Considerations for uranium isotope ratio analysis by atmospheric pressure ionization mass spectrometry

The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 144; no. 1; pp. 317 - 323
Main Authors Forbes, Thomas P, Szakal, Christopher
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.12.2018
Subjects
Online AccessGet full text
ISSN0003-2654
1364-5528
1364-5528
DOI10.1039/c8an01716f

Cover

Loading…
Abstract The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + / 238 UO 2 + down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. Uranium isotope ratio measurements from discrete trace sample injections were investigated with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer.
AbstractList The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + / 238 UO 2 + down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. Uranium isotope ratio measurements from discrete trace sample injections were investigated with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer.
The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + / 238 UO 2 + down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra- high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + 238 UO 2 + down to 10’s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
Author Szakal, Christopher
Forbes, Thomas P
AuthorAffiliation Materials Measurement Science Division
National Institute of Standards and Technology
AuthorAffiliation_xml – sequence: 0
  name: National Institute of Standards and Technology
– sequence: 0
  name: Materials Measurement Science Division
– name: a. National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
Author_xml – sequence: 1
  givenname: Thomas P
  surname: Forbes
  fullname: Forbes, Thomas P
– sequence: 2
  givenname: Christopher
  surname: Szakal
  fullname: Szakal, Christopher
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30499992$$D View this record in MEDLINE/PubMed
BookMark eNptkkFv1DAQhS1URLeFC3eQJS4VUmC8sRPnUqlatYBUwQXOlmNPqKskDp4Eafn1eHfbAhW-eKz55ulpnk_Y0RhHZOylgHcCyua903YEUYuqe8JWoqxkodRaH7EVAJTFulLymJ0Q3eanAAXP2HEJsslnvWLdJo4UPCY7h1zxLia-JDuGZeCB4hwn5Pset6PttxSIt1tu5yHSdIMpOD4lJFoS8jwffu1l-GCJOE3o5hQHnNP2OXva2Z7wxd19yr5dXX7dfCyuv3z4tLm4LlzZrOdCV-ilrRXUtmq9hrpsZbOrZWe9RWiVloC-qXTlG920TVN5jaJ2ygOC9OUpOz_oTks7oHc4zsn2ZkphsGlrog3m384Ybsz3-NNUCoTQMguc3Qmk-GNBms0QyGHf2xHjQmYtpABZC9AZffMIvY1LylvaUaqWdSlrlanXfzt6sHIfQQbgALgUiRJ2xoV5v8ZsMPRGgNmlbDb64vM-5as88vbRyL3qf-FXBziRe-D-fJnyNwZjtFw
CitedBy_id crossref_primary_10_1021_jasms_0c00305
crossref_primary_10_1039_D0JA90015J
crossref_primary_10_1016_j_sab_2020_106045
crossref_primary_10_1039_D0AN01831G
crossref_primary_10_1021_jasms_0c00143
crossref_primary_10_1002_rcm_8517
Cites_doi 10.1039/C5JA00382B
10.1007/s13361-016-1402-4
10.1016/j.talanta.2017.01.090
10.1002/anie.201501895
10.1016/j.aca.2010.12.003
10.1038/nnano.2017.17
10.1021/ac9019494
10.1016/j.talanta.2013.12.029
10.1016/S1044-0305(96)00072-4
10.1007/s10967-007-0519-0
10.1016/j.talanta.2006.05.091
10.1039/c1ja10054h
10.1021/ac981184r
10.1039/C0JA00173B
10.1021/ac402386m
10.1021/ac021909y
10.1016/S1044-0305(00)00163-X
10.1016/j.ijms.2007.09.012
10.1002/jms.3741
10.1021/ac501718j
10.1002/9780470516898
10.1016/S1387-3806(03)00338-5
10.1039/C0JA00181C
10.1016/j.aca.2012.01.045
10.1016/S0584-8547(98)00121-9
10.1016/S0009-2541(01)00404-1
10.1063/1.458360
10.1039/C6JA00163G
10.1021/ja00162a074
10.1074/mcp.M114.047407
10.1039/C6JA00402D
10.1016/j.epsl.2013.04.006
10.1039/C7JA00308K
10.1016/j.aca.2015.06.008
10.1039/C6AN00176A
10.1016/j.aca.2016.10.045
10.1002/rcm.7937
10.1039/C7AY00867H
10.1016/j.clinbiochem.2004.11.007
10.1007/s10967-012-2050-1
10.1039/b819373h
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1039/c8an01716f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 323
ExternalDocumentID PMC6501184
30499992
10_1039_C8AN01716F
c8an01716f
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID ---
-JG
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABGFH
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R7B
R7E
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
.GJ
0UZ
186
1TJ
3EH
3O-
53G
71~
AAMEH
AAYXX
ACHDF
ACRPL
ADNMO
ADXHL
AFFNX
AFRZK
AGKEF
AGQPQ
AHGXI
AIDUJ
AKMSF
ALSGL
ANBJS
ANLMG
AQHUZ
ASPBG
AVWKF
BBWZM
C1A
CAG
CITATION
EEHRC
IDY
J3G
J3H
L-8
LPU
MVM
NDZJH
R56
RCLXC
RIG
RNS
ROL
RRXOS
SC5
SLH
XOL
XXG
ZCG
ZKB
ZXP
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c392t-86ed4a7507a6bd8073b497a6b4fadae0b5840ed9686d989b996d8e17c5d0e04d3
ISSN 0003-2654
1364-5528
IngestDate Thu Aug 21 14:04:53 EDT 2025
Fri Jul 11 08:33:05 EDT 2025
Sun Jun 29 15:41:06 EDT 2025
Sat May 31 02:13:58 EDT 2025
Tue Jul 01 01:56:53 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Tue Dec 17 21:00:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-86ed4a7507a6bd8073b497a6b4fadae0b5840ed9686d989b996d8e17c5d0e04d3
Notes Electronic supplementary information (ESI) available: Additional experimental details, figures, and data as noted in the text. See DOI
10.1039/c8an01716f
Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7594-5514
PMID 30499992
PQID 2157473475
PQPubID 2047505
PageCount 7
ParticipantIDs rsc_primary_c8an01716f
proquest_journals_2157473475
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501184
proquest_miscellaneous_2141047108
crossref_citationtrail_10_1039_C8AN01716F
pubmed_primary_30499992
crossref_primary_10_1039_C8AN01716F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181217
PublicationDateYYYYMMDD 2018-12-17
PublicationDate_xml – month: 12
  year: 2018
  text: 20181217
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (C8AN01716F-(cit45)/*[position()=1]) 2017; 12
Evans-Nguyen (C8AN01716F-(cit32)/*[position()=1]) 2013; 85
Forbes (C8AN01716F-(cit37)/*[position()=1]) 2015; 892
Schwartz (C8AN01716F-(cit19)/*[position()=1]) 2017; 950
Hoegg (C8AN01716F-(cit20)/*[position()=1]) 2016; 27
Liu (C8AN01716F-(cit16)/*[position()=1]) 2011; 26
King (C8AN01716F-(cit42)/*[position()=1]) 2000; 11
Taylor (C8AN01716F-(cit43)/*[position()=1]) 2005; 38
Hoegg (C8AN01716F-(cit23)/*[position()=1]) 2017; 31
Shen (C8AN01716F-(cit13)/*[position()=1]) 2002; 185
Richter (C8AN01716F-(cit25)/*[position()=1]) 2008; 269
Lloyd (C8AN01716F-(cit31)/*[position()=1]) 2009; 24
Hasozbek (C8AN01716F-(cit15)/*[position()=1]) 2013; 296
Simons (C8AN01716F-(cit4)/*[position()=1]) 2017; 32
Richter (C8AN01716F-(cit12)/*[position()=1]) 2011; 26
Cheng (C8AN01716F-(cit14)/*[position()=1]) 2013; 371–372
Buhrman (C8AN01716F-(cit40)/*[position()=1]) 1996; 7
Blades (C8AN01716F-(cit34)/*[position()=1]) 1990; 92
Watson (C8AN01716F-(cit36)/*[position()=1]) 2007
Evans-Nguyen (C8AN01716F-(cit38)/*[position()=1]) 2016; 141
Sharp (C8AN01716F-(cit3)/*[position()=1]) 2016; 34
Jessome (C8AN01716F-(cit41)/*[position()=1]) 2006; 24
Betti (C8AN01716F-(cit5)/*[position()=1]) 1999; 71
Luo (C8AN01716F-(cit17)/*[position()=1]) 2010; 82
Li (C8AN01716F-(cit46)/*[position()=1]) 2015; 54
Hoegg (C8AN01716F-(cit21)/*[position()=1]) 2016; 31
Beck (C8AN01716F-(cit44)/*[position()=1]) 2015; 14
Li (C8AN01716F-(cit18)/*[position()=1]) 2016; 51
Forbes (C8AN01716F-(cit39)/*[position()=1]) 2017; 9
Esaka (C8AN01716F-(cit27)/*[position()=1]) 2014; 120
Hedberg (C8AN01716F-(cit10)/*[position()=1]) 2015; 30
Esaka (C8AN01716F-(cit6)/*[position()=1]) 2007; 71
Kraiem (C8AN01716F-(cit28)/*[position()=1]) 2011; 688
Richter (C8AN01716F-(cit11)/*[position()=1]) 2003; 229
Hoegg (C8AN01716F-(cit22)/*[position()=1]) 2018; 33
Dzigal (C8AN01716F-(cit30)/*[position()=1]) 2017; 167
Forbes (C8AN01716F-(cit33)/*[position()=1]) 2014; 86
Zhao (C8AN01716F-(cit24)/*[position()=1]) 2012; 48
Kuhn (C8AN01716F-(cit2)/*[position()=1]) 2001
Tamborini (C8AN01716F-(cit7)/*[position()=1]) 1998; 53
Hedberg (C8AN01716F-(cit9)/*[position()=1]) 2018; 36
Jayaweera (C8AN01716F-(cit35)/*[position()=1]) 1990; 112
Lee (C8AN01716F-(cit29)/*[position()=1]) 2007; 272
Donohue (C8AN01716F-(cit1)/*[position()=1]) 2002; 74
Hedberg (C8AN01716F-(cit8)/*[position()=1]) 2011; 26
Esaka (C8AN01716F-(cit26)/*[position()=1]) 2012; 721
References_xml – issn: 2001
  publication-title: IAEA Report
  doi: Kuhn Fischer Ryjinski
– issn: 2007
  publication-title: Introduction to Mass Spectrometry
  doi: Watson Sparkman
– volume: 30
  start-page: 2516
  year: 2015
  ident: C8AN01716F-(cit10)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C5JA00382B
– volume: 27
  start-page: 1393
  year: 2016
  ident: C8AN01716F-(cit20)/*[position()=1]
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-016-1402-4
– volume: 167
  start-page: 583
  year: 2017
  ident: C8AN01716F-(cit30)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.01.090
– volume: 24
  start-page: 498
  year: 2006
  ident: C8AN01716F-(cit41)/*[position()=1]
  publication-title: LC GC N. Am.
– volume: 54
  start-page: 6893
  year: 2015
  ident: C8AN01716F-(cit46)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501895
– volume: 688
  start-page: 1
  year: 2011
  ident: C8AN01716F-(cit28)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.12.003
– volume: 12
  start-page: 481
  year: 2017
  ident: C8AN01716F-(cit45)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.17
– volume: 82
  start-page: 282
  year: 2010
  ident: C8AN01716F-(cit17)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac9019494
– volume: 120
  start-page: 349
  year: 2014
  ident: C8AN01716F-(cit27)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.12.029
– volume: 7
  start-page: 1099
  year: 1996
  ident: C8AN01716F-(cit40)/*[position()=1]
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(96)00072-4
– volume: 272
  start-page: 299
  year: 2007
  ident: C8AN01716F-(cit29)/*[position()=1]
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-007-0519-0
– volume: 71
  start-page: 1011
  year: 2007
  ident: C8AN01716F-(cit6)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.05.091
– volume: 26
  start-page: 2045
  year: 2011
  ident: C8AN01716F-(cit16)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/c1ja10054h
– volume: 71
  start-page: 2616
  year: 1999
  ident: C8AN01716F-(cit5)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac981184r
– volume: 26
  start-page: 550
  year: 2011
  ident: C8AN01716F-(cit12)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C0JA00173B
– volume: 85
  start-page: 11826
  year: 2013
  ident: C8AN01716F-(cit32)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac402386m
– volume: 74
  start-page: 28 A
  year: 2002
  ident: C8AN01716F-(cit1)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac021909y
– volume: 11
  start-page: 942
  year: 2000
  ident: C8AN01716F-(cit42)/*[position()=1]
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(00)00163-X
– volume: 269
  start-page: 145
  year: 2008
  ident: C8AN01716F-(cit25)/*[position()=1]
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2007.09.012
– volume-title: IAEA Report
  year: 2001
  ident: C8AN01716F-(cit2)/*[position()=1]
– volume: 51
  start-page: 159
  year: 2016
  ident: C8AN01716F-(cit18)/*[position()=1]
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.3741
– volume: 48
  start-page: 3
  year: 2012
  ident: C8AN01716F-(cit24)/*[position()=1]
  publication-title: ESARDA Bull.
– volume: 86
  start-page: 7788
  year: 2014
  ident: C8AN01716F-(cit33)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac501718j
– volume-title: Introduction to Mass Spectrometry
  year: 2007
  ident: C8AN01716F-(cit36)/*[position()=1]
  doi: 10.1002/9780470516898
– volume: 36
  start-page: 03F108
  year: 2018
  ident: C8AN01716F-(cit9)/*[position()=1]
  publication-title: J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
– volume: 229
  start-page: 181
  year: 2003
  ident: C8AN01716F-(cit11)/*[position()=1]
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(03)00338-5
– volume: 26
  start-page: 406
  year: 2011
  ident: C8AN01716F-(cit8)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C0JA00181C
– volume: 721
  start-page: 122
  year: 2012
  ident: C8AN01716F-(cit26)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.01.045
– volume: 53
  start-page: 1289
  year: 1998
  ident: C8AN01716F-(cit7)/*[position()=1]
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/S0584-8547(98)00121-9
– volume: 185
  start-page: 165
  year: 2002
  ident: C8AN01716F-(cit13)/*[position()=1]
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(01)00404-1
– volume: 92
  start-page: 5900
  year: 1990
  ident: C8AN01716F-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458360
– volume: 34
  start-page: 03H115
  year: 2016
  ident: C8AN01716F-(cit3)/*[position()=1]
  publication-title: J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
– volume: 31
  start-page: 2355
  year: 2016
  ident: C8AN01716F-(cit21)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C6JA00163G
– volume: 112
  start-page: 2452
  year: 1990
  ident: C8AN01716F-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00162a074
– volume: 14
  start-page: 2014
  year: 2015
  ident: C8AN01716F-(cit44)/*[position()=1]
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.047407
– volume: 32
  start-page: 393
  year: 2017
  ident: C8AN01716F-(cit4)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C6JA00402D
– volume: 371–372
  start-page: 82
  year: 2013
  ident: C8AN01716F-(cit14)/*[position()=1]
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.04.006
– volume: 33
  start-page: 251
  year: 2018
  ident: C8AN01716F-(cit22)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C7JA00308K
– volume: 892
  start-page: 1
  year: 2015
  ident: C8AN01716F-(cit37)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.06.008
– volume: 141
  start-page: 3811
  year: 2016
  ident: C8AN01716F-(cit38)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C6AN00176A
– volume: 950
  start-page: 119
  year: 2017
  ident: C8AN01716F-(cit19)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.10.045
– volume: 31
  start-page: 1534
  year: 2017
  ident: C8AN01716F-(cit23)/*[position()=1]
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.7937
– volume: 9
  start-page: 4988
  year: 2017
  ident: C8AN01716F-(cit39)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C7AY00867H
– volume: 38
  start-page: 328
  year: 2005
  ident: C8AN01716F-(cit43)/*[position()=1]
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2004.11.007
– volume: 296
  start-page: 447
  year: 2013
  ident: C8AN01716F-(cit15)/*[position()=1]
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-012-2050-1
– volume: 24
  start-page: 752
  year: 2009
  ident: C8AN01716F-(cit31)/*[position()=1]
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/b819373h
SSID ssj0001050
Score 2.3318584
Snippet The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms Atmospheric pressure
Ionization
Isotope ratios
Isotopes
Mass spectrometers
Mass spectrometry
Parameter identification
Quadrupoles
Sound propagation
Spectrometers
Uranium
Title Considerations for uranium isotope ratio analysis by atmospheric pressure ionization mass spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/30499992
https://www.proquest.com/docview/2157473475
https://www.proquest.com/docview/2141047108
https://pubmed.ncbi.nlm.nih.gov/PMC6501184
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYJ8EuiF-DwEBGcEFRRlI7jnOsqk0DwS500m6VHbtaBU2qNj2wv55nO84POiTgEkWxE0t-n533Je99D6H3WnMiEs0iIrQhKEJFOZdAXAkVWrGYFLZ829dLdnFFP1-n112ZO5tdUsvT4vbOvJL_sSpcA7uaLNl_sGz7ULgA52BfOIKF4fhXNvbVNptwNhMxuIN3z3K3Cpfbqq7WOrRtofDSI-BsinpVbY2YwLIIbRSs-YVgvsq6hMxwBe50aBMwjZJBPUyZdhomdb8QSN69yDZS96KOutSxb7fiuy0s0Ncy6H9vSLiJ3XDplafa7ZGE0ShNm5xuv4k6FccBWtyWSNzNe1t1TIzSacFFaSV7Fv1OMM3rlTUasZTMlcv7TRjbNx2gwzFwhPEIHU7OZp--tC9icB1jr0hL8o_dUEfovr956I7scYz9UNmDja8MYz2Q2SP0sKEOeOJw8Bjd0-UT9GDqK_Y9RYshHjDgATd4wA0esG3DHg9Y_sQ9PGCPB9zhARs84D4enqGr87PZ9CJq6mhEsNDGdcSZVlSAa5gJJhWHTV3S3JzThVBCxxKc0FirnHGmcp5LoMCK6yQrUhXrmCpyjEZlVeoXCKdAGAS4uFwVCRUsB7Y7LmTGTFWyRap1gD746ZwXjci8qXXyY26DHUg-n_LJpbXCeYDetX3XTlrlzl4n3irzZult5-CnAg0mNEsD9LZthtk2f7tEqaud6UONDEkS8wA9d0Zsh_HWD1A2MG_bwYiuD1vK5Y0VXwdGA5ycBugYgND277D18o-DvUJH3Xo6QaN6s9OvwaOt5ZsGub8AOfSoXg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+for+uranium+isotope+ratio+analysis+by+atmospheric+pressure+ionization+mass+spectrometry&rft.jtitle=Analyst+%28London%29&rft.au=Forbes%2C+Thomas+P&rft.au=Szakal%2C+Christopher&rft.date=2018-12-17&rft.eissn=1364-5528&rft.volume=144&rft.issue=1&rft.spage=317&rft_id=info:doi/10.1039%2Fc8an01716f&rft_id=info%3Apmid%2F30499992&rft.externalDocID=30499992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon