Response of a submerged floating tunnel subject to flow-induced vibration
•Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibration...
Saved in:
Published in | Engineering structures Vol. 253; p. 113809 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.02.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibrations of the submerged floating tunnel are numerically predicted under currents, waves, and extreme events.•A parametric cross-section for an SFT is recommended due to effectively reduced dynamic response.
In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure’s natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT’s first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section. |
---|---|
AbstractList | In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure's natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT's first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section. •Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibrations of the submerged floating tunnel are numerically predicted under currents, waves, and extreme events.•A parametric cross-section for an SFT is recommended due to effectively reduced dynamic response. In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure’s natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT’s first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section. |
ArticleNumber | 113809 |
Author | Uijttewaal, Wim S.J. Simao Ferreira, Carlos Bricker, Jeremy D. Chen, L.Z. Zou, P.X. |
Author_xml | – sequence: 1 givenname: P.X. surname: Zou fullname: Zou, P.X. email: p.zou@tudelft.nl organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands – sequence: 2 givenname: Jeremy D. surname: Bricker fullname: Bricker, Jeremy D. organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands – sequence: 3 givenname: L.Z. surname: Chen fullname: Chen, L.Z. organization: CCCC FHDI Engineering Co., Ltd., Guangzhou, Guangdong 510230, China – sequence: 4 givenname: Wim S.J. surname: Uijttewaal fullname: Uijttewaal, Wim S.J. organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands – sequence: 5 givenname: Carlos surname: Simao Ferreira fullname: Simao Ferreira, Carlos organization: Department of Wind Energy, Delft University of Technology, 2600GA Delft, the Netherlands |
BookMark | eNqNkEtLAzEQx4NUsK1-Bhc875pHu9kcPJTioyAIoueQzU5KljapSbbitze14sGLnubwf8zMb4JGzjtA6JLgimBSX_cVuHVMYdCpopiSihDWYHGCxqThrOSMshEaYzIjJaaiPkOTGHuMMW0aPEarZ4g77yIU3hSqiEO7hbCGrjAbr5J16yINzsHmoPSgU5H8QXovresGnX1724Zs9O4cnRq1iXDxPafo9e72ZflQPj7dr5aLx1IzQVPJZ13TirlRVLQzClqoOWVmzo3SBis-q_lc1y1rtGbEtBrnb3RLO9yC7jAHzKbo6ti7C_5tgJhk74fg8kpJa8ZJTYQQ2XVzdOngYwxgpLbp684UlN1IguWBnuzlDz15oCeP9HKe_8rvgt2q8PGP5OKYhAxhbyHIqC24zMqGDFB23v7Z8QmD8JLL |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115942 crossref_primary_10_1063_5_0217561 crossref_primary_10_1155_2023_7803876 crossref_primary_10_1016_j_marstruc_2023_103405 crossref_primary_10_1016_j_oceaneng_2022_113447 crossref_primary_10_1016_j_oceaneng_2024_116975 crossref_primary_10_1016_j_oceaneng_2023_114257 crossref_primary_10_3390_jmse12050759 crossref_primary_10_1016_j_oceaneng_2023_116333 crossref_primary_10_1016_j_seta_2023_103417 crossref_primary_10_1016_j_oceaneng_2024_117187 crossref_primary_10_1016_j_oceaneng_2024_117660 crossref_primary_10_1080_17445302_2024_2355404 crossref_primary_10_1016_j_apor_2023_103525 crossref_primary_10_1016_j_oceaneng_2024_117480 crossref_primary_10_1016_j_oceaneng_2024_118187 crossref_primary_10_32604_fdmp_2022_020730 crossref_primary_10_1016_j_marstruc_2022_103339 crossref_primary_10_1007_s12205_024_1189_y crossref_primary_10_1016_j_oceaneng_2024_117079 crossref_primary_10_1080_00221686_2023_2246925 crossref_primary_10_3390_app14093724 crossref_primary_10_3390_su152115241 crossref_primary_10_1016_j_apor_2023_103557 crossref_primary_10_1016_j_apor_2023_103656 crossref_primary_10_1016_j_oceaneng_2023_115291 crossref_primary_10_1016_j_oceaneng_2022_110951 crossref_primary_10_1016_j_oceaneng_2024_118615 crossref_primary_10_1016_j_matpr_2023_08_377 |
Cites_doi | 10.1016/j.jfluidstructs.2011.11.010 10.1016/j.proeng.2010.08.006 10.1016/j.oceaneng.2021.109762 10.1016/S0378-3839(97)00031-8 10.1016/j.apm.2011.04.038 10.1016/j.proeng.2010.08.020 10.1016/j.jfluidstructs.2020.102908 10.1016/j.marstruc.2018.04.001 10.1115/1.4031729 10.1016/j.engstruct.2020.111636 10.1016/j.oceaneng.2018.12.006 10.1017/S0022112000001233 10.3390/app8081311 10.1016/j.oceaneng.2019.106704 10.1016/j.proeng.2010.08.034 10.1155/2011/853560 10.1016/j.proeng.2016.11.582 10.1016/j.jweia.2014.11.008 10.1016/j.proeng.2010.08.027 10.1016/j.oceaneng.2020.108221 10.1201/9781315189390-117 10.1016/0045-7949(94)00611-6 10.1016/j.oceaneng.2017.12.033 10.1115/OMAE2018-78687 10.1016/S0045-7949(98)00329-0 10.1038/ncomms8854 10.1016/j.proeng.2010.08.023 10.1016/j.engstruct.2020.111258 10.1016/j.proeng.2010.08.018 10.1016/j.proeng.2016.11.574 10.1061/(ASCE)WW.1943-5460.0000175 10.1016/j.marstruc.2019.102646 10.1016/j.engstruct.2017.02.001 10.1080/00221686.2021.1944921 10.1016/j.marstruc.2015.09.002 10.4043/14263-MS 10.1016/j.proeng.2010.08.012 10.1016/j.marstruc.2020.102807 10.1016/j.oceaneng.2018.08.023 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright Elsevier BV Feb 15, 2022 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Feb 15, 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2021.113809 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
ExternalDocumentID | 10_1016_j_engstruct_2021_113809 S0141029621018800 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c392t-74d8b95fa29b42ec9a523f57facf0a74675c6b38cc31fbc0113cb2d0becd07e03 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 04:41:00 EDT 2025 Tue Jul 01 01:21:53 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFD Flow-induced vibration Submerged floating tunnel Fluid structure interaction Vortex-induced vibration |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-74d8b95fa29b42ec9a523f57facf0a74675c6b38cc31fbc0113cb2d0becd07e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141029621018800 |
PQID | 2637161999 |
PQPubID | 2045481 |
ParticipantIDs | proquest_journals_2637161999 crossref_citationtrail_10_1016_j_engstruct_2021_113809 crossref_primary_10_1016_j_engstruct_2021_113809 elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_113809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhang, Habashi, Khurram (b0100) 2015; 136 Remseth, Leira, Okstad, Mathisen, Haukås (b0010) 1999; 72 Hong, Ge (b0075) 2010; 4 Chen, Xiang, Lin, Yang (b0060) 2018; 8 Yiqiang, Chunfeng (b0235) 2013; 139 Wijesooriya, Mohotti, Amin, Chauhan (b0115) 2021; 229 Lin, Xiang, Yang (b0150) 2019; 67 C. Jin, J. M.-H. Kim, J. Choi, and W.-S. Park, Coupled Dynamics Simulation of Submerged Floating Tunnel for Various System Parameters and Wave Conditions, 2018, doi: 10.1115/omae2018-78687. Mai, Yang, Guan (b0065) 2005; 20 Li, Song, Liu (b0205) 2020; 225 D. Hydraulics, Delft3D-FLOW user manual, Delft, the Netherlands, 2006. Liu, Li, Qiu, Leng, Li, Li (b0045) 2020; 195 Xiao, Huang (b0255) 2010; 4 Martire, Faggiano, Mazzolani, Zollo, Stabile (b0020) 2010; 4 Yang, Zhang, Li, Yuan, Ji (b0035) 2021; 39 Larssen, Jakobsen (b0015) 2010; 4 Kamphuis (b0040) 1998; 33 Felisita, Gudmestad, Karunakaran, Martinsen (b0050) 2016 F. ANSYS, ANSYS fluent theory guide 19.1, ANSYS, Canonsburg, PA, 2019. Chen, Li, Zhang, Tan (b0110) 2016 R.S. Van Oorsouw, Behaviour of segment joints in immersed tunnels under seismic loading, 2010. Lin, Wang (b0135) 2019; 172 Liu, Gorman (b0180) 1995; 57 Ulveseter, Thorsen, Sævik, Larsen (b0105) 2018; 60 Yan, Zhang, Yu (b0025) 2016; 166 J.T. Mai, X.C. Yang, B.S. Guan, Response analysis of the submerged floating tunnel subjected to waves and currents, Tiedao Xuebao/Journal China Railw. Soc., vol. 30, no. 2, 2008 (in Chinese). Cruz, Miranda (b0185) 2017; 138 Vandiver, Li (b0090) 2005 B. Jiang, B. Liang, S. Wu, Feasibility study on the submerged floating tunnel in Qiongzhou Strait, China, Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0066. Duanmu, Zou, Wan (b0130) 2018; 152 Wu, Ge, Hong (b0080) 2010; 4 Zou, Bricker, Uijttewaal (b0140) 2020; 218 Kimura, Moritaka, Kojima (b0200) 2002 Kunisu (b0250) 2010; 4 Roeber, Bricker (b0145) 2015; 6 K. Kavanagh, M. Dib, E. Balch, P. Stanton, New Revision of Drilling Riser Recommended Practice (API RP 16Q), in: Proceedings of the Annual Offshore Technology Conference, 2002, doi: 10.4043/14263-ms. Seo, Mun, Lee, Kim (b0245) 2015; 44 O. Manual, Version 9.8 b, Orcina Ltd, 2014. Zhang, Xiang, Du (b0215) 2010; 4 Lin, Xiang, Yang, Chen (b0230) 2018; 166 Zou, Bricker, Uijttewaal (b0225) 2020; 74 F. E. A. LTD, “LUSAS user manual.” Version. Tariverdilo, Mirzapour, Shahmardani, Shabani, Gheyretmand (b0170) 2011; 35 Govardhan, Williamson (b0195) 2000; 420 E. Passano, C.M. Larsen, H. Lie, J. Wu, VIVANA theory manual, Nor. Mar. Technol. Res. Inst. Trondheim, Norway. Curr. profiles with High. Veloc. Prod. high damage both riser’s Up. catenary buoyancy Sect. due to high Curr. Expo. shallower water depth high c, 2014. Chen, Li, Fu, Guo (b0095) 2016; 166 Wu, Ge, Hong (b0055) 2012; 28 Zou, Bricker, Uijttewaal (b0165) 2021 Deng, Ren, Xu, Fu, Moan, Gao (b0030) 2020; 94 Zou, Bricker, Uijttewaal (b0220) 2020 Zou, Bricker, Uijttewaal (b0005) 2021; 238 Benra, Dohmen, Pei, Schuster, Wan (b0120) 2011; 2011 10.1016/j.engstruct.2021.113809_b0085 10.1016/j.engstruct.2021.113809_b0240 Seo (10.1016/j.engstruct.2021.113809_b0245) 2015; 44 Larssen (10.1016/j.engstruct.2021.113809_b0015) 2010; 4 Zhang (10.1016/j.engstruct.2021.113809_b0215) 2010; 4 10.1016/j.engstruct.2021.113809_b0160 Liu (10.1016/j.engstruct.2021.113809_b0180) 1995; 57 Yan (10.1016/j.engstruct.2021.113809_b0025) 2016; 166 10.1016/j.engstruct.2021.113809_b0125 Cruz (10.1016/j.engstruct.2021.113809_b0185) 2017; 138 Zou (10.1016/j.engstruct.2021.113809_b0140) 2020; 218 Mai (10.1016/j.engstruct.2021.113809_b0065) 2005; 20 Wijesooriya (10.1016/j.engstruct.2021.113809_b0115) 2021; 229 Ulveseter (10.1016/j.engstruct.2021.113809_b0105) 2018; 60 Chen (10.1016/j.engstruct.2021.113809_b0110) 2016 Lin (10.1016/j.engstruct.2021.113809_b0150) 2019; 67 10.1016/j.engstruct.2021.113809_b0070 Kunisu (10.1016/j.engstruct.2021.113809_b0250) 2010; 4 Yiqiang (10.1016/j.engstruct.2021.113809_b0235) 2013; 139 Duanmu (10.1016/j.engstruct.2021.113809_b0130) 2018; 152 10.1016/j.engstruct.2021.113809_b0155 Wu (10.1016/j.engstruct.2021.113809_b0055) 2012; 28 Vandiver (10.1016/j.engstruct.2021.113809_b0090) 2005 Zou (10.1016/j.engstruct.2021.113809_b0220) 2020 Lin (10.1016/j.engstruct.2021.113809_b0135) 2019; 172 Zou (10.1016/j.engstruct.2021.113809_b0165) 2021 Martire (10.1016/j.engstruct.2021.113809_b0020) 2010; 4 Remseth (10.1016/j.engstruct.2021.113809_b0010) 1999; 72 Benra (10.1016/j.engstruct.2021.113809_b0120) 2011; 2011 Chen (10.1016/j.engstruct.2021.113809_b0095) 2016; 166 Zhang (10.1016/j.engstruct.2021.113809_b0100) 2015; 136 Zou (10.1016/j.engstruct.2021.113809_b0005) 2021; 238 Wu (10.1016/j.engstruct.2021.113809_b0080) 2010; 4 10.1016/j.engstruct.2021.113809_b0260 Roeber (10.1016/j.engstruct.2021.113809_b0145) 2015; 6 Liu (10.1016/j.engstruct.2021.113809_b0045) 2020; 195 Xiao (10.1016/j.engstruct.2021.113809_b0255) 2010; 4 Felisita (10.1016/j.engstruct.2021.113809_b0050) 2016 Chen (10.1016/j.engstruct.2021.113809_b0060) 2018; 8 10.1016/j.engstruct.2021.113809_b0190 Yang (10.1016/j.engstruct.2021.113809_b0035) 2021; 39 10.1016/j.engstruct.2021.113809_b0175 Kimura (10.1016/j.engstruct.2021.113809_b0200) 2002 Kamphuis (10.1016/j.engstruct.2021.113809_b0040) 1998; 33 Li (10.1016/j.engstruct.2021.113809_b0205) 2020; 225 10.1016/j.engstruct.2021.113809_b0210 Tariverdilo (10.1016/j.engstruct.2021.113809_b0170) 2011; 35 Govardhan (10.1016/j.engstruct.2021.113809_b0195) 2000; 420 Deng (10.1016/j.engstruct.2021.113809_b0030) 2020; 94 Lin (10.1016/j.engstruct.2021.113809_b0230) 2018; 166 Hong (10.1016/j.engstruct.2021.113809_b0075) 2010; 4 Zou (10.1016/j.engstruct.2021.113809_b0225) 2020; 74 |
References_xml | – volume: 39 start-page: 44 year: 2021 end-page: 52 ident: b0035 article-title: A study on the wave-current-induced motion responses of submerged floating tunnels using longitudinal truncated model tests publication-title: Ocean Eng. – volume: 218 start-page: 108221 year: 2020 ident: b0140 article-title: Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel publication-title: Ocean Eng. – volume: 8 start-page: 1311 year: 2018 ident: b0060 article-title: Coupled vibration analysis of submerged floating tunnel system in wave and current publication-title: Appl. Sci. – year: 2021 ident: b0165 article-title: Submerged floating tunnel cross-section analysis using a transition turbulence model publication-title: J. Hydraul. Res. – volume: 4 start-page: 199 year: 2010 end-page: 205 ident: b0215 article-title: Research on tubular segment design of submerged floating tunnel publication-title: Procedia Eng – year: 2020 ident: b0220 article-title: A parametric method for submerged floating tunnel cross-section design publication-title: Proceedings of the International Offshore and Polar Engineering Conference – volume: 4 start-page: 153 year: 2010 end-page: 160 ident: b0080 article-title: Effect of travelling wave on vortex-induced vibrations of submerged floating tunnel tethers publication-title: Procedia Eng – volume: 2011 start-page: 1 year: 2011 end-page: 16 ident: b0120 article-title: A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions publication-title: J. Appl. Math. – volume: 152 start-page: 428 year: 2018 end-page: 442 ident: b0130 article-title: Numerical analysis of multi-modal vibrations of a vertical riser in step currents publication-title: Ocean Eng. – volume: 4 start-page: 99 year: 2010 end-page: 105 ident: b0250 article-title: Evaluation of wave force acting on submerged floating tunnels publication-title: Procedia Eng – volume: 28 start-page: 292 year: 2012 end-page: 308 ident: b0055 article-title: A review of recent studies on vortex-induced vibrations of long slender cylinders publication-title: J. Fluids Struct. – volume: 136 start-page: 165 year: 2015 end-page: 179 ident: b0100 article-title: Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis publication-title: J. Wind Eng. Ind. Aerodyn. – reference: R.S. Van Oorsouw, Behaviour of segment joints in immersed tunnels under seismic loading, 2010. – volume: 20 start-page: 616 year: 2005 end-page: 623 ident: b0065 article-title: Dynamic response analysis of the submerged floating tunnel subjected to the wave and current publication-title: J. Hydrodyn. Ser. A – volume: 225 start-page: 111258 year: 2020 ident: b0205 article-title: Steel web effects on shear mechanism of steel shell-concrete composite structure publication-title: Eng. Struct. – year: 2002 ident: b0200 article-title: Development of sandwich-structure submerged tunnel tube production method publication-title: Nippon Steel Tech. Rep. – volume: 139 start-page: 183 year: 2013 end-page: 189 ident: b0235 article-title: Vortex-induced dynamic response analysis for the submerged floating tunnel system under the effect of currents publication-title: J. Waterway, Port, Coastal, Ocean Eng. – volume: 72 start-page: 659 year: 1999 end-page: 685 ident: b0010 article-title: Dynamic response and fluid/structure interaction of submerged floating tunnels publication-title: Comput. Struct. – year: 2005 ident: b0090 article-title: Shear7 V4. 4 program theoretical manual publication-title: Massachusetts Inst. Technol. – volume: 420 start-page: 85 year: 2000 end-page: 130 ident: b0195 article-title: Modes of vortex formation and frequency response of a freely vibrating cylinder publication-title: J. Fluid Mech. – volume: 238 year: 2021 ident: b0005 article-title: The impacts of internal solitary waves on a submerged floating tunnel publication-title: Ocean Eng. – volume: 166 start-page: 190 year: 2016 end-page: 201 ident: b0095 article-title: On mode competition during VIVs of flexible SFT’s flexible cylindrical body experiencing lineally sheared current publication-title: Procedia Eng – year: 2016 ident: b0050 article-title: A review of VIV responses of steel lazy wave riser publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - – reference: D. Hydraulics, Delft3D-FLOW user manual, Delft, the Netherlands, 2006. – volume: 6 year: 2015 ident: b0145 article-title: Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan publication-title: Nat. Commun. – volume: 74 start-page: 102807 year: 2020 ident: b0225 article-title: Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation - genetic algorithm publication-title: Mar. Struct. – reference: B. Jiang, B. Liang, S. Wu, Feasibility study on the submerged floating tunnel in Qiongzhou Strait, China, Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0066. – volume: 4 start-page: 233 year: 2010 end-page: 242 ident: b0255 article-title: Transverse earthquake response and design analysis of submerged floating tunnels with various shore connections publication-title: Procedia Eng – volume: 166 start-page: 118 year: 2016 end-page: 126 ident: b0025 article-title: The lectotype optimization study on submerged floating tunnel based delphi method publication-title: Procedia Eng – reference: F. ANSYS, ANSYS fluent theory guide 19.1, ANSYS, Canonsburg, PA, 2019. – volume: 94 start-page: 102908 year: 2020 ident: b0030 article-title: Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model publication-title: J. Fluids Struct. – volume: 138 start-page: 324 year: 2017 end-page: 336 ident: b0185 article-title: Evaluation of the Rayleigh damping model for buildings publication-title: Eng. Struct. – volume: 44 start-page: 142 year: 2015 end-page: 158 ident: b0245 article-title: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification publication-title: Mar. Struct. – volume: 60 start-page: 241 year: 2018 end-page: 260 ident: b0105 article-title: Time domain simulation of riser VIV in current and irregular waves publication-title: Mar. Struct. – reference: C. Jin, J. M.-H. Kim, J. Choi, and W.-S. Park, Coupled Dynamics Simulation of Submerged Floating Tunnel for Various System Parameters and Wave Conditions, 2018, doi: 10.1115/omae2018-78687. – volume: 195 start-page: 106704 year: 2020 ident: b0045 article-title: A mini review of recent progress on vortex-induced vibrations of marine risers publication-title: Ocean Eng – volume: 172 start-page: 468 year: 2019 end-page: 486 ident: b0135 article-title: Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method publication-title: Ocean Eng. – reference: F. E. A. LTD, “LUSAS user manual.” Version. – volume: 67 start-page: 102646 year: 2019 ident: b0150 article-title: Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation publication-title: Mar. Struct. – volume: 57 start-page: 277 year: 1995 end-page: 285 ident: b0180 article-title: Formulation of Rayleigh damping and its extensions publication-title: Comput Struct – volume: 4 start-page: 171 year: 2010 end-page: 178 ident: b0015 article-title: Submerged floating tunnels for crossing of wide and deep fjords publication-title: Procedia Eng – volume: 33 start-page: 69 year: 1998 ident: b0040 article-title: Hydrodynamics around cylindrical structures publication-title: Coast. Eng. – reference: J.T. Mai, X.C. Yang, B.S. Guan, Response analysis of the submerged floating tunnel subjected to waves and currents, Tiedao Xuebao/Journal China Railw. Soc., vol. 30, no. 2, 2008 (in Chinese). – volume: 4 start-page: 303 year: 2010 end-page: 310 ident: b0020 article-title: Seismic analysis of a SFT solution for the Messina Strait crossing publication-title: Procedia Eng – volume: 4 start-page: 35 year: 2010 end-page: 50 ident: b0075 article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load publication-title: Procedia Eng – year: 2016 ident: b0110 article-title: Study on multimode vortex-induced vibration of deepwater riser in different flow fields by finite element simulations publication-title: J. Offshore Mech. Arct. Eng. – reference: K. Kavanagh, M. Dib, E. Balch, P. Stanton, New Revision of Drilling Riser Recommended Practice (API RP 16Q), in: Proceedings of the Annual Offshore Technology Conference, 2002, doi: 10.4043/14263-ms. – reference: O. Manual, Version 9.8 b, Orcina Ltd, 2014. – volume: 35 start-page: 5413 year: 2011 end-page: 5425 ident: b0170 article-title: Vibration of submerged floating tunnels due to moving loads publication-title: Appl. Math. Model. – volume: 229 start-page: 111636 year: 2021 ident: b0115 article-title: Comparison between an uncoupled one-way and two-way fluid structure interaction simulation on a super-tall slender structure publication-title: Eng Struct – volume: 166 start-page: 290 year: 2018 end-page: 301 ident: b0230 article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction publication-title: Ocean Eng. – reference: E. Passano, C.M. Larsen, H. Lie, J. Wu, VIVANA theory manual, Nor. Mar. Technol. Res. Inst. Trondheim, Norway. Curr. profiles with High. Veloc. Prod. high damage both riser’s Up. catenary buoyancy Sect. due to high Curr. Expo. shallower water depth high c, 2014. – volume: 28 start-page: 292 year: 2012 ident: 10.1016/j.engstruct.2021.113809_b0055 article-title: A review of recent studies on vortex-induced vibrations of long slender cylinders publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2011.11.010 – volume: 4 start-page: 35 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0075 article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.006 – volume: 238 year: 2021 ident: 10.1016/j.engstruct.2021.113809_b0005 article-title: The impacts of internal solitary waves on a submerged floating tunnel publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109762 – volume: 33 start-page: 69 issue: 1 year: 1998 ident: 10.1016/j.engstruct.2021.113809_b0040 article-title: Hydrodynamics around cylindrical structures publication-title: Coast. Eng. doi: 10.1016/S0378-3839(97)00031-8 – volume: 35 start-page: 5413 issue: 11 year: 2011 ident: 10.1016/j.engstruct.2021.113809_b0170 article-title: Vibration of submerged floating tunnels due to moving loads publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.04.038 – volume: 4 start-page: 171 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0015 article-title: Submerged floating tunnels for crossing of wide and deep fjords publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.020 – volume: 94 start-page: 102908 year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0030 article-title: Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.102908 – volume: 60 start-page: 241 year: 2018 ident: 10.1016/j.engstruct.2021.113809_b0105 article-title: Time domain simulation of riser VIV in current and irregular waves publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2018.04.001 – year: 2016 ident: 10.1016/j.engstruct.2021.113809_b0110 article-title: Study on multimode vortex-induced vibration of deepwater riser in different flow fields by finite element simulations publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4031729 – volume: 229 start-page: 111636 year: 2021 ident: 10.1016/j.engstruct.2021.113809_b0115 article-title: Comparison between an uncoupled one-way and two-way fluid structure interaction simulation on a super-tall slender structure publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111636 – volume: 172 start-page: 468 year: 2019 ident: 10.1016/j.engstruct.2021.113809_b0135 article-title: Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.12.006 – ident: 10.1016/j.engstruct.2021.113809_b0125 – volume: 420 start-page: 85 year: 2000 ident: 10.1016/j.engstruct.2021.113809_b0195 article-title: Modes of vortex formation and frequency response of a freely vibrating cylinder publication-title: J. Fluid Mech. doi: 10.1017/S0022112000001233 – volume: 8 start-page: 1311 issue: 8 year: 2018 ident: 10.1016/j.engstruct.2021.113809_b0060 article-title: Coupled vibration analysis of submerged floating tunnel system in wave and current publication-title: Appl. Sci. doi: 10.3390/app8081311 – volume: 195 start-page: 106704 year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0045 article-title: A mini review of recent progress on vortex-induced vibrations of marine risers publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106704 – volume: 4 start-page: 303 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0020 article-title: Seismic analysis of a SFT solution for the Messina Strait crossing publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.034 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.engstruct.2021.113809_b0120 article-title: A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions publication-title: J. Appl. Math. doi: 10.1155/2011/853560 – volume: 166 start-page: 190 year: 2016 ident: 10.1016/j.engstruct.2021.113809_b0095 article-title: On mode competition during VIVs of flexible SFT’s flexible cylindrical body experiencing lineally sheared current publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.11.582 – ident: 10.1016/j.engstruct.2021.113809_b0210 – volume: 136 start-page: 165 year: 2015 ident: 10.1016/j.engstruct.2021.113809_b0100 article-title: Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2014.11.008 – volume: 4 start-page: 233 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0255 article-title: Transverse earthquake response and design analysis of submerged floating tunnels with various shore connections publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.027 – volume: 218 start-page: 108221 year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0140 article-title: Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108221 – ident: 10.1016/j.engstruct.2021.113809_b0240 doi: 10.1201/9781315189390-117 – volume: 57 start-page: 277 issue: 2 year: 1995 ident: 10.1016/j.engstruct.2021.113809_b0180 article-title: Formulation of Rayleigh damping and its extensions publication-title: Comput Struct doi: 10.1016/0045-7949(94)00611-6 – volume: 152 start-page: 428 year: 2018 ident: 10.1016/j.engstruct.2021.113809_b0130 article-title: Numerical analysis of multi-modal vibrations of a vertical riser in step currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.12.033 – ident: 10.1016/j.engstruct.2021.113809_b0155 doi: 10.1115/OMAE2018-78687 – ident: 10.1016/j.engstruct.2021.113809_b0160 – volume: 20 start-page: 616 year: 2005 ident: 10.1016/j.engstruct.2021.113809_b0065 article-title: Dynamic response analysis of the submerged floating tunnel subjected to the wave and current publication-title: J. Hydrodyn. Ser. A – volume: 72 start-page: 659 issue: 4 year: 1999 ident: 10.1016/j.engstruct.2021.113809_b0010 article-title: Dynamic response and fluid/structure interaction of submerged floating tunnels publication-title: Comput. Struct. doi: 10.1016/S0045-7949(98)00329-0 – volume: 6 issue: 1 year: 2015 ident: 10.1016/j.engstruct.2021.113809_b0145 article-title: Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan publication-title: Nat. Commun. doi: 10.1038/ncomms8854 – volume: 4 start-page: 199 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0215 article-title: Research on tubular segment design of submerged floating tunnel publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.023 – ident: 10.1016/j.engstruct.2021.113809_b0085 – volume: 225 start-page: 111258 year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0205 article-title: Steel web effects on shear mechanism of steel shell-concrete composite structure publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111258 – volume: 4 start-page: 153 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0080 article-title: Effect of travelling wave on vortex-induced vibrations of submerged floating tunnel tethers publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.018 – ident: 10.1016/j.engstruct.2021.113809_b0190 – volume: 166 start-page: 118 year: 2016 ident: 10.1016/j.engstruct.2021.113809_b0025 article-title: The lectotype optimization study on submerged floating tunnel based delphi method publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.11.574 – ident: 10.1016/j.engstruct.2021.113809_b0175 – year: 2002 ident: 10.1016/j.engstruct.2021.113809_b0200 article-title: Development of sandwich-structure submerged tunnel tube production method publication-title: Nippon Steel Tech. Rep. – year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0220 article-title: A parametric method for submerged floating tunnel cross-section design – volume: 139 start-page: 183 issue: 3 year: 2013 ident: 10.1016/j.engstruct.2021.113809_b0235 article-title: Vortex-induced dynamic response analysis for the submerged floating tunnel system under the effect of currents publication-title: J. Waterway, Port, Coastal, Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000175 – volume: 67 start-page: 102646 year: 2019 ident: 10.1016/j.engstruct.2021.113809_b0150 article-title: Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2019.102646 – volume: 138 start-page: 324 year: 2017 ident: 10.1016/j.engstruct.2021.113809_b0185 article-title: Evaluation of the Rayleigh damping model for buildings publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.02.001 – year: 2021 ident: 10.1016/j.engstruct.2021.113809_b0165 article-title: Submerged floating tunnel cross-section analysis using a transition turbulence model publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2021.1944921 – volume: 44 start-page: 142 year: 2015 ident: 10.1016/j.engstruct.2021.113809_b0245 article-title: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2015.09.002 – ident: 10.1016/j.engstruct.2021.113809_b0260 doi: 10.4043/14263-MS – volume: 4 start-page: 99 year: 2010 ident: 10.1016/j.engstruct.2021.113809_b0250 article-title: Evaluation of wave force acting on submerged floating tunnels publication-title: Procedia Eng doi: 10.1016/j.proeng.2010.08.012 – volume: 39 start-page: 44 year: 2021 ident: 10.1016/j.engstruct.2021.113809_b0035 article-title: A study on the wave-current-induced motion responses of submerged floating tunnels using longitudinal truncated model tests publication-title: Ocean Eng. – ident: 10.1016/j.engstruct.2021.113809_b0070 – volume: 74 start-page: 102807 year: 2020 ident: 10.1016/j.engstruct.2021.113809_b0225 article-title: Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation - genetic algorithm publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2020.102807 – volume: 166 start-page: 290 year: 2018 ident: 10.1016/j.engstruct.2021.113809_b0230 article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.08.023 – year: 2005 ident: 10.1016/j.engstruct.2021.113809_b0090 article-title: Shear7 V4. 4 program theoretical manual publication-title: Massachusetts Inst. Technol. – year: 2016 ident: 10.1016/j.engstruct.2021.113809_b0050 article-title: A review of VIV responses of steel lazy wave riser |
SSID | ssj0002880 |
Score | 2.4856012 |
Snippet | •Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating... In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113809 |
SubjectTerms | Aspect ratio CFD Cross-sections Dynamic response Finite element method Flow generated vibrations Flow-induced vibration Fluid structure interaction Hydraulic loading Resonant frequencies Submerged floating tunnel Traveling waves Tunnels Vibration Vortex-induced vibration Wave height |
Title | Response of a submerged floating tunnel subject to flow-induced vibration |
URI | https://dx.doi.org/10.1016/j.engstruct.2021.113809 https://www.proquest.com/docview/2637161999 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BlRJD14nYyu3VZvhEhAIweVhFvTdi3BEEZk6s2_3b79QDEmHLyu7bK8176-b_ne9xC64opx6mCGF2rtAAoLlSdVYD0qLSfE2ljnneceRuFgTO8mbFJDvaoWBmiVZewvYnoercsn7dKa7eVs1n7KKYqEhwREp1zeAxXsNIJdfv35TfMgcd49DSZ7MHuD42UW00Km1QFF0oH-JjEwE_--oX7F6vwC6h-g_TJzxN3i4w5RzSyO0N4PPcFjNHwsGK8GpxZLvIK77nVqEmznqQR-M87egNcCI_D_BWcpDH14Dpg7Fyf4HcAzuOoEjfu3z72BV_ZK8LTLcDIvokmsOLOScEWJ0Vw6hGlZZKW2voSeIkyHKoi1DjpWaXeqA61I4jsXJn5k_OAU1RfpwpwhDLw1E2lIdAKqQW6fGql0J054TCRLGiis7CN0KSQO_SzmomKMvYi1YQUYVhSGbSB_vXBZaGlsX3JTOUBsbAvhIv72xc3KZaI8mStBwsBBRBBfOP_Puy_QLoFCCGgNw5qo7iaYS5eeZKqV778W2ukO7wejL39A5os |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4gHNSD8RlR1B68bli622XXGyESkMdBIeHWtN2WYAhLBPXv29kHUWPCweu2s9nMtNP5Nl-_AbiPJIt8CzOcQCkLUFggHSE94_jCRJQaE6q089xwFHQn_tOUTUvQLu7CIK0yz_1ZTk-zdf6knnuzvprP6y8pRZFGAUXRKVv37EEF1alYGSqtXr872iZkGqYN1HC-gwY_aF56OcuUWi1WpA1scRIiOfHvQ-pXuk7PoM4xHOXFI2ll33cCJb08hcNvkoJn0HvOSK-aJIYIssbj7m2mY2IWiUCKM9m8I7UFR_AXDNkkOPTpWGxuoxyTD8TPGK1zmHQex-2uk7dLcJQtcjZO049DGTEjaCR9qlUkLMg0rGmEMq7AtiJMBdILlfIaRiq7sT0laezaKMZuU7veBZSXyVJfAkHqmm4qrHU8X6Hivq-FVI0wjkIqWFyFoPAPV7mWOLa0WPCCNPbKt47l6FieObYK7tZwlclp7DZ5KALAf6wMbpP-buNaETKeb841p4FnUSLqL1z95913sN8dDwd80Bv1r-GA4r0I7BTDalC2k_WNrVY28jZfjV9niuk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+a+submerged+floating+tunnel+subject+to+flow-induced+vibration&rft.jtitle=Engineering+structures&rft.au=Zou%2C+P.X.&rft.au=Bricker%2C+Jeremy+D.&rft.au=Chen%2C+L.Z.&rft.au=Uijttewaal%2C+Wim+S.J.&rft.date=2022-02-15&rft.issn=0141-0296&rft.volume=253&rft.spage=113809&rft_id=info:doi/10.1016%2Fj.engstruct.2021.113809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2021_113809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |