Response of a submerged floating tunnel subject to flow-induced vibration

•Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibration...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 253; p. 113809
Main Authors Zou, P.X., Bricker, Jeremy D., Chen, L.Z., Uijttewaal, Wim S.J., Simao Ferreira, Carlos
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.02.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibrations of the submerged floating tunnel are numerically predicted under currents, waves, and extreme events.•A parametric cross-section for an SFT is recommended due to effectively reduced dynamic response. In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure’s natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT’s first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section.
AbstractList In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure's natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT's first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section.
•Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating tunnel.•A typical long SFT coupling tube-joint-mooring components model with a large aspect ratio is simulated in time-domain.•Flow-induced vibrations of the submerged floating tunnel are numerically predicted under currents, waves, and extreme events.•A parametric cross-section for an SFT is recommended due to effectively reduced dynamic response. In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering application, a one-way fluid–structure interaction (FSI) model consisting of multi-scale hydrodynamic solvers combined with the finite element method (FEM) is established. A typical long, large aspect ratio SFT is modeled by coupling tube, joint, and mooring components. The SFT is simulated in the time domain under currents, waves, and extreme events. FIV of SFTs with different cross-section shapes is investigated by analyzing each structure’s natural frequencies, hydraulic loading frequency, and dominant modes. The results show that FIV of the SFT tube is dominated by wave conditions. The excitation of the SFT’s first dominant mode by a large wave height and period should be avoided. Standing and traveling wave patterns and multi-mode response are observed during extreme events. The hydrodynamic forcing and structural dynamic response of the SFT can be effectively reduced by adopting a parametric cross-section.
ArticleNumber 113809
Author Uijttewaal, Wim S.J.
Simao Ferreira, Carlos
Bricker, Jeremy D.
Chen, L.Z.
Zou, P.X.
Author_xml – sequence: 1
  givenname: P.X.
  surname: Zou
  fullname: Zou, P.X.
  email: p.zou@tudelft.nl
  organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands
– sequence: 2
  givenname: Jeremy D.
  surname: Bricker
  fullname: Bricker, Jeremy D.
  organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands
– sequence: 3
  givenname: L.Z.
  surname: Chen
  fullname: Chen, L.Z.
  organization: CCCC FHDI Engineering Co., Ltd., Guangzhou, Guangdong 510230, China
– sequence: 4
  givenname: Wim S.J.
  surname: Uijttewaal
  fullname: Uijttewaal, Wim S.J.
  organization: Dept. of Hydraulic Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2600GA Delft, the Netherlands
– sequence: 5
  givenname: Carlos
  surname: Simao Ferreira
  fullname: Simao Ferreira, Carlos
  organization: Department of Wind Energy, Delft University of Technology, 2600GA Delft, the Netherlands
BookMark eNqNkEtLAzEQx4NUsK1-Bhc875pHu9kcPJTioyAIoueQzU5KljapSbbitze14sGLnubwf8zMb4JGzjtA6JLgimBSX_cVuHVMYdCpopiSihDWYHGCxqThrOSMshEaYzIjJaaiPkOTGHuMMW0aPEarZ4g77yIU3hSqiEO7hbCGrjAbr5J16yINzsHmoPSgU5H8QXovresGnX1724Zs9O4cnRq1iXDxPafo9e72ZflQPj7dr5aLx1IzQVPJZ13TirlRVLQzClqoOWVmzo3SBis-q_lc1y1rtGbEtBrnb3RLO9yC7jAHzKbo6ti7C_5tgJhk74fg8kpJa8ZJTYQQ2XVzdOngYwxgpLbp684UlN1IguWBnuzlDz15oCeP9HKe_8rvgt2q8PGP5OKYhAxhbyHIqC24zMqGDFB23v7Z8QmD8JLL
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115942
crossref_primary_10_1063_5_0217561
crossref_primary_10_1155_2023_7803876
crossref_primary_10_1016_j_marstruc_2023_103405
crossref_primary_10_1016_j_oceaneng_2022_113447
crossref_primary_10_1016_j_oceaneng_2024_116975
crossref_primary_10_1016_j_oceaneng_2023_114257
crossref_primary_10_3390_jmse12050759
crossref_primary_10_1016_j_oceaneng_2023_116333
crossref_primary_10_1016_j_seta_2023_103417
crossref_primary_10_1016_j_oceaneng_2024_117187
crossref_primary_10_1016_j_oceaneng_2024_117660
crossref_primary_10_1080_17445302_2024_2355404
crossref_primary_10_1016_j_apor_2023_103525
crossref_primary_10_1016_j_oceaneng_2024_117480
crossref_primary_10_1016_j_oceaneng_2024_118187
crossref_primary_10_32604_fdmp_2022_020730
crossref_primary_10_1016_j_marstruc_2022_103339
crossref_primary_10_1007_s12205_024_1189_y
crossref_primary_10_1016_j_oceaneng_2024_117079
crossref_primary_10_1080_00221686_2023_2246925
crossref_primary_10_3390_app14093724
crossref_primary_10_3390_su152115241
crossref_primary_10_1016_j_apor_2023_103557
crossref_primary_10_1016_j_apor_2023_103656
crossref_primary_10_1016_j_oceaneng_2023_115291
crossref_primary_10_1016_j_oceaneng_2022_110951
crossref_primary_10_1016_j_oceaneng_2024_118615
crossref_primary_10_1016_j_matpr_2023_08_377
Cites_doi 10.1016/j.jfluidstructs.2011.11.010
10.1016/j.proeng.2010.08.006
10.1016/j.oceaneng.2021.109762
10.1016/S0378-3839(97)00031-8
10.1016/j.apm.2011.04.038
10.1016/j.proeng.2010.08.020
10.1016/j.jfluidstructs.2020.102908
10.1016/j.marstruc.2018.04.001
10.1115/1.4031729
10.1016/j.engstruct.2020.111636
10.1016/j.oceaneng.2018.12.006
10.1017/S0022112000001233
10.3390/app8081311
10.1016/j.oceaneng.2019.106704
10.1016/j.proeng.2010.08.034
10.1155/2011/853560
10.1016/j.proeng.2016.11.582
10.1016/j.jweia.2014.11.008
10.1016/j.proeng.2010.08.027
10.1016/j.oceaneng.2020.108221
10.1201/9781315189390-117
10.1016/0045-7949(94)00611-6
10.1016/j.oceaneng.2017.12.033
10.1115/OMAE2018-78687
10.1016/S0045-7949(98)00329-0
10.1038/ncomms8854
10.1016/j.proeng.2010.08.023
10.1016/j.engstruct.2020.111258
10.1016/j.proeng.2010.08.018
10.1016/j.proeng.2016.11.574
10.1061/(ASCE)WW.1943-5460.0000175
10.1016/j.marstruc.2019.102646
10.1016/j.engstruct.2017.02.001
10.1080/00221686.2021.1944921
10.1016/j.marstruc.2015.09.002
10.4043/14263-MS
10.1016/j.proeng.2010.08.012
10.1016/j.marstruc.2020.102807
10.1016/j.oceaneng.2018.08.023
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Feb 15, 2022
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Feb 15, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.113809
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_113809
S0141029621018800
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c392t-74d8b95fa29b42ec9a523f57facf0a74675c6b38cc31fbc0113cb2d0becd07e03
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 04:41:00 EDT 2025
Tue Jul 01 01:21:53 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
Flow-induced vibration
Submerged floating tunnel
Fluid structure interaction
Vortex-induced vibration
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-74d8b95fa29b42ec9a523f57facf0a74675c6b38cc31fbc0113cb2d0becd07e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141029621018800
PQID 2637161999
PQPubID 2045481
ParticipantIDs proquest_journals_2637161999
crossref_citationtrail_10_1016_j_engstruct_2021_113809
crossref_primary_10_1016_j_engstruct_2021_113809
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_113809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Habashi, Khurram (b0100) 2015; 136
Remseth, Leira, Okstad, Mathisen, Haukås (b0010) 1999; 72
Hong, Ge (b0075) 2010; 4
Chen, Xiang, Lin, Yang (b0060) 2018; 8
Yiqiang, Chunfeng (b0235) 2013; 139
Wijesooriya, Mohotti, Amin, Chauhan (b0115) 2021; 229
Lin, Xiang, Yang (b0150) 2019; 67
C. Jin, J. M.-H. Kim, J. Choi, and W.-S. Park, Coupled Dynamics Simulation of Submerged Floating Tunnel for Various System Parameters and Wave Conditions, 2018, doi: 10.1115/omae2018-78687.
Mai, Yang, Guan (b0065) 2005; 20
Li, Song, Liu (b0205) 2020; 225
D. Hydraulics, Delft3D-FLOW user manual, Delft, the Netherlands, 2006.
Liu, Li, Qiu, Leng, Li, Li (b0045) 2020; 195
Xiao, Huang (b0255) 2010; 4
Martire, Faggiano, Mazzolani, Zollo, Stabile (b0020) 2010; 4
Yang, Zhang, Li, Yuan, Ji (b0035) 2021; 39
Larssen, Jakobsen (b0015) 2010; 4
Kamphuis (b0040) 1998; 33
Felisita, Gudmestad, Karunakaran, Martinsen (b0050) 2016
F. ANSYS, ANSYS fluent theory guide 19.1, ANSYS, Canonsburg, PA, 2019.
Chen, Li, Zhang, Tan (b0110) 2016
R.S. Van Oorsouw, Behaviour of segment joints in immersed tunnels under seismic loading, 2010.
Lin, Wang (b0135) 2019; 172
Liu, Gorman (b0180) 1995; 57
Ulveseter, Thorsen, Sævik, Larsen (b0105) 2018; 60
Yan, Zhang, Yu (b0025) 2016; 166
J.T. Mai, X.C. Yang, B.S. Guan, Response analysis of the submerged floating tunnel subjected to waves and currents, Tiedao Xuebao/Journal China Railw. Soc., vol. 30, no. 2, 2008 (in Chinese).
Cruz, Miranda (b0185) 2017; 138
Vandiver, Li (b0090) 2005
B. Jiang, B. Liang, S. Wu, Feasibility study on the submerged floating tunnel in Qiongzhou Strait, China, Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0066.
Duanmu, Zou, Wan (b0130) 2018; 152
Wu, Ge, Hong (b0080) 2010; 4
Zou, Bricker, Uijttewaal (b0140) 2020; 218
Kimura, Moritaka, Kojima (b0200) 2002
Kunisu (b0250) 2010; 4
Roeber, Bricker (b0145) 2015; 6
K. Kavanagh, M. Dib, E. Balch, P. Stanton, New Revision of Drilling Riser Recommended Practice (API RP 16Q), in: Proceedings of the Annual Offshore Technology Conference, 2002, doi: 10.4043/14263-ms.
Seo, Mun, Lee, Kim (b0245) 2015; 44
O. Manual, Version 9.8 b, Orcina Ltd, 2014.
Zhang, Xiang, Du (b0215) 2010; 4
Lin, Xiang, Yang, Chen (b0230) 2018; 166
Zou, Bricker, Uijttewaal (b0225) 2020; 74
F. E. A. LTD, “LUSAS user manual.” Version.
Tariverdilo, Mirzapour, Shahmardani, Shabani, Gheyretmand (b0170) 2011; 35
Govardhan, Williamson (b0195) 2000; 420
E. Passano, C.M. Larsen, H. Lie, J. Wu, VIVANA theory manual, Nor. Mar. Technol. Res. Inst. Trondheim, Norway. Curr. profiles with High. Veloc. Prod. high damage both riser’s Up. catenary buoyancy Sect. due to high Curr. Expo. shallower water depth high c, 2014.
Chen, Li, Fu, Guo (b0095) 2016; 166
Wu, Ge, Hong (b0055) 2012; 28
Zou, Bricker, Uijttewaal (b0165) 2021
Deng, Ren, Xu, Fu, Moan, Gao (b0030) 2020; 94
Zou, Bricker, Uijttewaal (b0220) 2020
Zou, Bricker, Uijttewaal (b0005) 2021; 238
Benra, Dohmen, Pei, Schuster, Wan (b0120) 2011; 2011
10.1016/j.engstruct.2021.113809_b0085
10.1016/j.engstruct.2021.113809_b0240
Seo (10.1016/j.engstruct.2021.113809_b0245) 2015; 44
Larssen (10.1016/j.engstruct.2021.113809_b0015) 2010; 4
Zhang (10.1016/j.engstruct.2021.113809_b0215) 2010; 4
10.1016/j.engstruct.2021.113809_b0160
Liu (10.1016/j.engstruct.2021.113809_b0180) 1995; 57
Yan (10.1016/j.engstruct.2021.113809_b0025) 2016; 166
10.1016/j.engstruct.2021.113809_b0125
Cruz (10.1016/j.engstruct.2021.113809_b0185) 2017; 138
Zou (10.1016/j.engstruct.2021.113809_b0140) 2020; 218
Mai (10.1016/j.engstruct.2021.113809_b0065) 2005; 20
Wijesooriya (10.1016/j.engstruct.2021.113809_b0115) 2021; 229
Ulveseter (10.1016/j.engstruct.2021.113809_b0105) 2018; 60
Chen (10.1016/j.engstruct.2021.113809_b0110) 2016
Lin (10.1016/j.engstruct.2021.113809_b0150) 2019; 67
10.1016/j.engstruct.2021.113809_b0070
Kunisu (10.1016/j.engstruct.2021.113809_b0250) 2010; 4
Yiqiang (10.1016/j.engstruct.2021.113809_b0235) 2013; 139
Duanmu (10.1016/j.engstruct.2021.113809_b0130) 2018; 152
10.1016/j.engstruct.2021.113809_b0155
Wu (10.1016/j.engstruct.2021.113809_b0055) 2012; 28
Vandiver (10.1016/j.engstruct.2021.113809_b0090) 2005
Zou (10.1016/j.engstruct.2021.113809_b0220) 2020
Lin (10.1016/j.engstruct.2021.113809_b0135) 2019; 172
Zou (10.1016/j.engstruct.2021.113809_b0165) 2021
Martire (10.1016/j.engstruct.2021.113809_b0020) 2010; 4
Remseth (10.1016/j.engstruct.2021.113809_b0010) 1999; 72
Benra (10.1016/j.engstruct.2021.113809_b0120) 2011; 2011
Chen (10.1016/j.engstruct.2021.113809_b0095) 2016; 166
Zhang (10.1016/j.engstruct.2021.113809_b0100) 2015; 136
Zou (10.1016/j.engstruct.2021.113809_b0005) 2021; 238
Wu (10.1016/j.engstruct.2021.113809_b0080) 2010; 4
10.1016/j.engstruct.2021.113809_b0260
Roeber (10.1016/j.engstruct.2021.113809_b0145) 2015; 6
Liu (10.1016/j.engstruct.2021.113809_b0045) 2020; 195
Xiao (10.1016/j.engstruct.2021.113809_b0255) 2010; 4
Felisita (10.1016/j.engstruct.2021.113809_b0050) 2016
Chen (10.1016/j.engstruct.2021.113809_b0060) 2018; 8
10.1016/j.engstruct.2021.113809_b0190
Yang (10.1016/j.engstruct.2021.113809_b0035) 2021; 39
10.1016/j.engstruct.2021.113809_b0175
Kimura (10.1016/j.engstruct.2021.113809_b0200) 2002
Kamphuis (10.1016/j.engstruct.2021.113809_b0040) 1998; 33
Li (10.1016/j.engstruct.2021.113809_b0205) 2020; 225
10.1016/j.engstruct.2021.113809_b0210
Tariverdilo (10.1016/j.engstruct.2021.113809_b0170) 2011; 35
Govardhan (10.1016/j.engstruct.2021.113809_b0195) 2000; 420
Deng (10.1016/j.engstruct.2021.113809_b0030) 2020; 94
Lin (10.1016/j.engstruct.2021.113809_b0230) 2018; 166
Hong (10.1016/j.engstruct.2021.113809_b0075) 2010; 4
Zou (10.1016/j.engstruct.2021.113809_b0225) 2020; 74
References_xml – volume: 39
  start-page: 44
  year: 2021
  end-page: 52
  ident: b0035
  article-title: A study on the wave-current-induced motion responses of submerged floating tunnels using longitudinal truncated model tests
  publication-title: Ocean Eng.
– volume: 218
  start-page: 108221
  year: 2020
  ident: b0140
  article-title: Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel
  publication-title: Ocean Eng.
– volume: 8
  start-page: 1311
  year: 2018
  ident: b0060
  article-title: Coupled vibration analysis of submerged floating tunnel system in wave and current
  publication-title: Appl. Sci.
– year: 2021
  ident: b0165
  article-title: Submerged floating tunnel cross-section analysis using a transition turbulence model
  publication-title: J. Hydraul. Res.
– volume: 4
  start-page: 199
  year: 2010
  end-page: 205
  ident: b0215
  article-title: Research on tubular segment design of submerged floating tunnel
  publication-title: Procedia Eng
– year: 2020
  ident: b0220
  article-title: A parametric method for submerged floating tunnel cross-section design
  publication-title: Proceedings of the International Offshore and Polar Engineering Conference
– volume: 4
  start-page: 153
  year: 2010
  end-page: 160
  ident: b0080
  article-title: Effect of travelling wave on vortex-induced vibrations of submerged floating tunnel tethers
  publication-title: Procedia Eng
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 16
  ident: b0120
  article-title: A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions
  publication-title: J. Appl. Math.
– volume: 152
  start-page: 428
  year: 2018
  end-page: 442
  ident: b0130
  article-title: Numerical analysis of multi-modal vibrations of a vertical riser in step currents
  publication-title: Ocean Eng.
– volume: 4
  start-page: 99
  year: 2010
  end-page: 105
  ident: b0250
  article-title: Evaluation of wave force acting on submerged floating tunnels
  publication-title: Procedia Eng
– volume: 28
  start-page: 292
  year: 2012
  end-page: 308
  ident: b0055
  article-title: A review of recent studies on vortex-induced vibrations of long slender cylinders
  publication-title: J. Fluids Struct.
– volume: 136
  start-page: 165
  year: 2015
  end-page: 179
  ident: b0100
  article-title: Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: R.S. Van Oorsouw, Behaviour of segment joints in immersed tunnels under seismic loading, 2010.
– volume: 20
  start-page: 616
  year: 2005
  end-page: 623
  ident: b0065
  article-title: Dynamic response analysis of the submerged floating tunnel subjected to the wave and current
  publication-title: J. Hydrodyn. Ser. A
– volume: 225
  start-page: 111258
  year: 2020
  ident: b0205
  article-title: Steel web effects on shear mechanism of steel shell-concrete composite structure
  publication-title: Eng. Struct.
– year: 2002
  ident: b0200
  article-title: Development of sandwich-structure submerged tunnel tube production method
  publication-title: Nippon Steel Tech. Rep.
– volume: 139
  start-page: 183
  year: 2013
  end-page: 189
  ident: b0235
  article-title: Vortex-induced dynamic response analysis for the submerged floating tunnel system under the effect of currents
  publication-title: J. Waterway, Port, Coastal, Ocean Eng.
– volume: 72
  start-page: 659
  year: 1999
  end-page: 685
  ident: b0010
  article-title: Dynamic response and fluid/structure interaction of submerged floating tunnels
  publication-title: Comput. Struct.
– year: 2005
  ident: b0090
  article-title: Shear7 V4. 4 program theoretical manual
  publication-title: Massachusetts Inst. Technol.
– volume: 420
  start-page: 85
  year: 2000
  end-page: 130
  ident: b0195
  article-title: Modes of vortex formation and frequency response of a freely vibrating cylinder
  publication-title: J. Fluid Mech.
– volume: 238
  year: 2021
  ident: b0005
  article-title: The impacts of internal solitary waves on a submerged floating tunnel
  publication-title: Ocean Eng.
– volume: 166
  start-page: 190
  year: 2016
  end-page: 201
  ident: b0095
  article-title: On mode competition during VIVs of flexible SFT’s flexible cylindrical body experiencing lineally sheared current
  publication-title: Procedia Eng
– year: 2016
  ident: b0050
  article-title: A review of VIV responses of steel lazy wave riser
  publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering -
– reference: D. Hydraulics, Delft3D-FLOW user manual, Delft, the Netherlands, 2006.
– volume: 6
  year: 2015
  ident: b0145
  article-title: Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan
  publication-title: Nat. Commun.
– volume: 74
  start-page: 102807
  year: 2020
  ident: b0225
  article-title: Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation - genetic algorithm
  publication-title: Mar. Struct.
– reference: B. Jiang, B. Liang, S. Wu, Feasibility study on the submerged floating tunnel in Qiongzhou Strait, China, Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0066.
– volume: 4
  start-page: 233
  year: 2010
  end-page: 242
  ident: b0255
  article-title: Transverse earthquake response and design analysis of submerged floating tunnels with various shore connections
  publication-title: Procedia Eng
– volume: 166
  start-page: 118
  year: 2016
  end-page: 126
  ident: b0025
  article-title: The lectotype optimization study on submerged floating tunnel based delphi method
  publication-title: Procedia Eng
– reference: F. ANSYS, ANSYS fluent theory guide 19.1, ANSYS, Canonsburg, PA, 2019.
– volume: 94
  start-page: 102908
  year: 2020
  ident: b0030
  article-title: Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model
  publication-title: J. Fluids Struct.
– volume: 138
  start-page: 324
  year: 2017
  end-page: 336
  ident: b0185
  article-title: Evaluation of the Rayleigh damping model for buildings
  publication-title: Eng. Struct.
– volume: 44
  start-page: 142
  year: 2015
  end-page: 158
  ident: b0245
  article-title: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification
  publication-title: Mar. Struct.
– volume: 60
  start-page: 241
  year: 2018
  end-page: 260
  ident: b0105
  article-title: Time domain simulation of riser VIV in current and irregular waves
  publication-title: Mar. Struct.
– reference: C. Jin, J. M.-H. Kim, J. Choi, and W.-S. Park, Coupled Dynamics Simulation of Submerged Floating Tunnel for Various System Parameters and Wave Conditions, 2018, doi: 10.1115/omae2018-78687.
– volume: 195
  start-page: 106704
  year: 2020
  ident: b0045
  article-title: A mini review of recent progress on vortex-induced vibrations of marine risers
  publication-title: Ocean Eng
– volume: 172
  start-page: 468
  year: 2019
  end-page: 486
  ident: b0135
  article-title: Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method
  publication-title: Ocean Eng.
– reference: F. E. A. LTD, “LUSAS user manual.” Version.
– volume: 67
  start-page: 102646
  year: 2019
  ident: b0150
  article-title: Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation
  publication-title: Mar. Struct.
– volume: 57
  start-page: 277
  year: 1995
  end-page: 285
  ident: b0180
  article-title: Formulation of Rayleigh damping and its extensions
  publication-title: Comput Struct
– volume: 4
  start-page: 171
  year: 2010
  end-page: 178
  ident: b0015
  article-title: Submerged floating tunnels for crossing of wide and deep fjords
  publication-title: Procedia Eng
– volume: 33
  start-page: 69
  year: 1998
  ident: b0040
  article-title: Hydrodynamics around cylindrical structures
  publication-title: Coast. Eng.
– reference: J.T. Mai, X.C. Yang, B.S. Guan, Response analysis of the submerged floating tunnel subjected to waves and currents, Tiedao Xuebao/Journal China Railw. Soc., vol. 30, no. 2, 2008 (in Chinese).
– volume: 4
  start-page: 303
  year: 2010
  end-page: 310
  ident: b0020
  article-title: Seismic analysis of a SFT solution for the Messina Strait crossing
  publication-title: Procedia Eng
– volume: 4
  start-page: 35
  year: 2010
  end-page: 50
  ident: b0075
  article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load
  publication-title: Procedia Eng
– year: 2016
  ident: b0110
  article-title: Study on multimode vortex-induced vibration of deepwater riser in different flow fields by finite element simulations
  publication-title: J. Offshore Mech. Arct. Eng.
– reference: K. Kavanagh, M. Dib, E. Balch, P. Stanton, New Revision of Drilling Riser Recommended Practice (API RP 16Q), in: Proceedings of the Annual Offshore Technology Conference, 2002, doi: 10.4043/14263-ms.
– reference: O. Manual, Version 9.8 b, Orcina Ltd, 2014.
– volume: 35
  start-page: 5413
  year: 2011
  end-page: 5425
  ident: b0170
  article-title: Vibration of submerged floating tunnels due to moving loads
  publication-title: Appl. Math. Model.
– volume: 229
  start-page: 111636
  year: 2021
  ident: b0115
  article-title: Comparison between an uncoupled one-way and two-way fluid structure interaction simulation on a super-tall slender structure
  publication-title: Eng Struct
– volume: 166
  start-page: 290
  year: 2018
  end-page: 301
  ident: b0230
  article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction
  publication-title: Ocean Eng.
– reference: E. Passano, C.M. Larsen, H. Lie, J. Wu, VIVANA theory manual, Nor. Mar. Technol. Res. Inst. Trondheim, Norway. Curr. profiles with High. Veloc. Prod. high damage both riser’s Up. catenary buoyancy Sect. due to high Curr. Expo. shallower water depth high c, 2014.
– volume: 28
  start-page: 292
  year: 2012
  ident: 10.1016/j.engstruct.2021.113809_b0055
  article-title: A review of recent studies on vortex-induced vibrations of long slender cylinders
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.11.010
– volume: 4
  start-page: 35
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0075
  article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.006
– volume: 238
  year: 2021
  ident: 10.1016/j.engstruct.2021.113809_b0005
  article-title: The impacts of internal solitary waves on a submerged floating tunnel
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109762
– volume: 33
  start-page: 69
  issue: 1
  year: 1998
  ident: 10.1016/j.engstruct.2021.113809_b0040
  article-title: Hydrodynamics around cylindrical structures
  publication-title: Coast. Eng.
  doi: 10.1016/S0378-3839(97)00031-8
– volume: 35
  start-page: 5413
  issue: 11
  year: 2011
  ident: 10.1016/j.engstruct.2021.113809_b0170
  article-title: Vibration of submerged floating tunnels due to moving loads
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.04.038
– volume: 4
  start-page: 171
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0015
  article-title: Submerged floating tunnels for crossing of wide and deep fjords
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.020
– volume: 94
  start-page: 102908
  year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0030
  article-title: Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.102908
– volume: 60
  start-page: 241
  year: 2018
  ident: 10.1016/j.engstruct.2021.113809_b0105
  article-title: Time domain simulation of riser VIV in current and irregular waves
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2018.04.001
– year: 2016
  ident: 10.1016/j.engstruct.2021.113809_b0110
  article-title: Study on multimode vortex-induced vibration of deepwater riser in different flow fields by finite element simulations
  publication-title: J. Offshore Mech. Arct. Eng.
  doi: 10.1115/1.4031729
– volume: 229
  start-page: 111636
  year: 2021
  ident: 10.1016/j.engstruct.2021.113809_b0115
  article-title: Comparison between an uncoupled one-way and two-way fluid structure interaction simulation on a super-tall slender structure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111636
– volume: 172
  start-page: 468
  year: 2019
  ident: 10.1016/j.engstruct.2021.113809_b0135
  article-title: Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.12.006
– ident: 10.1016/j.engstruct.2021.113809_b0125
– volume: 420
  start-page: 85
  year: 2000
  ident: 10.1016/j.engstruct.2021.113809_b0195
  article-title: Modes of vortex formation and frequency response of a freely vibrating cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000001233
– volume: 8
  start-page: 1311
  issue: 8
  year: 2018
  ident: 10.1016/j.engstruct.2021.113809_b0060
  article-title: Coupled vibration analysis of submerged floating tunnel system in wave and current
  publication-title: Appl. Sci.
  doi: 10.3390/app8081311
– volume: 195
  start-page: 106704
  year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0045
  article-title: A mini review of recent progress on vortex-induced vibrations of marine risers
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106704
– volume: 4
  start-page: 303
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0020
  article-title: Seismic analysis of a SFT solution for the Messina Strait crossing
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.034
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.engstruct.2021.113809_b0120
  article-title: A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions
  publication-title: J. Appl. Math.
  doi: 10.1155/2011/853560
– volume: 166
  start-page: 190
  year: 2016
  ident: 10.1016/j.engstruct.2021.113809_b0095
  article-title: On mode competition during VIVs of flexible SFT’s flexible cylindrical body experiencing lineally sheared current
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.11.582
– ident: 10.1016/j.engstruct.2021.113809_b0210
– volume: 136
  start-page: 165
  year: 2015
  ident: 10.1016/j.engstruct.2021.113809_b0100
  article-title: Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2014.11.008
– volume: 4
  start-page: 233
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0255
  article-title: Transverse earthquake response and design analysis of submerged floating tunnels with various shore connections
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.027
– volume: 218
  start-page: 108221
  year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0140
  article-title: Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108221
– ident: 10.1016/j.engstruct.2021.113809_b0240
  doi: 10.1201/9781315189390-117
– volume: 57
  start-page: 277
  issue: 2
  year: 1995
  ident: 10.1016/j.engstruct.2021.113809_b0180
  article-title: Formulation of Rayleigh damping and its extensions
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00611-6
– volume: 152
  start-page: 428
  year: 2018
  ident: 10.1016/j.engstruct.2021.113809_b0130
  article-title: Numerical analysis of multi-modal vibrations of a vertical riser in step currents
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.12.033
– ident: 10.1016/j.engstruct.2021.113809_b0155
  doi: 10.1115/OMAE2018-78687
– ident: 10.1016/j.engstruct.2021.113809_b0160
– volume: 20
  start-page: 616
  year: 2005
  ident: 10.1016/j.engstruct.2021.113809_b0065
  article-title: Dynamic response analysis of the submerged floating tunnel subjected to the wave and current
  publication-title: J. Hydrodyn. Ser. A
– volume: 72
  start-page: 659
  issue: 4
  year: 1999
  ident: 10.1016/j.engstruct.2021.113809_b0010
  article-title: Dynamic response and fluid/structure interaction of submerged floating tunnels
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(98)00329-0
– volume: 6
  issue: 1
  year: 2015
  ident: 10.1016/j.engstruct.2021.113809_b0145
  article-title: Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8854
– volume: 4
  start-page: 199
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0215
  article-title: Research on tubular segment design of submerged floating tunnel
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.023
– ident: 10.1016/j.engstruct.2021.113809_b0085
– volume: 225
  start-page: 111258
  year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0205
  article-title: Steel web effects on shear mechanism of steel shell-concrete composite structure
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111258
– volume: 4
  start-page: 153
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0080
  article-title: Effect of travelling wave on vortex-induced vibrations of submerged floating tunnel tethers
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.018
– ident: 10.1016/j.engstruct.2021.113809_b0190
– volume: 166
  start-page: 118
  year: 2016
  ident: 10.1016/j.engstruct.2021.113809_b0025
  article-title: The lectotype optimization study on submerged floating tunnel based delphi method
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.11.574
– ident: 10.1016/j.engstruct.2021.113809_b0175
– year: 2002
  ident: 10.1016/j.engstruct.2021.113809_b0200
  article-title: Development of sandwich-structure submerged tunnel tube production method
  publication-title: Nippon Steel Tech. Rep.
– year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0220
  article-title: A parametric method for submerged floating tunnel cross-section design
– volume: 139
  start-page: 183
  issue: 3
  year: 2013
  ident: 10.1016/j.engstruct.2021.113809_b0235
  article-title: Vortex-induced dynamic response analysis for the submerged floating tunnel system under the effect of currents
  publication-title: J. Waterway, Port, Coastal, Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000175
– volume: 67
  start-page: 102646
  year: 2019
  ident: 10.1016/j.engstruct.2021.113809_b0150
  article-title: Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2019.102646
– volume: 138
  start-page: 324
  year: 2017
  ident: 10.1016/j.engstruct.2021.113809_b0185
  article-title: Evaluation of the Rayleigh damping model for buildings
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.02.001
– year: 2021
  ident: 10.1016/j.engstruct.2021.113809_b0165
  article-title: Submerged floating tunnel cross-section analysis using a transition turbulence model
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2021.1944921
– volume: 44
  start-page: 142
  year: 2015
  ident: 10.1016/j.engstruct.2021.113809_b0245
  article-title: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2015.09.002
– ident: 10.1016/j.engstruct.2021.113809_b0260
  doi: 10.4043/14263-MS
– volume: 4
  start-page: 99
  year: 2010
  ident: 10.1016/j.engstruct.2021.113809_b0250
  article-title: Evaluation of wave force acting on submerged floating tunnels
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2010.08.012
– volume: 39
  start-page: 44
  year: 2021
  ident: 10.1016/j.engstruct.2021.113809_b0035
  article-title: A study on the wave-current-induced motion responses of submerged floating tunnels using longitudinal truncated model tests
  publication-title: Ocean Eng.
– ident: 10.1016/j.engstruct.2021.113809_b0070
– volume: 74
  start-page: 102807
  year: 2020
  ident: 10.1016/j.engstruct.2021.113809_b0225
  article-title: Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation - genetic algorithm
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2020.102807
– volume: 166
  start-page: 290
  year: 2018
  ident: 10.1016/j.engstruct.2021.113809_b0230
  article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.08.023
– year: 2005
  ident: 10.1016/j.engstruct.2021.113809_b0090
  article-title: Shear7 V4. 4 program theoretical manual
  publication-title: Massachusetts Inst. Technol.
– year: 2016
  ident: 10.1016/j.engstruct.2021.113809_b0050
  article-title: A review of VIV responses of steel lazy wave riser
SSID ssj0002880
Score 2.4856012
Snippet •Multi-scale hydrodynamic models combined with the finite element analysis are proposed to predict dynamic response behavior of the submerged floating...
In order to assess the dynamic performance of a submerged floating tunnel (SFT) subject to flow-induced vibration (FIV) conditions in a practical engineering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113809
SubjectTerms Aspect ratio
CFD
Cross-sections
Dynamic response
Finite element method
Flow generated vibrations
Flow-induced vibration
Fluid structure interaction
Hydraulic loading
Resonant frequencies
Submerged floating tunnel
Traveling waves
Tunnels
Vibration
Vortex-induced vibration
Wave height
Title Response of a submerged floating tunnel subject to flow-induced vibration
URI https://dx.doi.org/10.1016/j.engstruct.2021.113809
https://www.proquest.com/docview/2637161999
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BlRJD14nYyu3VZvhEhAIweVhFvTdi3BEEZk6s2_3b79QDEmHLyu7bK8176-b_ne9xC64opx6mCGF2rtAAoLlSdVYD0qLSfE2ljnneceRuFgTO8mbFJDvaoWBmiVZewvYnoercsn7dKa7eVs1n7KKYqEhwREp1zeAxXsNIJdfv35TfMgcd49DSZ7MHuD42UW00Km1QFF0oH-JjEwE_--oX7F6vwC6h-g_TJzxN3i4w5RzSyO0N4PPcFjNHwsGK8GpxZLvIK77nVqEmznqQR-M87egNcCI_D_BWcpDH14Dpg7Fyf4HcAzuOoEjfu3z72BV_ZK8LTLcDIvokmsOLOScEWJ0Vw6hGlZZKW2voSeIkyHKoi1DjpWaXeqA61I4jsXJn5k_OAU1RfpwpwhDLw1E2lIdAKqQW6fGql0J054TCRLGiis7CN0KSQO_SzmomKMvYi1YQUYVhSGbSB_vXBZaGlsX3JTOUBsbAvhIv72xc3KZaI8mStBwsBBRBBfOP_Puy_QLoFCCGgNw5qo7iaYS5eeZKqV778W2ukO7wejL39A5os
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4gHNSD8RlR1B68bli622XXGyESkMdBIeHWtN2WYAhLBPXv29kHUWPCweu2s9nMtNP5Nl-_AbiPJIt8CzOcQCkLUFggHSE94_jCRJQaE6q089xwFHQn_tOUTUvQLu7CIK0yz_1ZTk-zdf6knnuzvprP6y8pRZFGAUXRKVv37EEF1alYGSqtXr872iZkGqYN1HC-gwY_aF56OcuUWi1WpA1scRIiOfHvQ-pXuk7PoM4xHOXFI2ll33cCJb08hcNvkoJn0HvOSK-aJIYIssbj7m2mY2IWiUCKM9m8I7UFR_AXDNkkOPTpWGxuoxyTD8TPGK1zmHQex-2uk7dLcJQtcjZO049DGTEjaCR9qlUkLMg0rGmEMq7AtiJMBdILlfIaRiq7sT0laezaKMZuU7veBZSXyVJfAkHqmm4qrHU8X6Hivq-FVI0wjkIqWFyFoPAPV7mWOLa0WPCCNPbKt47l6FieObYK7tZwlclp7DZ5KALAf6wMbpP-buNaETKeb841p4FnUSLqL1z95913sN8dDwd80Bv1r-GA4r0I7BTDalC2k_WNrVY28jZfjV9niuk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+a+submerged+floating+tunnel+subject+to+flow-induced+vibration&rft.jtitle=Engineering+structures&rft.au=Zou%2C+P.X.&rft.au=Bricker%2C+Jeremy+D.&rft.au=Chen%2C+L.Z.&rft.au=Uijttewaal%2C+Wim+S.J.&rft.date=2022-02-15&rft.issn=0141-0296&rft.volume=253&rft.spage=113809&rft_id=info:doi/10.1016%2Fj.engstruct.2021.113809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2021_113809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon