Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery

Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 9; no. 4; p. 308
Main Authors Albetis, Johanna, Duthoit, Sylvie, Guttler, Fabio, Jacquin, Anne, Goulard, Michel, Poilvé, Hervé, Féret, Jean-Baptiste, Dedieu, Gérard
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed.
AbstractList Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed.
Author Duthoit, Sylvie
Dedieu, Gérard
Guttler, Fabio
Goulard, Michel
Féret, Jean-Baptiste
Albetis, Johanna
Poilvé, Hervé
Jacquin, Anne
Author_xml – sequence: 1
  givenname: Johanna
  surname: Albetis
  fullname: Albetis, Johanna
– sequence: 2
  givenname: Sylvie
  surname: Duthoit
  fullname: Duthoit, Sylvie
– sequence: 3
  givenname: Fabio
  orcidid: 0000-0003-2285-4122
  surname: Guttler
  fullname: Guttler, Fabio
– sequence: 4
  givenname: Anne
  surname: Jacquin
  fullname: Jacquin, Anne
– sequence: 5
  givenname: Michel
  surname: Goulard
  fullname: Goulard, Michel
– sequence: 6
  givenname: Hervé
  surname: Poilvé
  fullname: Poilvé, Hervé
– sequence: 7
  givenname: Jean-Baptiste
  orcidid: 0000-0002-0151-1334
  surname: Féret
  fullname: Féret, Jean-Baptiste
– sequence: 8
  givenname: Gérard
  surname: Dedieu
  fullname: Dedieu, Gérard
BackLink https://hal.science/hal-01607276$$DView record in HAL
BookMark eNplkc9OAjEQxhuDiYgcfIMmXvSAdLe72-6RgPxJMF6EazMps1BcutguJDySz-GLWYKiiXPpZPrrl6_fXJOGrSwSchuxR85z1nU-ZwnjTF6QZsxE3EniPG786a9I2_s1C8V5FNgmeRtgjbo2laVVQYcl7NFrtBrponKfH0hHDra4NxbpwHgEj3TmjV3Smd2AtbigPXQGSjrHldEl0vtZb_5An3dlbfw2KLtwN9nAEt3hhlwWUHpsf58tMhs-vfbHnenLaNLvTTua53HdEUzHEeNFlOoiAa0XixyAyYwhS3iKIo8YSBlnkIoUmUQQQnKZCZSJLqSWvEUeTrorKNXWmQ24g6rAqHFvqo4zFmUhEZHto8Denditq9536Gu1rnbOBnsqBJQKmUuRB6p7orSrvHdYKG1qOKYW_mdKFTF1XIA6L-DXw_nFj5H_7Bez5oah
CitedBy_id crossref_primary_10_3390_rs12162542
crossref_primary_10_1002_agj2_20595
crossref_primary_10_3390_agriculture13020293
crossref_primary_10_3390_rs13204122
crossref_primary_10_3390_s21010171
crossref_primary_10_3390_agriculture12020248
crossref_primary_10_1016_j_compag_2024_109372
crossref_primary_10_3389_fpls_2020_624273
crossref_primary_10_1016_j_atech_2024_100464
crossref_primary_10_34133_plantphenomics_0059
crossref_primary_10_3390_drones3010025
crossref_primary_10_1016_j_compag_2018_10_006
crossref_primary_10_3390_s21030742
crossref_primary_10_1016_j_compag_2021_106033
crossref_primary_10_1155_2023_7376153
crossref_primary_10_1186_s13007_020_00685_3
crossref_primary_10_3390_s23010403
crossref_primary_10_3390_f14101932
crossref_primary_10_1111_raq_12674
crossref_primary_10_1371_journal_pone_0314535
crossref_primary_10_1016_j_compag_2025_110251
crossref_primary_10_1007_s11119_019_09643_z
crossref_primary_10_1016_j_compag_2020_105446
crossref_primary_10_3390_rs12152453
crossref_primary_10_3390_rs11040436
crossref_primary_10_3390_rs13132486
crossref_primary_10_3390_rs11010023
crossref_primary_10_3390_drones6090230
crossref_primary_10_3390_s24248172
crossref_primary_10_1016_j_atech_2024_100434
crossref_primary_10_1016_j_dib_2023_109230
crossref_primary_10_3390_rs10040584
crossref_primary_10_1146_annurev_phyto_010820_012832
crossref_primary_10_1080_01431161_2018_1471548
crossref_primary_10_3390_agronomy13071764
crossref_primary_10_1016_j_cosrev_2020_100345
crossref_primary_10_21523_gcj1_19030202
crossref_primary_10_1016_j_comcom_2020_03_017
crossref_primary_10_1109_TGRS_2023_3339765
crossref_primary_10_1080_22797254_2019_1642143
crossref_primary_10_3390_rs10040618
crossref_primary_10_3390_rs14164019
crossref_primary_10_3390_drones3020040
crossref_primary_10_1002_ps_5651
crossref_primary_10_1038_s41598_023_42428_z
crossref_primary_10_1016_j_cosrev_2024_100694
crossref_primary_10_3389_fpls_2022_955340
crossref_primary_10_1079_PAVSNNR202116041
crossref_primary_10_1080_01431161_2019_1706112
crossref_primary_10_3390_rs13040705
crossref_primary_10_1016_j_jag_2021_102403
crossref_primary_10_1094_PHYTO_08_19_0297_R
crossref_primary_10_1007_s11119_019_09703_4
crossref_primary_10_3390_rs12172863
crossref_primary_10_7717_peerj_7593
crossref_primary_10_1016_j_saa_2021_120178
crossref_primary_10_3390_agronomy14020376
crossref_primary_10_3390_app9030558
crossref_primary_10_1080_2150704X_2018_1498600
crossref_primary_10_14302_issn_2998_1506_jpa_24_5058
crossref_primary_10_3390_rs12244151
crossref_primary_10_1016_j_rsase_2023_101068
crossref_primary_10_1016_j_saa_2023_123246
crossref_primary_10_1007_s40003_025_00845_8
crossref_primary_10_3390_rs14236006
crossref_primary_10_34133_2020_9452123
crossref_primary_10_3390_agronomy9100581
crossref_primary_10_3390_rs12010056
crossref_primary_10_3390_rs15030586
crossref_primary_10_1016_j_rsase_2024_101231
crossref_primary_10_3390_agriculture15010081
crossref_primary_10_1007_s42360_021_00334_2
crossref_primary_10_1016_j_compag_2022_106905
crossref_primary_10_1007_s10661_024_13221_w
crossref_primary_10_1016_j_foreco_2025_122660
crossref_primary_10_3390_s18040944
crossref_primary_10_2478_boku_2019_0015
crossref_primary_10_3390_agriculture11050457
crossref_primary_10_1016_j_atech_2021_100005
crossref_primary_10_3390_f13030418
crossref_primary_10_1016_j_cropro_2019_104885
crossref_primary_10_3390_rs14163902
crossref_primary_10_3390_drones6120422
crossref_primary_10_3390_rs12203305
crossref_primary_10_3390_rs15174273
crossref_primary_10_3390_agriculture12091350
crossref_primary_10_3390_rs12223811
crossref_primary_10_1016_j_softx_2023_101542
crossref_primary_10_1038_s41598_018_34429_0
crossref_primary_10_1088_1755_1315_301_1_012025
crossref_primary_10_3390_rs11212573
crossref_primary_10_3390_plants14010137
crossref_primary_10_1371_journal_pone_0216618
crossref_primary_10_3390_s20123369
crossref_primary_10_2903_sp_efsa_2020_EN_1909
crossref_primary_10_17660_ActaHortic_2023_1382_10
crossref_primary_10_1111_jac_12732
crossref_primary_10_3390_s22208056
crossref_primary_10_1016_j_rsase_2022_100712
crossref_primary_10_3390_s21030956
crossref_primary_10_3390_agronomy14030634
crossref_primary_10_3390_rs10071091
crossref_primary_10_3390_rs12101693
crossref_primary_10_3390_rs13193841
crossref_primary_10_1016_j_tplants_2018_11_007
crossref_primary_10_3390_s22207910
crossref_primary_10_3390_rs14071604
crossref_primary_10_5937_telfor2301002B
crossref_primary_10_3390_agronomy13061524
crossref_primary_10_1016_j_compag_2022_106844
crossref_primary_10_3390_rs12183032
crossref_primary_10_1016_j_jag_2024_103876
crossref_primary_10_1270_jsbbr_22J07
crossref_primary_10_1016_j_culher_2019_12_013
crossref_primary_10_1007_s10586_022_03627_x
crossref_primary_10_1186_s13007_024_01303_2
crossref_primary_10_3390_rs11030224
crossref_primary_10_1016_j_biosystemseng_2022_01_009
crossref_primary_10_1080_10095020_2025_2454521
crossref_primary_10_3390_rs13132436
crossref_primary_10_1016_j_compag_2020_105708
crossref_primary_10_3390_agronomy10010102
crossref_primary_10_3390_agriculture11080785
crossref_primary_10_1007_s11119_023_10014_y
crossref_primary_10_1016_j_eng_2019_10_015
crossref_primary_10_3390_rs15225412
crossref_primary_10_3390_agronomy13061499
crossref_primary_10_3390_rs11111373
crossref_primary_10_3390_rs12081310
crossref_primary_10_1155_2018_6869807
Cites_doi 10.1007/978-1-4899-4475-7
10.1029/2006GL026457
10.1016/0034-4257(88)90106-X
10.1080/01431161.2013.783945
10.1094/PDIS-11-10-0831
10.1016/j.rse.2008.01.008
10.1007/s11119-007-9038-9
10.21273/HORTSCI.40.3.685
10.1016/j.isprsjprs.2014.02.013
10.1016/j.rse.2017.03.004
10.1007/s11119-007-9036-y
10.2135/cropsci2006.05.0335
10.2747/1548-1603.47.3.360
10.1007/s11119-010-9186-1
10.5344/ajev.2009.60.1.87
10.1016/S0034-4257(01)00289-9
10.1046/j.1469-8137.1999.00424.x
10.3390/rs70302971
10.1016/j.rse.2008.02.012
10.1080/01431160110040323
10.1016/S0034-4257(99)00044-9
10.1016/j.rse.2008.01.026
10.1016/j.compag.2010.02.007
10.2307/2657068
10.1016/j.compag.2008.11.007
10.3390/rs2102369
10.1080/02757250109532427
10.1079/PAVSNNR20116027
10.1109/TAC.1974.1100705
10.1094/PDIS-04-10-0256
10.3390/rs6065868
10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
10.3390/rs70911525
10.1007/s13593-014-0208-7
10.1007/s10658-011-9878-z
10.1016/S0034-4257(96)00072-7
10.1016/0034-4257(79)90013-0
10.1016/j.compag.2016.10.003
10.2134/agronj2007.0254N
10.1016/0034-4257(84)90057-9
10.1016/0034-4257(90)90100-Z
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Attribution
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: Attribution
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOI 10.3390/rs9040308
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Environmental Sciences
EISSN 2072-4292
ExternalDocumentID oai_HAL_hal_01607276v1
10_3390_rs9040308
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
2XV
C1A
IAO
ITC
VOOES
ID FETCH-LOGICAL-c392t-70c2103f15cf4accdd9aa0860e0435e7910a8826a575e08ea7783867e84cf8c83
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Sat Jun 21 06:31:31 EDT 2025
Fri Jul 25 11:56:18 EDT 2025
Tue Jul 01 03:57:22 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords precision viticulture
unmanned aerial vehicle (UAV)
biophysical parameters
disease detection
flavescence dorée grapevine disease
vegetation indices
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-70c2103f15cf4accdd9aa0860e0435e7910a8826a575e08ea7783867e84cf8c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0151-1334
0000-0003-2285-4122
0000-0002-8383-6465
0000-0001-7494-263X
OpenAccessLink https://www.proquest.com/docview/1905789879?pq-origsite=%requestingapplication%
PQID 1905789879
PQPubID 2032338
ParticipantIDs hal_primary_oai_HAL_hal_01607276v1
proquest_journals_1905789879
crossref_citationtrail_10_3390_rs9040308
crossref_primary_10_3390_rs9040308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huete (ref_48) 1988; 25
Steele (ref_28) 2009; 60
Verhoef (ref_40) 1984; 16
Yang (ref_16) 2007; 47
ref_55
Carter (ref_13) 2001; 88
Zhang (ref_22) 2003; 4
Matese (ref_26) 2015; 7
Colomina (ref_25) 2014; 92
ref_17
Reynolds (ref_20) 2012; 96
Stilwell (ref_21) 2013; 34
Huang (ref_19) 2007; 8
Blackburn (ref_56) 1999; 70
Saatchi (ref_53) 2008; 112
Bock (ref_27) 2011; 6
Mirik (ref_18) 2011; 95
Pavan (ref_6) 2012; 65
Bonfils (ref_4) 1960; 11
Richardson (ref_50) 1977; 43
MacDonald (ref_23) 2016; 130
Steele (ref_29) 2008; 100
Mori (ref_3) 2002; 41
Mahlein (ref_15) 2012; 133
Tucker (ref_51) 1979; 8
Meroni (ref_33) 2014; 6
Akaike (ref_54) 1974; 19
Jacquemoud (ref_37) 1990; 34
Chuche (ref_1) 2014; 34
ref_35
ref_31
ref_30
Jacquin (ref_34) 2015; 7
Gitelson (ref_43) 2006; 33
Noble (ref_39) 2017; 193
Perkins (ref_45) 2005; 40
Sankaran (ref_11) 2010; 72
Gitelson (ref_42) 2001; 74
Gitelson (ref_46) 2002; 80
Gennaro (ref_12) 2016; 55
Gamon (ref_44) 1999; 143
Chen (ref_32) 2010; 47
Schvester (ref_2) 1961; 47
Kazmi (ref_9) 2001; 20
Jacquemoud (ref_36) 2009; 113
Gitelson (ref_49) 1996; 58
ref_41
Huang (ref_52) 2002; 23
Franke (ref_10) 2007; 8
Mazzetto (ref_24) 2010; 11
ref_8
Naidu (ref_14) 2009; 66
Asner (ref_38) 2008; 112
ref_5
ref_7
Motohka (ref_47) 2010; 2
References_xml – ident: ref_55
  doi: 10.1007/978-1-4899-4475-7
– ident: ref_5
– volume: 33
  start-page: L11402
  year: 2006
  ident: ref_43
  article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026457
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_48
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 34
  start-page: 4951
  year: 2013
  ident: ref_21
  article-title: Proximal sensing to detect symptoms associated with wheat curl mite-vectored viruses
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.783945
– volume: 96
  start-page: 497
  year: 2012
  ident: ref_20
  article-title: Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-11-10-0831
– volume: 112
  start-page: 2000
  year: 2008
  ident: ref_53
  article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.008
– volume: 8
  start-page: 187
  year: 2007
  ident: ref_19
  article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-007-9038-9
– ident: ref_35
– volume: 40
  start-page: 685
  year: 2005
  ident: ref_45
  article-title: Nondestructive estimation of anthocyanin content in autumn sugar maple leaves
  publication-title: HortScience
  doi: 10.21273/HORTSCI.40.3.685
– volume: 92
  start-page: 79
  year: 2014
  ident: ref_25
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 11
  start-page: 325
  year: 1960
  ident: ref_4
  article-title: The leafhoppers (Homoptera: Auchenorrhyncha) and their relationship with vineyards in south-western France
  publication-title: Ann. Epiphyt.
– volume: 193
  start-page: 204
  year: 2017
  ident: ref_39
  article-title: PROSPECT-Dynamic: Modeling leaf optical properties through a complete lifecycle
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.004
– volume: 8
  start-page: 161
  year: 2007
  ident: ref_10
  article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-007-9036-y
– ident: ref_8
– volume: 47
  start-page: 329
  year: 2007
  ident: ref_16
  article-title: Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2006.05.0335
– ident: ref_31
– volume: 47
  start-page: 360
  year: 2010
  ident: ref_32
  article-title: Comparison of MODIS fPAR products with Landsat-5 TM-derived fPAR over semiarid rangelands of Idaho
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.47.3.360
– volume: 11
  start-page: 636
  year: 2010
  ident: ref_24
  article-title: Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-010-9186-1
– volume: 60
  start-page: 87
  year: 2009
  ident: ref_28
  article-title: Nondestructive estimation of anthocyanin content in grapevine leaves
  publication-title: Am. J. Enol. Viticult.
  doi: 10.5344/ajev.2009.60.1.87
– volume: 80
  start-page: 76
  year: 2002
  ident: ref_46
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
– volume: 143
  start-page: 105
  year: 1999
  ident: ref_44
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00424.x
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_26
  article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 112
  start-page: 3030
  year: 2008
  ident: ref_38
  article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.012
– volume: 23
  start-page: 725
  year: 2002
  ident: ref_52
  article-title: An assessment of support vector machines for land cover classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110040323
– volume: 70
  start-page: 278
  year: 1999
  ident: ref_56
  article-title: Towards the remote sensing of matorral vegetation physiology: Relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00044-9
– volume: 113
  start-page: S56
  year: 2009
  ident: ref_36
  article-title: PROSPECT+ SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– ident: ref_41
– volume: 72
  start-page: 1
  year: 2010
  ident: ref_11
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.02.007
– volume: 4
  start-page: 295
  year: 2003
  ident: ref_22
  article-title: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_17
– volume: 88
  start-page: 677
  year: 2001
  ident: ref_13
  article-title: Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration
  publication-title: Am. J. Bot.
  doi: 10.2307/2657068
– ident: ref_7
– volume: 66
  start-page: 38
  year: 2009
  ident: ref_14
  article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.11.007
– ident: ref_30
– volume: 2
  start-page: 2369
  year: 2010
  ident: ref_47
  article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology
  publication-title: Remote Sens.
  doi: 10.3390/rs2102369
– volume: 20
  start-page: 45
  year: 2001
  ident: ref_9
  article-title: Application of remote sensing and GIS for the monitoring of diseases: A unique research agenda for geographers
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757250109532427
– volume: 6
  start-page: 1
  year: 2011
  ident: ref_27
  article-title: Detection and measurement of plant disease symptoms using visible-wavelength photography and image analysis
  publication-title: CAB Rev.
  doi: 10.1079/PAVSNNR20116027
– volume: 43
  start-page: 1541
  year: 1977
  ident: ref_50
  article-title: Distinguishing vegetation from soil background information
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 19
  start-page: 716
  year: 1974
  ident: ref_54
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 95
  start-page: 4
  year: 2011
  ident: ref_18
  article-title: Satellite Remote sensing of wheat infected by wheat streak mosaic virus
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-04-10-0256
– volume: 6
  start-page: 5868
  year: 2014
  ident: ref_33
  article-title: Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel
  publication-title: Remote Sens.
  doi: 10.3390/rs6065868
– volume: 41
  start-page: 99
  year: 2002
  ident: ref_3
  article-title: Experimental transmission by Scaphoideus titanus Ball of two Flavescence doree—Type phytoplasmas
  publication-title: VITIS J. Grapevine Res.
– volume: 74
  start-page: 38
  year: 2001
  ident: ref_42
  article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves
  publication-title: Photochem. Photobiol.
  doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
– volume: 7
  start-page: 11525
  year: 2015
  ident: ref_34
  article-title: Validation of a forage production index (FPI) derived from MODIS fCover time-series using high-resolution satellite imagery: Methodology, results and opportunities
  publication-title: Remote Sens.
  doi: 10.3390/rs70911525
– volume: 34
  start-page: 381
  year: 2014
  ident: ref_1
  article-title: Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0208-7
– volume: 133
  start-page: 197
  year: 2012
  ident: ref_15
  article-title: Recent advances in sensing plant diseases for precision crop protection
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-011-9878-z
– volume: 65
  start-page: 281
  year: 2012
  ident: ref_6
  article-title: Border effect in spatial distribution of Flavescence dorée affected grapevines and outside source of Scaphoideus titanus vectors
  publication-title: Bull. Insectol.
– volume: 58
  start-page: 289
  year: 1996
  ident: ref_49
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 55
  start-page: 262
  year: 2016
  ident: ref_12
  article-title: Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex
  publication-title: Phytopathol. Mediterr.
– volume: 47
  start-page: 1021
  year: 1961
  ident: ref_2
  article-title: Sur la transmission de la Flavescence dorée des vignes par une cicadelle
  publication-title: Comptes Rendus des Séances de l’Académie d’Agriculture de France
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_51
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 130
  start-page: 109
  year: 2016
  ident: ref_23
  article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.10.003
– volume: 100
  start-page: 779
  year: 2008
  ident: ref_29
  article-title: A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0254N
– volume: 16
  start-page: 125
  year: 1984
  ident: ref_40
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 34
  start-page: 75
  year: 1990
  ident: ref_37
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
SSID ssj0000331904
Score 2.5164933
Snippet Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 308
SubjectTerms Automatic control
Band spectra
Biodiversity and Ecology
Classification
Cultivars
Detection
Diagnosis
Economics
Environmental Sciences
Feasibility studies
Ground truth
I.R. radiation
Image acquisition
Infrared imagery
Infrared signatures
Mapping
Military technology
Pest control
Plants (botany)
Remote sensing
Spectral bands
Spectral signatures
Unmanned aerial vehicles
Vegetation
Vines
Vineyards
Viticulture
Title Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
URI https://www.proquest.com/docview/1905789879
https://hal.science/hal-01607276
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB6sPehFfGJ9lEU86CGYNo_dnCRaaxUVUSvewnazoWCbaFsL_iR_h3_Mme22ooi3JBsI7E5mvm935huAfVIISUM_czxfIUHRPHSkp1OHu0qmNRGqyGS7X9-ErbZ_-RQ82Q23oU2rnPpE46jTQtEe-REGLjQuZMjR8curQ12j6HTVttAoQRldsEDyVT45u7m9m-2yuB6amOtPJIU85PdHgyHek0jLj0BU6lIa5C9vbEJMcxmWLDZk8WQxV2BO56uwMC0dHuK1bVnefV-D54YemTSqnBUZa_bk2AgzKc3SYvD5odk51VWNEUSyxuQQhpn0ANbO-5KcK4uN8bFH3aXPsYN2_HjITEGuKb8c4NhFnyQu3teh3Tx7OG05tnOCoxDvjGimkcp5WS1QmS-VStNISiQvrnYRHmmOGEEitA4lgjXtCi05F54IuRa-yoQS3gbM50WuN4Fh-OogCXRDQn-8E0RRFnHp1dJOEGR1qStwMJ3GRFlZcepu0UuQXtCMJ7MZr8De7NWXiZbGny_hWszGSf26FV8l9MyI4dV5OK5VYGe6VIn954bJt4Vs_T-8DYt1Cs4m_2YH5keDN72L0GLUqUJJNM-rUI4b11f3VWtNVUPUvwAdQ9F4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrxjBBIcKjomrZpDwhNjLHB4MQQt5KlqSYBHWxjaD-JC3-CP4adtkMgxI1bW0dtlTjx58T-DLBLDCGx7yYWdxU6KFr4luQ6toStZFwOfBWaaPfLK7_ecs9vvdsJeC9yYSisslgTzUIddxXtkR-i4ULlQg85PH56tqhqFJ2uFiU0MrW40KNXdNn6R40qju-e49ROr0_qVl5VwFKIBQb0F-jm8KTsqcSVSsVxKCUCe1vbCB20QPspEXb6EoGMtgMthQh44AsduCoJVMDxvZMw7XIe0owKamfjPR2bo0LbbkZghHL7sNfHe6KE-Wb2JjsUdPlj7TcGrTYPczkSZZVMdRZgQqeLMFMkKvfxOi-Q3hktwX1VD0zQVsq6Cas9yKGhgVKaxd3ex5tmZ5TFNUTIyqrZkQ8zwQislT5KWspZxag6u9Ed-hzbb1VuDphJ_zXJnj2UNR6JUGO0DK1_6dEVmEq7qV4FhsayjS6n7RPWFG0vDJNQSF6O256XOFKXYL_oxkjlJOZUS-MhQmeGejwa93gJdsZNnzLmjl8b4ViM5cS1Xa80I3pmqPcc4Q_LJdgohirKZ3g_-tLHtb_F2zBTv75sRs3G1cU6zDoEC0zkzwZMDXovehNBzaC9ZTSJwd1_q-4nkccIug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED5BkYCXaWMgOthmoU2Ch6hunMTJA0LdSmkHVAhRxFtwHUeVBim0XVF_En9hr_tju3OSTkOIN96SOEoi-4vvO_vuO4AvpBCSBF7qCE-jg2Jk4ChhEkdyrZJ6GOjIRrufdoN2z_tx5V8twO8yF4bCKss50U7UyVDTGnkNDReCCz3kqJYWYRFnzdbB3b1DFaRop7Usp5FD5NjMHtB9G-93mjjWX123dXjxve0UFQYcjbxgQl-ELo9I675OPaV1kkRKIcnnhiONMBJtqUIKGigkNYaHRkkZijCQJvR0GupQ4HMXYUmiV8QrsPTtsHt2Pl_h4QLhzb1czkiIiNdGYzwngZj_jODigEIwn1gCa95ab-FNwUtZIwfSO1gw2RqslGnLYzwuyqUPZu_hZ9NMbAhXxoYpa92oqRWF0oYlw9GfR8OOKKdrigSWNfMNIGZDE1gvu1U0sbOGBT67NAN6HdvtNS73mE0GtqmfI2zr3JK8xmwdeq_SpxtQyYaZ2QSGprOPDigPiHnKvh9FaSSVqCd9309dZaqwW3ZjrAtJc6qscROja0M9Hs97vAo781vvch2PZ2_CsZi3k_J2u3ES0zUrxOfKYFqvwnY5VHHxv4_jf-j88HLzZ1hG2MYnne7xFqy6xBFsGNA2VCajX-YjMpxJ_1MBJQbXr43evzSVDkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+flavescence+dor%C3%A9e+grapevine+disease+using+unmanned+aerial+vehicle+%28UAV%29+multispectral+imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Albetis+de+La+Cruz%2C+Johanna&rft.au=Duthoit%2C+Sylvie&rft.au=G%C3%BCttler%2C+Fabio+N.&rft.au=Jacquin%2C+Anne&rft.date=2017-04-01&rft.pub=MDPI&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Frs9040308&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01607276v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon