Thermal management of lithium battery packs affected by phase change materials as the heat stored in the residential heating unit

Heat transfer in a duct, between air and a battery pack numerically and using Comsol software, is the subject of this article. The duct has two separate air inlets and a battery pack in the middle. All batteries are made of lithium-ion and are placed in a PCM housing in a circular shape. The (Re) of...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 148; no. 16; pp. 8243 - 8261
Main Authors Milyani, Ahmad H., Ajour, Mohammed N., Alhumade, Hesham A., Abu-Hamdeh, Nidal H.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat transfer in a duct, between air and a battery pack numerically and using Comsol software, is the subject of this article. The duct has two separate air inlets and a battery pack in the middle. All batteries are made of lithium-ion and are placed in a PCM housing in a circular shape. The (Re) of air in the duct varied between 100 and 400, and the time of transient study was 200 min. Simultaneously, a cool environment is used to resemble a domestic building. Using Design Builder software, the thermal energy (TLEY) needed for this structure was determined yearly in various seasons. The TLEY produced in the batteries is used to heat the house, and then, it is calculated what percentage of the energy required by the house can be supplied by the battery. The results of this paper clearly indicate that the maximum and average battery temperature (T-Bt) cells in the duct increase at the beginning of the process and then decrease. After this period, depending on the amount of (Re) of air in the duct, no variations in the T-Bt are detected after a specific duration. The fixed duration of the battery temperature grew as the (Re) level increased, while the T-Bt decreased. The outlet air temperature and the average PCM fraction of the melt also remain constant after the initial decrease, after a certain time. Increasing the (Re) rate reduces the quantity of exhaust air temperature and the PCM fraction of the melt. Thus, ideally, 13.83% of the required TLEY can be supplied from the batteries in the required seasons.
AbstractList Heat transfer in a duct, between air and a battery pack numerically and using Comsol software, is the subject of this article. The duct has two separate air inlets and a battery pack in the middle. All batteries are made of lithium-ion and are placed in a PCM housing in a circular shape. The (Re) of air in the duct varied between 100 and 400, and the time of transient study was 200 min. Simultaneously, a cool environment is used to resemble a domestic building. Using Design Builder software, the thermal energy (TLEY) needed for this structure was determined yearly in various seasons. The TLEY produced in the batteries is used to heat the house, and then, it is calculated what percentage of the energy required by the house can be supplied by the battery. The results of this paper clearly indicate that the maximum and average battery temperature (T-Bt) cells in the duct increase at the beginning of the process and then decrease. After this period, depending on the amount of (Re) of air in the duct, no variations in the T-Bt are detected after a specific duration. The fixed duration of the battery temperature grew as the (Re) level increased, while the T-Bt decreased. The outlet air temperature and the average PCM fraction of the melt also remain constant after the initial decrease, after a certain time. Increasing the (Re) rate reduces the quantity of exhaust air temperature and the PCM fraction of the melt. Thus, ideally, 13.83% of the required TLEY can be supplied from the batteries in the required seasons.
Heat transfer in a duct, between air and a battery pack numerically and using Comsol software, is the subject of this article. The duct has two separate air inlets and a battery pack in the middle. All batteries are made of lithium-ion and are placed in a PCM housing in a circular shape. The (Re) of air in the duct varied between 100 and 400, and the time of transient study was 200 min. Simultaneously, a cool environment is used to resemble a domestic building. Using Design Builder software, the thermal energy (TLEY) needed for this structure was determined yearly in various seasons. The TLEY produced in the batteries is used to heat the house, and then, it is calculated what percentage of the energy required by the house can be supplied by the battery. The results of this paper clearly indicate that the maximum and average battery temperature (T-Bt) cells in the duct increase at the beginning of the process and then decrease. After this period, depending on the amount of (Re) of air in the duct, no variations in the T-Bt are detected after a specific duration. The fixed duration of the battery temperature grew as the (Re) level increased, while the T-Bt decreased. The outlet air temperature and the average PCM fraction of the melt also remain constant after the initial decrease, after a certain time. Increasing the (Re) rate reduces the quantity of exhaust air temperature and the PCM fraction of the melt. Thus, ideally, 13.83% of the required TLEY can be supplied from the batteries in the required seasons.
Audience Academic
Author Abu-Hamdeh, Nidal H.
Milyani, Ahmad H.
Alhumade, Hesham A.
Ajour, Mohammed N.
Author_xml – sequence: 1
  givenname: Ahmad H.
  surname: Milyani
  fullname: Milyani, Ahmad H.
  organization: Department of Electrical and Computer Engineering, Faculty of Engineering Center of Research Excellence in Renewable Energy and Power Systems, Energy Efficiency Group, King Abdulaziz University
– sequence: 2
  givenname: Mohammed N.
  surname: Ajour
  fullname: Ajour, Mohammed N.
  organization: Department of Electrical and Computer Engineering, Faculty of Engineering Center of Research Excellence in Renewable Energy and Power Systems, Energy Efficiency Group, King Abdulaziz University
– sequence: 3
  givenname: Hesham A.
  surname: Alhumade
  fullname: Alhumade, Hesham A.
  organization: Center of Research Excellence in Renewable Energy and Power Systems/Energy Efficiency Group/Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University
– sequence: 4
  givenname: Nidal H.
  orcidid: 0000-0002-4852-2217
  surname: Abu-Hamdeh
  fullname: Abu-Hamdeh, Nidal H.
  email: nabuhamdeh@kau.edu.sa
  organization: Center of Research Excellence in Renewable Energy and Power Systems/Energy Efficiency Group, King Abdulaziz University, Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, K. A. CARE Energy Research and Innovation Center, King Abdulaziz University
BookMark eNp9kUtrFjEUhoNUsK3-AVcBVy6m5jKXZFmKl0JB0LoOmczJTOpM5jPJgF36zz39piB1UbLI4eR5EnLeM3IS1wiEvOXsgjPWfcic6U5WTIiK87blVfOCnPJGqUpo0Z5gLbFuecNekbOc7xhjWjN-Sv7cTpAWO9PFRjvCArHQ1dM5lClsC-1tKZDu6cG6n5la78EVGGiPnclmoG6ycQSUkQp2RiTTMgGdwBaay5oQDvHYSpDDgNcjdjwOcaRbDOU1eenRhDeP-zn58enj7dWX6ubr5-ury5vKSS1K1aneceUcd83QNMIPreB1D3Vnde0459IOYlC61bXuGy5ZK712one-c6Dx8_KcvNvvPaT11wa5mLt1SxGfNELVvK51zQRSFzs12hlMiH4tyTpcAyzB4dB9wP5l1yipRMcYCu-fCMgU-F1Gu-Vsrr9_e8qqnXVpzTmBNy4UnAQqyYbZcGYe0jR7mgbTNMc0TYOq-E89pLDYdP-8JHcpI4w5pX9ffsb6C1GDtDk
CitedBy_id crossref_primary_10_1007_s10973_023_12561_y
crossref_primary_10_1007_s10973_023_12014_6
Cites_doi 10.1002/anie.202103052
10.1016/j.jmapro.2022.06.003
10.3390/su122410537
10.1016/j.energy.2021.120947
10.1016/j.rser.2022.112667
10.1016/j.rser.2022.112740
10.1016/j.molliq.2021.115659
10.1007/s00231-018-2389-0
10.1007/s11465-022-0717-z
10.1016/j.nanoen.2022.107431
10.1002/adma.202100793
10.1016/j.enconman.2019.111886
10.1016/j.applthermaleng.2022.119161
10.1016/j.ijheatmasstransfer.2021.122095
10.1016/j.est.2021.102769
10.1016/j.solener.2017.03.013
10.1002/est2.159
10.1016/j.est.2022.104391
10.1016/j.jclepro.2018.05.009
10.1016/j.ijrefrig.2019.08.027
10.1016/j.applthermaleng.2015.02.068
10.1007/s40684-018-0035-4
10.1016/j.ceramint.2022.03.151
10.1016/j.chemosphere.2021.131980
10.1002/er.8334
10.1016/j.ijheatmasstransfer.2019.118739
10.1016/j.csite.2022.101963
10.1002/smll.202006627
10.1016/j.ijheatmasstransfer.2020.120753
10.1016/j.enconman.2016.08.063
10.1002/adsu.202200122
10.1140/epjp/s13360-021-01923-w
10.1016/j.est.2022.104906
10.1016/j.mtcomm.2022.103518
10.1016/j.jpowsour.2013.08.135
10.1016/j.enconman.2018.09.025
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-022-11661-5
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 8261
ExternalDocumentID A758382700
10_1007_s10973_022_11661_5
GrantInformation_xml – fundername: DSR
  grantid: RG-2-135-43
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c392t-78bc18cc1c5d552fd6214be47a94c1113ad2d896949b513063f9c2bcf7ce93883
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 11:07:18 EDT 2025
Tue Jun 10 21:05:08 EDT 2025
Fri Jun 27 06:07:46 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Tue Jul 01 02:44:45 EDT 2025
Fri Feb 21 02:42:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Building
Lithium-ion battery
Energy consumption
Phase change material
Sustainability of natural resources
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-78bc18cc1c5d552fd6214be47a94c1113ad2d896949b513063f9c2bcf7ce93883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4852-2217
PQID 2841449402
PQPubID 2043843
PageCount 19
ParticipantIDs proquest_journals_2841449402
gale_infotracacademiconefile_A758382700
gale_incontextgauss_ISR_A758382700
crossref_citationtrail_10_1007_s10973_022_11661_5
crossref_primary_10_1007_s10973_022_11661_5
springer_journals_10_1007_s10973_022_11661_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Goli (CR8) 2014; 248
Shen, Zhang, Zhang, Li, Guo, Gong, Peng (CR22) 2022
Alqaed (CR35) 2022; 51
Wei, Wang, Zhang, Zhang, Lu, Zhou, Qin (CR25) 2022
Babapoor, Azizi, Karimi (CR29) 2015; 82
Ping, Peng, Kong, Chen, Wen (CR28) 2018; 176
Usman, Ali, Arshad, Ashraf, Khushnood, Janjua, Kazi (CR37) 2018; 54
Zhang, Li, Zhang, Yang, Jia, Liu, Hou, Li, Zhang, Wu, Cao (CR2) 2018; 193
Pan, Zheng, Tong, Shi, Tang (CR31) 2021; 60
Hajatzadeh Pordanjani, Aghakhani, Afrand, Mahmoudi, Mahian, Wongwises (CR16) 2019; 198
Yin, Han, Liu, Wu, Zhang, Tang (CR27) 2021
Mansir, Sinaga, Farouk, Alqsair, Diyoke, Nguyen (CR38) 2022; 51
Qian, Li, Rao (CR23) 2016; 126
Li, Wang, He (CR1) 2020; 12
Huang, Luo, Zheng, Lyu (CR20) 2022
Saeed, Karimi, Paul (CR24) 2021; 231
Li, Peng, Zhou, Zhang, Xie, Saitoh, Tang (CR26) 2021
Said, Sundar, Rezk, Nassef, Chakraborty, Li (CR10) 2021; 330
Wang, Liang, Souri, Esfahani, Jabbari (CR17) 2022; 183
He, Yan, He, Shang, Zhou, Chanlek, Tunmee, Kidkhunthod, Yao, Tang (CR32) 2022; 6
Zhang, Huang, Cao, Du, Liu, Wang (CR19) 2021; 40
Musharavati (CR7) 2022; 287
Aghakhani, Afrand (CR11) 2022; 217
Abbasi, Mousavi, Lee, Esfahani, Karimi, Mamaghani (CR14) 2022; 33
Sun, Fan, Yan, Zhou, Zheng (CR30) 2019; 145
Shahsavar (CR36) 2022; 168
Al-Zareer, Dincer, Rosen (CR3) 2019; 108
Yuying, Min, Changhe, Runze, Zafar, Hafiz, Shubham (CR5) 2022
Fan, Zheng, Sun (CR18) 2021; 166
Zhao (CR13) 2022; 167
Kant, Shukla, Sharma, Biwole (CR34) 2017; 146
Ali, Changhe, Hayder, Kamal, El-Awady, Anas, Azheen, Sagr, Ali (CR33) 2022; 52
Xin, Changhe, Yanbin, Zafar, Sujan, Shubham, Hafiz, Min, Teng, Runze (CR9) 2022; 80
Alirahmi (CR12) 2022; 50
Wang, Li, Zhang, Yang, Li, Dong, Wang (CR6) 2018; 5
Xu, Zhang, Yang, Tong, Yan, Yang, Ren, Ma, Wang (CR21) 2022
Evrin, Dincer (CR4) 2020; 2
Hadidi, Mousavi, Ghalambaz (CR15) 2021; 136
J Li (11661_CR1) 2020; 12
RA Evrin (11661_CR4) 2020; 2
A Hajatzadeh Pordanjani (11661_CR16) 2019; 198
R Fan (11661_CR18) 2021; 166
IB Mansir (11661_CR38) 2022; 51
H Hadidi (11661_CR15) 2021; 136
K Kant (11661_CR34) 2017; 146
X He (11661_CR32) 2022; 6
Y Yuying (11661_CR5) 2022
A Shahsavar (11661_CR36) 2022; 168
Y Wang (11661_CR6) 2018; 5
SM Alirahmi (11661_CR12) 2022; 50
M Abbasi (11661_CR14) 2022; 33
Z Huang (11661_CR20) 2022
M Al-Zareer (11661_CR3) 2019; 108
F Shen (11661_CR22) 2022
Y Zhao (11661_CR13) 2022; 167
A Saeed (11661_CR24) 2021; 231
S Aghakhani (11661_CR11) 2022; 217
S Alqaed (11661_CR35) 2022; 51
T Wei (11661_CR25) 2022
P Ping (11661_CR28) 2018; 176
P Goli (11661_CR8) 2014; 248
A Babapoor (11661_CR29) 2015; 82
Y Zhang (11661_CR19) 2021; 40
EA Ali (11661_CR33) 2022; 52
Z Li (11661_CR26) 2021
F Musharavati (11661_CR7) 2022; 287
Z Qian (11661_CR23) 2016; 126
R Wang (11661_CR17) 2022; 183
YH Xu (11661_CR21) 2022
J Zhang (11661_CR2) 2018; 193
H Yin (11661_CR27) 2021
Z Sun (11661_CR30) 2019; 145
C Xin (11661_CR9) 2022; 80
H Usman (11661_CR37) 2018; 54
Z Said (11661_CR10) 2021; 330
Q Pan (11661_CR31) 2021; 60
References_xml – volume: 60
  start-page: 11835
  issue: 21
  year: 2021
  end-page: 40
  ident: CR31
  article-title: Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage
  publication-title: Angewandte Chemie (International ed)
  doi: 10.1002/anie.202103052
– volume: 80
  start-page: 273
  year: 2022
  end-page: 86
  ident: CR9
  article-title: Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication
  publication-title: J Manuf Processes
  doi: 10.1016/j.jmapro.2022.06.003
– volume: 12
  start-page: 10537
  issue: 24
  year: 2020
  ident: CR1
  article-title: Electric vehicle routing problem with battery swapping considering energy consumption and carbon emissions
  publication-title: Sustainability (Basel, Switzerland)
  doi: 10.3390/su122410537
– volume: 50
  start-page: 101850
  year: 2022
  ident: CR12
  article-title: Soft computing based optimization of a novel solar heliostat integrated energy system using artificial neural networks
  publication-title: Sustain Energy Technol Assess
– volume: 231
  start-page: 120947
  year: 2021
  ident: CR24
  article-title: Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120947
– volume: 167
  start-page: 112667
  year: 2022
  ident: CR13
  article-title: A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112667
– volume: 168
  start-page: 112740
  year: 2022
  ident: CR36
  article-title: "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112740
– volume: 330
  start-page: 115659
  year: 2021
  ident: CR10
  article-title: Thermophysical properties using ND/water nanofluids: an experimental study, ANFIS-based model and optimization
  publication-title: J Mol Liquids
  doi: 10.1016/j.molliq.2021.115659
– volume: 54
  start-page: 3587
  year: 2018
  end-page: 3598
  ident: CR37
  article-title: An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-018-2389-0
– year: 2022
  ident: CR5
  article-title: Machinability of ultrasonic vibration assisted micro-grinding in biological bone using nanolubricant
  publication-title: Front Mech Eng
  doi: 10.1007/s11465-022-0717-z
– year: 2022
  ident: CR22
  article-title: Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107431
– year: 2021
  ident: CR26
  article-title: In Situ Chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes
  publication-title: Adv Mater
  doi: 10.1002/adma.202100793
– volume: 198
  start-page: 111886
  year: 2019
  ident: CR16
  article-title: An updated review on application of nanofluids in heat exchangers for saving energy
  publication-title: Energy Conv Manage
  doi: 10.1016/j.enconman.2019.111886
– volume: 217
  start-page: 119161
  year: 2022
  ident: CR11
  article-title: Experimental study of the effect of simultaneous application of the air- and water-cooled flow on efficiency in a Photovoltaic thermal solar collector with porous plates
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.119161
– volume: 183
  start-page: 122095
  year: 2022
  ident: CR17
  article-title: Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.122095
– volume: 40
  start-page: 102769
  year: 2021
  ident: CR19
  article-title: A novel sandwich structured phase change material with well impact energy absorption performance for Li-ion battery application
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102769
– volume: 51
  start-page: 101928
  year: 2022
  ident: CR35
  article-title: Effect of annual solar radiation on simple façade, double-skin facade and double-skin facade filled with phase change materials for saving energy
  publication-title: Sustain Energy Technol Assess
– volume: 146
  start-page: 453
  year: 2017
  end-page: 63
  ident: CR34
  article-title: Heat transfer study of phase change materials with graphene nano particle for thermal energy storage
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.03.013
– volume: 2
  start-page: e159
  issue: 5
  year: 2020
  ident: CR4
  article-title: Experimental investigation of a compressed air vehicle prototype with phase change materials for heat recovery
  publication-title: Energy Storage
  doi: 10.1002/est2.159
– volume: 51
  start-page: 104391
  year: 2022
  ident: CR38
  article-title: Assessment of the effect of distance between lithium-ion batteries with a number of triangular blades, on the thermal management of the battery pack in a chamber full of phase change material
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104391
– volume: 193
  start-page: 236
  year: 2018
  end-page: 48
  ident: CR2
  article-title: Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.05.009
– volume: 108
  start-page: 163
  year: 2019
  end-page: 73
  ident: CR3
  article-title: Development and analysis of a new tube based cylindrical battery cooling system with liquid to vapor phase change
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2019.08.027
– volume: 82
  start-page: 281
  year: 2015
  end-page: 90
  ident: CR29
  article-title: Thermal management of a Li-ion battery using carbon fiber-PCM composites
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.02.068
– volume: 5
  start-page: 327
  issue: 2
  year: 2018
  end-page: 39
  ident: CR6
  article-title: Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials
  publication-title: Int J Precision Eng Manuf-Green Technol
  doi: 10.1007/s40684-018-0035-4
– year: 2022
  ident: CR20
  article-title: Aluminum-doping effects on three-dimensional Li3V2(PO4)3@C/CNTs microspheres for electrochemical energy storage
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2022.03.151
– volume: 287
  start-page: 131980
  year: 2022
  ident: CR7
  article-title: Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131980
– year: 2022
  ident: CR21
  article-title: State of charge estimation of supercapacitors based on multi-innovation unscented Kalman filter under a wide temperature range
  publication-title: Int J Energy Res
  doi: 10.1002/er.8334
– volume: 145
  start-page: 118739
  year: 2019
  ident: CR30
  article-title: Thermal management of the lithium-ion battery by the composite PCM-Fin structures
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118739
– volume: 33
  start-page: 101963
  year: 2022
  ident: CR14
  article-title: "Examination of the effects of porosity upon intensification of thermal storage of PCMs in a shell-and-tube type system
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.101963
– year: 2021
  ident: CR27
  article-title: Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.202006627
– volume: 166
  start-page: 120753
  year: 2021
  ident: CR18
  article-title: Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2020.120753
– volume: 126
  start-page: 622
  year: 2016
  end-page: 31
  ident: CR23
  article-title: Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.063
– volume: 6
  start-page: 2200122
  year: 2022
  ident: CR32
  article-title: A vanadium-based fluoroxide cathode material for lithium-ion storage with high energy density
  publication-title: Adv Sustain Syst
  doi: 10.1002/adsu.202200122
– volume: 136
  start-page: 960
  issue: 9
  year: 2021
  ident: CR15
  article-title: "Numerical study of MHD natural heat transfer of non-Newtonian, carbon nanotube-water nanofluid inside an internally finned annulus
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01923-w
– volume: 52
  start-page: 104906
  year: 2022
  ident: CR33
  article-title: Effect of combined air cooling and nano enhanced phase change materials on thermal management of lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104906
– year: 2022
  ident: CR25
  article-title: Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2022.103518
– volume: 248
  start-page: 37
  year: 2014
  end-page: 43
  ident: CR8
  article-title: Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.08.135
– volume: 176
  start-page: 131
  year: 2018
  end-page: 46
  ident: CR28
  article-title: Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment
  publication-title: Energy Conv Manage
  doi: 10.1016/j.enconman.2018.09.025
– volume: 51
  start-page: 104391
  year: 2022
  ident: 11661_CR38
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104391
– volume: 126
  start-page: 622
  year: 2016
  ident: 11661_CR23
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.063
– year: 2022
  ident: 11661_CR21
  publication-title: Int J Energy Res
  doi: 10.1002/er.8334
– year: 2021
  ident: 11661_CR26
  publication-title: Adv Mater
  doi: 10.1002/adma.202100793
– volume: 82
  start-page: 281
  year: 2015
  ident: 11661_CR29
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.02.068
– volume: 80
  start-page: 273
  year: 2022
  ident: 11661_CR9
  publication-title: J Manuf Processes
  doi: 10.1016/j.jmapro.2022.06.003
– volume: 193
  start-page: 236
  year: 2018
  ident: 11661_CR2
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.05.009
– volume: 198
  start-page: 111886
  year: 2019
  ident: 11661_CR16
  publication-title: Energy Conv Manage
  doi: 10.1016/j.enconman.2019.111886
– volume: 108
  start-page: 163
  year: 2019
  ident: 11661_CR3
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2019.08.027
– volume: 50
  start-page: 101850
  year: 2022
  ident: 11661_CR12
  publication-title: Sustain Energy Technol Assess
– year: 2022
  ident: 11661_CR5
  publication-title: Front Mech Eng
  doi: 10.1007/s11465-022-0717-z
– year: 2021
  ident: 11661_CR27
  publication-title: Small
  doi: 10.1002/smll.202006627
– volume: 60
  start-page: 11835
  issue: 21
  year: 2021
  ident: 11661_CR31
  publication-title: Angewandte Chemie (International ed)
  doi: 10.1002/anie.202103052
– volume: 145
  start-page: 118739
  year: 2019
  ident: 11661_CR30
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118739
– volume: 6
  start-page: 2200122
  year: 2022
  ident: 11661_CR32
  publication-title: Adv Sustain Syst
  doi: 10.1002/adsu.202200122
– volume: 248
  start-page: 37
  year: 2014
  ident: 11661_CR8
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.08.135
– volume: 217
  start-page: 119161
  year: 2022
  ident: 11661_CR11
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.119161
– year: 2022
  ident: 11661_CR20
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2022.03.151
– volume: 146
  start-page: 453
  year: 2017
  ident: 11661_CR34
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.03.013
– volume: 136
  start-page: 960
  issue: 9
  year: 2021
  ident: 11661_CR15
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01923-w
– volume: 167
  start-page: 112667
  year: 2022
  ident: 11661_CR13
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112667
– volume: 166
  start-page: 120753
  year: 2021
  ident: 11661_CR18
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2020.120753
– volume: 40
  start-page: 102769
  year: 2021
  ident: 11661_CR19
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102769
– year: 2022
  ident: 11661_CR25
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2022.103518
– volume: 176
  start-page: 131
  year: 2018
  ident: 11661_CR28
  publication-title: Energy Conv Manage
  doi: 10.1016/j.enconman.2018.09.025
– volume: 231
  start-page: 120947
  year: 2021
  ident: 11661_CR24
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120947
– volume: 51
  start-page: 101928
  year: 2022
  ident: 11661_CR35
  publication-title: Sustain Energy Technol Assess
– volume: 330
  start-page: 115659
  year: 2021
  ident: 11661_CR10
  publication-title: J Mol Liquids
  doi: 10.1016/j.molliq.2021.115659
– volume: 183
  start-page: 122095
  year: 2022
  ident: 11661_CR17
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.122095
– volume: 2
  start-page: e159
  issue: 5
  year: 2020
  ident: 11661_CR4
  publication-title: Energy Storage
  doi: 10.1002/est2.159
– volume: 287
  start-page: 131980
  year: 2022
  ident: 11661_CR7
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131980
– year: 2022
  ident: 11661_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107431
– volume: 5
  start-page: 327
  issue: 2
  year: 2018
  ident: 11661_CR6
  publication-title: Int J Precision Eng Manuf-Green Technol
  doi: 10.1007/s40684-018-0035-4
– volume: 33
  start-page: 101963
  year: 2022
  ident: 11661_CR14
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.101963
– volume: 12
  start-page: 10537
  issue: 24
  year: 2020
  ident: 11661_CR1
  publication-title: Sustainability (Basel, Switzerland)
  doi: 10.3390/su122410537
– volume: 52
  start-page: 104906
  year: 2022
  ident: 11661_CR33
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104906
– volume: 168
  start-page: 112740
  year: 2022
  ident: 11661_CR36
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112740
– volume: 54
  start-page: 3587
  year: 2018
  ident: 11661_CR37
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-018-2389-0
SSID ssj0009901
Score 2.3755853
Snippet Heat transfer in a duct, between air and a battery pack numerically and using Comsol software, is the subject of this article. The duct has two separate air...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8243
SubjectTerms Air intakes
Air temperature
Analytical Chemistry
Batteries
Chemistry
Chemistry and Materials Science
Force and energy
Heat
Houses
Inorganic Chemistry
Lithium batteries
Lithium ions
Measurement Science and Instrumentation
Phase change materials
Physical Chemistry
Polymer Sciences
Product development
Rechargeable batteries
Residential buildings
Software
Thermal energy
Thermal management
Title Thermal management of lithium battery packs affected by phase change materials as the heat stored in the residential heating unit
URI https://link.springer.com/article/10.1007/s10973-022-11661-5
https://www.proquest.com/docview/2841449402
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTtwwcEThQC-o0FYsL1moUg_U0iax4_VxQSwvwaHtSnCybMdhV4IsIruHHvvnncmD5VUkTpHscex4JvPQvAC-KVSTReYcj6MguUABw21IPLc2CTLJfaQsJTifX6THQ3F6KS-bpLCyjXZvXZIVp36U7KYV-RxjHkUoVbj8AEuSbHek4mHcn5fa1d3azEIaoHLnTarM6-94Io6eM-UX3tFK6Aw-wUqjLbJ-jd5VWAjFGiwftE3aPsNfRDOy1ht2-xDGwiY5Q916NJ7dMldVz_zD7iiTntkqdiNkzOHICMUXq9N-cfG0JkRmS4YaISMOzShuEoHHRTWEZvm4SurFzWgaz8tmyA--wHBw-PvgmDddFbhHXWjKVc_5qOd95GUmZZxnaRwJF4SyWnhqPG-zOOvpVAvtJEq4NMm1j53PlQ8a7zT5CovFpAjrwAIKWKWtTLMkEd5lVui820XzXOdK2FR0IGov1_im5Dh1vrgx82LJhBCDCDEVQozswN7Dmru64Mab0LuEM0OVLAoKlbm2s7I0J79-mr4ijzD51TvwvQHKJ7i9t03mAX4EFb96ArnV4t40_3JpUICj1anR0O7Aj5Ye5tP_P9zG-8A34SP1sq-jC7dgcXo_C9uo8UzdDiz1B_v7F_Q8ujo73KkI_h_M_foe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UAviFJQF5bWQpU4gKVNYsfr4woVLeVxAFbiZtmOU1aCLCK7B478c2byYAullXqNx7HjceahmW8G4LtCM1lkzvE4CpILVDDchsRza5Mgk9xHyhLA-ew8HY3Fz2t53YDCyjbbvQ1JVpL6N7CbVhRzjHkUoVbh8gMsozEwoESucTxclNrV_drNwjtA5c4bqMz773iljt4K5T-io5XSOVqD1cZaZMOavZ9gKRTrsHLYNmn7DE_IZhStt-zuJY2FTXOGtvXNZH7HXFU985HdE5Ke2Sp3I2TM4ZMbVF-shv3i5Fl9EZktGVqEjCQ0o7xJJJ4U1SN0yycVqBcXo2HcL5ujPNiA8dGPq8MRb7oqcI-20IyrgfPRwPvIy0zKOM_SOBIuCGW18NR43mZxNtCpFtpJ1HBpkmsfO58rHzSeabIJnWJahC_AAipYpa1MsyQR3mVW6LzfR_dc50rYVHQhag_X-KbkOHW-uDWLYsnEEIMMMRVDjOzC_suc-7rgxj-pd4lnhipZFJQq88vOy9IcX16YoaKIMMXVu7DXEOVTXN7bBnmAH0HFr15R9lrem-ZfLg0qcPQ6NTraXTho78Ni-O-b2_o_8m-wMro6OzWnx-cn2_CR-trXmYY96Mwe5mEHrZ-Z-1pd9mcS7voB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEO4gJOrFiI-48uoYEw_aYXume3r7uEE2gEqMugm3Tj9hE5jduLMHjv5zqubBgogJ15manUfV1iNV31eEvFeQJovgHMt4lExAgGE25p5Zm0eZJ8-VRYDzt-PiYCyOTuTJDRR_Pe3etSQbTAOyNJXV7iyk3RvAN62w_5gxziHCMPmIrIE75mjX42y4pN3V_abkAntA6vMWNvPv37gVmv520Hc6pXUAGj0nz9rMkQ4bVa-TlVi-IE_2uoVtL8kfUDm42XN6cT3SQqeJQp59NllcUFczaV7SGaLqqa3nOGKgDo6cQSijDQQYLq4ao6R2TiE7pOitKc5QgvCkrA9BiT6pAb5wMzwNz0sX4BtekfFo_9feAWs3LDAPeVHF1MB5PvCeexmkzFIoMi5cFMpq4XEJvQ1ZGOhCC-0kRLsiT9pnziflo4Zvmr8mq-W0jG8IjRBslbayCHkuvAtW6NTvQ6mukxK2ED3Cu49rfEs_jlswzs2SOBkVYkAhplaIkT3y8fqaWUO-8V_pd6gzg6wWJY7NnNrFfG4Of_4wQ4XdYeyx98iHVihN4fbetigEeAkkwroludnp3rT_67mBYA4VqIaiu0c-dfawPH3_w719mPgOefz988h8PTz-skGe4or7Zuhwk6xWvxdxCxKhym3Xtn4Fadb-PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+management+of+lithium+battery+packs+affected+by+phase+change+materials+as+the+heat+stored+in+the+residential+heating+unit&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Milyani%2C+Ahmad+H.&rft.au=Ajour%2C+Mohammed+N.&rft.au=Alhumade%2C+Hesham+A.&rft.au=Abu-Hamdeh%2C+Nidal+H.&rft.date=2023-08-01&rft.pub=Springer+International+Publishing&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=148&rft.issue=16&rft.spage=8243&rft.epage=8261&rft_id=info:doi/10.1007%2Fs10973-022-11661-5&rft.externalDocID=10_1007_s10973_022_11661_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon