Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate

The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed t...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 272; pp. 866 - 879
Main Authors Zhou, He, Zhang, Yanrong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 25.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed to show a strong dependence on the MnO sub(2) loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO sub(2) loaded MnO sub(2)-TiO sub(2) and MnO sub(2)-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm super(-2) at a scan rate of 10 and 100 mV s super(-1), respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO sub(2) tubular substrate on the capacitive behavior of the loaded MnO sub(2) rather than the different MnO sub(2) loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO sub(2) substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO sub(2) material. This work justified the suitability of using the TiO sub(2) nanotube arrays for constructing high-performance supercapacitors.
AbstractList The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO sub(2)-TiO sub(2) composite electrode is observed to show a strong dependence on the MnO sub(2) loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO sub(2) loaded MnO sub(2)-TiO sub(2) and MnO sub(2)-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm super(-2) at a scan rate of 10 and 100 mV s super(-1), respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO sub(2) tubular substrate on the capacitive behavior of the loaded MnO sub(2) rather than the different MnO sub(2) loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO sub(2) substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO sub(2) material. This work justified the suitability of using the TiO sub(2) nanotube arrays for constructing high-performance supercapacitors.
Author Zhou, He
Zhang, Yanrong
Author_xml – sequence: 1
  givenname: He
  surname: Zhou
  fullname: Zhou, He
– sequence: 2
  givenname: Yanrong
  surname: Zhang
  fullname: Zhang, Yanrong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28867055$$DView record in Pascal Francis
BookMark eNqNkc1q3TAQhb1IIH99haBNoZvrjiTLkqGbEtK0EMimXQtZHvXqYkuuJNOGvnx1SZpFN81qZpjvDMw5F81JiAGb5ppCS4H27w_tYY0_c9xSy4B2LQwtcDhpzoFLtZNS8LPmIucDAFAq4bz5fRv2JlicCM5oS4p2j4u3ZiYrJhfTclyS6EhtvpuAGcnk4y8_IcnrHhNmMuEasy_1RAzEkOKLCX5bXrhgQizbiMSkZB4zyduYSzIFr5pTZ-aMb57rZfPt0-3Xm8-7-4e7Lzcf73eWD6zsJColOiPNyCjDcZgYnZgYOt47Ialix8F2IEc7do73VuLkwA7K8VFYp5BfNu-e7q4p_tgwF734bHGe6z9xy5r2QkjeAfDXoLTjwBRU9O0zanL1y6XqlM96TX4x6VEzpXoJQlSuf-JsijkndC8IBX0MTR_039D0MTQNg66hVeGHf4S2Wlt8DNU9P_9P_gfS5akp
CODEN JPSODZ
CitedBy_id crossref_primary_10_1007_s11814_020_0738_4
crossref_primary_10_1016_j_ijhydene_2015_05_014
crossref_primary_10_1039_C7RA01164D
crossref_primary_10_3390_coatings14070894
crossref_primary_10_1007_s11664_022_09550_6
crossref_primary_10_1039_D1RA00564B
crossref_primary_10_1016_j_electacta_2016_01_182
crossref_primary_10_1016_j_ijhydene_2018_03_138
crossref_primary_10_1016_j_jallcom_2015_10_204
crossref_primary_10_1007_s10854_016_5656_1
crossref_primary_10_3390_catal8010030
crossref_primary_10_1016_j_jpcs_2019_109111
crossref_primary_10_1039_C6RA13628A
crossref_primary_10_1002_advs_201700188
crossref_primary_10_1515_ijmr_2020_7828
crossref_primary_10_1007_s10854_018_9577_z
crossref_primary_10_1007_s42250_018_0014_8
crossref_primary_10_1016_j_apsusc_2017_10_171
crossref_primary_10_3390_ma16103864
crossref_primary_10_1088_1361_6528_ab5d64
crossref_primary_10_1016_j_inoche_2022_110286
crossref_primary_10_1016_j_jelechem_2023_117201
crossref_primary_10_1039_C5TA05523G
crossref_primary_10_1016_j_electacta_2016_01_193
crossref_primary_10_1038_srep22634
crossref_primary_10_1039_C8RA02744G
crossref_primary_10_1039_C8RA08604D
crossref_primary_10_1007_s11581_024_05955_x
crossref_primary_10_1002_ejic_201500904
crossref_primary_10_1016_j_electacta_2015_08_073
crossref_primary_10_1021_acsami_7b01871
crossref_primary_10_1016_j_pnsc_2019_03_016
crossref_primary_10_1016_j_electacta_2016_09_122
crossref_primary_10_1016_j_fuel_2023_130217
crossref_primary_10_1088_1361_6528_28_5_055405
crossref_primary_10_1007_s11814_019_0365_0
crossref_primary_10_1016_j_ijhydene_2016_08_138
crossref_primary_10_1016_j_jelechem_2020_114644
crossref_primary_10_1039_C7RA04883A
crossref_primary_10_1007_s11581_019_03190_3
crossref_primary_10_5658_WOOD_2016_44_5_750
crossref_primary_10_1007_s11051_019_4557_7
crossref_primary_10_1016_j_electacta_2017_09_107
crossref_primary_10_1002_slct_202402814
crossref_primary_10_1016_j_mtphys_2020_100337
crossref_primary_10_3390_en13112767
crossref_primary_10_1007_s10800_022_01821_8
crossref_primary_10_1007_s12596_021_00775_y
crossref_primary_10_1007_s10854_020_04743_3
crossref_primary_10_1149_2_0561809jes
crossref_primary_10_1016_j_matlet_2017_04_032
crossref_primary_10_1016_j_matpr_2019_06_023
crossref_primary_10_1002_sstr_202300512
Cites_doi 10.1016/j.jpowsour.2013.03.114
10.1016/j.electacta.2009.12.070
10.1021/nl404008e
10.1039/c0jm04085a
10.1021/jp0543330
10.1021/nn2041279
10.1021/am302738r
10.1016/j.jpowsour.2009.06.068
10.1021/nn800141e
10.1002/adma.201300572
10.1016/j.jpowsour.2006.02.065
10.1039/c1cc11811k
10.1021/nl400378j
10.1149/1.3133247
10.1007/s00339-005-3397-8
10.1016/j.jpowsour.2013.04.013
10.1002/anie.201001374
10.1021/jp9701909
10.1039/c2ee22815g
10.1039/c3cc00065f
10.1149/1.1393561
10.1039/C0CS00127A
10.1021/cm049649j
10.1021/nl300173j
10.1002/adfm.201100058
10.1021/nl102203s
10.1016/j.jpowsour.2005.03.210
10.1021/nn303530k
10.1021/jp4082883
10.1149/1.2775167
10.1149/1.3129682
10.1126/science.1213003
10.1039/c1ee01399h
10.1016/j.jpowsour.2012.07.073
10.1039/c0jm04140h
10.1016/j.elecom.2006.05.018
10.1016/S0008-6223(01)00182-8
10.1016/j.jpowsour.2012.06.047
10.1021/am4047552
10.1126/science.1158736
10.1039/c2cc30733b
10.1016/j.jpowsour.2010.01.041
10.1039/c3ra23466e
10.1002/smll.201102635
10.1016/j.jpowsour.2012.04.104
10.1016/j.jpowsour.2006.08.020
10.1021/nl803081j
10.1016/j.jpowsour.2007.04.074
10.1039/C1CS15060J
10.1039/b822726h
10.1021/ja0777741
10.1002/adma.201202146
10.1021/jp013569a
10.1021/ja102267j
10.1021/jp0732920
10.1016/j.carbon.2010.06.047
10.1016/j.elecom.2009.05.003
10.1007/s00339-005-3401-3
10.1038/nmat2297
10.1021/am401501a
10.1021/jp908739q
10.1021/jp905247j
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7SR
7SU
7TB
7U5
8FD
C1K
FR3
JG9
KR7
L7M
7ST
SOI
DOI 10.1016/j.jpowsour.2014.09.030
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 879
ExternalDocumentID 28867055
10_1016_j_jpowsour_2014_09_030
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BELTK
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSM
SSR
SSZ
T5K
T9H
VH1
VOH
WUQ
XPP
ZMT
~G-
AACTN
IQODW
7SP
7SR
7SU
7TB
7U5
8FD
C1K
FR3
JG9
KR7
L7M
7ST
SOI
ID FETCH-LOGICAL-c392t-7e8854a7ab212eb9d21d259436f57182d259c407bcb4f36c7edf0c98f3b5cf8e3
ISSN 0378-7753
IngestDate Fri Jul 11 11:27:13 EDT 2025
Fri Jul 11 04:26:25 EDT 2025
Wed Apr 02 07:21:51 EDT 2025
Tue Jul 01 04:23:09 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Titanium IV Oxides
Anode
Nanotube
Electrolytic capacitor
Electrode material
Electrochemical characteristic
Titanium Oxides
Titania nanotubes
Array
Substrate
Anode material
Manganese dioxide
Supercapacitor
Manganese Oxides
Titanium oxide
Energy storage
Electrical characteristic
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-7e8854a7ab212eb9d21d259436f57182d259c407bcb4f36c7edf0c98f3b5cf8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651430280
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1655734003
proquest_miscellaneous_1651430280
pascalfrancis_primary_28867055
crossref_primary_10_1016_j_jpowsour_2014_09_030
crossref_citationtrail_10_1016_j_jpowsour_2014_09_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-25
PublicationDateYYYYMMDD 2014-12-25
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-25
  day: 25
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2014
Publisher Elsevier
Publisher_xml – name: Elsevier
References Jun (10.1016/j.jpowsour.2014.09.030_bib17) 2012; 48
Ghicov (10.1016/j.jpowsour.2014.09.030_bib16) 2009
Ambade (10.1016/j.jpowsour.2014.09.030_bib14) 2013; 49
Ratanatawanate (10.1016/j.jpowsour.2014.09.030_bib22) 2008; 2
Xiao (10.1016/j.jpowsour.2014.09.030_bib26) 2012; 6
Yuan (10.1016/j.jpowsour.2014.09.030_bib30) 2012; 6
Reddy (10.1016/j.jpowsour.2014.09.030_bib48) 2006; 162
Qu (10.1016/j.jpowsour.2014.09.030_bib55) 2009; 11
Miller (10.1016/j.jpowsour.2014.09.030_bib1) 2008; 321
Lu (10.1016/j.jpowsour.2014.09.030_bib9) 2012; 12
Sun (10.1016/j.jpowsour.2014.09.030_bib21) 2008; 130
Yu (10.1016/j.jpowsour.2014.09.030_bib36) 2013; 25
Dong (10.1016/j.jpowsour.2014.09.030_bib38) 2011; 4
Zhou (10.1016/j.jpowsour.2014.09.030_bib10) 2013; 239
Reddy (10.1016/j.jpowsour.2014.09.030_bib45) 2013; 5
Cottineau (10.1016/j.jpowsour.2014.09.030_bib56) 2006; 82
Reddy (10.1016/j.jpowsour.2014.09.030_bib46) 2014; 6
Bordjiba (10.1016/j.jpowsour.2014.09.030_bib31) 2010; 55
Reddy (10.1016/j.jpowsour.2014.09.030_bib50) 2009; 9
Lu (10.1016/j.jpowsour.2014.09.030_bib43) 2007; 111
Simon (10.1016/j.jpowsour.2014.09.030_bib6) 2008; 7
Zhou (10.1016/j.jpowsour.2014.09.030_bib11) 2014; 118
Yang (10.1016/j.jpowsour.2014.09.030_bib34) 2014; 14
Roy (10.1016/j.jpowsour.2014.09.030_bib18) 2011; 50
Yan (10.1016/j.jpowsour.2014.09.030_bib37) 2010; 48
Yang (10.1016/j.jpowsour.2014.09.030_bib13) 2011; 47
Levi (10.1016/j.jpowsour.2014.09.030_bib42) 1997; 101
Yuan (10.1016/j.jpowsour.2014.09.030_bib59) 2006; 8
Khomenko (10.1016/j.jpowsour.2014.09.030_bib58) 2006; 82
Luo (10.1016/j.jpowsour.2014.09.030_bib33) 2007; 154
Lv (10.1016/j.jpowsour.2014.09.030_bib40) 2012; 220
Salari (10.1016/j.jpowsour.2014.09.030_bib8) 2011; 21
Meher (10.1016/j.jpowsour.2014.09.030_bib29) 2012; 215
Reddy (10.1016/j.jpowsour.2014.09.030_bib47) 2011; 21
Nobili (10.1016/j.jpowsour.2014.09.030_bib44) 2002; 106
Huang (10.1016/j.jpowsour.2014.09.030_bib4) 2012; 8
Yu (10.1016/j.jpowsour.2014.09.030_bib23) 2009; 113
Subramanian (10.1016/j.jpowsour.2014.09.030_bib24) 2005; 109
Guan (10.1016/j.jpowsour.2014.09.030_bib51) 2012; 5
Khomenko (10.1016/j.jpowsour.2014.09.030_bib57) 2006; 153
Wang (10.1016/j.jpowsour.2014.09.030_bib28) 2010; 132
Xiao (10.1016/j.jpowsour.2014.09.030_bib35) 2009; 156
Jiang (10.1016/j.jpowsour.2014.09.030_bib3) 2012; 24
Zheng (10.1016/j.jpowsour.2014.09.030_bib39) 2012; 216
Yoon (10.1016/j.jpowsour.2014.09.030_bib27) 2000; 147
Kim (10.1016/j.jpowsour.2014.09.030_bib7) 2009; 156
Reddy (10.1016/j.jpowsour.2014.09.030_bib32) 2010; 114
Hsieh (10.1016/j.jpowsour.2014.09.030_bib62) 2002; 40
Zhou (10.1016/j.jpowsour.2014.09.030_bib61) 2013; 13
Sarma (10.1016/j.jpowsour.2014.09.030_bib15) 2013; 5
Bahloul (10.1016/j.jpowsour.2014.09.030_bib25) 2013; 240
Pandolfo (10.1016/j.jpowsour.2014.09.030_bib5) 2006; 157
Wang (10.1016/j.jpowsour.2014.09.030_bib52) 2013; 3
Zheng (10.1016/j.jpowsour.2014.09.030_bib53) 2010; 195
Fan (10.1016/j.jpowsour.2014.09.030_bib41) 2011; 21
Brousse (10.1016/j.jpowsour.2014.09.030_bib60) 2007; 173
Toupin (10.1016/j.jpowsour.2014.09.030_bib19) 2004; 16
Kim (10.1016/j.jpowsour.2014.09.030_bib12) 2010; 10
Wei (10.1016/j.jpowsour.2014.09.030_bib49) 2011; 40
Gogotsi (10.1016/j.jpowsour.2014.09.030_bib20) 2011; 334
Wang (10.1016/j.jpowsour.2014.09.030_bib2) 2012; 41
Qu (10.1016/j.jpowsour.2014.09.030_bib54) 2009; 194
References_xml – volume: 239
  start-page: 128
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.114
– volume: 55
  start-page: 3428
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib31
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2009.12.070
– volume: 14
  start-page: 731
  year: 2014
  ident: 10.1016/j.jpowsour.2014.09.030_bib34
  publication-title: Nano Lett.
  doi: 10.1021/nl404008e
– volume: 21
  start-page: 5128
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib8
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04085a
– volume: 109
  start-page: 20207
  year: 2005
  ident: 10.1016/j.jpowsour.2014.09.030_bib24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0543330
– volume: 6
  start-page: 656
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib30
  publication-title: Acs Nano
  doi: 10.1021/nn2041279
– volume: 5
  start-page: 1688
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib15
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am302738r
– volume: 194
  start-page: 1222
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib54
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.068
– volume: 2
  start-page: 1682
  year: 2008
  ident: 10.1016/j.jpowsour.2014.09.030_bib22
  publication-title: Acs Nano
  doi: 10.1021/nn800141e
– volume: 25
  start-page: 3302
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300572
– volume: 157
  start-page: 11
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.065
– volume: 47
  start-page: 7746
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib13
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11811k
– volume: 13
  start-page: 2078
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib61
  publication-title: Nano Lett.
  doi: 10.1021/nl400378j
– volume: 156
  start-page: A627
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3133247
– volume: 82
  start-page: 567
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib58
  publication-title: Appl. Phys. A-Materials Sci. Process.
  doi: 10.1007/s00339-005-3397-8
– volume: 240
  start-page: 267
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib25
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.013
– volume: 50
  start-page: 2904
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib18
  publication-title: Angew. Chemie-International Ed.
  doi: 10.1002/anie.201001374
– volume: 101
  start-page: 4630
  year: 1997
  ident: 10.1016/j.jpowsour.2014.09.030_bib42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9701909
– volume: 5
  start-page: 9085
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib51
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/c2ee22815g
– volume: 49
  start-page: 2308
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib14
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc00065f
– volume: 147
  start-page: 2507
  year: 2000
  ident: 10.1016/j.jpowsour.2014.09.030_bib27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393561
– volume: 40
  start-page: 1697
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib49
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00127A
– volume: 16
  start-page: 3184
  year: 2004
  ident: 10.1016/j.jpowsour.2014.09.030_bib19
  publication-title: Chem. Mater.
  doi: 10.1021/cm049649j
– volume: 12
  start-page: 1690
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib9
  publication-title: Nano Lett.
  doi: 10.1021/nl300173j
– volume: 21
  start-page: 2366
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100058
– volume: 10
  start-page: 4099
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib12
  publication-title: Nano Lett.
  doi: 10.1021/nl102203s
– volume: 153
  start-page: 183
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib57
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.210
– volume: 6
  start-page: 9200
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib26
  publication-title: Acs Nano
  doi: 10.1021/nn303530k
– volume: 118
  start-page: 5626
  year: 2014
  ident: 10.1016/j.jpowsour.2014.09.030_bib11
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4082883
– volume: 154
  start-page: A987
  year: 2007
  ident: 10.1016/j.jpowsour.2014.09.030_bib33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2775167
– volume: 156
  start-page: A584
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib7
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3129682
– volume: 334
  start-page: 917
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib20
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 4
  start-page: 3502
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib38
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/c1ee01399h
– volume: 220
  start-page: 160
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.073
– volume: 21
  start-page: 10003
  year: 2011
  ident: 10.1016/j.jpowsour.2014.09.030_bib47
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04140h
– volume: 8
  start-page: 1173
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib59
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.05.018
– volume: 40
  start-page: 667
  year: 2002
  ident: 10.1016/j.jpowsour.2014.09.030_bib62
  publication-title: Carbon
  doi: 10.1016/S0008-6223(01)00182-8
– volume: 216
  start-page: 508
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.06.047
– volume: 6
  start-page: 680
  year: 2014
  ident: 10.1016/j.jpowsour.2014.09.030_bib46
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am4047552
– volume: 321
  start-page: 651
  year: 2008
  ident: 10.1016/j.jpowsour.2014.09.030_bib1
  publication-title: Science
  doi: 10.1126/science.1158736
– volume: 48
  start-page: 6456
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib17
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc30733b
– volume: 195
  start-page: 4406
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib53
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.01.041
– volume: 3
  start-page: 13059
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib52
  publication-title: Rsc Adv.
  doi: 10.1039/c3ra23466e
– volume: 8
  start-page: 1805
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib4
  publication-title: Small
  doi: 10.1002/smll.201102635
– volume: 215
  start-page: 317
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib29
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.104
– volume: 162
  start-page: 1312
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib48
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.08.020
– volume: 9
  start-page: 1002
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib50
  publication-title: Nano Lett.
  doi: 10.1021/nl803081j
– volume: 173
  start-page: 633
  year: 2007
  ident: 10.1016/j.jpowsour.2014.09.030_bib60
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.04.074
– volume: 41
  start-page: 797
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– start-page: 2791
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib16
  publication-title: Chem. Commun.
  doi: 10.1039/b822726h
– volume: 130
  start-page: 1124
  year: 2008
  ident: 10.1016/j.jpowsour.2014.09.030_bib21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0777741
– volume: 24
  start-page: 5166
  year: 2012
  ident: 10.1016/j.jpowsour.2014.09.030_bib3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202146
– volume: 106
  start-page: 3909
  year: 2002
  ident: 10.1016/j.jpowsour.2014.09.030_bib44
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp013569a
– volume: 132
  start-page: 7472
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102267j
– volume: 111
  start-page: 12067
  year: 2007
  ident: 10.1016/j.jpowsour.2014.09.030_bib43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0732920
– volume: 48
  start-page: 3825
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib37
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.06.047
– volume: 11
  start-page: 1325
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib55
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.05.003
– volume: 82
  start-page: 599
  year: 2006
  ident: 10.1016/j.jpowsour.2014.09.030_bib56
  publication-title: Appl. Phys. A-Materials Sci. Process.
  doi: 10.1007/s00339-005-3401-3
– volume: 7
  start-page: 845
  year: 2008
  ident: 10.1016/j.jpowsour.2014.09.030_bib6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 5
  start-page: 7777
  year: 2013
  ident: 10.1016/j.jpowsour.2014.09.030_bib45
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am401501a
– volume: 114
  start-page: 658
  year: 2010
  ident: 10.1016/j.jpowsour.2014.09.030_bib32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908739q
– volume: 113
  start-page: 16394
  year: 2009
  ident: 10.1016/j.jpowsour.2014.09.030_bib23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905247j
SSID ssj0001170
Score 2.3833683
Snippet The deposition of MnO sub(2) spheres on a TiO sub(2) nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 866
SubjectTerms Applied sciences
Arrays
Capacitance
Capacitors
Capacitors. Resistors. Filters
Deposition
Electrical engineering. Electrical power engineering
Electrochemical analysis
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Materials
Nanostructure
Supercapacitors
Titanium dioxide
Transport and storage of energy
Various equipment and components
Title Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate
URI https://www.proquest.com/docview/1651430280
https://www.proquest.com/docview/1655734003
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvIAQ4irKZTISb1FKm6vziNDQhARPmwS8RLZjs1YjqZpEYkPit3NOfGm6lcF4idrUttycL-ficyPkdZKmnDNZhaB7oIGiqpCzAl484JIylmCPDd7zj5-yw-Pkw-d05Ggfsks6MZXnO_NK_oeqcA_oilmy16CsXxRuwGegL1yBwnD9Jxof1CfGgW-b2UiX_b8apQOgA53X3zi2mgyqRfNjUamgxWoCqsVAWIzagiUwKjnAjLN60X_342peN12P8RjrNT9rgxb4zFDP9g9K7QqbrgXGI-C19a8nTW9E3KVj6i-8XjdWeNqzh_lQ4dDkKbucK7BB89yU-3X8NDK9eCxHZFm2JVyLnXzbHCEsp0vYJu4RY-5sAdrZRlI57_wFAebDCl3E2rJ065S4TjkrSljnJrkVgS2BzHD6axMHhK13BleT_SujNPLd-9nSYO6ueAt01aYLyiWBPmgpR_fJPUsJ-tZg5QG5oeqH5M6o6OQj8tOhhl5ADR2hhjaaetRQiwZqUUM9amhTU04davw4hxpqUEM9ah6T4_cHR-8OQ9uCI5SgOHdhrhhLE55zASqOEkUVzSswmJM40yloNRF-kcksF1IkOs5krio9kwXTsUilZip-QvbqplZPCY0yLcScw6-xSNJICqn1LJKg4qtEM15NSOoeayltfXpsk3JaXk3WCXnj561MhZa_ztjfopqfFjGWYXWpCXnlyFgCt0UXGjzupm_LeYYGBoYjXDkmzWOQjfGza2_tObm9ec9ekL1u3auXoPV2Yn9A7W8bvrcv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+manganese+dioxide+spheres+deposited+on+a+titanium+dioxide+nanotube+arrays+substrate&rft.jtitle=Journal+of+power+sources&rft.au=Zhou%2C+He&rft.au=Zhang%2C+Yanrong&rft.date=2014-12-25&rft.issn=0378-7753&rft.volume=272&rft.spage=866&rft.epage=879&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.09.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2014_09_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon