Personalized Convolution for Face Recognition
Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we h...
Saved in:
Published in | International journal of computer vision Vol. 130; no. 2; pp. 344 - 362 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we humans are usually impressed by some unique characteristics of different persons, such as one’s blue eyes while another one’s crooked nose, or even someone’s naevus at specific location. Inspired by this observation, we propose a personalized convolution method which aims to extract special distinguishing characteristics of each person for more accurate face recognition. Specifically, given a face, we adaptively generate a set of kernels for him/her, named by us ordinary kernel, which is further analytically decomposed into two orthogonal components, i.e., the commonality component and the specialty component. The former characterizes the commonality among subjects which is optimized on a reference set. The latter is the residual part by filtering out the commonality component from the ordinary kernel, so as to capture those special characteristics, named by us personalized kernel. The CNNs with personalized kernels for convolution can highlight those specialty of a person’s distinguishing characteristics while suppress his/her commonality with others, leading to better distinguishing of different faces. Additionally, as a by-product, the reference set also facilitates the adaptation of our method to different scenarios by simply selecting faces of a particular population. Extensive experiments on the challenging LFW, IJB-A and IJB-C datasets validate that our proposed personalized convolution achieves significant improvement over the conventional CNN, and also other existing methods for face recognition. |
---|---|
AbstractList | Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we humans are usually impressed by some unique characteristics of different persons, such as one’s blue eyes while another one’s crooked nose, or even someone’s naevus at specific location. Inspired by this observation, we propose a personalized convolution method which aims to extract special distinguishing characteristics of each person for more accurate face recognition. Specifically, given a face, we adaptively generate a set of kernels for him/her, named by us ordinary kernel, which is further analytically decomposed into two orthogonal components, i.e., the commonality component and the specialty component. The former characterizes the commonality among subjects which is optimized on a reference set. The latter is the residual part by filtering out the commonality component from the ordinary kernel, so as to capture those special characteristics, named by us personalized kernel. The CNNs with personalized kernels for convolution can highlight those specialty of a person’s distinguishing characteristics while suppress his/her commonality with others, leading to better distinguishing of different faces. Additionally, as a by-product, the reference set also facilitates the adaptation of our method to different scenarios by simply selecting faces of a particular population. Extensive experiments on the challenging LFW, IJB-A and IJB-C datasets validate that our proposed personalized convolution achieves significant improvement over the conventional CNN, and also other existing methods for face recognition. |
Audience | Academic |
Author | Shan, Shiguang Wu, Shuzhe Han, Chunrui Kan, Meina Chen, Xilin |
Author_xml | – sequence: 1 givenname: Chunrui surname: Han fullname: Han, Chunrui organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences – sequence: 2 givenname: Shiguang surname: Shan fullname: Shan, Shiguang organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology – sequence: 3 givenname: Meina orcidid: 0000-0001-9483-875X surname: Kan fullname: Kan, Meina email: kanmeina@ict.ac.cn organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences – sequence: 4 givenname: Shuzhe surname: Wu fullname: Wu, Shuzhe organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences – sequence: 5 givenname: Xilin surname: Chen fullname: Chen, Xilin organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences |
BookMark | eNp9kE9LAzEQxYMoWKtfwFPBk4fUTLK73RxL8U-hoFQ9hzQ7KSnbTU22Uv30pq4g9SA5DAzvl3nvnZHjxjdIyCWwITA2uokAvBCUcaAMclHQ3RHpQT4SFDKWH5Mek5zRvJBwSs5iXDHGeMlFj9AnDNE3unafWA0mvnn39bZ1vhlYHwZ32uBgjsYvG7dfnpMTq-uIFz-zT17vbl8mD3T2eD-djGfUCMlbWgKCqUDComSYLoEw3GZilFvUBSxkibYsGEc-MhIrWVq2WCT7AvNK6NyA6JOr7t9N8G9bjK1a-W1ILqPiBZdQiH3KPhl2qqWuUbnG-jZok16Fa2dSQdal_biQGcsgEzwB1wdA0rS4a5d6G6OaPs8PtbzTmuBjDGjVJri1Dh8KmNp3rrrOVYqnvjtXuwSVfyDjWr1vLjlz9f-o6NCY7jRLDL-R_6G-AKJhlgw |
CitedBy_id | crossref_primary_10_1093_bib_bbac339 crossref_primary_10_1007_s11263_024_02068_w crossref_primary_10_1007_s11263_024_02077_9 crossref_primary_10_1007_s00521_023_08644_4 crossref_primary_10_1007_s12652_024_04856_1 crossref_primary_10_1007_s00521_023_08801_9 crossref_primary_10_1016_j_neunet_2024_106511 |
Cites_doi | 10.1007/978-3-642-33712-3_41 10.1109/CVPR.2019.00364 10.1109/CVPR.2011.5995566 10.1109/TPAMI.2013.112 10.1109/TPAMI.2005.55 10.1109/CVPR42600.2020.00566 10.1109/TPAMI.2008.79 10.1109/CVPRW.2017.87 10.1109/CVPR.2017.296 10.1109/LSP.2016.2603342 10.1109/CVPR.2010.5539992 10.1109/WACV.2016.7477557 10.1109/CVPR.2019.00482 10.1109/CVPR.2015.7298682 10.1109/CVPR.2016.523 10.1007/978-3-030-01240-3_8 10.1007/978-3-030-01216-8_39 10.1109/CVPR.2014.244 10.1007/978-3-030-01252-6_48 10.1109/CVPR.2019.00353 10.1109/FG.2018.00020 10.1109/TPAMI.2016.2582166 10.1109/TIP.2002.999679 10.1109/ICCV.2017.224 10.1109/ICCV.2019.00086 10.1109/CVPR.2019.00123 10.1109/TPAMI.2006.244 10.1109/TPAMI.2017.2710183 10.1007/978-3-030-58452-8_17 10.1109/BTAS.2016.7791205 10.1162/jocn.1991.3.1.71 10.1109/ICB2018.2018.00033 10.1109/CVPR.2015.7299117 10.1109/TMM.2015.2477042 10.1109/ICCV.2019.00557 10.1109/ICCV.2017.407 10.1109/TIP.2006.884956 10.1007/978-3-030-58526-6_20 10.1007/978-3-030-58545-7_31 10.1109/CVPR.2018.00092 10.1109/WACV.2016.7477555 10.1109/CVPR.2017.713 10.1109/CVPR.2015.7298907 10.1007/978-3-642-72201-1_12 10.1007/978-3-319-46454-1_35 10.1109/CVPR42600.2020.00594 10.1109/CVPR.2015.7298803 10.1109/CVPR.2017.163 10.1007/978-3-030-58577-8_9 10.1109/CVPR.2018.00552 10.5244/C.29.41 10.1109/34.598228 10.1109/TPAMI.2012.30 10.1109/CVPR.2014.220 10.1109/ICCV.2017.430 10.1109/TIP.2010.2041397 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
DOI | 10.1007/s11263-021-01536-x |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 362 |
ExternalDocumentID | A694041432 10_1007_s11263_021_01536_x |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2017YFA0700800 – fundername: Natural Science Foundation of China grantid: 61772496 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT ABRTQ PQGLB AEIIB PMFND 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c392t-81e1cd191b80e00213c2f4375fea61b98ef8602e27c9ed98f0bb2633e5d3a5c13 |
IEDL.DBID | U2A |
ISSN | 0920-5691 |
IngestDate | Fri Jul 25 05:53:52 EDT 2025 Tue Jun 10 21:03:52 EDT 2025 Sun Jul 13 06:36:54 EDT 2025 Tue Jul 01 04:30:58 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Fri Feb 21 02:47:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Face recognition Personalized convolution Personalized kernel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-81e1cd191b80e00213c2f4375fea61b98ef8602e27c9ed98f0bb2633e5d3a5c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9483-875X |
PQID | 2629163015 |
PQPubID | 1456341 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2629163015 gale_infotracacademiconefile_A694041432 gale_incontextgauss_ISR_A694041432 crossref_primary_10_1007_s11263_021_01536_x crossref_citationtrail_10_1007_s11263_021_01536_x springer_journals_10_1007_s11263_021_01536_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Han, C., Shan, S., Kan, M., Wu, S., & Chen, X. (2018). Face recognition with contrastive convolution. In European conference on computer vision (ECCV). Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017). StyleBank: An explicit representation for neural image style transfer. In Conference on computer vision and pattern recognition (CVPR). Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Conference on computer vision and pattern recognition (CVPR). Chen, J. C., Patel, V. M., Chellappa, R. (2016). Unconstrained face verification using deep CNN features. In Winter conference on applications of computer vision (WACV). Sankaranarayanan, S., Alavi, A., & Chellappa, R. (2016). Triplet similarity embedding for face verification. Preprint arXiv:160203418 Huang, Y., Wang, Y., Tai, Y., Liu, X., Shen, P., Li, S., Li, J., & Huang, F. (2020b). Curricularface: Adaptive curriculum learning loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR). He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using laplacianfaces. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 328–340. Kang, D., Dhar, D., & Chan, A. (2017). Incorporating side information by adaptive convolution. In Advances in neural information processing systems (NeurIPS). Duan, Y., Lu, J., & Zhou, J. (2019). Uniformface: Learning deep equidistributed representation for face recognition. In Conference on computer vision and pattern recognition (CVPR). Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in neural information processing systems (NeurIPS). Huang, Y., Shen, P., Tai, Y., Li, S., Liu, X., Li, J., Huang, F., & Ji, R. (2020a). Improving face recognition from hard samples via distribution distillation loss. In European Conference on Computer Vision (ECCV). Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in ’Real-Life’ Images: detection, alignment, and recognition. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR). Liao, S., & Shao, L. (2019). Interpretable and generalizable deep image matching with adaptive convolutions. Computing Research Repository (CoRR). Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In Conference on computer vision and pattern recognition (CVPR). Kim, Y., Park, W., Roh, M. C., Shin, J. (2020a). Groupface: Learning latent groups and constructing group-based representations for face recognition. In Conference on Computer Vision and Pattern Recognition (CVPR). Duan, Y., Lu, J., Feng, J., & Zhou, J. (2018). Context-aware local binary feature learning for face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1139–1153. Lei, Z., Pietikäinen, M., & Li, S. Z. (2014). Learning discriminant face descriptor. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 289–302. Klare, B. F., Klein, B., Taborsky, E., Blanton, A. (2015). Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Conference on computer vision and pattern recognition (CVPR). Wu, W., Kan, M., Liu, X., Yang, Y., Shan, S., & Chen, X. (2017). Recursive spatial transformer (ReST) for alignment-free face recognition. In International conference on computer vision (ICCV). Zhang, L., Yang, M., & Feng, X. (2011). Sparse representation or collaborative representation: Which helps face recognition? In International conference on computer vision (ICCV). Masi, I., Tran, A. T., Leksut, J. T., Hassner, T., & Medioni, G. G. (2016b). Do we really need to collect millions of faces for effective face recognition? In European conference on computer vision (ECCV). Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A., & Allen, K., et al. (2017). Iarpa janus benchmark-b face dataset. In Conference on computer vision and pattern recognition workshops (CVPRW). Huang, G. B., & Learned-Miller, E. (2014). Labeled faces in the wild: Updates and new reporting procedures. In Department of Computer Science, Univ. Massachusetts Amherst, Tech. Rep. Yan, S., Xu, D., Zhang, B., & Zhang, H. J. (2005). Graph embedding: A general framework for dimensionality reduction. In Conference on computer vision and pattern recognition (CVPR). Xie, S., Shan, S., Chen, X., & Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. Transactions on Image Processing (TIP) 1349–1361. Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation. In European Conference on Computer Vision (ECCV). Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In Conference on computer vision and pattern recognition (CVPR). Moghaddam, B., Wahid, W., & Pentland, A. (1998). Beyond eigenfaces: Probabilistic matching for face recognition. In International conference on automatic face and gesture recognition (FG). Zhao, K., Xu, J., & Cheng, M. M. (2019). Regularface: Deep face recognition via exclusive regularization. In Conference on computer vision and pattern recognition (CVPR). Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018) Vggface2: A dataset for recognising faces across pose and age. In International conference on automatic face and gesture recognition (FG). Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 711–720 Deng, W., Hu, J., & Guo, J. (2012). Extended src: Undersampled face recognition via intraclass variant dictionary. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1864–1870. Wang, H., Gong, D., Li, Z., & Liu, W. (2019). Decorrelated adversarial learning for age-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR). Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In Conference on computer vision and pattern recognition (CVPR). Shen, Y., Luo, P., Yan, J., Wang, X., & Tang, X. (2018). Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis. In Conference on computer vision and pattern recognition (CVPR). Luan, T., Yin, X., & Liu, X. (2017). Disentangled representation learning GAN for pose-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR). Chen, Y., Chen, Y., Wang, X., Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (NeurIPS). Ding, C., & Tao, D. (2015). Robust face recognition via multimodal deep face representation. Transactions on Multimedia (TMM) 2049–2058. Kim, Y., Park, W., & Shin, J. (2020b). Broadface: Looking at tens of thousands of people at once for face recognition. In European Conference on Computer Vision (ECCV). Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2037–2041. Chen, D., Cao, X., Wang, L., Wen, F., & Sun J. (2012). Bayesian face revisited: A joint formulation. In European Conference on Compute Vision (ECCV). Gong, S., Liu, X., & Jain, A. K. (2020). Jointly de-biasing face recognition and demographic attribute estimation. In European Conference on Computer Vision (ECCV). Dayong, W., Charles, O., Jain, A. K. (2017). Face search at scale. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1122–1136. Sun, Y., Wang, X., & Tang, X. (2015b). Deeply learned face representations are sparse, selective, and robust. In Conference on computer vision and pattern recognition (CVPR). Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience 71–86. Jian, Z., Yu, C., Yi, C., Yang, Y., Fang, Z., Jianshu, L., Hengzhu, L., Shuicheng, Y., & Jiashi, F. (2019). Look across elapse: Disentangled representation learning and photorealistic cross-age face synthesis for age-invariant face recognition. In Conference on artificial intelligence (AAAI). Xie, W., Shen, L., & Zisserman, A. (2018). Comparator networks. In European conference on computer vision (ECCV). Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In Advances in neural information processing systems (NeurIPS). Kang, B. N., Kim,Y., & Kim, D. (2018). Pairwise relational networks for face recognition. In European Conference on Computer Vision (ECCV). Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Transactions on Image processing (TIP) 467–476. Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. Preprint arXiv:14117923 Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2017). Towards large-pose face frontalization in the wild. In International conference on computer vision (ICCV). Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 210–227. Maze, B., Adams, J. C., Duncan, J. A., Kalka, N. D., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., & Grother, P. (2018). Iarpa janus benchmark - c: Face dataset and protocol. In International conference on biometrics (ICB) (pp. 158–165). Su 1536_CR7 1536_CR8 1536_CR9 1536_CR53 1536_CR52 1536_CR11 1536_CR55 1536_CR10 1536_CR54 1536_CR51 1536_CR50 1536_CR17 1536_CR16 1536_CR1 1536_CR19 1536_CR2 1536_CR18 1536_CR3 1536_CR13 1536_CR57 1536_CR4 1536_CR12 1536_CR56 1536_CR5 1536_CR15 1536_CR59 1536_CR6 1536_CR14 1536_CR58 1536_CR20 1536_CR64 1536_CR63 1536_CR22 1536_CR66 1536_CR21 1536_CR65 1536_CR60 1536_CR62 1536_CR61 1536_CR28 1536_CR27 1536_CR29 1536_CR24 1536_CR68 1536_CR23 1536_CR67 1536_CR26 1536_CR25 1536_CR69 1536_CR31 1536_CR30 1536_CR33 1536_CR32 1536_CR71 1536_CR70 1536_CR73 1536_CR72 1536_CR39 1536_CR38 1536_CR35 1536_CR34 1536_CR37 1536_CR36 1536_CR42 1536_CR41 1536_CR44 1536_CR43 1536_CR40 1536_CR49 1536_CR46 1536_CR45 1536_CR48 1536_CR47 |
References_xml | – reference: Deng, W., Hu, J., & Guo, J. (2012). Extended src: Undersampled face recognition via intraclass variant dictionary. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1864–1870. – reference: Huang, Y., Shen, P., Tai, Y., Li, S., Liu, X., Li, J., Huang, F., & Ji, R. (2020a). Improving face recognition from hard samples via distribution distillation loss. In European Conference on Computer Vision (ECCV). – reference: Liao, S., & Shao, L. (2019). Interpretable and generalizable deep image matching with adaptive convolutions. Computing Research Repository (CoRR). – reference: Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In Conference on computer vision and pattern recognition (CVPR). – reference: Chen, J. C., Patel, V. M., Chellappa, R. (2016). Unconstrained face verification using deep CNN features. In Winter conference on applications of computer vision (WACV). – reference: Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In Conference on computer vision and pattern recognition (CVPR). – reference: Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. Preprint arXiv:14117923 – reference: Sun, Y., Liang, D., Wang, X., & Tang, X. (2015a). Deepid3: Face recognition with very deep neural networks. Preprint arXiv:150200873 – reference: Ding, C., & Tao, D. (2015). Robust face recognition via multimodal deep face representation. Transactions on Multimedia (TMM) 2049–2058. – reference: Wu, W., Kan, M., Liu, X., Yang, Y., Shan, S., & Chen, X. (2017). Recursive spatial transformer (ReST) for alignment-free face recognition. In International conference on computer vision (ICCV). – reference: Song, L., Gong, D., Li, Z., Liu, C., & Liu, W. (2019). Occlusion robust face recognition based on mask learning with pairwise differential siamese network. In International conference on computer vision (ICCV). – reference: Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In British machine vision conference (BMVC). – reference: AbdAlmageed, W., Wu, Y., Rawls, S., Harel, S., Hassner, T., Masi, I., Choi, J., Lekust, J., Kim, J., Natarajan, P., et al. (2016). Face recognition using deep multi-pose representations. In Winter conference on applications of computer vision (WACV). – reference: Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016). Large-margin softmax loss for convolutional neural networks. In International conference on machine learning (ICML). – reference: Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018) Vggface2: A dataset for recognising faces across pose and age. In International conference on automatic face and gesture recognition (FG). – reference: Zhang, R., Tang, S., Zhang, Y., Li, J., & Yan, S. (2017). Scale-adaptive convolutions for scene parsing. In International conference on computer vision (ICCV). – reference: Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in neural information processing systems (NeurIPS). – reference: Sun, Y., Wang, X., & Tang, X. (2015b). Deeply learned face representations are sparse, selective, and robust. In Conference on computer vision and pattern recognition (CVPR). – reference: Klare, B. F., Klein, B., Taborsky, E., Blanton, A. (2015). Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Conference on computer vision and pattern recognition (CVPR). – reference: Cao, Z., Yin, Q., Tang, X., & Sun, J. (2010). Face recognition with learning-based descriptor. In Conference on computer vision and pattern recognition (CVPR). – reference: Duan, Y., Lu, J., Feng, J., & Zhou, J. (2018). Context-aware local binary feature learning for face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1139–1153. – reference: Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing (TIP). – reference: Tuan Tran, A., Hassner, T., Masi, I., & Medioni, G. (2017). Regressing robust and discriminative 3d morphable models with a very deep neural network. In Conference on computer vision and pattern recognition (CVPR). – reference: Kim, Y., Park, W., & Shin, J. (2020b). Broadface: Looking at tens of thousands of people at once for face recognition. In European Conference on Computer Vision (ECCV). – reference: Wang, M., & Deng, W. (2018). Deep face recognition: A survey. Computing Research Repository (CoRR). – reference: Maze, B., Adams, J. C., Duncan, J. A., Kalka, N. D., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., & Grother, P. (2018). Iarpa janus benchmark - c: Face dataset and protocol. In International conference on biometrics (ICB) (pp. 158–165). – reference: Huang, Y., Wang, Y., Tai, Y., Liu, X., Shen, P., Li, S., Li, J., & Huang, F. (2020b). Curricularface: Adaptive curriculum learning loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Kang, B. N., Kim, Y., Jun, B., Kim, D. (2019). Attentional feature-pair relation networks for accurate face recognition. In International conference on computer vision (ICCV). – reference: Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience 71–86. – reference: Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In Advances in neural information processing systems (NeurIPS). – reference: Zhang, B., Shan, S., Chen, X., & Gao, W. (2007) Histogram of gabor phase patterns (HGPP): A novel object representation approach for face recognition. Transactions on Image Processing (TIP) 57–68. – reference: Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. Signal Processing Letters 1499–1503. – reference: Chen, Y., Chen, Y., Wang, X., Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (NeurIPS). – reference: Gong, S., Liu, X., & Jain, A. K. (2020). Jointly de-biasing face recognition and demographic attribute estimation. In European Conference on Computer Vision (ECCV). – reference: Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation. In European Conference on Computer Vision (ECCV). – reference: Jian, Z., Yu, C., Yi, C., Yang, Y., Fang, Z., Jianshu, L., Hengzhu, L., Shuicheng, Y., & Jiashi, F. (2019). Look across elapse: Disentangled representation learning and photorealistic cross-age face synthesis for age-invariant face recognition. In Conference on artificial intelligence (AAAI). – reference: Kim, Y., Park, W., Roh, M. C., Shin, J. (2020a). Groupface: Learning latent groups and constructing group-based representations for face recognition. In Conference on Computer Vision and Pattern Recognition (CVPR). – reference: Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 711–720 – reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Conference on computer vision and pattern recognition (CVPR). – reference: Duan, Y., Lu, J., & Zhou, J. (2019). Uniformface: Learning deep equidistributed representation for face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Moghaddam, B., Wahid, W., & Pentland, A. (1998). Beyond eigenfaces: Probabilistic matching for face recognition. In International conference on automatic face and gesture recognition (FG). – reference: Yan, S., Xu, D., Zhang, B., & Zhang, H. J. (2005). Graph embedding: A general framework for dimensionality reduction. In Conference on computer vision and pattern recognition (CVPR). – reference: Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Transactions on Image processing (TIP) 467–476. – reference: Lei, Z., Pietikäinen, M., & Li, S. Z. (2014). Learning discriminant face descriptor. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 289–302. – reference: Wenchao., Z, Shiguang., S, Wen., G, Xilin., C, & Hongming., Z. (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In International conference on computer vision (ICCV). – reference: Luan, T., Yin, X., & Liu, X. (2017). Disentangled representation learning GAN for pose-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Han, C., Shan, S., Kan, M., Wu, S., & Chen, X. (2018). Face recognition with contrastive convolution. In European conference on computer vision (ECCV). – reference: Masi, I., Rawls, S., Medioni, G., & Natarajan, P. (2016a). Pose-aware face recognition in the wild. In Conference on computer vision and pattern recognition (CVPR). – reference: Wang, H., Gong, D., Li, Z., & Liu, W. (2019). Decorrelated adversarial learning for age-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Chen, D., Cao, X., Wang, L., Wen, F., & Sun J. (2012). Bayesian face revisited: A joint formulation. In European Conference on Compute Vision (ECCV). – reference: Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in ’Real-Life’ Images: detection, alignment, and recognition. – reference: Sankaranarayanan, S., Alavi, A., & Chellappa, R. (2016). Triplet similarity embedding for face verification. Preprint arXiv:160203418 – reference: Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2017). Towards large-pose face frontalization in the wild. In International conference on computer vision (ICCV). – reference: Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2018). Arcface: Additive angular margin loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Dayong, W., Charles, O., Jain, A. K. (2017). Face search at scale. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1122–1136. – reference: Klein, B., Wolf, L., & Afek, Y. (2015). A dynamic convolutional layer for short range weather prediction. In Conference on computer vision and pattern recognition (CVPR). – reference: Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017). StyleBank: An explicit representation for neural image style transfer. In Conference on computer vision and pattern recognition (CVPR). – reference: Kang, D., Dhar, D., & Chan, A. (2017). Incorporating side information by adaptive convolution. In Advances in neural information processing systems (NeurIPS). – reference: Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR). – reference: Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Conference on computer vision and pattern recognition (CVPR). – reference: Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2037–2041. – reference: Xie, W., Shen, L., & Zisserman, A. (2018). Comparator networks. In European conference on computer vision (ECCV). – reference: Zhao, K., Xu, J., & Cheng, M. M. (2019). Regularface: Deep face recognition via exclusive regularization. In Conference on computer vision and pattern recognition (CVPR). – reference: Shen, Y., Luo, P., Yan, J., Wang, X., & Tang, X. (2018). Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis. In Conference on computer vision and pattern recognition (CVPR). – reference: Kang, B. N., Kim,Y., & Kim, D. (2018). Pairwise relational networks for face recognition. In European Conference on Computer Vision (ECCV). – reference: Xie, S., Shan, S., Chen, X., & Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. Transactions on Image Processing (TIP) 1349–1361. – reference: Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 210–227. – reference: Huang, G. B., & Learned-Miller, E. (2014). Labeled faces in the wild: Updates and new reporting procedures. In Department of Computer Science, Univ. Massachusetts Amherst, Tech. Rep. – reference: Masi, I., Tran, A. T., Leksut, J. T., Hassner, T., & Medioni, G. G. (2016b). Do we really need to collect millions of faces for effective face recognition? In European conference on computer vision (ECCV). – reference: Zhang, L., Yang, M., & Feng, X. (2011). Sparse representation or collaborative representation: Which helps face recognition? In International conference on computer vision (ICCV). – reference: Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A., & Allen, K., et al. (2017). Iarpa janus benchmark-b face dataset. In Conference on computer vision and pattern recognition workshops (CVPRW). – reference: He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using laplacianfaces. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 328–340. – ident: 1536_CR7 doi: 10.1007/978-3-642-33712-3_41 – ident: 1536_CR57 doi: 10.1109/CVPR.2019.00364 – ident: 1536_CR61 doi: 10.1109/CVPR.2011.5995566 – ident: 1536_CR33 doi: 10.1109/TPAMI.2013.112 – ident: 1536_CR19 doi: 10.1109/TPAMI.2005.55 – ident: 1536_CR29 doi: 10.1109/CVPR42600.2020.00566 – ident: 1536_CR62 doi: 10.1109/TPAMI.2008.79 – ident: 1536_CR21 – ident: 1536_CR60 doi: 10.1109/CVPRW.2017.87 – ident: 1536_CR25 – ident: 1536_CR67 – ident: 1536_CR8 doi: 10.1109/CVPR.2017.296 – ident: 1536_CR70 doi: 10.1109/LSP.2016.2603342 – ident: 1536_CR6 doi: 10.1109/CVPR.2010.5539992 – ident: 1536_CR9 doi: 10.1109/WACV.2016.7477557 – ident: 1536_CR12 doi: 10.1109/CVPR.2019.00482 – ident: 1536_CR58 – ident: 1536_CR45 doi: 10.1109/CVPR.2015.7298682 – ident: 1536_CR39 doi: 10.1109/CVPR.2016.523 – ident: 1536_CR18 doi: 10.1007/978-3-030-01240-3_8 – ident: 1536_CR26 doi: 10.1007/978-3-030-01216-8_39 – ident: 1536_CR28 – ident: 1536_CR24 – ident: 1536_CR48 doi: 10.1109/CVPR.2014.244 – ident: 1536_CR49 – ident: 1536_CR66 – ident: 1536_CR65 doi: 10.1007/978-3-030-01252-6_48 – ident: 1536_CR16 doi: 10.1109/CVPR.2019.00353 – ident: 1536_CR5 doi: 10.1109/FG.2018.00020 – ident: 1536_CR11 doi: 10.1109/TPAMI.2016.2582166 – ident: 1536_CR20 – ident: 1536_CR35 doi: 10.1109/TIP.2002.999679 – ident: 1536_CR34 – ident: 1536_CR59 – ident: 1536_CR72 doi: 10.1109/ICCV.2017.224 – ident: 1536_CR38 – ident: 1536_CR47 doi: 10.1109/ICCV.2019.00086 – ident: 1536_CR73 doi: 10.1109/CVPR.2019.00123 – ident: 1536_CR2 doi: 10.1109/TPAMI.2006.244 – ident: 1536_CR52 – ident: 1536_CR15 doi: 10.1109/TPAMI.2017.2710183 – ident: 1536_CR53 doi: 10.1007/978-3-030-58452-8_17 – ident: 1536_CR44 doi: 10.1109/BTAS.2016.7791205 – ident: 1536_CR55 doi: 10.1162/jocn.1991.3.1.71 – ident: 1536_CR41 doi: 10.1109/ICB2018.2018.00033 – ident: 1536_CR32 doi: 10.1109/CVPR.2015.7299117 – ident: 1536_CR10 – ident: 1536_CR14 doi: 10.1109/TMM.2015.2477042 – ident: 1536_CR71 – ident: 1536_CR27 doi: 10.1109/ICCV.2019.00557 – ident: 1536_CR63 doi: 10.1109/ICCV.2017.407 – ident: 1536_CR69 doi: 10.1109/TIP.2006.884956 – ident: 1536_CR17 doi: 10.1007/978-3-030-58526-6_20 – ident: 1536_CR30 doi: 10.1007/978-3-030-58545-7_31 – ident: 1536_CR46 doi: 10.1109/CVPR.2018.00092 – ident: 1536_CR1 doi: 10.1109/WACV.2016.7477555 – ident: 1536_CR37 doi: 10.1109/CVPR.2017.713 – ident: 1536_CR50 doi: 10.1109/CVPR.2015.7298907 – ident: 1536_CR4 – ident: 1536_CR42 doi: 10.1007/978-3-642-72201-1_12 – ident: 1536_CR40 doi: 10.1007/978-3-319-46454-1_35 – ident: 1536_CR23 doi: 10.1109/CVPR42600.2020.00594 – ident: 1536_CR31 doi: 10.1109/CVPR.2015.7298803 – ident: 1536_CR54 doi: 10.1109/CVPR.2017.163 – ident: 1536_CR22 doi: 10.1007/978-3-030-58577-8_9 – ident: 1536_CR56 doi: 10.1109/CVPR.2018.00552 – ident: 1536_CR43 doi: 10.5244/C.29.41 – ident: 1536_CR3 doi: 10.1109/34.598228 – ident: 1536_CR13 doi: 10.1109/TPAMI.2012.30 – ident: 1536_CR51 doi: 10.1109/CVPR.2014.220 – ident: 1536_CR68 doi: 10.1109/ICCV.2017.430 – ident: 1536_CR36 – ident: 1536_CR64 doi: 10.1109/TIP.2010.2041397 |
SSID | ssj0002823 |
Score | 2.445485 |
Snippet | Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN),... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 344 |
SubjectTerms | Artificial Intelligence Artificial neural networks Biometry Commonality Computer Imaging Computer Science Computers Customization Face recognition Feature extraction Image Processing and Computer Vision Kernels Machine learning Methods Neural networks Pattern Recognition Pattern Recognition and Graphics Vision |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e_HFb3E6pYjggwaX9PtJ5nBMwSHTwd5Cmia-SDvtJsO_3kuXbqi41_TaJpfL5XfJfQCcKxpqHZo0-zQJiIcakAitA5LIVHtKsIQKEzv82A96Q-9h5I_sgVth3SornVgq6jSX5oz8mgUMkQyKo38zfiemapS5XbUlNNahjio4impQv73rPw0WuhgNinkxeTSS_CCmNmxmHjxHWXmHacxp3w3I7MfW9FtB_7kpLTeg7jZsWuTotOdTvQNrKtuFLYsiHbtGC2yqCjVUbXtAnirI_YWknTz7tALnIGR1ukIqZ1A5EuXZPgy7dy-dHrF1EohEdDMhEVVUpmh4JVFLmU3blUx7buhrJQKaxJHSptKUYqGMVRpHupUkOHRX-akrfEndA6hleaYOwUGWSYm7eupL7bUUE0yoUIsQzVitpNYNoBWLuLRJxE0tize-TH9s2MqxF7xkK5814HLxznieQmMl9ZnhPDe5KTLj_PIqpkXB758HvB3EXstDgMcacGGJdI6_l8LGEuAgTDqrH5TNaga5XZ0FX8pSA66qWV0-_r9zR6u_dgwbzERHlE7dTahNPqbqBDHLJDm1gvkNVg3mhw priority: 102 providerName: ProQuest |
Title | Personalized Convolution for Face Recognition |
URI | https://link.springer.com/article/10.1007/s11263-021-01536-x https://www.proquest.com/docview/2629163015 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB7UffHFW1yPpYjggxY2adPjcdU9PFlWF_QppGnii3TFriL-eifdxMUTfAqk0zaZJDPfkDkA9hSJtY5Nmn2SRX6IEtAXWkd-JnMdKkEzIkzs8OVV1BuGZ7fs1gaFlc7b3V1JVpJ6GuxGaHXnaMxfFkQ-IscaQ9vdOHINaetD_qIRMSkgj4YRi1JiQ2V-_sYndfRVKH-7Ha2UTmcJFixa9FqT5V2GGVWswKJFjp49lyV2ueIMrm8V_L6D2W9IejwqXuwm8xCmeh0hlTdwzkOjYg2GnfbNcc-3tRF8iYhm7CdEEZmjsZUlTWUUdSCpDoOYaSUikqWJ0qa6lKKxTFWeJrqZZTj1QLE8EEySYB3milGhNsBDlkmJmjxnUodNRQUVKtYiRtNVK6l1HYhjEZc2cbipX_HApymPDVs5joJXbOWvdTj4eOdxkjbjT-pdw3lu8lEUxuHlXjyXJT-9HvBWlIbNEEEdrcO-JdIj_L0UNn4AJ2FSWH2i3HYryO2JLDmNKCJhFGesDoduVaePfx_c5v_It2CemgiJyrF7G-bGT89qB3HLOGvAbNLpNqDWOrm8uDZt9-68je1R-6o_aFSb-B1uu-g2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCgQiBOIDF2kmczQGhqrDs0odQaaXeXMcZc0FJIVso_Ch-IzOJ3VVB9NarM3Gc8WTmm3geAE9RFt4XXGZfVlpkpAGF9V6LytU-Q6sqaTl3eHtHz_azDwf5wQr8jrkwHFYZdWKvqOvW8T_yV0orQjIkjvmbo6-Cu0bx6WpsoTGIxSb-_EEuW_d6_pb295lS03d7GzMRugoIR1hgISYSpavJTakmY2QTlzrls7TIPVotq3KCnvsyoSpciXU58eOqUjpNMa9TmzuZ0ryX4HKWkiXnzPTp-1PNT-7L0LqeXLJclzIk6QypelL1J6bsvOepFidnDOHf5uCfc9ne3E1vwLWAU5P1QbBuwgo2t-B6wKxJ0AgdDcW2EHHsNoiPEeD_ItKNtvkexDshgJxMrcNkN4Yttc0d2L8Q_t2F1aZt8B4kxDLnCEPUufPZGJVVFgtvC3KaPTrvRyAji4wLJcu5c8YXsyy2zGw1tArTs9WcjODF6T1HQ8GOc6mfMOcNV8JoONTmsz3uOjP_tGvWdZmNM4KTagTPA5Fv6fHOhswFegkunnWGci3uoAm6oDNLyR3By7iry8v_X9z982d7DFdme9tbZmu-s_kArirOy-jDyddgdfHtGB8SWlpUj3oRTeDwor-JP2WCIc4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4UMpDLC0QIRAHsLp2EmdzQKi0XXUprFYLlXpzHcfmgpLSbEvpT-uvYyaxu2oRvfWaTBxnPJ75Jp4HwGvLM-cyKrPPC8kS1IBMOydZYUqXWC0Kril3-OtE7u4nnw_SgyW4CLkwFFYZdGKrqMva0D_yDSEFIhkUx3TD-bCI6fbo49EvRh2k6KQ1tNPoRGTP_vmN7lvzYbyNa_1GiNHO961d5jsMMIO4YM6G3HJTostSDAeWzF1shEviLHVWS17kQ-uoR5MVmcltmQ_doCiEjGOblrFODY9x3DuwnJFX1IPlTzuT6ezSDqAz0zWyRwctlTn3KTtd4h4X7fkpufJpLNnZFbN43Tj8c0rbGr_RA7jvUWu02YnZKizZ6iGseAQbef3Q4KXQJCJcewRsGuD-OZJu1dWpF_YI4XI00sZGsxDEVFePYf9WOPgEelVd2acQIcuMQURRpsYlAyu00DZzOkMX2lnjXB94YJEyvoA59dH4qRall4mtCmehWraqsz68u3zmqCvfcSP1K-K8oroYFUnYD33SNGr8baY2ZZ4MEgSXog9vPZGr8fVG-zwG_AgqpXWFcj2soPKaoVELOe7D-7Cqi9v_n9yzm0d7CXdxP6gv48neGtwTlKTRxpavQ29-fGKfI3SaFy-8jEZweNvb4i_9Hidg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Convolution+for+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Han%2C+Chunrui&rft.au=Shan%2C+Shiguang&rft.au=Kan%2C+Meina&rft.au=Wu%2C+Shuzhe&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=2&rft.spage=344&rft.epage=362&rft_id=info:doi/10.1007%2Fs11263-021-01536-x&rft.externalDocID=10_1007_s11263_021_01536_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |