Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate
The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed t...
Saved in:
Published in | Journal of power sources Vol. 272; pp. 866 - 879 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier
25.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed to show a strong dependence on the MnO sub(2) loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO sub(2) loaded MnO sub(2)-TiO sub(2) and MnO sub(2)-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm super(-2) at a scan rate of 10 and 100 mV s super(-1), respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO sub(2) tubular substrate on the capacitive behavior of the loaded MnO sub(2) rather than the different MnO sub(2) loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO sub(2) substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO sub(2) material. This work justified the suitability of using the TiO sub(2) nanotube arrays for constructing high-performance supercapacitors. |
---|---|
AbstractList | The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed to show a strong dependence on the MnO sub(2) loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO sub(2) loaded MnO sub(2)-TiO sub(2) and MnO sub(2)-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm super(-2) at a scan rate of 10 and 100 mV s super(-1), respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO sub(2) tubular substrate on the capacitive behavior of the loaded MnO sub(2) rather than the different MnO sub(2) loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO sub(2) substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO sub(2) material. This work justified the suitability of using the TiO sub(2) nanotube arrays for constructing high-performance supercapacitors. |
Author | Zhou, He Zhang, Yanrong |
Author_xml | – sequence: 1 givenname: He surname: Zhou fullname: Zhou, He – sequence: 2 givenname: Yanrong surname: Zhang fullname: Zhang, Yanrong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28867055$$DView record in Pascal Francis |
BookMark | eNqNkc1q3TAQhb1IIH99haBNoZvrjiTLkqGbEtK0EMimXQtZHvXqYkuuJNOGvnx1SZpFN81qZpjvDMw5F81JiAGb5ppCS4H27w_tYY0_c9xSy4B2LQwtcDhpzoFLtZNS8LPmIucDAFAq4bz5fRv2JlicCM5oS4p2j4u3ZiYrJhfTclyS6EhtvpuAGcnk4y8_IcnrHhNmMuEasy_1RAzEkOKLCX5bXrhgQizbiMSkZB4zyduYSzIFr5pTZ-aMb57rZfPt0-3Xm8-7-4e7Lzcf73eWD6zsJColOiPNyCjDcZgYnZgYOt47Ialix8F2IEc7do73VuLkwA7K8VFYp5BfNu-e7q4p_tgwF734bHGe6z9xy5r2QkjeAfDXoLTjwBRU9O0zanL1y6XqlM96TX4x6VEzpXoJQlSuf-JsijkndC8IBX0MTR_039D0MTQNg66hVeGHf4S2Wlt8DNU9P_9P_gfS5akp |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1007_s11814_020_0738_4 crossref_primary_10_1016_j_ijhydene_2015_05_014 crossref_primary_10_1039_C7RA01164D crossref_primary_10_3390_coatings14070894 crossref_primary_10_1007_s11664_022_09550_6 crossref_primary_10_1039_D1RA00564B crossref_primary_10_1016_j_electacta_2016_01_182 crossref_primary_10_1016_j_ijhydene_2018_03_138 crossref_primary_10_1016_j_jallcom_2015_10_204 crossref_primary_10_1007_s10854_016_5656_1 crossref_primary_10_3390_catal8010030 crossref_primary_10_1016_j_jpcs_2019_109111 crossref_primary_10_1039_C6RA13628A crossref_primary_10_1002_advs_201700188 crossref_primary_10_1515_ijmr_2020_7828 crossref_primary_10_1007_s10854_018_9577_z crossref_primary_10_1007_s42250_018_0014_8 crossref_primary_10_1016_j_apsusc_2017_10_171 crossref_primary_10_3390_ma16103864 crossref_primary_10_1088_1361_6528_ab5d64 crossref_primary_10_1016_j_inoche_2022_110286 crossref_primary_10_1016_j_jelechem_2023_117201 crossref_primary_10_1039_C5TA05523G crossref_primary_10_1016_j_electacta_2016_01_193 crossref_primary_10_1038_srep22634 crossref_primary_10_1039_C8RA02744G crossref_primary_10_1039_C8RA08604D crossref_primary_10_1007_s11581_024_05955_x crossref_primary_10_1002_ejic_201500904 crossref_primary_10_1016_j_electacta_2015_08_073 crossref_primary_10_1021_acsami_7b01871 crossref_primary_10_1016_j_pnsc_2019_03_016 crossref_primary_10_1016_j_electacta_2016_09_122 crossref_primary_10_1016_j_fuel_2023_130217 crossref_primary_10_1088_1361_6528_28_5_055405 crossref_primary_10_1007_s11814_019_0365_0 crossref_primary_10_1016_j_ijhydene_2016_08_138 crossref_primary_10_1016_j_jelechem_2020_114644 crossref_primary_10_1039_C7RA04883A crossref_primary_10_1007_s11581_019_03190_3 crossref_primary_10_5658_WOOD_2016_44_5_750 crossref_primary_10_1007_s11051_019_4557_7 crossref_primary_10_1016_j_electacta_2017_09_107 crossref_primary_10_1002_slct_202402814 crossref_primary_10_1016_j_mtphys_2020_100337 crossref_primary_10_3390_en13112767 crossref_primary_10_1007_s10800_022_01821_8 crossref_primary_10_1007_s12596_021_00775_y crossref_primary_10_1007_s10854_020_04743_3 crossref_primary_10_1149_2_0561809jes crossref_primary_10_1016_j_matlet_2017_04_032 crossref_primary_10_1016_j_matpr_2019_06_023 crossref_primary_10_1002_sstr_202300512 |
Cites_doi | 10.1016/j.jpowsour.2013.03.114 10.1016/j.electacta.2009.12.070 10.1021/nl404008e 10.1039/c0jm04085a 10.1021/jp0543330 10.1021/nn2041279 10.1021/am302738r 10.1016/j.jpowsour.2009.06.068 10.1021/nn800141e 10.1002/adma.201300572 10.1016/j.jpowsour.2006.02.065 10.1039/c1cc11811k 10.1021/nl400378j 10.1149/1.3133247 10.1007/s00339-005-3397-8 10.1016/j.jpowsour.2013.04.013 10.1002/anie.201001374 10.1021/jp9701909 10.1039/c2ee22815g 10.1039/c3cc00065f 10.1149/1.1393561 10.1039/C0CS00127A 10.1021/cm049649j 10.1021/nl300173j 10.1002/adfm.201100058 10.1021/nl102203s 10.1016/j.jpowsour.2005.03.210 10.1021/nn303530k 10.1021/jp4082883 10.1149/1.2775167 10.1149/1.3129682 10.1126/science.1213003 10.1039/c1ee01399h 10.1016/j.jpowsour.2012.07.073 10.1039/c0jm04140h 10.1016/j.elecom.2006.05.018 10.1016/S0008-6223(01)00182-8 10.1016/j.jpowsour.2012.06.047 10.1021/am4047552 10.1126/science.1158736 10.1039/c2cc30733b 10.1016/j.jpowsour.2010.01.041 10.1039/c3ra23466e 10.1002/smll.201102635 10.1016/j.jpowsour.2012.04.104 10.1016/j.jpowsour.2006.08.020 10.1021/nl803081j 10.1016/j.jpowsour.2007.04.074 10.1039/C1CS15060J 10.1039/b822726h 10.1021/ja0777741 10.1002/adma.201202146 10.1021/jp013569a 10.1021/ja102267j 10.1021/jp0732920 10.1016/j.carbon.2010.06.047 10.1016/j.elecom.2009.05.003 10.1007/s00339-005-3401-3 10.1038/nmat2297 10.1021/am401501a 10.1021/jp908739q 10.1021/jp905247j |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 7SR 7SU 7TB 7U5 8FD C1K FR3 JG9 KR7 L7M 7ST SOI |
DOI | 10.1016/j.jpowsour.2014.09.030 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 879 |
ExternalDocumentID | 28867055 10_1016_j_jpowsour_2014_09_030 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BELTK BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSM SSR SSZ T5K T9H VH1 VOH WUQ XPP ZMT ~G- AACTN IQODW 7SP 7SR 7SU 7TB 7U5 8FD C1K FR3 JG9 KR7 L7M 7ST SOI |
ID | FETCH-LOGICAL-c392t-7e8854a7ab212eb9d21d259436f57182d259c407bcb4f36c7edf0c98f3b5cf8e3 |
ISSN | 0378-7753 |
IngestDate | Fri Jul 11 11:27:13 EDT 2025 Fri Jul 11 04:26:25 EDT 2025 Wed Apr 02 07:21:51 EDT 2025 Tue Jul 01 04:23:09 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Titanium IV Oxides Anode Nanotube Electrolytic capacitor Electrode material Electrochemical characteristic Titanium Oxides Titania nanotubes Array Substrate Anode material Manganese dioxide Supercapacitor Manganese Oxides Titanium oxide Energy storage Electrical characteristic |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c392t-7e8854a7ab212eb9d21d259436f57182d259c407bcb4f36c7edf0c98f3b5cf8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651430280 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1655734003 proquest_miscellaneous_1651430280 pascalfrancis_primary_28867055 crossref_primary_10_1016_j_jpowsour_2014_09_030 crossref_citationtrail_10_1016_j_jpowsour_2014_09_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-25 |
PublicationDateYYYYMMDD | 2014-12-25 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Jun (10.1016/j.jpowsour.2014.09.030_bib17) 2012; 48 Ghicov (10.1016/j.jpowsour.2014.09.030_bib16) 2009 Ambade (10.1016/j.jpowsour.2014.09.030_bib14) 2013; 49 Ratanatawanate (10.1016/j.jpowsour.2014.09.030_bib22) 2008; 2 Xiao (10.1016/j.jpowsour.2014.09.030_bib26) 2012; 6 Yuan (10.1016/j.jpowsour.2014.09.030_bib30) 2012; 6 Reddy (10.1016/j.jpowsour.2014.09.030_bib48) 2006; 162 Qu (10.1016/j.jpowsour.2014.09.030_bib55) 2009; 11 Miller (10.1016/j.jpowsour.2014.09.030_bib1) 2008; 321 Lu (10.1016/j.jpowsour.2014.09.030_bib9) 2012; 12 Sun (10.1016/j.jpowsour.2014.09.030_bib21) 2008; 130 Yu (10.1016/j.jpowsour.2014.09.030_bib36) 2013; 25 Dong (10.1016/j.jpowsour.2014.09.030_bib38) 2011; 4 Zhou (10.1016/j.jpowsour.2014.09.030_bib10) 2013; 239 Reddy (10.1016/j.jpowsour.2014.09.030_bib45) 2013; 5 Cottineau (10.1016/j.jpowsour.2014.09.030_bib56) 2006; 82 Reddy (10.1016/j.jpowsour.2014.09.030_bib46) 2014; 6 Bordjiba (10.1016/j.jpowsour.2014.09.030_bib31) 2010; 55 Reddy (10.1016/j.jpowsour.2014.09.030_bib50) 2009; 9 Lu (10.1016/j.jpowsour.2014.09.030_bib43) 2007; 111 Simon (10.1016/j.jpowsour.2014.09.030_bib6) 2008; 7 Zhou (10.1016/j.jpowsour.2014.09.030_bib11) 2014; 118 Yang (10.1016/j.jpowsour.2014.09.030_bib34) 2014; 14 Roy (10.1016/j.jpowsour.2014.09.030_bib18) 2011; 50 Yan (10.1016/j.jpowsour.2014.09.030_bib37) 2010; 48 Yang (10.1016/j.jpowsour.2014.09.030_bib13) 2011; 47 Levi (10.1016/j.jpowsour.2014.09.030_bib42) 1997; 101 Yuan (10.1016/j.jpowsour.2014.09.030_bib59) 2006; 8 Khomenko (10.1016/j.jpowsour.2014.09.030_bib58) 2006; 82 Luo (10.1016/j.jpowsour.2014.09.030_bib33) 2007; 154 Lv (10.1016/j.jpowsour.2014.09.030_bib40) 2012; 220 Salari (10.1016/j.jpowsour.2014.09.030_bib8) 2011; 21 Meher (10.1016/j.jpowsour.2014.09.030_bib29) 2012; 215 Reddy (10.1016/j.jpowsour.2014.09.030_bib47) 2011; 21 Nobili (10.1016/j.jpowsour.2014.09.030_bib44) 2002; 106 Huang (10.1016/j.jpowsour.2014.09.030_bib4) 2012; 8 Yu (10.1016/j.jpowsour.2014.09.030_bib23) 2009; 113 Subramanian (10.1016/j.jpowsour.2014.09.030_bib24) 2005; 109 Guan (10.1016/j.jpowsour.2014.09.030_bib51) 2012; 5 Khomenko (10.1016/j.jpowsour.2014.09.030_bib57) 2006; 153 Wang (10.1016/j.jpowsour.2014.09.030_bib28) 2010; 132 Xiao (10.1016/j.jpowsour.2014.09.030_bib35) 2009; 156 Jiang (10.1016/j.jpowsour.2014.09.030_bib3) 2012; 24 Zheng (10.1016/j.jpowsour.2014.09.030_bib39) 2012; 216 Yoon (10.1016/j.jpowsour.2014.09.030_bib27) 2000; 147 Kim (10.1016/j.jpowsour.2014.09.030_bib7) 2009; 156 Reddy (10.1016/j.jpowsour.2014.09.030_bib32) 2010; 114 Hsieh (10.1016/j.jpowsour.2014.09.030_bib62) 2002; 40 Zhou (10.1016/j.jpowsour.2014.09.030_bib61) 2013; 13 Sarma (10.1016/j.jpowsour.2014.09.030_bib15) 2013; 5 Bahloul (10.1016/j.jpowsour.2014.09.030_bib25) 2013; 240 Pandolfo (10.1016/j.jpowsour.2014.09.030_bib5) 2006; 157 Wang (10.1016/j.jpowsour.2014.09.030_bib52) 2013; 3 Zheng (10.1016/j.jpowsour.2014.09.030_bib53) 2010; 195 Fan (10.1016/j.jpowsour.2014.09.030_bib41) 2011; 21 Brousse (10.1016/j.jpowsour.2014.09.030_bib60) 2007; 173 Toupin (10.1016/j.jpowsour.2014.09.030_bib19) 2004; 16 Kim (10.1016/j.jpowsour.2014.09.030_bib12) 2010; 10 Wei (10.1016/j.jpowsour.2014.09.030_bib49) 2011; 40 Gogotsi (10.1016/j.jpowsour.2014.09.030_bib20) 2011; 334 Wang (10.1016/j.jpowsour.2014.09.030_bib2) 2012; 41 Qu (10.1016/j.jpowsour.2014.09.030_bib54) 2009; 194 |
References_xml | – volume: 239 start-page: 128 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.114 – volume: 55 start-page: 3428 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib31 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2009.12.070 – volume: 14 start-page: 731 year: 2014 ident: 10.1016/j.jpowsour.2014.09.030_bib34 publication-title: Nano Lett. doi: 10.1021/nl404008e – volume: 21 start-page: 5128 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib8 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04085a – volume: 109 start-page: 20207 year: 2005 ident: 10.1016/j.jpowsour.2014.09.030_bib24 publication-title: J. Phys. Chem. B doi: 10.1021/jp0543330 – volume: 6 start-page: 656 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib30 publication-title: Acs Nano doi: 10.1021/nn2041279 – volume: 5 start-page: 1688 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib15 publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/am302738r – volume: 194 start-page: 1222 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib54 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.068 – volume: 2 start-page: 1682 year: 2008 ident: 10.1016/j.jpowsour.2014.09.030_bib22 publication-title: Acs Nano doi: 10.1021/nn800141e – volume: 25 start-page: 3302 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib36 publication-title: Adv. Mater. doi: 10.1002/adma.201300572 – volume: 157 start-page: 11 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.065 – volume: 47 start-page: 7746 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib13 publication-title: Chem. Commun. doi: 10.1039/c1cc11811k – volume: 13 start-page: 2078 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib61 publication-title: Nano Lett. doi: 10.1021/nl400378j – volume: 156 start-page: A627 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib35 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3133247 – volume: 82 start-page: 567 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib58 publication-title: Appl. Phys. A-Materials Sci. Process. doi: 10.1007/s00339-005-3397-8 – volume: 240 start-page: 267 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib25 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.013 – volume: 50 start-page: 2904 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib18 publication-title: Angew. Chemie-International Ed. doi: 10.1002/anie.201001374 – volume: 101 start-page: 4630 year: 1997 ident: 10.1016/j.jpowsour.2014.09.030_bib42 publication-title: J. Phys. Chem. B doi: 10.1021/jp9701909 – volume: 5 start-page: 9085 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib51 publication-title: Energy & Environ. Sci. doi: 10.1039/c2ee22815g – volume: 49 start-page: 2308 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib14 publication-title: Chem. Commun. doi: 10.1039/c3cc00065f – volume: 147 start-page: 2507 year: 2000 ident: 10.1016/j.jpowsour.2014.09.030_bib27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393561 – volume: 40 start-page: 1697 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib49 publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00127A – volume: 16 start-page: 3184 year: 2004 ident: 10.1016/j.jpowsour.2014.09.030_bib19 publication-title: Chem. Mater. doi: 10.1021/cm049649j – volume: 12 start-page: 1690 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib9 publication-title: Nano Lett. doi: 10.1021/nl300173j – volume: 21 start-page: 2366 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100058 – volume: 10 start-page: 4099 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib12 publication-title: Nano Lett. doi: 10.1021/nl102203s – volume: 153 start-page: 183 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib57 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.210 – volume: 6 start-page: 9200 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib26 publication-title: Acs Nano doi: 10.1021/nn303530k – volume: 118 start-page: 5626 year: 2014 ident: 10.1016/j.jpowsour.2014.09.030_bib11 publication-title: J. Phys. Chem. C doi: 10.1021/jp4082883 – volume: 154 start-page: A987 year: 2007 ident: 10.1016/j.jpowsour.2014.09.030_bib33 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2775167 – volume: 156 start-page: A584 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib7 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3129682 – volume: 334 start-page: 917 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib20 publication-title: Science doi: 10.1126/science.1213003 – volume: 4 start-page: 3502 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib38 publication-title: Energy & Environ. Sci. doi: 10.1039/c1ee01399h – volume: 220 start-page: 160 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.073 – volume: 21 start-page: 10003 year: 2011 ident: 10.1016/j.jpowsour.2014.09.030_bib47 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04140h – volume: 8 start-page: 1173 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib59 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.05.018 – volume: 40 start-page: 667 year: 2002 ident: 10.1016/j.jpowsour.2014.09.030_bib62 publication-title: Carbon doi: 10.1016/S0008-6223(01)00182-8 – volume: 216 start-page: 508 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib39 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.06.047 – volume: 6 start-page: 680 year: 2014 ident: 10.1016/j.jpowsour.2014.09.030_bib46 publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/am4047552 – volume: 321 start-page: 651 year: 2008 ident: 10.1016/j.jpowsour.2014.09.030_bib1 publication-title: Science doi: 10.1126/science.1158736 – volume: 48 start-page: 6456 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib17 publication-title: Chem. Commun. doi: 10.1039/c2cc30733b – volume: 195 start-page: 4406 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib53 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.041 – volume: 3 start-page: 13059 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib52 publication-title: Rsc Adv. doi: 10.1039/c3ra23466e – volume: 8 start-page: 1805 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib4 publication-title: Small doi: 10.1002/smll.201102635 – volume: 215 start-page: 317 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib29 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.104 – volume: 162 start-page: 1312 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib48 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.08.020 – volume: 9 start-page: 1002 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib50 publication-title: Nano Lett. doi: 10.1021/nl803081j – volume: 173 start-page: 633 year: 2007 ident: 10.1016/j.jpowsour.2014.09.030_bib60 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.04.074 – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib2 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – start-page: 2791 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib16 publication-title: Chem. Commun. doi: 10.1039/b822726h – volume: 130 start-page: 1124 year: 2008 ident: 10.1016/j.jpowsour.2014.09.030_bib21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0777741 – volume: 24 start-page: 5166 year: 2012 ident: 10.1016/j.jpowsour.2014.09.030_bib3 publication-title: Adv. Mater. doi: 10.1002/adma.201202146 – volume: 106 start-page: 3909 year: 2002 ident: 10.1016/j.jpowsour.2014.09.030_bib44 publication-title: J. Phys. Chem. B doi: 10.1021/jp013569a – volume: 132 start-page: 7472 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102267j – volume: 111 start-page: 12067 year: 2007 ident: 10.1016/j.jpowsour.2014.09.030_bib43 publication-title: J. Phys. Chem. C doi: 10.1021/jp0732920 – volume: 48 start-page: 3825 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib37 publication-title: Carbon doi: 10.1016/j.carbon.2010.06.047 – volume: 11 start-page: 1325 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib55 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.05.003 – volume: 82 start-page: 599 year: 2006 ident: 10.1016/j.jpowsour.2014.09.030_bib56 publication-title: Appl. Phys. A-Materials Sci. Process. doi: 10.1007/s00339-005-3401-3 – volume: 7 start-page: 845 year: 2008 ident: 10.1016/j.jpowsour.2014.09.030_bib6 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 5 start-page: 7777 year: 2013 ident: 10.1016/j.jpowsour.2014.09.030_bib45 publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/am401501a – volume: 114 start-page: 658 year: 2010 ident: 10.1016/j.jpowsour.2014.09.030_bib32 publication-title: J. Phys. Chem. C doi: 10.1021/jp908739q – volume: 113 start-page: 16394 year: 2009 ident: 10.1016/j.jpowsour.2014.09.030_bib23 publication-title: J. Phys. Chem. C doi: 10.1021/jp905247j |
SSID | ssj0001170 |
Score | 2.3833683 |
Snippet | The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 866 |
SubjectTerms | Applied sciences Arrays Capacitance Capacitors Capacitors. Resistors. Filters Deposition Electrical engineering. Electrical power engineering Electrochemical analysis Energy Energy. Thermal use of fuels Exact sciences and technology Materials Nanostructure Supercapacitors Titanium dioxide Transport and storage of energy Various equipment and components |
Title | Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate |
URI | https://www.proquest.com/docview/1651430280 https://www.proquest.com/docview/1655734003 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvIAQ4irKZTISb1FKm6vziNDQhARPmwS8RLZjs1YjqZpEYkPit3NOfGm6lcF4idrUttycL-ficyPkdZKmnDNZhaB7oIGiqpCzAl484JIylmCPDd7zj5-yw-Pkw-d05Ggfsks6MZXnO_NK_oeqcA_oilmy16CsXxRuwGegL1yBwnD9Jxof1CfGgW-b2UiX_b8apQOgA53X3zi2mgyqRfNjUamgxWoCqsVAWIzagiUwKjnAjLN60X_342peN12P8RjrNT9rgxb4zFDP9g9K7QqbrgXGI-C19a8nTW9E3KVj6i-8XjdWeNqzh_lQ4dDkKbucK7BB89yU-3X8NDK9eCxHZFm2JVyLnXzbHCEsp0vYJu4RY-5sAdrZRlI57_wFAebDCl3E2rJ065S4TjkrSljnJrkVgS2BzHD6axMHhK13BleT_SujNPLd-9nSYO6ueAt01aYLyiWBPmgpR_fJPUsJ-tZg5QG5oeqH5M6o6OQj8tOhhl5ADR2hhjaaetRQiwZqUUM9amhTU04davw4hxpqUEM9ah6T4_cHR-8OQ9uCI5SgOHdhrhhLE55zASqOEkUVzSswmJM40yloNRF-kcksF1IkOs5krio9kwXTsUilZip-QvbqplZPCY0yLcScw6-xSNJICqn1LJKg4qtEM15NSOoeayltfXpsk3JaXk3WCXnj561MhZa_ztjfopqfFjGWYXWpCXnlyFgCt0UXGjzupm_LeYYGBoYjXDkmzWOQjfGza2_tObm9ec9ekL1u3auXoPV2Yn9A7W8bvrcv |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+manganese+dioxide+spheres+deposited+on+a+titanium+dioxide+nanotube+arrays+substrate&rft.jtitle=Journal+of+power+sources&rft.au=Zhou%2C+He&rft.au=Zhang%2C+Yanrong&rft.date=2014-12-25&rft.issn=0378-7753&rft.volume=272&rft.spage=866&rft.epage=879&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.09.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2014_09_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |