Considerations for uranium isotope ratio analysis by atmospheric pressure ionization mass spectrometry
The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of...
Saved in:
Published in | Analyst (London) Vol. 144; no. 1; pp. 317 - 323 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2654 1364-5528 1364-5528 |
DOI | 10.1039/c8an01716f |
Cover
Loading…
Abstract | The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure
235
UO
2
+
/
238
UO
2
+
down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.
Uranium isotope ratio measurements from discrete trace sample injections were investigated with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. |
---|---|
AbstractList | The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + / 238 UO 2 + down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. Uranium isotope ratio measurements from discrete trace sample injections were investigated with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + / 238 UO 2 + down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra- high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235 UO 2 + 238 UO 2 + down to 10’s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further.The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging measurements necessitate both the continued characterization and evaluation of evolving mass spectrometric technologies as well as the propagation of sound measurement approaches. For the first time in this work, we present the analysis of uranium isotope ratio measurements from discrete liquid injections with an ultra-high-resolution hybrid quadrupole time-of-flight mass spectrometer. Also presented are important measurement considerations for evaluating the performance of this type and other atmospheric pressure and ambient ionization mass spectrometers for uranium isotope analysis. Specifically, as the goal of achieving isotope ratios from as little as a single picogram of solid material is approached, factors such as mass spectral sampling rate, collision induced dissociation (CID) potentials, and mass resolution can dramatically alter the measured isotope ratio as a function of mass loading. We present the ability to accurately measure 235UO2+/238UO2+ down to 10s of picograms of solubilized uranium oxide through a proper consideration of mass spectral parameters while identifying limitations and opportunities for pushing this limit further. |
Author | Szakal, Christopher Forbes, Thomas P |
AuthorAffiliation | Materials Measurement Science Division National Institute of Standards and Technology |
AuthorAffiliation_xml | – sequence: 0 name: National Institute of Standards and Technology – sequence: 0 name: Materials Measurement Science Division – name: a. National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA |
Author_xml | – sequence: 1 givenname: Thomas P surname: Forbes fullname: Forbes, Thomas P – sequence: 2 givenname: Christopher surname: Szakal fullname: Szakal, Christopher |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30499992$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFv1DAQhS1URLeFC3eQJS4VUmC8sRPnUqlatYBUwQXOlmNPqKskDp4Eafn1eHfbAhW-eKz55ulpnk_Y0RhHZOylgHcCyua903YEUYuqe8JWoqxkodRaH7EVAJTFulLymJ0Q3eanAAXP2HEJsslnvWLdJo4UPCY7h1zxLia-JDuGZeCB4hwn5Pset6PttxSIt1tu5yHSdIMpOD4lJFoS8jwffu1l-GCJOE3o5hQHnNP2OXva2Z7wxd19yr5dXX7dfCyuv3z4tLm4LlzZrOdCV-ilrRXUtmq9hrpsZbOrZWe9RWiVloC-qXTlG920TVN5jaJ2ygOC9OUpOz_oTks7oHc4zsn2ZkphsGlrog3m384Ybsz3-NNUCoTQMguc3Qmk-GNBms0QyGHf2xHjQmYtpABZC9AZffMIvY1LylvaUaqWdSlrlanXfzt6sHIfQQbgALgUiRJ2xoV5v8ZsMPRGgNmlbDb64vM-5as88vbRyL3qf-FXBziRe-D-fJnyNwZjtFw |
CitedBy_id | crossref_primary_10_1021_jasms_0c00305 crossref_primary_10_1039_D0JA90015J crossref_primary_10_1016_j_sab_2020_106045 crossref_primary_10_1039_D0AN01831G crossref_primary_10_1021_jasms_0c00143 crossref_primary_10_1002_rcm_8517 |
Cites_doi | 10.1039/C5JA00382B 10.1007/s13361-016-1402-4 10.1016/j.talanta.2017.01.090 10.1002/anie.201501895 10.1016/j.aca.2010.12.003 10.1038/nnano.2017.17 10.1021/ac9019494 10.1016/j.talanta.2013.12.029 10.1016/S1044-0305(96)00072-4 10.1007/s10967-007-0519-0 10.1016/j.talanta.2006.05.091 10.1039/c1ja10054h 10.1021/ac981184r 10.1039/C0JA00173B 10.1021/ac402386m 10.1021/ac021909y 10.1016/S1044-0305(00)00163-X 10.1016/j.ijms.2007.09.012 10.1002/jms.3741 10.1021/ac501718j 10.1002/9780470516898 10.1016/S1387-3806(03)00338-5 10.1039/C0JA00181C 10.1016/j.aca.2012.01.045 10.1016/S0584-8547(98)00121-9 10.1016/S0009-2541(01)00404-1 10.1063/1.458360 10.1039/C6JA00163G 10.1021/ja00162a074 10.1074/mcp.M114.047407 10.1039/C6JA00402D 10.1016/j.epsl.2013.04.006 10.1039/C7JA00308K 10.1016/j.aca.2015.06.008 10.1039/C6AN00176A 10.1016/j.aca.2016.10.045 10.1002/rcm.7937 10.1039/C7AY00867H 10.1016/j.clinbiochem.2004.11.007 10.1007/s10967-012-2050-1 10.1039/b819373h |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1039/c8an01716f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 323 |
ExternalDocumentID | PMC6501184 30499992 10_1039_C8AN01716F c8an01716f |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | --- -JG -~X .HR 0-7 0R~ 23M 2WC 4.4 5RE 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABGFH ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R7B R7E RAOCF RCNCU RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 ~02 .GJ 0UZ 186 1TJ 3EH 3O- 53G 71~ AAMEH AAYXX ACHDF ACRPL ADNMO ADXHL AFFNX AFRZK AGKEF AGQPQ AHGXI AIDUJ AKMSF ALSGL ANBJS ANLMG AQHUZ ASPBG AVWKF BBWZM C1A CAG CITATION EEHRC IDY J3G J3H L-8 LPU MVM NDZJH R56 RCLXC RIG RNS ROL RRXOS SC5 SLH XOL XXG ZCG ZKB ZXP NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c392t-86ed4a7507a6bd8073b497a6b4fadae0b5840ed9686d989b996d8e17c5d0e04d3 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Thu Aug 21 14:04:53 EDT 2025 Fri Jul 11 08:33:05 EDT 2025 Sun Jun 29 15:41:06 EDT 2025 Sat May 31 02:13:58 EDT 2025 Tue Jul 01 01:56:53 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Tue Dec 17 21:00:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c392t-86ed4a7507a6bd8073b497a6b4fadae0b5840ed9686d989b996d8e17c5d0e04d3 |
Notes | Electronic supplementary information (ESI) available: Additional experimental details, figures, and data as noted in the text. See DOI 10.1039/c8an01716f Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7594-5514 |
PMID | 30499992 |
PQID | 2157473475 |
PQPubID | 2047505 |
PageCount | 7 |
ParticipantIDs | rsc_primary_c8an01716f proquest_journals_2157473475 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501184 proquest_miscellaneous_2141047108 crossref_citationtrail_10_1039_C8AN01716F pubmed_primary_30499992 crossref_primary_10_1039_C8AN01716F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181217 |
PublicationDateYYYYMMDD | 2018-12-17 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181217 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (C8AN01716F-(cit45)/*[position()=1]) 2017; 12 Evans-Nguyen (C8AN01716F-(cit32)/*[position()=1]) 2013; 85 Forbes (C8AN01716F-(cit37)/*[position()=1]) 2015; 892 Schwartz (C8AN01716F-(cit19)/*[position()=1]) 2017; 950 Hoegg (C8AN01716F-(cit20)/*[position()=1]) 2016; 27 Liu (C8AN01716F-(cit16)/*[position()=1]) 2011; 26 King (C8AN01716F-(cit42)/*[position()=1]) 2000; 11 Taylor (C8AN01716F-(cit43)/*[position()=1]) 2005; 38 Hoegg (C8AN01716F-(cit23)/*[position()=1]) 2017; 31 Shen (C8AN01716F-(cit13)/*[position()=1]) 2002; 185 Richter (C8AN01716F-(cit25)/*[position()=1]) 2008; 269 Lloyd (C8AN01716F-(cit31)/*[position()=1]) 2009; 24 Hasozbek (C8AN01716F-(cit15)/*[position()=1]) 2013; 296 Simons (C8AN01716F-(cit4)/*[position()=1]) 2017; 32 Richter (C8AN01716F-(cit12)/*[position()=1]) 2011; 26 Cheng (C8AN01716F-(cit14)/*[position()=1]) 2013; 371–372 Buhrman (C8AN01716F-(cit40)/*[position()=1]) 1996; 7 Blades (C8AN01716F-(cit34)/*[position()=1]) 1990; 92 Watson (C8AN01716F-(cit36)/*[position()=1]) 2007 Evans-Nguyen (C8AN01716F-(cit38)/*[position()=1]) 2016; 141 Sharp (C8AN01716F-(cit3)/*[position()=1]) 2016; 34 Jessome (C8AN01716F-(cit41)/*[position()=1]) 2006; 24 Betti (C8AN01716F-(cit5)/*[position()=1]) 1999; 71 Luo (C8AN01716F-(cit17)/*[position()=1]) 2010; 82 Li (C8AN01716F-(cit46)/*[position()=1]) 2015; 54 Hoegg (C8AN01716F-(cit21)/*[position()=1]) 2016; 31 Beck (C8AN01716F-(cit44)/*[position()=1]) 2015; 14 Li (C8AN01716F-(cit18)/*[position()=1]) 2016; 51 Forbes (C8AN01716F-(cit39)/*[position()=1]) 2017; 9 Esaka (C8AN01716F-(cit27)/*[position()=1]) 2014; 120 Hedberg (C8AN01716F-(cit10)/*[position()=1]) 2015; 30 Esaka (C8AN01716F-(cit6)/*[position()=1]) 2007; 71 Kraiem (C8AN01716F-(cit28)/*[position()=1]) 2011; 688 Richter (C8AN01716F-(cit11)/*[position()=1]) 2003; 229 Hoegg (C8AN01716F-(cit22)/*[position()=1]) 2018; 33 Dzigal (C8AN01716F-(cit30)/*[position()=1]) 2017; 167 Forbes (C8AN01716F-(cit33)/*[position()=1]) 2014; 86 Zhao (C8AN01716F-(cit24)/*[position()=1]) 2012; 48 Kuhn (C8AN01716F-(cit2)/*[position()=1]) 2001 Tamborini (C8AN01716F-(cit7)/*[position()=1]) 1998; 53 Hedberg (C8AN01716F-(cit9)/*[position()=1]) 2018; 36 Jayaweera (C8AN01716F-(cit35)/*[position()=1]) 1990; 112 Lee (C8AN01716F-(cit29)/*[position()=1]) 2007; 272 Donohue (C8AN01716F-(cit1)/*[position()=1]) 2002; 74 Hedberg (C8AN01716F-(cit8)/*[position()=1]) 2011; 26 Esaka (C8AN01716F-(cit26)/*[position()=1]) 2012; 721 |
References_xml | – issn: 2001 publication-title: IAEA Report doi: Kuhn Fischer Ryjinski – issn: 2007 publication-title: Introduction to Mass Spectrometry doi: Watson Sparkman – volume: 30 start-page: 2516 year: 2015 ident: C8AN01716F-(cit10)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C5JA00382B – volume: 27 start-page: 1393 year: 2016 ident: C8AN01716F-(cit20)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-016-1402-4 – volume: 167 start-page: 583 year: 2017 ident: C8AN01716F-(cit30)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2017.01.090 – volume: 24 start-page: 498 year: 2006 ident: C8AN01716F-(cit41)/*[position()=1] publication-title: LC GC N. Am. – volume: 54 start-page: 6893 year: 2015 ident: C8AN01716F-(cit46)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501895 – volume: 688 start-page: 1 year: 2011 ident: C8AN01716F-(cit28)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.12.003 – volume: 12 start-page: 481 year: 2017 ident: C8AN01716F-(cit45)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.17 – volume: 82 start-page: 282 year: 2010 ident: C8AN01716F-(cit17)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac9019494 – volume: 120 start-page: 349 year: 2014 ident: C8AN01716F-(cit27)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2013.12.029 – volume: 7 start-page: 1099 year: 1996 ident: C8AN01716F-(cit40)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(96)00072-4 – volume: 272 start-page: 299 year: 2007 ident: C8AN01716F-(cit29)/*[position()=1] publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-007-0519-0 – volume: 71 start-page: 1011 year: 2007 ident: C8AN01716F-(cit6)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2006.05.091 – volume: 26 start-page: 2045 year: 2011 ident: C8AN01716F-(cit16)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/c1ja10054h – volume: 71 start-page: 2616 year: 1999 ident: C8AN01716F-(cit5)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac981184r – volume: 26 start-page: 550 year: 2011 ident: C8AN01716F-(cit12)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C0JA00173B – volume: 85 start-page: 11826 year: 2013 ident: C8AN01716F-(cit32)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac402386m – volume: 74 start-page: 28 A year: 2002 ident: C8AN01716F-(cit1)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac021909y – volume: 11 start-page: 942 year: 2000 ident: C8AN01716F-(cit42)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(00)00163-X – volume: 269 start-page: 145 year: 2008 ident: C8AN01716F-(cit25)/*[position()=1] publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2007.09.012 – volume-title: IAEA Report year: 2001 ident: C8AN01716F-(cit2)/*[position()=1] – volume: 51 start-page: 159 year: 2016 ident: C8AN01716F-(cit18)/*[position()=1] publication-title: J. Mass Spectrom. doi: 10.1002/jms.3741 – volume: 48 start-page: 3 year: 2012 ident: C8AN01716F-(cit24)/*[position()=1] publication-title: ESARDA Bull. – volume: 86 start-page: 7788 year: 2014 ident: C8AN01716F-(cit33)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac501718j – volume-title: Introduction to Mass Spectrometry year: 2007 ident: C8AN01716F-(cit36)/*[position()=1] doi: 10.1002/9780470516898 – volume: 36 start-page: 03F108 year: 2018 ident: C8AN01716F-(cit9)/*[position()=1] publication-title: J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. – volume: 229 start-page: 181 year: 2003 ident: C8AN01716F-(cit11)/*[position()=1] publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(03)00338-5 – volume: 26 start-page: 406 year: 2011 ident: C8AN01716F-(cit8)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C0JA00181C – volume: 721 start-page: 122 year: 2012 ident: C8AN01716F-(cit26)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.01.045 – volume: 53 start-page: 1289 year: 1998 ident: C8AN01716F-(cit7)/*[position()=1] publication-title: Spectrochim. Acta, Part B doi: 10.1016/S0584-8547(98)00121-9 – volume: 185 start-page: 165 year: 2002 ident: C8AN01716F-(cit13)/*[position()=1] publication-title: Chem. Geol. doi: 10.1016/S0009-2541(01)00404-1 – volume: 92 start-page: 5900 year: 1990 ident: C8AN01716F-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.458360 – volume: 34 start-page: 03H115 year: 2016 ident: C8AN01716F-(cit3)/*[position()=1] publication-title: J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. – volume: 31 start-page: 2355 year: 2016 ident: C8AN01716F-(cit21)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C6JA00163G – volume: 112 start-page: 2452 year: 1990 ident: C8AN01716F-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00162a074 – volume: 14 start-page: 2014 year: 2015 ident: C8AN01716F-(cit44)/*[position()=1] publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.047407 – volume: 32 start-page: 393 year: 2017 ident: C8AN01716F-(cit4)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C6JA00402D – volume: 371–372 start-page: 82 year: 2013 ident: C8AN01716F-(cit14)/*[position()=1] publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.04.006 – volume: 33 start-page: 251 year: 2018 ident: C8AN01716F-(cit22)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/C7JA00308K – volume: 892 start-page: 1 year: 2015 ident: C8AN01716F-(cit37)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.06.008 – volume: 141 start-page: 3811 year: 2016 ident: C8AN01716F-(cit38)/*[position()=1] publication-title: Analyst doi: 10.1039/C6AN00176A – volume: 950 start-page: 119 year: 2017 ident: C8AN01716F-(cit19)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.10.045 – volume: 31 start-page: 1534 year: 2017 ident: C8AN01716F-(cit23)/*[position()=1] publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.7937 – volume: 9 start-page: 4988 year: 2017 ident: C8AN01716F-(cit39)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C7AY00867H – volume: 38 start-page: 328 year: 2005 ident: C8AN01716F-(cit43)/*[position()=1] publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2004.11.007 – volume: 296 start-page: 447 year: 2013 ident: C8AN01716F-(cit15)/*[position()=1] publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-012-2050-1 – volume: 24 start-page: 752 year: 2009 ident: C8AN01716F-(cit31)/*[position()=1] publication-title: J. Anal. At. Spectrom. doi: 10.1039/b819373h |
SSID | ssj0001050 |
Score | 2.3318584 |
Snippet | The accurate measurement of uranium isotope ratios from trace samples lies at the foundation of achieving nuclear nonproliferation. These challenging... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 317 |
SubjectTerms | Atmospheric pressure Ionization Isotope ratios Isotopes Mass spectrometers Mass spectrometry Parameter identification Quadrupoles Sound propagation Spectrometers Uranium |
Title | Considerations for uranium isotope ratio analysis by atmospheric pressure ionization mass spectrometry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30499992 https://www.proquest.com/docview/2157473475 https://www.proquest.com/docview/2141047108 https://pubmed.ncbi.nlm.nih.gov/PMC6501184 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYJ8EuiF-DwEBGcEFRRlI7jnOsqk0DwS500m6VHbtaBU2qNj2wv55nO84POiTgEkWxE0t-n533Je99D6H3WnMiEs0iIrQhKEJFOZdAXAkVWrGYFLZ829dLdnFFP1-n112ZO5tdUsvT4vbOvJL_sSpcA7uaLNl_sGz7ULgA52BfOIKF4fhXNvbVNptwNhMxuIN3z3K3Cpfbqq7WOrRtofDSI-BsinpVbY2YwLIIbRSs-YVgvsq6hMxwBe50aBMwjZJBPUyZdhomdb8QSN69yDZS96KOutSxb7fiuy0s0Ncy6H9vSLiJ3XDplafa7ZGE0ShNm5xuv4k6FccBWtyWSNzNe1t1TIzSacFFaSV7Fv1OMM3rlTUasZTMlcv7TRjbNx2gwzFwhPEIHU7OZp--tC9icB1jr0hL8o_dUEfovr956I7scYz9UNmDja8MYz2Q2SP0sKEOeOJw8Bjd0-UT9GDqK_Y9RYshHjDgATd4wA0esG3DHg9Y_sQ9PGCPB9zhARs84D4enqGr87PZ9CJq6mhEsNDGdcSZVlSAa5gJJhWHTV3S3JzThVBCxxKc0FirnHGmcp5LoMCK6yQrUhXrmCpyjEZlVeoXCKdAGAS4uFwVCRUsB7Y7LmTGTFWyRap1gD746ZwXjci8qXXyY26DHUg-n_LJpbXCeYDetX3XTlrlzl4n3irzZult5-CnAg0mNEsD9LZthtk2f7tEqaud6UONDEkS8wA9d0Zsh_HWD1A2MG_bwYiuD1vK5Y0VXwdGA5ycBugYgND277D18o-DvUJH3Xo6QaN6s9OvwaOt5ZsGub8AOfSoXg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+for+uranium+isotope+ratio+analysis+by+atmospheric+pressure+ionization+mass+spectrometry&rft.jtitle=Analyst+%28London%29&rft.au=Forbes%2C+Thomas+P&rft.au=Szakal%2C+Christopher&rft.date=2018-12-17&rft.eissn=1364-5528&rft.volume=144&rft.issue=1&rft.spage=317&rft_id=info:doi/10.1039%2Fc8an01716f&rft_id=info%3Apmid%2F30499992&rft.externalDocID=30499992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |