) were obtained by kinetic modelling analysis. Results. HDL (1.06±0.31 vs 1.23±0.39 mmol/l) and Apo AI (1.17±0.39 vs 1.49±0.20 g/l) levels were decreased in HD patients. In the absence of HDL, LDL obtained from HD patients showed an enhanced susceptibility to oxidation in vitro as demonstrated by the significant decrease in lag time (54.5±22.2 vs 79.4±37.8 min) and a significant increase in Vmax. (0.026±0.006 vs 0.017±0.005 abs/min). In all cases, HDL (from 0.1 to 2 μM) prevented LDL oxidation in vitro; however, this effect was significantly reduced in HD patients: increase in lag time 54.2% vs 150.4% in HD vs controls; increase in T ½ 52.2% vs 124.6% in HD vs controls; decrease in Vmax. 13.5% vs 38.5% in HD vs controls. Conclusions. These results suggest that qualitative abnormalities such as an impairment of HDL-associated enzymes are associated with a decrease of HDL levels during HD. Hence, in addition to the known impairment of reverse cholesterol transport, the reduction of HDL protective capacity against oxidative stress could be involved in the development of HD-induced atherosclerosis.
AbstractList INTRODUCTIONCardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major cardiovascular risk factor, implicated in atherosclerotic plaque formation. It has been suggested that high-density lipoprotein (HD) has the capacity to reduce the oxidative modifications of LDL. The aim of this study is to analyse the protective effects of HDL in HD patients.METHODSIn vitro copper-induced LDL oxidation was evaluated in 12 patients with chronic renal failure (mean age 61.0+/-12.8 years) and compared to 25 healthy subjects (mean age 57.3+/-19.2 years). LDL were incubated in oxygen-saturated PBS, LDL oxidation was initiated by Cu (II) in the presence and absence of HDL and assessed by measuring the absorbance (abs) increase at 234 nm due to conjugated diene formation. Duration of lag time, maximum velocity (V(max.)) of lipid peroxidation, oxidation slope and half-time of maximum diene formation (T (1/2)) were obtained by kinetic modelling analysis.RESULTSHDL (1.06+/-0.31 vs 1.23+/-0.39 mmol/l) and Apo AI (1. 17+/-0.39 vs 1.49+/-0.20 g/l) levels were decreased in HD patients. In the absence of HDL, LDL obtained from HD patients showed an enhanced susceptibility to oxidation in vitro as demonstrated by the significant decrease in lag time (54.5+/-22.2 vs 79.4+/-37.8 min) and a significant increase in V(max.) (0.026+/-0.006 vs 0.017+/-0. 005 abs/min). In all cases, HDL (from 0.1 to 2 microM) prevented LDL oxidation in vitro; however, this effect was significantly reduced in HD patients: increase in lag time 54.2% vs 150.4% in HD vs controls; increase in T (1/2) 52.2% vs 124.6% in HD vs controls; decrease in V(max). 13.5% vs 38.5% in HD vs controls.CONCLUSIONSThese results suggest that qualitative abnormalities such as an impairment of HDL-associated enzymes are associated with a decrease of HDL levels during HD. Hence, in addition to the known impairment of reverse cholesterol transport, the reduction of HDL protective capacity against oxidative stress could be involved in the development of HD-induced atherosclerosis.
Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major cardiovascular risk factor, implicated in atherosclerotic plaque formation. It has been suggested that high-density lipoprotein (HD) has the capacity to reduce the oxidative modifications of LDL. The aim of this study is to analyse the protective effects of HDL in HD patients. In vitro copper-induced LDL oxidation was evaluated in 12 patients with chronic renal failure (mean age 61.0+/-12.8 years) and compared to 25 healthy subjects (mean age 57.3+/-19.2 years). LDL were incubated in oxygen-saturated PBS, LDL oxidation was initiated by Cu (II) in the presence and absence of HDL and assessed by measuring the absorbance (abs) increase at 234 nm due to conjugated diene formation. Duration of lag time, maximum velocity (V(max.)) of lipid peroxidation, oxidation slope and half-time of maximum diene formation (T (1/2)) were obtained by kinetic modelling analysis. HDL (1.06+/-0.31 vs 1.23+/-0.39 mmol/l) and Apo AI (1. 17+/-0.39 vs 1.49+/-0.20 g/l) levels were decreased in HD patients. In the absence of HDL, LDL obtained from HD patients showed an enhanced susceptibility to oxidation in vitro as demonstrated by the significant decrease in lag time (54.5+/-22.2 vs 79.4+/-37.8 min) and a significant increase in V(max.) (0.026+/-0.006 vs 0.017+/-0. 005 abs/min). In all cases, HDL (from 0.1 to 2 microM) prevented LDL oxidation in vitro; however, this effect was significantly reduced in HD patients: increase in lag time 54.2% vs 150.4% in HD vs controls; increase in T (1/2) 52.2% vs 124.6% in HD vs controls; decrease in V(max). 13.5% vs 38.5% in HD vs controls. These results suggest that qualitative abnormalities such as an impairment of HDL-associated enzymes are associated with a decrease of HDL levels during HD. Hence, in addition to the known impairment of reverse cholesterol transport, the reduction of HDL protective capacity against oxidative stress could be involved in the development of HD-induced atherosclerosis.
Introduction. Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major cardiovascular risk factor, implicated in atherosclerotic plaque formation. It has been suggested that high-density lipoprotein (HD) has the capacity to reduce the oxidative modifications of LDL. The aim of this study is to analyse the protective effects of HDL in HD patients. Methods.In vitro copper-induced LDL oxidation was evaluated in 12 patients with chronic renal failure (mean age 61.0±12.8 years) and compared to 25 healthy subjects (mean age 57.3±19.2 years). LDL were incubated in oxygen-saturated PBS, LDL oxidation was initiated by Cu (II) in the presence and absence of HDL and assessed by measuring the absorbance (abs) increase at 234 nm due to conjugated diene formation. Duration of lag time, maximum velocity (Vmax.) of lipid peroxidation, oxidation slope and half-time of maximum diene formation (T ½) were obtained by kinetic modelling analysis. Results. HDL (1.06±0.31 vs 1.23±0.39 mmol/l) and Apo AI (1.17±0.39 vs 1.49±0.20 g/l) levels were decreased in HD patients. In the absence of HDL, LDL obtained from HD patients showed an enhanced susceptibility to oxidation in vitro as demonstrated by the significant decrease in lag time (54.5±22.2 vs 79.4±37.8 min) and a significant increase in Vmax. (0.026±0.006 vs 0.017±0.005 abs/min). In all cases, HDL (from 0.1 to 2 μM) prevented LDL oxidation in vitro; however, this effect was significantly reduced in HD patients: increase in lag time 54.2% vs 150.4% in HD vs controls; increase in T ½ 52.2% vs 124.6% in HD vs controls; decrease in Vmax. 13.5% vs 38.5% in HD vs controls. Conclusions. These results suggest that qualitative abnormalities such as an impairment of HDL-associated enzymes are associated with a decrease of HDL levels during HD. Hence, in addition to the known impairment of reverse cholesterol transport, the reduction of HDL protective capacity against oxidative stress could be involved in the development of HD-induced atherosclerosis.
Author Dantoine, Thierry
Descomps, Bernard
Morena, Marion
Cristol, Jean-Paul
Carbonneau, Marie-Annette
Canaud, Bernard
Author_xml – sequence: 1
  givenname: Marion
  surname: Morena
  fullname: Morena, Marion
  organization: Department of Biochemistry, Lapeyronie Hospital, University of Montpellier
– sequence: 2
  givenname: Jean-Paul
  surname: Cristol
  fullname: Cristol, Jean-Paul
  organization: Department of Biochemistry, Lapeyronie Hospital, University of Montpellier
– sequence: 3
  givenname: Thierry
  surname: Dantoine
  fullname: Dantoine, Thierry
  organization: Department of Nephrology, Dupuytren Hospital, University of Limoges and
– sequence: 4
  givenname: Marie-Annette
  surname: Carbonneau
  fullname: Carbonneau, Marie-Annette
  organization: Department of Biochemistry, Lapeyronie Hospital, University of Montpellier
– sequence: 5
  givenname: Bernard
  surname: Descomps
  fullname: Descomps, Bernard
  organization: Department of Biochemistry, Lapeyronie Hospital, University of Montpellier
– sequence: 6
  givenname: Bernard
  surname: Canaud
  fullname: Canaud, Bernard
  organization: Department of Nephrology, Lapeyronie Hospital, University of Montpellier, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1315897$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10692526$$D View this record in MEDLINE/PubMed
BookMark eNpN0M1rFDEYwOEgFbut3jxLDuLJ2eZjk0mOUrRVCgoqFi8hm49udCYzzZuV7n9v1l3UUwLvk5fwO0MnecoBoeeULCnR_CL7ekHFki-50o_Qgq4k6RhX4gQt2ph2RBB9is4AfhBCNOv7J-iUEqmZYHKB8qcy1eBq-hVwiLHdAE8Rb9LdpvMhQ6o7PKR5mvcsZWzvbMpQ8fSQvP3zCmoJANiWgNM421SCxw1ubBgnn-ywgwR4bjbkCk_R42gHCM-O5zn6-u7tl8vr7ubj1fvLNzed45rVTikqnJUqOiW9ZMKFwKXsV0wHLuK6Z2vFooqcaSVob70mfu0o9XRFoic28nP06rC3_ft-G6CaMYELw2BzmLZg-n0aSmiDrw_QlQmghGjmkkZbdoYSs-9rWl9DheGm9W38xXHvdj0G_x8-BG3g5RFYcHaIxWaX4J_jVCjdN9YdWIIaHv6ObflpZM97Ya5vv5sr8fnDN0qlueW_Ae4HlpA
CODEN NDTREA
CitedBy_id crossref_primary_10_1038_ki_2009_205
crossref_primary_10_1155_2017_3081856
crossref_primary_10_3109_10715762_2011_574291
crossref_primary_10_1111_j_1365_2362_2004_01395_x
crossref_primary_10_1016_j_arcmed_2015_05_009
crossref_primary_10_1371_journal_pone_0034107
crossref_primary_10_1111_j_1440_1797_2010_01295_x
crossref_primary_10_1159_000452727
crossref_primary_10_2174_1874364102115010187
crossref_primary_10_1155_2016_1069743
crossref_primary_10_1016_j_clinbiochem_2007_12_011
crossref_primary_10_7759_cureus_21506
crossref_primary_10_1371_journal_pone_0231328
crossref_primary_10_1681_ASN_2017070798
crossref_primary_10_1097_00041552_200203000_00003
crossref_primary_10_1111_j_1365_2362_2010_02361_x
crossref_primary_10_1053_j_jrn_2008_10_011
crossref_primary_10_1097_00041552_200011000_00006
crossref_primary_10_1053_ajkd_2001_27384
crossref_primary_10_1016_j_atherosclerosis_2004_05_031
crossref_primary_10_1016_S0021_9150_02_00328_3
crossref_primary_10_1038_srep41481
crossref_primary_10_1016_j_clinbiochem_2005_08_006
crossref_primary_10_1016_S0009_8981_01_00681_7
crossref_primary_10_1097_00041552_200103000_00007
crossref_primary_10_1016_j_clinbiochem_2005_08_009
crossref_primary_10_1016_j_athplu_2023_04_001
crossref_primary_10_1038_sj_ki_5002491
crossref_primary_10_18410_jebmh_2016_341
crossref_primary_10_1007_BF02693941
crossref_primary_10_1111_j_1492_7535_2005_01116_x
crossref_primary_10_1021_pr5011586
crossref_primary_10_2215_CJN_06110809
crossref_primary_10_1111_j_1542_4758_2008_00311_x
crossref_primary_10_1016_S0169_2607_01_00123_7
crossref_primary_10_1016_j_semnephrol_2020_01_013
crossref_primary_10_1111_j_1542_4758_2007_00144_x
crossref_primary_10_2174_0929867325666180316115726
crossref_primary_10_1046_j_1523_1755_61_s80_20_x
crossref_primary_10_2215_CJN_04360418
crossref_primary_10_1093_ndt_gfg484
crossref_primary_10_1038_nrneph_2010_36
crossref_primary_10_1016_j_scitotenv_2018_11_149
crossref_primary_10_1371_journal_pone_0117954
crossref_primary_10_1080_10408398_2023_2214208
crossref_primary_10_1016_j_bbacli_2017_07_002
Cites_doi 10.1016/0014-5793(94)80553-9
10.1016/S0272-6386(12)80473-2
10.1051/jbio/1999193020211
10.1093/clinchem/44.1.179
10.1093/ndt/13.9.2281
10.1056/NEJM198904063201407
10.1016/S0022-2275(20)40756-4
10.1681/ASN.V9112082
10.1038/ki.1994.115
10.1016/0021-9150(96)05853-4
10.1007/BF00841817
10.1016/0021-9150(94)05524-M
10.1159/000186303
10.1038/ki.1995.288
10.1056/NEJM197403282901301
10.1016/0891-5849(96)00233-X
10.1016/S0021-9150(96)06040-6
10.1038/ki.1996.186
10.1042/bj3240001
10.1016/0014-5793(91)80962-3
10.1016/0076-6879(86)28066-0
10.1093/oxfordjournals.qjmed.a068888
10.1038/ki.1981.62
10.1161/01.ATV.16.6.784
10.1159/000187287
10.7326/0003-4819-85-1-29
10.3109/10715768909073429
10.1056/NEJM199901143400207
10.1038/ki.1997.233
10.1016/0009-8981(95)06221-1
10.1016/0021-9150(91)90215-O
10.1016/0021-9150(93)90063-Z
10.4049/jimmunol.161.5.2524
10.1016/0021-9150(93)90183-U
10.1016/0891-5849(92)90181-F
10.1038/ki.1992.204
10.1016/0021-9150(94)90203-8
10.1093/ndt/12.11.2312
10.1038/ki.1990.123
10.1093/ndt/14.suppl_1.76
ContentType Journal Article
Copyright 2000 INIST-CNRS
Copyright_xml – notice: 2000 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1093/ndt/15.3.389
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2385
EndPage 395
ExternalDocumentID 10_1093_ndt_15_3_389
10692526
1315897
ark_67375_HXZ_G5SJW116_X
Genre Journal Article
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
123
18M
1TH
29M
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AABZA
AACZT
AAESY
AAHTB
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAWDT
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACIMA
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEIU
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AIAGR
AIJHB
AIKOY
AIMBJ
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVPL
ASMCH
ASPBG
ATTQO
AVNTJ
AVWKF
AWCFO
AXUDD
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BGYMP
BHONS
BSCLL
BTRTY
BVRKM
BYORX
BZKNY
C45
CAG
CASEJ
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SDH
TCURE
TEORI
TJX
TMA
TR2
W8F
WH7
WOQ
X7H
X7M
YAYTL
YKOAZ
YXANX
ZA5
ZGI
ZKX
ZXP
~91
AANRK
AAPBV
AAUGY
ABPTK
ALXQX
H13
IQODW
OBFPC
ABQNK
ADQBN
AGMDO
CGR
CUY
CVF
ECM
EIF
NPM
AAUAY
AAYXX
ATGXG
CITATION
7X8
ID FETCH-LOGICAL-c392t-8815ca68fc86d625cee3667429e35fb72b82f8f3298517ad90dbc11d140fd0af3
ISSN 0931-0509
IngestDate Fri Aug 16 11:23:34 EDT 2024
Thu Sep 12 17:11:24 EDT 2024
Thu May 23 23:54:17 EDT 2024
Sun Oct 29 17:07:31 EDT 2023
Sun Mar 31 11:39:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Kidney disease
Oxidative stress
Urinary system disease
Hemodialysis
Male
Antioxidant
Extrarenal dialysis
Chronic
Treatment
Renal failure
Adult
Female
Lipoprotein HDL
Protection
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-8815ca68fc86d625cee3667429e35fb72b82f8f3298517ad90dbc11d140fd0af3
Notes Marion Morena, Department of Biochemistry, Lapeyronie Hospital, University of Montpellier I, F-34295 Montpellier, France.
PII:1460-2385
ark:/67375/HXZ-G5SJW116-X
local:0150389
istex:326793F91F0FEF421337D8FDB119E4122C1F0A2B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/ndt/article-pdf/15/3/389/23770507/150389.pdf
PMID 10692526
PQID 70931101
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_70931101
crossref_primary_10_1093_ndt_15_3_389
pubmed_primary_10692526
pascalfrancis_primary_1315897
istex_primary_ark_67375_HXZ_G5SJW116_X
PublicationCentury 2000
PublicationDate 2000-03-01
PublicationDateYYYYMMDD 2000-03-01
PublicationDate_xml – month: 03
  year: 2000
  text: 2000-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Nephrology, dialysis, transplantation
PublicationTitleAlternate Nephrol. Dial. Transplant
PublicationYear 2000
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References key 20180202234806_R26
key 20180202234806_R48
key 20180202234806_R27
key 20180202234806_R28
key 20180202234806_R29
key 20180202234806_R22
key 20180202234806_R44
key 20180202234806_R23
key 20180202234806_R45
key 20180202234806_R24
key 20180202234806_R46
key 20180202234806_R25
key 20180202234806_R47
key 20180202234806_R40
key 20180202234806_R41
key 20180202234806_R20
key 20180202234806_R42
key 20180202234806_R21
key 20180202234806_R43
key 20180202234806_R3
key 20180202234806_R2
key 20180202234806_R1
key 20180202234806_R7
key 20180202234806_R6
key 20180202234806_R5
key 20180202234806_R4
key 20180202234806_R19
key 20180202234806_R15
key 20180202234806_R37
key 20180202234806_R16
key 20180202234806_R38
key 20180202234806_R17
key 20180202234806_R39
key 20180202234806_R18
key 20180202234806_R11
key 20180202234806_R33
key 20180202234806_R12
key 20180202234806_R34
key 20180202234806_R13
key 20180202234806_R35
key 20180202234806_R14
key 20180202234806_R36
key 20180202234806_R30
key 20180202234806_R9
key 20180202234806_R31
key 20180202234806_R8
key 20180202234806_R10
key 20180202234806_R32
References_xml – ident: key 20180202234806_R19
– ident: key 20180202234806_R36
  doi: 10.1016/0014-5793(94)80553-9
– ident: key 20180202234806_R14
  doi: 10.1016/S0272-6386(12)80473-2
– ident: key 20180202234806_R38
  doi: 10.1051/jbio/1999193020211
– ident: key 20180202234806_R33
  doi: 10.1093/clinchem/44.1.179
– ident: key 20180202234806_R7
  doi: 10.1093/ndt/13.9.2281
– ident: key 20180202234806_R21
  doi: 10.1056/NEJM198904063201407
– ident: key 20180202234806_R6
– ident: key 20180202234806_R9
  doi: 10.1016/S0022-2275(20)40756-4
– ident: key 20180202234806_R8
– ident: key 20180202234806_R32
  doi: 10.1681/ASN.V9112082
– ident: key 20180202234806_R24
  doi: 10.1038/ki.1994.115
– ident: key 20180202234806_R13
– ident: key 20180202234806_R43
  doi: 10.1016/0021-9150(96)05853-4
– ident: key 20180202234806_R45
  doi: 10.1007/BF00841817
– ident: key 20180202234806_R46
  doi: 10.1016/0021-9150(94)05524-M
– ident: key 20180202234806_R5
  doi: 10.1159/000186303
– ident: key 20180202234806_R25
  doi: 10.1038/ki.1995.288
– ident: key 20180202234806_R1
  doi: 10.1056/NEJM197403282901301
– ident: key 20180202234806_R20
  doi: 10.1016/0891-5849(96)00233-X
– ident: key 20180202234806_R27
  doi: 10.1016/S0021-9150(96)06040-6
– ident: key 20180202234806_R15
  doi: 10.1038/ki.1996.186
– ident: key 20180202234806_R16
  doi: 10.1042/bj3240001
– ident: key 20180202234806_R29
  doi: 10.1016/0014-5793(91)80962-3
– ident: key 20180202234806_R35
  doi: 10.1016/0076-6879(86)28066-0
– ident: key 20180202234806_R39
– ident: key 20180202234806_R42
  doi: 10.1093/oxfordjournals.qjmed.a068888
– ident: key 20180202234806_R12
– ident: key 20180202234806_R4
  doi: 10.1038/ki.1981.62
– ident: key 20180202234806_R44
  doi: 10.1161/01.ATV.16.6.784
– ident: key 20180202234806_R11
  doi: 10.1159/000187287
– ident: key 20180202234806_R40
  doi: 10.7326/0003-4819-85-1-29
– ident: key 20180202234806_R37
  doi: 10.3109/10715768909073429
– ident: key 20180202234806_R10
– ident: key 20180202234806_R23
  doi: 10.1056/NEJM199901143400207
– ident: key 20180202234806_R3
  doi: 10.1038/ki.1997.233
– ident: key 20180202234806_R31
  doi: 10.1016/0009-8981(95)06221-1
– ident: key 20180202234806_R48
  doi: 10.1016/0021-9150(91)90215-O
– ident: key 20180202234806_R30
  doi: 10.1016/0021-9150(93)90063-Z
– ident: key 20180202234806_R17
  doi: 10.4049/jimmunol.161.5.2524
– ident: key 20180202234806_R28
– ident: key 20180202234806_R47
  doi: 10.1016/0021-9150(93)90183-U
– ident: key 20180202234806_R22
  doi: 10.1016/0891-5849(92)90181-F
– ident: key 20180202234806_R41
  doi: 10.1038/ki.1992.204
– ident: key 20180202234806_R26
  doi: 10.1016/0021-9150(94)90203-8
– ident: key 20180202234806_R34
  doi: 10.1093/ndt/12.11.2312
– ident: key 20180202234806_R2
  doi: 10.1038/ki.1990.123
– ident: key 20180202234806_R18
  doi: 10.1093/ndt/14.suppl_1.76
SSID ssj0009277
Score 1.9057636
Snippet Introduction. Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a...
Cardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major...
INTRODUCTIONCardiovascular diseases represent the major cause of mortality in haemodialysis (HD) patients. Oxidized low-density lipoprotein (Ox-LDL) is a major...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 389
SubjectTerms Adult
Aged
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
Copper - pharmacology
Emergency and intensive care: renal failure. Dialysis management
Female
high-density lipoprotein
Humans
Intensive care medicine
Kidney Failure, Chronic - blood
lipid peroxidation
Lipids - blood
Lipoproteins - blood
Lipoproteins, HDL - physiology
Lipoproteins, LDL - metabolism
low-density lipoprotein
Male
Medical sciences
Middle Aged
Oxidation-Reduction - drug effects
Oxidative Stress - physiology
Renal Dialysis - adverse effects
Title Protective effects of high-density lipoprotein against oxidative stress are impaired in haemodialysis patients
URI https://api.istex.fr/ark:/67375/HXZ-G5SJW116-X/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/10692526
https://search.proquest.com/docview/70931101
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJiFeJr7pYOAH4GVKl8SxnTwiPlZN6oTEJipeIiexRwRLqjaVJn4Ev5l7Y6dJB5MAVYrSxHLa3GP7XvvcY0Jecs25zCLpGamVF2WJ8hQrck8IXwMAYATNMXd4diqm59HJnM9Ho58D1tK6ySb5jz_mlfyPVeEa2BWzZP_BsptK4QKcg33hCBaG41_Z-KMVWUDyz4CXgQrEXoHEdNwVolzUrRZDWR2qC1WCN3hYX5WF1ft2mSLI_sJ0yRLJ6FDwq9KXNWaUtHIlTnp1NfRjTzWAYJPo0hXF86ZVS_-uqu01_lm91Db9rF_2aGUN7BR0n2b2Dnc1Lu08a0_gVssMGTlq3dbgJmC7yQq_Z2t1s44s8FByxg4_ts-NhO-B58C3OmU-AB8b9LDM7jj0W89vVbGqosGpCD5hk2sFwXKLyxYHEAQnIQ-vCXC7iMjeukV2Q5lwDOaP5z1lKAnbnTw3f8IlUsD3I3jwUfdYFKJ1FW15O7vYcK-QfatW0ACN3Tnl5tCmdXHO7pI9F5vQNxZo98hIV_fJ7ZljXzwgVY836vBGa0OHeKMDvFGHN7rBG7V4o4A32uGNQsEtvNEObw_J-Yf3Z2-nntuvw8vBy268OMaWLWKTx6KAuBr8LyaEBI9HM24yGWZxaGLDwgTcfKmKxC-yPAgKiPFN4SvDHpGdqq70E0JNHunYFDz0tYgKo7JcZCiD5MMnlkyNyavuvaYLK8uSWjoFS8EUacBTloIpxuR1-9I3hdTyG1IZJU-n8y_pMf908jkIRDofk4Mtq_S1soDHiRyTF52VUuiAcVVNVbper1KJcICBbUweW-MNfpAFwf6Nd56SO30reUZ2muVaH4CT22TPW-T9AhMWqcs
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+effects+of+high-density+lipoprotein+against+oxidative+stress+are+impaired+in+haemodialysis+patients&rft.jtitle=Nephrology%2C+dialysis%2C+transplantation&rft.au=Morena%2C+M&rft.au=Cristol%2C+J+P&rft.au=Dantoine%2C+T&rft.au=Carbonneau%2C+M+A&rft.date=2000-03-01&rft.issn=0931-0509&rft.eissn=1460-2385&rft.volume=15&rft.issue=3&rft.spage=389&rft_id=info:doi/10.1093%2Fndt%2F15.3.389&rft_id=info%3Apmid%2F10692526&rft.externalDocID=10692526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-0509&client=summon