Personalized Convolution for Face Recognition

Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we h...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 130; no. 2; pp. 344 - 362
Main Authors Han, Chunrui, Shan, Shiguang, Kan, Meina, Wu, Shuzhe, Chen, Xilin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we humans are usually impressed by some unique characteristics of different persons, such as one’s blue eyes while another one’s crooked nose, or even someone’s naevus at specific location. Inspired by this observation, we propose a personalized convolution method which aims to extract special distinguishing characteristics of each person for more accurate face recognition. Specifically, given a face, we adaptively generate a set of kernels for him/her, named by us ordinary kernel, which is further analytically decomposed into two orthogonal components, i.e., the commonality component and the specialty component. The former characterizes the commonality among subjects which is optimized on a reference set. The latter is the residual part by filtering out the commonality component from the ordinary kernel, so as to capture those special characteristics, named by us personalized kernel. The CNNs with personalized kernels for convolution can highlight those specialty of a person’s distinguishing characteristics while suppress his/her commonality with others, leading to better distinguishing of different faces. Additionally, as a by-product, the reference set also facilitates the adaptation of our method to different scenarios by simply selecting faces of a particular population. Extensive experiments on the challenging LFW, IJB-A and IJB-C datasets validate that our proposed personalized convolution achieves significant improvement over the conventional CNN, and also other existing methods for face recognition.
AbstractList Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN), the convolutional kernels for feature extraction are fixed regardless of the input face once the training stage is finished. By contrast, we humans are usually impressed by some unique characteristics of different persons, such as one’s blue eyes while another one’s crooked nose, or even someone’s naevus at specific location. Inspired by this observation, we propose a personalized convolution method which aims to extract special distinguishing characteristics of each person for more accurate face recognition. Specifically, given a face, we adaptively generate a set of kernels for him/her, named by us ordinary kernel, which is further analytically decomposed into two orthogonal components, i.e., the commonality component and the specialty component. The former characterizes the commonality among subjects which is optimized on a reference set. The latter is the residual part by filtering out the commonality component from the ordinary kernel, so as to capture those special characteristics, named by us personalized kernel. The CNNs with personalized kernels for convolution can highlight those specialty of a person’s distinguishing characteristics while suppress his/her commonality with others, leading to better distinguishing of different faces. Additionally, as a by-product, the reference set also facilitates the adaptation of our method to different scenarios by simply selecting faces of a particular population. Extensive experiments on the challenging LFW, IJB-A and IJB-C datasets validate that our proposed personalized convolution achieves significant improvement over the conventional CNN, and also other existing methods for face recognition.
Audience Academic
Author Shan, Shiguang
Wu, Shuzhe
Han, Chunrui
Kan, Meina
Chen, Xilin
Author_xml – sequence: 1
  givenname: Chunrui
  surname: Han
  fullname: Han, Chunrui
  organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Shiguang
  surname: Shan
  fullname: Shan, Shiguang
  organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology
– sequence: 3
  givenname: Meina
  orcidid: 0000-0001-9483-875X
  surname: Kan
  fullname: Kan, Meina
  email: kanmeina@ict.ac.cn
  organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Shuzhe
  surname: Wu
  fullname: Wu, Shuzhe
  organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xilin
  surname: Chen
  fullname: Chen, Xilin
  organization: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, University of Chinese Academy of Sciences
BookMark eNp9kE9LAzEQxYMoWKtfwFPBk4fUTLK73RxL8U-hoFQ9hzQ7KSnbTU22Uv30pq4g9SA5DAzvl3nvnZHjxjdIyCWwITA2uokAvBCUcaAMclHQ3RHpQT4SFDKWH5Mek5zRvJBwSs5iXDHGeMlFj9AnDNE3unafWA0mvnn39bZ1vhlYHwZ32uBgjsYvG7dfnpMTq-uIFz-zT17vbl8mD3T2eD-djGfUCMlbWgKCqUDComSYLoEw3GZilFvUBSxkibYsGEc-MhIrWVq2WCT7AvNK6NyA6JOr7t9N8G9bjK1a-W1ILqPiBZdQiH3KPhl2qqWuUbnG-jZok16Fa2dSQdal_biQGcsgEzwB1wdA0rS4a5d6G6OaPs8PtbzTmuBjDGjVJri1Dh8KmNp3rrrOVYqnvjtXuwSVfyDjWr1vLjlz9f-o6NCY7jRLDL-R_6G-AKJhlgw
CitedBy_id crossref_primary_10_1093_bib_bbac339
crossref_primary_10_1007_s11263_024_02068_w
crossref_primary_10_1007_s11263_024_02077_9
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_1007_s12652_024_04856_1
crossref_primary_10_1007_s00521_023_08801_9
crossref_primary_10_1016_j_neunet_2024_106511
Cites_doi 10.1007/978-3-642-33712-3_41
10.1109/CVPR.2019.00364
10.1109/CVPR.2011.5995566
10.1109/TPAMI.2013.112
10.1109/TPAMI.2005.55
10.1109/CVPR42600.2020.00566
10.1109/TPAMI.2008.79
10.1109/CVPRW.2017.87
10.1109/CVPR.2017.296
10.1109/LSP.2016.2603342
10.1109/CVPR.2010.5539992
10.1109/WACV.2016.7477557
10.1109/CVPR.2019.00482
10.1109/CVPR.2015.7298682
10.1109/CVPR.2016.523
10.1007/978-3-030-01240-3_8
10.1007/978-3-030-01216-8_39
10.1109/CVPR.2014.244
10.1007/978-3-030-01252-6_48
10.1109/CVPR.2019.00353
10.1109/FG.2018.00020
10.1109/TPAMI.2016.2582166
10.1109/TIP.2002.999679
10.1109/ICCV.2017.224
10.1109/ICCV.2019.00086
10.1109/CVPR.2019.00123
10.1109/TPAMI.2006.244
10.1109/TPAMI.2017.2710183
10.1007/978-3-030-58452-8_17
10.1109/BTAS.2016.7791205
10.1162/jocn.1991.3.1.71
10.1109/ICB2018.2018.00033
10.1109/CVPR.2015.7299117
10.1109/TMM.2015.2477042
10.1109/ICCV.2019.00557
10.1109/ICCV.2017.407
10.1109/TIP.2006.884956
10.1007/978-3-030-58526-6_20
10.1007/978-3-030-58545-7_31
10.1109/CVPR.2018.00092
10.1109/WACV.2016.7477555
10.1109/CVPR.2017.713
10.1109/CVPR.2015.7298907
10.1007/978-3-642-72201-1_12
10.1007/978-3-319-46454-1_35
10.1109/CVPR42600.2020.00594
10.1109/CVPR.2015.7298803
10.1109/CVPR.2017.163
10.1007/978-3-030-58577-8_9
10.1109/CVPR.2018.00552
10.5244/C.29.41
10.1109/34.598228
10.1109/TPAMI.2012.30
10.1109/CVPR.2014.220
10.1109/ICCV.2017.430
10.1109/TIP.2010.2041397
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-021-01536-x
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 362
ExternalDocumentID A694041432
10_1007_s11263_021_01536_x
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2017YFA0700800
– fundername: Natural Science Foundation of China
  grantid: 61772496
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
ABRTQ
PQGLB
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c392t-81e1cd191b80e00213c2f4375fea61b98ef8602e27c9ed98f0bb2633e5d3a5c13
IEDL.DBID U2A
ISSN 0920-5691
IngestDate Fri Jul 25 05:53:52 EDT 2025
Tue Jun 10 21:03:52 EDT 2025
Sun Jul 13 06:36:54 EDT 2025
Tue Jul 01 04:30:58 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Face recognition
Personalized convolution
Personalized kernel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-81e1cd191b80e00213c2f4375fea61b98ef8602e27c9ed98f0bb2633e5d3a5c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9483-875X
PQID 2629163015
PQPubID 1456341
PageCount 19
ParticipantIDs proquest_journals_2629163015
gale_infotracacademiconefile_A694041432
gale_incontextgauss_ISR_A694041432
crossref_primary_10_1007_s11263_021_01536_x
crossref_citationtrail_10_1007_s11263_021_01536_x
springer_journals_10_1007_s11263_021_01536_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Han, C., Shan, S., Kan, M., Wu, S., & Chen, X. (2018). Face recognition with contrastive convolution. In European conference on computer vision (ECCV).
Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017). StyleBank: An explicit representation for neural image style transfer. In Conference on computer vision and pattern recognition (CVPR).
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Conference on computer vision and pattern recognition (CVPR).
Chen, J. C., Patel, V. M., Chellappa, R. (2016). Unconstrained face verification using deep CNN features. In Winter conference on applications of computer vision (WACV).
Sankaranarayanan, S., Alavi, A., & Chellappa, R. (2016). Triplet similarity embedding for face verification. Preprint arXiv:160203418
Huang, Y., Wang, Y., Tai, Y., Liu, X., Shen, P., Li, S., Li, J., & Huang, F. (2020b). Curricularface: Adaptive curriculum learning loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR).
He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using laplacianfaces. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 328–340.
Kang, D., Dhar, D., & Chan, A. (2017). Incorporating side information by adaptive convolution. In Advances in neural information processing systems (NeurIPS).
Duan, Y., Lu, J., & Zhou, J. (2019). Uniformface: Learning deep equidistributed representation for face recognition. In Conference on computer vision and pattern recognition (CVPR).
Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in neural information processing systems (NeurIPS).
Huang, Y., Shen, P., Tai, Y., Li, S., Liu, X., Li, J., Huang, F., & Ji, R. (2020a). Improving face recognition from hard samples via distribution distillation loss. In European Conference on Computer Vision (ECCV).
Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in ’Real-Life’ Images: detection, alignment, and recognition.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR).
Liao, S., & Shao, L. (2019). Interpretable and generalizable deep image matching with adaptive convolutions. Computing Research Repository (CoRR).
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In Conference on computer vision and pattern recognition (CVPR).
Kim, Y., Park, W., Roh, M. C., Shin, J. (2020a). Groupface: Learning latent groups and constructing group-based representations for face recognition. In Conference on Computer Vision and Pattern Recognition (CVPR).
Duan, Y., Lu, J., Feng, J., & Zhou, J. (2018). Context-aware local binary feature learning for face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1139–1153.
Lei, Z., Pietikäinen, M., & Li, S. Z. (2014). Learning discriminant face descriptor. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 289–302.
Klare, B. F., Klein, B., Taborsky, E., Blanton, A. (2015). Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Conference on computer vision and pattern recognition (CVPR).
Wu, W., Kan, M., Liu, X., Yang, Y., Shan, S., & Chen, X. (2017). Recursive spatial transformer (ReST) for alignment-free face recognition. In International conference on computer vision (ICCV).
Zhang, L., Yang, M., & Feng, X. (2011). Sparse representation or collaborative representation: Which helps face recognition? In International conference on computer vision (ICCV).
Masi, I., Tran, A. T., Leksut, J. T., Hassner, T., & Medioni, G. G. (2016b). Do we really need to collect millions of faces for effective face recognition? In European conference on computer vision (ECCV).
Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A., & Allen, K., et al. (2017). Iarpa janus benchmark-b face dataset. In Conference on computer vision and pattern recognition workshops (CVPRW).
Huang, G. B., & Learned-Miller, E. (2014). Labeled faces in the wild: Updates and new reporting procedures. In Department of Computer Science, Univ. Massachusetts Amherst, Tech. Rep.
Yan, S., Xu, D., Zhang, B., & Zhang, H. J. (2005). Graph embedding: A general framework for dimensionality reduction. In Conference on computer vision and pattern recognition (CVPR).
Xie, S., Shan, S., Chen, X., & Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. Transactions on Image Processing (TIP) 1349–1361.
Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation. In European Conference on Computer Vision (ECCV).
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In Conference on computer vision and pattern recognition (CVPR).
Moghaddam, B., Wahid, W., & Pentland, A. (1998). Beyond eigenfaces: Probabilistic matching for face recognition. In International conference on automatic face and gesture recognition (FG).
Zhao, K., Xu, J., & Cheng, M. M. (2019). Regularface: Deep face recognition via exclusive regularization. In Conference on computer vision and pattern recognition (CVPR).
Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018) Vggface2: A dataset for recognising faces across pose and age. In International conference on automatic face and gesture recognition (FG).
Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 711–720
Deng, W., Hu, J., & Guo, J. (2012). Extended src: Undersampled face recognition via intraclass variant dictionary. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1864–1870.
Wang, H., Gong, D., Li, Z., & Liu, W. (2019). Decorrelated adversarial learning for age-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR).
Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In Conference on computer vision and pattern recognition (CVPR).
Shen, Y., Luo, P., Yan, J., Wang, X., & Tang, X. (2018). Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis. In Conference on computer vision and pattern recognition (CVPR).
Luan, T., Yin, X., & Liu, X. (2017). Disentangled representation learning GAN for pose-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR).
Chen, Y., Chen, Y., Wang, X., Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (NeurIPS).
Ding, C., & Tao, D. (2015). Robust face recognition via multimodal deep face representation. Transactions on Multimedia (TMM) 2049–2058.
Kim, Y., Park, W., & Shin, J. (2020b). Broadface: Looking at tens of thousands of people at once for face recognition. In European Conference on Computer Vision (ECCV).
Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2037–2041.
Chen, D., Cao, X., Wang, L., Wen, F., & Sun J. (2012). Bayesian face revisited: A joint formulation. In European Conference on Compute Vision (ECCV).
Gong, S., Liu, X., & Jain, A. K. (2020). Jointly de-biasing face recognition and demographic attribute estimation. In European Conference on Computer Vision (ECCV).
Dayong, W., Charles, O., Jain, A. K. (2017). Face search at scale. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1122–1136.
Sun, Y., Wang, X., & Tang, X. (2015b). Deeply learned face representations are sparse, selective, and robust. In Conference on computer vision and pattern recognition (CVPR).
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience 71–86.
Jian, Z., Yu, C., Yi, C., Yang, Y., Fang, Z., Jianshu, L., Hengzhu, L., Shuicheng, Y., & Jiashi, F. (2019). Look across elapse: Disentangled representation learning and photorealistic cross-age face synthesis for age-invariant face recognition. In Conference on artificial intelligence (AAAI).
Xie, W., Shen, L., & Zisserman, A. (2018). Comparator networks. In European conference on computer vision (ECCV).
Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In Advances in neural information processing systems (NeurIPS).
Kang, B. N., Kim,Y., & Kim, D. (2018). Pairwise relational networks for face recognition. In European Conference on Computer Vision (ECCV).
Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Transactions on Image processing (TIP) 467–476.
Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. Preprint arXiv:14117923
Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2017). Towards large-pose face frontalization in the wild. In International conference on computer vision (ICCV).
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 210–227.
Maze, B., Adams, J. C., Duncan, J. A., Kalka, N. D., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., & Grother, P. (2018). Iarpa janus benchmark - c: Face dataset and protocol. In International conference on biometrics (ICB) (pp. 158–165).
Su
1536_CR7
1536_CR8
1536_CR9
1536_CR53
1536_CR52
1536_CR11
1536_CR55
1536_CR10
1536_CR54
1536_CR51
1536_CR50
1536_CR17
1536_CR16
1536_CR1
1536_CR19
1536_CR2
1536_CR18
1536_CR3
1536_CR13
1536_CR57
1536_CR4
1536_CR12
1536_CR56
1536_CR5
1536_CR15
1536_CR59
1536_CR6
1536_CR14
1536_CR58
1536_CR20
1536_CR64
1536_CR63
1536_CR22
1536_CR66
1536_CR21
1536_CR65
1536_CR60
1536_CR62
1536_CR61
1536_CR28
1536_CR27
1536_CR29
1536_CR24
1536_CR68
1536_CR23
1536_CR67
1536_CR26
1536_CR25
1536_CR69
1536_CR31
1536_CR30
1536_CR33
1536_CR32
1536_CR71
1536_CR70
1536_CR73
1536_CR72
1536_CR39
1536_CR38
1536_CR35
1536_CR34
1536_CR37
1536_CR36
1536_CR42
1536_CR41
1536_CR44
1536_CR43
1536_CR40
1536_CR49
1536_CR46
1536_CR45
1536_CR48
1536_CR47
References_xml – reference: Deng, W., Hu, J., & Guo, J. (2012). Extended src: Undersampled face recognition via intraclass variant dictionary. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1864–1870.
– reference: Huang, Y., Shen, P., Tai, Y., Li, S., Liu, X., Li, J., Huang, F., & Ji, R. (2020a). Improving face recognition from hard samples via distribution distillation loss. In European Conference on Computer Vision (ECCV).
– reference: Liao, S., & Shao, L. (2019). Interpretable and generalizable deep image matching with adaptive convolutions. Computing Research Repository (CoRR).
– reference: Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In Conference on computer vision and pattern recognition (CVPR).
– reference: Chen, J. C., Patel, V. M., Chellappa, R. (2016). Unconstrained face verification using deep CNN features. In Winter conference on applications of computer vision (WACV).
– reference: Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In Conference on computer vision and pattern recognition (CVPR).
– reference: Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. Preprint arXiv:14117923
– reference: Sun, Y., Liang, D., Wang, X., & Tang, X. (2015a). Deepid3: Face recognition with very deep neural networks. Preprint arXiv:150200873
– reference: Ding, C., & Tao, D. (2015). Robust face recognition via multimodal deep face representation. Transactions on Multimedia (TMM) 2049–2058.
– reference: Wu, W., Kan, M., Liu, X., Yang, Y., Shan, S., & Chen, X. (2017). Recursive spatial transformer (ReST) for alignment-free face recognition. In International conference on computer vision (ICCV).
– reference: Song, L., Gong, D., Li, Z., Liu, C., & Liu, W. (2019). Occlusion robust face recognition based on mask learning with pairwise differential siamese network. In International conference on computer vision (ICCV).
– reference: Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In British machine vision conference (BMVC).
– reference: AbdAlmageed, W., Wu, Y., Rawls, S., Harel, S., Hassner, T., Masi, I., Choi, J., Lekust, J., Kim, J., Natarajan, P., et al. (2016). Face recognition using deep multi-pose representations. In Winter conference on applications of computer vision (WACV).
– reference: Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016). Large-margin softmax loss for convolutional neural networks. In International conference on machine learning (ICML).
– reference: Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018) Vggface2: A dataset for recognising faces across pose and age. In International conference on automatic face and gesture recognition (FG).
– reference: Zhang, R., Tang, S., Zhang, Y., Li, J., & Yan, S. (2017). Scale-adaptive convolutions for scene parsing. In International conference on computer vision (ICCV).
– reference: Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in neural information processing systems (NeurIPS).
– reference: Sun, Y., Wang, X., & Tang, X. (2015b). Deeply learned face representations are sparse, selective, and robust. In Conference on computer vision and pattern recognition (CVPR).
– reference: Klare, B. F., Klein, B., Taborsky, E., Blanton, A. (2015). Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Conference on computer vision and pattern recognition (CVPR).
– reference: Cao, Z., Yin, Q., Tang, X., & Sun, J. (2010). Face recognition with learning-based descriptor. In Conference on computer vision and pattern recognition (CVPR).
– reference: Duan, Y., Lu, J., Feng, J., & Zhou, J. (2018). Context-aware local binary feature learning for face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1139–1153.
– reference: Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing (TIP).
– reference: Tuan Tran, A., Hassner, T., Masi, I., & Medioni, G. (2017). Regressing robust and discriminative 3d morphable models with a very deep neural network. In Conference on computer vision and pattern recognition (CVPR).
– reference: Kim, Y., Park, W., & Shin, J. (2020b). Broadface: Looking at tens of thousands of people at once for face recognition. In European Conference on Computer Vision (ECCV).
– reference: Wang, M., & Deng, W. (2018). Deep face recognition: A survey. Computing Research Repository (CoRR).
– reference: Maze, B., Adams, J. C., Duncan, J. A., Kalka, N. D., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., & Grother, P. (2018). Iarpa janus benchmark - c: Face dataset and protocol. In International conference on biometrics (ICB) (pp. 158–165).
– reference: Huang, Y., Wang, Y., Tai, Y., Liu, X., Shen, P., Li, S., Li, J., & Huang, F. (2020b). Curricularface: Adaptive curriculum learning loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Kang, B. N., Kim, Y., Jun, B., Kim, D. (2019). Attentional feature-pair relation networks for accurate face recognition. In International conference on computer vision (ICCV).
– reference: Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience 71–86.
– reference: Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter networks. In Advances in neural information processing systems (NeurIPS).
– reference: Zhang, B., Shan, S., Chen, X., & Gao, W. (2007) Histogram of gabor phase patterns (HGPP): A novel object representation approach for face recognition. Transactions on Image Processing (TIP) 57–68.
– reference: Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. Signal Processing Letters 1499–1503.
– reference: Chen, Y., Chen, Y., Wang, X., Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (NeurIPS).
– reference: Gong, S., Liu, X., & Jain, A. K. (2020). Jointly de-biasing face recognition and demographic attribute estimation. In European Conference on Computer Vision (ECCV).
– reference: Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation. In European Conference on Computer Vision (ECCV).
– reference: Jian, Z., Yu, C., Yi, C., Yang, Y., Fang, Z., Jianshu, L., Hengzhu, L., Shuicheng, Y., & Jiashi, F. (2019). Look across elapse: Disentangled representation learning and photorealistic cross-age face synthesis for age-invariant face recognition. In Conference on artificial intelligence (AAAI).
– reference: Kim, Y., Park, W., Roh, M. C., Shin, J. (2020a). Groupface: Learning latent groups and constructing group-based representations for face recognition. In Conference on Computer Vision and Pattern Recognition (CVPR).
– reference: Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 711–720
– reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Conference on computer vision and pattern recognition (CVPR).
– reference: Duan, Y., Lu, J., & Zhou, J. (2019). Uniformface: Learning deep equidistributed representation for face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Moghaddam, B., Wahid, W., & Pentland, A. (1998). Beyond eigenfaces: Probabilistic matching for face recognition. In International conference on automatic face and gesture recognition (FG).
– reference: Yan, S., Xu, D., Zhang, B., & Zhang, H. J. (2005). Graph embedding: A general framework for dimensionality reduction. In Conference on computer vision and pattern recognition (CVPR).
– reference: Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Transactions on Image processing (TIP) 467–476.
– reference: Lei, Z., Pietikäinen, M., & Li, S. Z. (2014). Learning discriminant face descriptor. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 289–302.
– reference: Wenchao., Z, Shiguang., S, Wen., G, Xilin., C, & Hongming., Z. (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In International conference on computer vision (ICCV).
– reference: Luan, T., Yin, X., & Liu, X. (2017). Disentangled representation learning GAN for pose-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Han, C., Shan, S., Kan, M., Wu, S., & Chen, X. (2018). Face recognition with contrastive convolution. In European conference on computer vision (ECCV).
– reference: Masi, I., Rawls, S., Medioni, G., & Natarajan, P. (2016a). Pose-aware face recognition in the wild. In Conference on computer vision and pattern recognition (CVPR).
– reference: Wang, H., Gong, D., Li, Z., & Liu, W. (2019). Decorrelated adversarial learning for age-invariant face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Chen, D., Cao, X., Wang, L., Wen, F., & Sun J. (2012). Bayesian face revisited: A joint formulation. In European Conference on Compute Vision (ECCV).
– reference: Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in ’Real-Life’ Images: detection, alignment, and recognition.
– reference: Sankaranarayanan, S., Alavi, A., & Chellappa, R. (2016). Triplet similarity embedding for face verification. Preprint arXiv:160203418
– reference: Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2017). Towards large-pose face frontalization in the wild. In International conference on computer vision (ICCV).
– reference: Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2018). Arcface: Additive angular margin loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Dayong, W., Charles, O., Jain, A. K. (2017). Face search at scale. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 1122–1136.
– reference: Klein, B., Wolf, L., & Afek, Y. (2015). A dynamic convolutional layer for short range weather prediction. In Conference on computer vision and pattern recognition (CVPR).
– reference: Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017). StyleBank: An explicit representation for neural image style transfer. In Conference on computer vision and pattern recognition (CVPR).
– reference: Kang, D., Dhar, D., & Chan, A. (2017). Incorporating side information by adaptive convolution. In Advances in neural information processing systems (NeurIPS).
– reference: Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Conference on computer vision and pattern recognition (CVPR).
– reference: Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Conference on computer vision and pattern recognition (CVPR).
– reference: Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2037–2041.
– reference: Xie, W., Shen, L., & Zisserman, A. (2018). Comparator networks. In European conference on computer vision (ECCV).
– reference: Zhao, K., Xu, J., & Cheng, M. M. (2019). Regularface: Deep face recognition via exclusive regularization. In Conference on computer vision and pattern recognition (CVPR).
– reference: Shen, Y., Luo, P., Yan, J., Wang, X., & Tang, X. (2018). Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis. In Conference on computer vision and pattern recognition (CVPR).
– reference: Kang, B. N., Kim,Y., & Kim, D. (2018). Pairwise relational networks for face recognition. In European Conference on Computer Vision (ECCV).
– reference: Xie, S., Shan, S., Chen, X., & Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. Transactions on Image Processing (TIP) 1349–1361.
– reference: Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 210–227.
– reference: Huang, G. B., & Learned-Miller, E. (2014). Labeled faces in the wild: Updates and new reporting procedures. In Department of Computer Science, Univ. Massachusetts Amherst, Tech. Rep.
– reference: Masi, I., Tran, A. T., Leksut, J. T., Hassner, T., & Medioni, G. G. (2016b). Do we really need to collect millions of faces for effective face recognition? In European conference on computer vision (ECCV).
– reference: Zhang, L., Yang, M., & Feng, X. (2011). Sparse representation or collaborative representation: Which helps face recognition? In International conference on computer vision (ICCV).
– reference: Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A., & Allen, K., et al. (2017). Iarpa janus benchmark-b face dataset. In Conference on computer vision and pattern recognition workshops (CVPRW).
– reference: He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using laplacianfaces. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 328–340.
– ident: 1536_CR7
  doi: 10.1007/978-3-642-33712-3_41
– ident: 1536_CR57
  doi: 10.1109/CVPR.2019.00364
– ident: 1536_CR61
  doi: 10.1109/CVPR.2011.5995566
– ident: 1536_CR33
  doi: 10.1109/TPAMI.2013.112
– ident: 1536_CR19
  doi: 10.1109/TPAMI.2005.55
– ident: 1536_CR29
  doi: 10.1109/CVPR42600.2020.00566
– ident: 1536_CR62
  doi: 10.1109/TPAMI.2008.79
– ident: 1536_CR21
– ident: 1536_CR60
  doi: 10.1109/CVPRW.2017.87
– ident: 1536_CR25
– ident: 1536_CR67
– ident: 1536_CR8
  doi: 10.1109/CVPR.2017.296
– ident: 1536_CR70
  doi: 10.1109/LSP.2016.2603342
– ident: 1536_CR6
  doi: 10.1109/CVPR.2010.5539992
– ident: 1536_CR9
  doi: 10.1109/WACV.2016.7477557
– ident: 1536_CR12
  doi: 10.1109/CVPR.2019.00482
– ident: 1536_CR58
– ident: 1536_CR45
  doi: 10.1109/CVPR.2015.7298682
– ident: 1536_CR39
  doi: 10.1109/CVPR.2016.523
– ident: 1536_CR18
  doi: 10.1007/978-3-030-01240-3_8
– ident: 1536_CR26
  doi: 10.1007/978-3-030-01216-8_39
– ident: 1536_CR28
– ident: 1536_CR24
– ident: 1536_CR48
  doi: 10.1109/CVPR.2014.244
– ident: 1536_CR49
– ident: 1536_CR66
– ident: 1536_CR65
  doi: 10.1007/978-3-030-01252-6_48
– ident: 1536_CR16
  doi: 10.1109/CVPR.2019.00353
– ident: 1536_CR5
  doi: 10.1109/FG.2018.00020
– ident: 1536_CR11
  doi: 10.1109/TPAMI.2016.2582166
– ident: 1536_CR20
– ident: 1536_CR35
  doi: 10.1109/TIP.2002.999679
– ident: 1536_CR34
– ident: 1536_CR59
– ident: 1536_CR72
  doi: 10.1109/ICCV.2017.224
– ident: 1536_CR38
– ident: 1536_CR47
  doi: 10.1109/ICCV.2019.00086
– ident: 1536_CR73
  doi: 10.1109/CVPR.2019.00123
– ident: 1536_CR2
  doi: 10.1109/TPAMI.2006.244
– ident: 1536_CR52
– ident: 1536_CR15
  doi: 10.1109/TPAMI.2017.2710183
– ident: 1536_CR53
  doi: 10.1007/978-3-030-58452-8_17
– ident: 1536_CR44
  doi: 10.1109/BTAS.2016.7791205
– ident: 1536_CR55
  doi: 10.1162/jocn.1991.3.1.71
– ident: 1536_CR41
  doi: 10.1109/ICB2018.2018.00033
– ident: 1536_CR32
  doi: 10.1109/CVPR.2015.7299117
– ident: 1536_CR10
– ident: 1536_CR14
  doi: 10.1109/TMM.2015.2477042
– ident: 1536_CR71
– ident: 1536_CR27
  doi: 10.1109/ICCV.2019.00557
– ident: 1536_CR63
  doi: 10.1109/ICCV.2017.407
– ident: 1536_CR69
  doi: 10.1109/TIP.2006.884956
– ident: 1536_CR17
  doi: 10.1007/978-3-030-58526-6_20
– ident: 1536_CR30
  doi: 10.1007/978-3-030-58545-7_31
– ident: 1536_CR46
  doi: 10.1109/CVPR.2018.00092
– ident: 1536_CR1
  doi: 10.1109/WACV.2016.7477555
– ident: 1536_CR37
  doi: 10.1109/CVPR.2017.713
– ident: 1536_CR50
  doi: 10.1109/CVPR.2015.7298907
– ident: 1536_CR4
– ident: 1536_CR42
  doi: 10.1007/978-3-642-72201-1_12
– ident: 1536_CR40
  doi: 10.1007/978-3-319-46454-1_35
– ident: 1536_CR23
  doi: 10.1109/CVPR42600.2020.00594
– ident: 1536_CR31
  doi: 10.1109/CVPR.2015.7298803
– ident: 1536_CR54
  doi: 10.1109/CVPR.2017.163
– ident: 1536_CR22
  doi: 10.1007/978-3-030-58577-8_9
– ident: 1536_CR56
  doi: 10.1109/CVPR.2018.00552
– ident: 1536_CR43
  doi: 10.5244/C.29.41
– ident: 1536_CR3
  doi: 10.1109/34.598228
– ident: 1536_CR13
  doi: 10.1109/TPAMI.2012.30
– ident: 1536_CR51
  doi: 10.1109/CVPR.2014.220
– ident: 1536_CR68
  doi: 10.1109/ICCV.2017.430
– ident: 1536_CR36
– ident: 1536_CR64
  doi: 10.1109/TIP.2010.2041397
SSID ssj0002823
Score 2.445485
Snippet Face recognition has been significantly advanced by deep learning based methods. In all face recognition methods based on convolutional neural network (CNN),...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 344
SubjectTerms Artificial Intelligence
Artificial neural networks
Biometry
Commonality
Computer Imaging
Computer Science
Computers
Customization
Face recognition
Feature extraction
Image Processing and Computer Vision
Kernels
Machine learning
Methods
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e_HFb3E6pYjggwaX9PtJ5nBMwSHTwd5Cmia-SDvtJsO_3kuXbqi41_TaJpfL5XfJfQCcKxpqHZo0-zQJiIcakAitA5LIVHtKsIQKEzv82A96Q-9h5I_sgVth3SornVgq6jSX5oz8mgUMkQyKo38zfiemapS5XbUlNNahjio4impQv73rPw0WuhgNinkxeTSS_CCmNmxmHjxHWXmHacxp3w3I7MfW9FtB_7kpLTeg7jZsWuTotOdTvQNrKtuFLYsiHbtGC2yqCjVUbXtAnirI_YWknTz7tALnIGR1ukIqZ1A5EuXZPgy7dy-dHrF1EohEdDMhEVVUpmh4JVFLmU3blUx7buhrJQKaxJHSptKUYqGMVRpHupUkOHRX-akrfEndA6hleaYOwUGWSYm7eupL7bUUE0yoUIsQzVitpNYNoBWLuLRJxE0tize-TH9s2MqxF7xkK5814HLxznieQmMl9ZnhPDe5KTLj_PIqpkXB758HvB3EXstDgMcacGGJdI6_l8LGEuAgTDqrH5TNaga5XZ0FX8pSA66qWV0-_r9zR6u_dgwbzERHlE7dTahNPqbqBDHLJDm1gvkNVg3mhw
  priority: 102
  providerName: ProQuest
Title Personalized Convolution for Face Recognition
URI https://link.springer.com/article/10.1007/s11263-021-01536-x
https://www.proquest.com/docview/2629163015
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB7UffHFW1yPpYjggxY2adPjcdU9PFlWF_QppGnii3TFriL-eifdxMUTfAqk0zaZJDPfkDkA9hSJtY5Nmn2SRX6IEtAXWkd-JnMdKkEzIkzs8OVV1BuGZ7fs1gaFlc7b3V1JVpJ6GuxGaHXnaMxfFkQ-IscaQ9vdOHINaetD_qIRMSkgj4YRi1JiQ2V-_sYndfRVKH-7Ha2UTmcJFixa9FqT5V2GGVWswKJFjp49lyV2ueIMrm8V_L6D2W9IejwqXuwm8xCmeh0hlTdwzkOjYg2GnfbNcc-3tRF8iYhm7CdEEZmjsZUlTWUUdSCpDoOYaSUikqWJ0qa6lKKxTFWeJrqZZTj1QLE8EEySYB3milGhNsBDlkmJmjxnUodNRQUVKtYiRtNVK6l1HYhjEZc2cbipX_HApymPDVs5joJXbOWvdTj4eOdxkjbjT-pdw3lu8lEUxuHlXjyXJT-9HvBWlIbNEEEdrcO-JdIj_L0UNn4AJ2FSWH2i3HYryO2JLDmNKCJhFGesDoduVaePfx_c5v_It2CemgiJyrF7G-bGT89qB3HLOGvAbNLpNqDWOrm8uDZt9-68je1R-6o_aFSb-B1uu-g2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCgQiBOIDF2kmczQGhqrDs0odQaaXeXMcZc0FJIVso_Ch-IzOJ3VVB9NarM3Gc8WTmm3geAE9RFt4XXGZfVlpkpAGF9V6LytU-Q6sqaTl3eHtHz_azDwf5wQr8jrkwHFYZdWKvqOvW8T_yV0orQjIkjvmbo6-Cu0bx6WpsoTGIxSb-_EEuW_d6_pb295lS03d7GzMRugoIR1hgISYSpavJTakmY2QTlzrls7TIPVotq3KCnvsyoSpciXU58eOqUjpNMa9TmzuZ0ryX4HKWkiXnzPTp-1PNT-7L0LqeXLJclzIk6QypelL1J6bsvOepFidnDOHf5uCfc9ne3E1vwLWAU5P1QbBuwgo2t-B6wKxJ0AgdDcW2EHHsNoiPEeD_ItKNtvkexDshgJxMrcNkN4Yttc0d2L8Q_t2F1aZt8B4kxDLnCEPUufPZGJVVFgtvC3KaPTrvRyAji4wLJcu5c8YXsyy2zGw1tArTs9WcjODF6T1HQ8GOc6mfMOcNV8JoONTmsz3uOjP_tGvWdZmNM4KTagTPA5Fv6fHOhswFegkunnWGci3uoAm6oDNLyR3By7iry8v_X9z982d7DFdme9tbZmu-s_kArirOy-jDyddgdfHtGB8SWlpUj3oRTeDwor-JP2WCIc4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4UMpDLC0QIRAHsLp2EmdzQKi0XXUprFYLlXpzHcfmgpLSbEvpT-uvYyaxu2oRvfWaTBxnPJ75Jp4HwGvLM-cyKrPPC8kS1IBMOydZYUqXWC0Kril3-OtE7u4nnw_SgyW4CLkwFFYZdGKrqMva0D_yDSEFIhkUx3TD-bCI6fbo49EvRh2k6KQ1tNPoRGTP_vmN7lvzYbyNa_1GiNHO961d5jsMMIO4YM6G3HJTostSDAeWzF1shEviLHVWS17kQ-uoR5MVmcltmQ_doCiEjGOblrFODY9x3DuwnJFX1IPlTzuT6ezSDqAz0zWyRwctlTn3KTtd4h4X7fkpufJpLNnZFbN43Tj8c0rbGr_RA7jvUWu02YnZKizZ6iGseAQbef3Q4KXQJCJcewRsGuD-OZJu1dWpF_YI4XI00sZGsxDEVFePYf9WOPgEelVd2acQIcuMQURRpsYlAyu00DZzOkMX2lnjXB94YJEyvoA59dH4qRall4mtCmehWraqsz68u3zmqCvfcSP1K-K8oroYFUnYD33SNGr8baY2ZZ4MEgSXog9vPZGr8fVG-zwG_AgqpXWFcj2soPKaoVELOe7D-7Cqi9v_n9yzm0d7CXdxP6gv48neGtwTlKTRxpavQ29-fGKfI3SaFy-8jEZweNvb4i_9Hidg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Convolution+for+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Han%2C+Chunrui&rft.au=Shan%2C+Shiguang&rft.au=Kan%2C+Meina&rft.au=Wu%2C+Shuzhe&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=2&rft.spage=344&rft.epage=362&rft_id=info:doi/10.1007%2Fs11263-021-01536-x&rft.externalDocID=10_1007_s11263_021_01536_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon