Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 9; no. 4; p. 308 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed. |
---|---|
AbstractList | Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed. |
Author | Duthoit, Sylvie Dedieu, Gérard Guttler, Fabio Goulard, Michel Féret, Jean-Baptiste Albetis, Johanna Poilvé, Hervé Jacquin, Anne |
Author_xml | – sequence: 1 givenname: Johanna surname: Albetis fullname: Albetis, Johanna – sequence: 2 givenname: Sylvie surname: Duthoit fullname: Duthoit, Sylvie – sequence: 3 givenname: Fabio orcidid: 0000-0003-2285-4122 surname: Guttler fullname: Guttler, Fabio – sequence: 4 givenname: Anne surname: Jacquin fullname: Jacquin, Anne – sequence: 5 givenname: Michel surname: Goulard fullname: Goulard, Michel – sequence: 6 givenname: Hervé surname: Poilvé fullname: Poilvé, Hervé – sequence: 7 givenname: Jean-Baptiste orcidid: 0000-0002-0151-1334 surname: Féret fullname: Féret, Jean-Baptiste – sequence: 8 givenname: Gérard surname: Dedieu fullname: Dedieu, Gérard |
BackLink | https://hal.science/hal-01607276$$DView record in HAL |
BookMark | eNplkc9OAjEQxhuDiYgcfIMmXvSAdLe72-6RgPxJMF6EazMps1BcutguJDySz-GLWYKiiXPpZPrrl6_fXJOGrSwSchuxR85z1nU-ZwnjTF6QZsxE3EniPG786a9I2_s1C8V5FNgmeRtgjbo2laVVQYcl7NFrtBrponKfH0hHDra4NxbpwHgEj3TmjV3Smd2AtbigPXQGSjrHldEl0vtZb_5An3dlbfw2KLtwN9nAEt3hhlwWUHpsf58tMhs-vfbHnenLaNLvTTua53HdEUzHEeNFlOoiAa0XixyAyYwhS3iKIo8YSBlnkIoUmUQQQnKZCZSJLqSWvEUeTrorKNXWmQ24g6rAqHFvqo4zFmUhEZHto8Denditq9536Gu1rnbOBnsqBJQKmUuRB6p7orSrvHdYKG1qOKYW_mdKFTF1XIA6L-DXw_nFj5H_7Bez5oah |
CitedBy_id | crossref_primary_10_3390_rs12162542 crossref_primary_10_1002_agj2_20595 crossref_primary_10_3390_agriculture13020293 crossref_primary_10_3390_rs13204122 crossref_primary_10_3390_s21010171 crossref_primary_10_3390_agriculture12020248 crossref_primary_10_1016_j_compag_2024_109372 crossref_primary_10_3389_fpls_2020_624273 crossref_primary_10_1016_j_atech_2024_100464 crossref_primary_10_34133_plantphenomics_0059 crossref_primary_10_3390_drones3010025 crossref_primary_10_1016_j_compag_2018_10_006 crossref_primary_10_3390_s21030742 crossref_primary_10_1016_j_compag_2021_106033 crossref_primary_10_1155_2023_7376153 crossref_primary_10_1186_s13007_020_00685_3 crossref_primary_10_3390_s23010403 crossref_primary_10_3390_f14101932 crossref_primary_10_1111_raq_12674 crossref_primary_10_1371_journal_pone_0314535 crossref_primary_10_1016_j_compag_2025_110251 crossref_primary_10_1007_s11119_019_09643_z crossref_primary_10_1016_j_compag_2020_105446 crossref_primary_10_3390_rs12152453 crossref_primary_10_3390_rs11040436 crossref_primary_10_3390_rs13132486 crossref_primary_10_3390_rs11010023 crossref_primary_10_3390_drones6090230 crossref_primary_10_3390_s24248172 crossref_primary_10_1016_j_atech_2024_100434 crossref_primary_10_1016_j_dib_2023_109230 crossref_primary_10_3390_rs10040584 crossref_primary_10_1146_annurev_phyto_010820_012832 crossref_primary_10_1080_01431161_2018_1471548 crossref_primary_10_3390_agronomy13071764 crossref_primary_10_1016_j_cosrev_2020_100345 crossref_primary_10_21523_gcj1_19030202 crossref_primary_10_1016_j_comcom_2020_03_017 crossref_primary_10_1109_TGRS_2023_3339765 crossref_primary_10_1080_22797254_2019_1642143 crossref_primary_10_3390_rs10040618 crossref_primary_10_3390_rs14164019 crossref_primary_10_3390_drones3020040 crossref_primary_10_1002_ps_5651 crossref_primary_10_1038_s41598_023_42428_z crossref_primary_10_1016_j_cosrev_2024_100694 crossref_primary_10_3389_fpls_2022_955340 crossref_primary_10_1079_PAVSNNR202116041 crossref_primary_10_1080_01431161_2019_1706112 crossref_primary_10_3390_rs13040705 crossref_primary_10_1016_j_jag_2021_102403 crossref_primary_10_1094_PHYTO_08_19_0297_R crossref_primary_10_1007_s11119_019_09703_4 crossref_primary_10_3390_rs12172863 crossref_primary_10_7717_peerj_7593 crossref_primary_10_1016_j_saa_2021_120178 crossref_primary_10_3390_agronomy14020376 crossref_primary_10_3390_app9030558 crossref_primary_10_1080_2150704X_2018_1498600 crossref_primary_10_14302_issn_2998_1506_jpa_24_5058 crossref_primary_10_3390_rs12244151 crossref_primary_10_1016_j_rsase_2023_101068 crossref_primary_10_1016_j_saa_2023_123246 crossref_primary_10_1007_s40003_025_00845_8 crossref_primary_10_3390_rs14236006 crossref_primary_10_34133_2020_9452123 crossref_primary_10_3390_agronomy9100581 crossref_primary_10_3390_rs12010056 crossref_primary_10_3390_rs15030586 crossref_primary_10_1016_j_rsase_2024_101231 crossref_primary_10_3390_agriculture15010081 crossref_primary_10_1007_s42360_021_00334_2 crossref_primary_10_1016_j_compag_2022_106905 crossref_primary_10_1007_s10661_024_13221_w crossref_primary_10_1016_j_foreco_2025_122660 crossref_primary_10_3390_s18040944 crossref_primary_10_2478_boku_2019_0015 crossref_primary_10_3390_agriculture11050457 crossref_primary_10_1016_j_atech_2021_100005 crossref_primary_10_3390_f13030418 crossref_primary_10_1016_j_cropro_2019_104885 crossref_primary_10_3390_rs14163902 crossref_primary_10_3390_drones6120422 crossref_primary_10_3390_rs12203305 crossref_primary_10_3390_rs15174273 crossref_primary_10_3390_agriculture12091350 crossref_primary_10_3390_rs12223811 crossref_primary_10_1016_j_softx_2023_101542 crossref_primary_10_1038_s41598_018_34429_0 crossref_primary_10_1088_1755_1315_301_1_012025 crossref_primary_10_3390_rs11212573 crossref_primary_10_3390_plants14010137 crossref_primary_10_1371_journal_pone_0216618 crossref_primary_10_3390_s20123369 crossref_primary_10_2903_sp_efsa_2020_EN_1909 crossref_primary_10_17660_ActaHortic_2023_1382_10 crossref_primary_10_1111_jac_12732 crossref_primary_10_3390_s22208056 crossref_primary_10_1016_j_rsase_2022_100712 crossref_primary_10_3390_s21030956 crossref_primary_10_3390_agronomy14030634 crossref_primary_10_3390_rs10071091 crossref_primary_10_3390_rs12101693 crossref_primary_10_3390_rs13193841 crossref_primary_10_1016_j_tplants_2018_11_007 crossref_primary_10_3390_s22207910 crossref_primary_10_3390_rs14071604 crossref_primary_10_5937_telfor2301002B crossref_primary_10_3390_agronomy13061524 crossref_primary_10_1016_j_compag_2022_106844 crossref_primary_10_3390_rs12183032 crossref_primary_10_1016_j_jag_2024_103876 crossref_primary_10_1270_jsbbr_22J07 crossref_primary_10_1016_j_culher_2019_12_013 crossref_primary_10_1007_s10586_022_03627_x crossref_primary_10_1186_s13007_024_01303_2 crossref_primary_10_3390_rs11030224 crossref_primary_10_1016_j_biosystemseng_2022_01_009 crossref_primary_10_1080_10095020_2025_2454521 crossref_primary_10_3390_rs13132436 crossref_primary_10_1016_j_compag_2020_105708 crossref_primary_10_3390_agronomy10010102 crossref_primary_10_3390_agriculture11080785 crossref_primary_10_1007_s11119_023_10014_y crossref_primary_10_1016_j_eng_2019_10_015 crossref_primary_10_3390_rs15225412 crossref_primary_10_3390_agronomy13061499 crossref_primary_10_3390_rs11111373 crossref_primary_10_3390_rs12081310 crossref_primary_10_1155_2018_6869807 |
Cites_doi | 10.1007/978-1-4899-4475-7 10.1029/2006GL026457 10.1016/0034-4257(88)90106-X 10.1080/01431161.2013.783945 10.1094/PDIS-11-10-0831 10.1016/j.rse.2008.01.008 10.1007/s11119-007-9038-9 10.21273/HORTSCI.40.3.685 10.1016/j.isprsjprs.2014.02.013 10.1016/j.rse.2017.03.004 10.1007/s11119-007-9036-y 10.2135/cropsci2006.05.0335 10.2747/1548-1603.47.3.360 10.1007/s11119-010-9186-1 10.5344/ajev.2009.60.1.87 10.1016/S0034-4257(01)00289-9 10.1046/j.1469-8137.1999.00424.x 10.3390/rs70302971 10.1016/j.rse.2008.02.012 10.1080/01431160110040323 10.1016/S0034-4257(99)00044-9 10.1016/j.rse.2008.01.026 10.1016/j.compag.2010.02.007 10.2307/2657068 10.1016/j.compag.2008.11.007 10.3390/rs2102369 10.1080/02757250109532427 10.1079/PAVSNNR20116027 10.1109/TAC.1974.1100705 10.1094/PDIS-04-10-0256 10.3390/rs6065868 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 10.3390/rs70911525 10.1007/s13593-014-0208-7 10.1007/s10658-011-9878-z 10.1016/S0034-4257(96)00072-7 10.1016/0034-4257(79)90013-0 10.1016/j.compag.2016.10.003 10.2134/agronj2007.0254N 10.1016/0034-4257(84)90057-9 10.1016/0034-4257(90)90100-Z |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 Attribution |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: Attribution |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES |
DOI | 10.3390/rs9040308 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics Environmental Sciences |
EISSN | 2072-4292 |
ExternalDocumentID | oai_HAL_hal_01607276v1 10_3390_rs9040308 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC 2XV C1A IAO ITC VOOES |
ID | FETCH-LOGICAL-c392t-70c2103f15cf4accdd9aa0860e0435e7910a8826a575e08ea7783867e84cf8c83 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Sat Jun 21 06:31:31 EDT 2025 Fri Jul 25 11:56:18 EDT 2025 Tue Jul 01 03:57:22 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | precision viticulture unmanned aerial vehicle (UAV) biophysical parameters disease detection flavescence dorée grapevine disease vegetation indices |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-70c2103f15cf4accdd9aa0860e0435e7910a8826a575e08ea7783867e84cf8c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0151-1334 0000-0003-2285-4122 0000-0002-8383-6465 0000-0001-7494-263X |
OpenAccessLink | https://www.proquest.com/docview/1905789879?pq-origsite=%requestingapplication% |
PQID | 1905789879 |
PQPubID | 2032338 |
ParticipantIDs | hal_primary_oai_HAL_hal_01607276v1 proquest_journals_1905789879 crossref_citationtrail_10_3390_rs9040308 crossref_primary_10_3390_rs9040308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huete (ref_48) 1988; 25 Steele (ref_28) 2009; 60 Verhoef (ref_40) 1984; 16 Yang (ref_16) 2007; 47 ref_55 Carter (ref_13) 2001; 88 Zhang (ref_22) 2003; 4 Matese (ref_26) 2015; 7 Colomina (ref_25) 2014; 92 ref_17 Reynolds (ref_20) 2012; 96 Stilwell (ref_21) 2013; 34 Huang (ref_19) 2007; 8 Blackburn (ref_56) 1999; 70 Saatchi (ref_53) 2008; 112 Bock (ref_27) 2011; 6 Mirik (ref_18) 2011; 95 Pavan (ref_6) 2012; 65 Bonfils (ref_4) 1960; 11 Richardson (ref_50) 1977; 43 MacDonald (ref_23) 2016; 130 Steele (ref_29) 2008; 100 Mori (ref_3) 2002; 41 Mahlein (ref_15) 2012; 133 Tucker (ref_51) 1979; 8 Meroni (ref_33) 2014; 6 Akaike (ref_54) 1974; 19 Jacquemoud (ref_37) 1990; 34 Chuche (ref_1) 2014; 34 ref_35 ref_31 ref_30 Jacquin (ref_34) 2015; 7 Gitelson (ref_43) 2006; 33 Noble (ref_39) 2017; 193 Perkins (ref_45) 2005; 40 Sankaran (ref_11) 2010; 72 Gitelson (ref_42) 2001; 74 Gitelson (ref_46) 2002; 80 Gennaro (ref_12) 2016; 55 Gamon (ref_44) 1999; 143 Chen (ref_32) 2010; 47 Schvester (ref_2) 1961; 47 Kazmi (ref_9) 2001; 20 Jacquemoud (ref_36) 2009; 113 Gitelson (ref_49) 1996; 58 ref_41 Huang (ref_52) 2002; 23 Franke (ref_10) 2007; 8 Mazzetto (ref_24) 2010; 11 ref_8 Naidu (ref_14) 2009; 66 Asner (ref_38) 2008; 112 ref_5 ref_7 Motohka (ref_47) 2010; 2 |
References_xml | – ident: ref_55 doi: 10.1007/978-1-4899-4475-7 – ident: ref_5 – volume: 33 start-page: L11402 year: 2006 ident: ref_43 article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026457 – volume: 25 start-page: 295 year: 1988 ident: ref_48 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 34 start-page: 4951 year: 2013 ident: ref_21 article-title: Proximal sensing to detect symptoms associated with wheat curl mite-vectored viruses publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.783945 – volume: 96 start-page: 497 year: 2012 ident: ref_20 article-title: Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet publication-title: Plant Dis. doi: 10.1094/PDIS-11-10-0831 – volume: 112 start-page: 2000 year: 2008 ident: ref_53 article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.008 – volume: 8 start-page: 187 year: 2007 ident: ref_19 article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging publication-title: Precis. Agric. doi: 10.1007/s11119-007-9038-9 – ident: ref_35 – volume: 40 start-page: 685 year: 2005 ident: ref_45 article-title: Nondestructive estimation of anthocyanin content in autumn sugar maple leaves publication-title: HortScience doi: 10.21273/HORTSCI.40.3.685 – volume: 92 start-page: 79 year: 2014 ident: ref_25 article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 11 start-page: 325 year: 1960 ident: ref_4 article-title: The leafhoppers (Homoptera: Auchenorrhyncha) and their relationship with vineyards in south-western France publication-title: Ann. Epiphyt. – volume: 193 start-page: 204 year: 2017 ident: ref_39 article-title: PROSPECT-Dynamic: Modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.004 – volume: 8 start-page: 161 year: 2007 ident: ref_10 article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing publication-title: Precis. Agric. doi: 10.1007/s11119-007-9036-y – ident: ref_8 – volume: 47 start-page: 329 year: 2007 ident: ref_16 article-title: Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder publication-title: Crop Sci. doi: 10.2135/cropsci2006.05.0335 – ident: ref_31 – volume: 47 start-page: 360 year: 2010 ident: ref_32 article-title: Comparison of MODIS fPAR products with Landsat-5 TM-derived fPAR over semiarid rangelands of Idaho publication-title: GISci. Remote Sens. doi: 10.2747/1548-1603.47.3.360 – volume: 11 start-page: 636 year: 2010 ident: ref_24 article-title: Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture publication-title: Precis. Agric. doi: 10.1007/s11119-010-9186-1 – volume: 60 start-page: 87 year: 2009 ident: ref_28 article-title: Nondestructive estimation of anthocyanin content in grapevine leaves publication-title: Am. J. Enol. Viticult. doi: 10.5344/ajev.2009.60.1.87 – volume: 80 start-page: 76 year: 2002 ident: ref_46 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00289-9 – volume: 143 start-page: 105 year: 1999 ident: ref_44 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00424.x – volume: 7 start-page: 2971 year: 2015 ident: ref_26 article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 112 start-page: 3030 year: 2008 ident: ref_38 article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.012 – volume: 23 start-page: 725 year: 2002 ident: ref_52 article-title: An assessment of support vector machines for land cover classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110040323 – volume: 70 start-page: 278 year: 1999 ident: ref_56 article-title: Towards the remote sensing of matorral vegetation physiology: Relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopies publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00044-9 – volume: 113 start-page: S56 year: 2009 ident: ref_36 article-title: PROSPECT+ SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.026 – ident: ref_41 – volume: 72 start-page: 1 year: 2010 ident: ref_11 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.02.007 – volume: 4 start-page: 295 year: 2003 ident: ref_22 article-title: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_17 – volume: 88 start-page: 677 year: 2001 ident: ref_13 article-title: Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration publication-title: Am. J. Bot. doi: 10.2307/2657068 – ident: ref_7 – volume: 66 start-page: 38 year: 2009 ident: ref_14 article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.11.007 – ident: ref_30 – volume: 2 start-page: 2369 year: 2010 ident: ref_47 article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology publication-title: Remote Sens. doi: 10.3390/rs2102369 – volume: 20 start-page: 45 year: 2001 ident: ref_9 article-title: Application of remote sensing and GIS for the monitoring of diseases: A unique research agenda for geographers publication-title: Remote Sens. Rev. doi: 10.1080/02757250109532427 – volume: 6 start-page: 1 year: 2011 ident: ref_27 article-title: Detection and measurement of plant disease symptoms using visible-wavelength photography and image analysis publication-title: CAB Rev. doi: 10.1079/PAVSNNR20116027 – volume: 43 start-page: 1541 year: 1977 ident: ref_50 article-title: Distinguishing vegetation from soil background information publication-title: Photogramm. Eng. Remote Sens. – volume: 19 start-page: 716 year: 1974 ident: ref_54 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 95 start-page: 4 year: 2011 ident: ref_18 article-title: Satellite Remote sensing of wheat infected by wheat streak mosaic virus publication-title: Plant Dis. doi: 10.1094/PDIS-04-10-0256 – volume: 6 start-page: 5868 year: 2014 ident: ref_33 article-title: Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel publication-title: Remote Sens. doi: 10.3390/rs6065868 – volume: 41 start-page: 99 year: 2002 ident: ref_3 article-title: Experimental transmission by Scaphoideus titanus Ball of two Flavescence doree—Type phytoplasmas publication-title: VITIS J. Grapevine Res. – volume: 74 start-page: 38 year: 2001 ident: ref_42 article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 – volume: 7 start-page: 11525 year: 2015 ident: ref_34 article-title: Validation of a forage production index (FPI) derived from MODIS fCover time-series using high-resolution satellite imagery: Methodology, results and opportunities publication-title: Remote Sens. doi: 10.3390/rs70911525 – volume: 34 start-page: 381 year: 2014 ident: ref_1 article-title: Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0208-7 – volume: 133 start-page: 197 year: 2012 ident: ref_15 article-title: Recent advances in sensing plant diseases for precision crop protection publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-011-9878-z – volume: 65 start-page: 281 year: 2012 ident: ref_6 article-title: Border effect in spatial distribution of Flavescence dorée affected grapevines and outside source of Scaphoideus titanus vectors publication-title: Bull. Insectol. – volume: 58 start-page: 289 year: 1996 ident: ref_49 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 – volume: 55 start-page: 262 year: 2016 ident: ref_12 article-title: Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex publication-title: Phytopathol. Mediterr. – volume: 47 start-page: 1021 year: 1961 ident: ref_2 article-title: Sur la transmission de la Flavescence dorée des vignes par une cicadelle publication-title: Comptes Rendus des Séances de l’Académie d’Agriculture de France – volume: 8 start-page: 127 year: 1979 ident: ref_51 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 130 start-page: 109 year: 2016 ident: ref_23 article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.10.003 – volume: 100 start-page: 779 year: 2008 ident: ref_29 article-title: A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves publication-title: Agron. J. doi: 10.2134/agronj2007.0254N – volume: 16 start-page: 125 year: 1984 ident: ref_40 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 34 start-page: 75 year: 1990 ident: ref_37 article-title: PROSPECT: A model of leaf optical properties spectra publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z |
SSID | ssj0000331904 |
Score | 2.5164933 |
Snippet | Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 308 |
SubjectTerms | Automatic control Band spectra Biodiversity and Ecology Classification Cultivars Detection Diagnosis Economics Environmental Sciences Feasibility studies Ground truth I.R. radiation Image acquisition Infrared imagery Infrared signatures Mapping Military technology Pest control Plants (botany) Remote sensing Spectral bands Spectral signatures Unmanned aerial vehicles Vegetation Vines Vineyards Viticulture |
Title | Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery |
URI | https://www.proquest.com/docview/1905789879 https://hal.science/hal-01607276 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB6sPehFfGJ9lEU86CGYNo_dnCRaaxUVUSvewnazoWCbaFsL_iR_h3_Mme22ooi3JBsI7E5mvm935huAfVIISUM_czxfIUHRPHSkp1OHu0qmNRGqyGS7X9-ErbZ_-RQ82Q23oU2rnPpE46jTQtEe-REGLjQuZMjR8curQ12j6HTVttAoQRldsEDyVT45u7m9m-2yuB6amOtPJIU85PdHgyHek0jLj0BU6lIa5C9vbEJMcxmWLDZk8WQxV2BO56uwMC0dHuK1bVnefV-D54YemTSqnBUZa_bk2AgzKc3SYvD5odk51VWNEUSyxuQQhpn0ANbO-5KcK4uN8bFH3aXPsYN2_HjITEGuKb8c4NhFnyQu3teh3Tx7OG05tnOCoxDvjGimkcp5WS1QmS-VStNISiQvrnYRHmmOGEEitA4lgjXtCi05F54IuRa-yoQS3gbM50WuN4Fh-OogCXRDQn-8E0RRFnHp1dJOEGR1qStwMJ3GRFlZcepu0UuQXtCMJ7MZr8De7NWXiZbGny_hWszGSf26FV8l9MyI4dV5OK5VYGe6VIn954bJt4Vs_T-8DYt1Cs4m_2YH5keDN72L0GLUqUJJNM-rUI4b11f3VWtNVUPUvwAdQ9F4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrxjBBIcKjomrZpDwhNjLHB4MQQt5KlqSYBHWxjaD-JC3-CP4adtkMgxI1bW0dtlTjx58T-DLBLDCGx7yYWdxU6KFr4luQ6toStZFwOfBWaaPfLK7_ecs9vvdsJeC9yYSisslgTzUIddxXtkR-i4ULlQg85PH56tqhqFJ2uFiU0MrW40KNXdNn6R40qju-e49ROr0_qVl5VwFKIBQb0F-jm8KTsqcSVSsVxKCUCe1vbCB20QPspEXb6EoGMtgMthQh44AsduCoJVMDxvZMw7XIe0owKamfjPR2bo0LbbkZghHL7sNfHe6KE-Wb2JjsUdPlj7TcGrTYPczkSZZVMdRZgQqeLMFMkKvfxOi-Q3hktwX1VD0zQVsq6Cas9yKGhgVKaxd3ex5tmZ5TFNUTIyqrZkQ8zwQislT5KWspZxag6u9Ed-hzbb1VuDphJ_zXJnj2UNR6JUGO0DK1_6dEVmEq7qV4FhsayjS6n7RPWFG0vDJNQSF6O256XOFKXYL_oxkjlJOZUS-MhQmeGejwa93gJdsZNnzLmjl8b4ViM5cS1Xa80I3pmqPcc4Q_LJdgohirKZ3g_-tLHtb_F2zBTv75sRs3G1cU6zDoEC0zkzwZMDXovehNBzaC9ZTSJwd1_q-4nkccIug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED5BkYCXaWMgOthmoU2Ch6hunMTJA0LdSmkHVAhRxFtwHUeVBim0XVF_En9hr_tju3OSTkOIN96SOEoi-4vvO_vuO4AvpBCSBF7qCE-jg2Jk4ChhEkdyrZJ6GOjIRrufdoN2z_tx5V8twO8yF4bCKss50U7UyVDTGnkNDReCCz3kqJYWYRFnzdbB3b1DFaRop7Usp5FD5NjMHtB9G-93mjjWX123dXjxve0UFQYcjbxgQl-ELo9I675OPaV1kkRKIcnnhiONMBJtqUIKGigkNYaHRkkZijCQJvR0GupQ4HMXYUmiV8QrsPTtsHt2Pl_h4QLhzb1czkiIiNdGYzwngZj_jODigEIwn1gCa95ab-FNwUtZIwfSO1gw2RqslGnLYzwuyqUPZu_hZ9NMbAhXxoYpa92oqRWF0oYlw9GfR8OOKKdrigSWNfMNIGZDE1gvu1U0sbOGBT67NAN6HdvtNS73mE0GtqmfI2zr3JK8xmwdeq_SpxtQyYaZ2QSGprOPDigPiHnKvh9FaSSVqCd9309dZaqwW3ZjrAtJc6qscROja0M9Hs97vAo781vvch2PZ2_CsZi3k_J2u3ES0zUrxOfKYFqvwnY5VHHxv4_jf-j88HLzZ1hG2MYnne7xFqy6xBFsGNA2VCajX-YjMpxJ_1MBJQbXr43evzSVDkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+flavescence+dor%C3%A9e+grapevine+disease+using+unmanned+aerial+vehicle+%28UAV%29+multispectral+imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Albetis+de+La+Cruz%2C+Johanna&rft.au=Duthoit%2C+Sylvie&rft.au=G%C3%BCttler%2C+Fabio+N.&rft.au=Jacquin%2C+Anne&rft.date=2017-04-01&rft.pub=MDPI&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Frs9040308&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01607276v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |