Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach
This article proposes a mixed-integer programming (MILP) model to determine the strategic and tactical level decisions of lignocellulosic bioethanol supply chain subject to different sources and types of uncertainty. A comprehensive classification, including sources of uncertainty, corresponding par...
Saved in:
Published in | Renewable energy Vol. 116; pp. 500 - 517 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-1481 1879-0682 |
DOI | 10.1016/j.renene.2017.09.020 |
Cover
Loading…
Abstract | This article proposes a mixed-integer programming (MILP) model to determine the strategic and tactical level decisions of lignocellulosic bioethanol supply chain subject to different sources and types of uncertainty. A comprehensive classification, including sources of uncertainty, corresponding parameters and possible reasons which may cause the uncertainty, as well as an up to date and systematic literature review of biofuel supply chain optimal design and planning studies which consider uncertain input data are presented. To handle different types of uncertainty, including randomness, epistemic and deep uncertainties, a hybrid robust optimization model is proposed. Uncertainty in technology is presented as imprecise conversion rates, which are expressed as probabilistic scenarios. Biomass yield is treated as fuzzy numbers while demand is assumed to vary in a known interval. Furthermore, fixed costs of the biorefineries are calculated according to the piecewise linear functions in which segments are capacity level intervals. In order to investigate the performance of the proposed models a case study is developed for bioethanol supply chain located in Iran. Computational results show that the proposed robust model outperforms deterministic model in terms of given performance measures.
•An MILP model for optimization of lignocellulosic bioethanol supply chain.•Different sources of uncertainties in conversion technology, biomass supply and biofuel demand.•A hybrid robust model to handle different types of uncertainty, including randomness, epistemic and deep uncertainties.•Proposed robust model outperforms the deterministic model. |
---|---|
AbstractList | This article proposes a mixed-integer programming (MILP) model to determine the strategic and tactical level decisions of lignocellulosic bioethanol supply chain subject to different sources and types of uncertainty. A comprehensive classification, including sources of uncertainty, corresponding parameters and possible reasons which may cause the uncertainty, as well as an up to date and systematic literature review of biofuel supply chain optimal design and planning studies which consider uncertain input data are presented. To handle different types of uncertainty, including randomness, epistemic and deep uncertainties, a hybrid robust optimization model is proposed. Uncertainty in technology is presented as imprecise conversion rates, which are expressed as probabilistic scenarios. Biomass yield is treated as fuzzy numbers while demand is assumed to vary in a known interval. Furthermore, fixed costs of the biorefineries are calculated according to the piecewise linear functions in which segments are capacity level intervals. In order to investigate the performance of the proposed models a case study is developed for bioethanol supply chain located in Iran. Computational results show that the proposed robust model outperforms deterministic model in terms of given performance measures. This article proposes a mixed-integer programming (MILP) model to determine the strategic and tactical level decisions of lignocellulosic bioethanol supply chain subject to different sources and types of uncertainty. A comprehensive classification, including sources of uncertainty, corresponding parameters and possible reasons which may cause the uncertainty, as well as an up to date and systematic literature review of biofuel supply chain optimal design and planning studies which consider uncertain input data are presented. To handle different types of uncertainty, including randomness, epistemic and deep uncertainties, a hybrid robust optimization model is proposed. Uncertainty in technology is presented as imprecise conversion rates, which are expressed as probabilistic scenarios. Biomass yield is treated as fuzzy numbers while demand is assumed to vary in a known interval. Furthermore, fixed costs of the biorefineries are calculated according to the piecewise linear functions in which segments are capacity level intervals. In order to investigate the performance of the proposed models a case study is developed for bioethanol supply chain located in Iran. Computational results show that the proposed robust model outperforms deterministic model in terms of given performance measures. •An MILP model for optimization of lignocellulosic bioethanol supply chain.•Different sources of uncertainties in conversion technology, biomass supply and biofuel demand.•A hybrid robust model to handle different types of uncertainty, including randomness, epistemic and deep uncertainties.•Proposed robust model outperforms the deterministic model. |
Author | Bairamzadeh, Samira Pishvaee, Mir Saman Saidi-Mehrabad, Mohammad |
Author_xml | – sequence: 1 givenname: Samira surname: Bairamzadeh fullname: Bairamzadeh, Samira – sequence: 2 givenname: Mohammad surname: Saidi-Mehrabad fullname: Saidi-Mehrabad, Mohammad email: mehrabad@iust.ac.ir – sequence: 3 givenname: Mir Saman surname: Pishvaee fullname: Pishvaee, Mir Saman |
BookMark | eNqFkLFuFDEQhi2USFwS3oDCJc0uY593badAiiICkYJoktryemeDjz17sb2JjqfH4agoQFNM83__aL4zchJiQELeMmgZsP79rk0Y6rQcmGxBt8DhFdkwJXUDveInZAO6h4YJxV6Ts5x3AKxTUmzI05c44jz78EhHP01YiwothwUzjRNdg8NUrA_lQH2gg4_TijPN67LMBxqwPMf0nY6Y_WOgNox0mW0IteySXtEUhzUXGpfi9_6nLT7WzLKkaN23C3I62Tnjmz_7nDzcfLy__tzcff10e31117it5qWRoLlyOHHHOQ7S9tZ2yoptj1oNyjnmBiHGiXW9xk70dpCdhAEHoVTP2LjdnpN3x9569seKuZi9z64-bAPGNRsOAF0npdA1Ko5Rl2LOCSezJL-36WAYmBfNZmeOms2LZgPaVM0Vu_wLc778frYk6-f_wR-OMFYHTx6Tyc5jlT76hK6YMfp_F_wCuyOgjA |
CitedBy_id | crossref_primary_10_1021_acs_iecr_8b02869 crossref_primary_10_1016_j_fbp_2019_11_006 crossref_primary_10_33571_rpolitec_v16n31a9 crossref_primary_10_1002_ese3_1374 crossref_primary_10_1007_s00521_021_06074_8 crossref_primary_10_1016_j_resourpol_2022_103290 crossref_primary_10_1016_j_apenergy_2020_115606 crossref_primary_10_1080_23302674_2025_2469117 crossref_primary_10_1016_j_cie_2024_110270 crossref_primary_10_1016_j_cie_2020_107017 crossref_primary_10_1007_s10668_022_02332_4 crossref_primary_10_1007_s10668_023_03761_5 crossref_primary_10_1007_s12351_022_00694_1 crossref_primary_10_1016_j_algal_2022_102816 crossref_primary_10_1007_s40095_022_00513_5 crossref_primary_10_3390_pr8091189 crossref_primary_10_1016_j_compchemeng_2021_107636 crossref_primary_10_1080_00207543_2024_2412828 crossref_primary_10_1016_j_cie_2024_110322 crossref_primary_10_1016_j_compchemeng_2020_107131 crossref_primary_10_1016_j_spc_2021_12_003 crossref_primary_10_1016_j_biombioe_2020_105888 crossref_primary_10_1016_j_apenergy_2019_01_195 crossref_primary_10_1016_j_jclepro_2021_126364 crossref_primary_10_1016_j_cie_2020_106716 crossref_primary_10_1016_j_jclepro_2021_128155 crossref_primary_10_1007_s00521_022_07739_8 crossref_primary_10_1016_j_ecmx_2021_100101 crossref_primary_10_1016_j_jclepro_2018_03_130 crossref_primary_10_1007_s10668_023_04308_4 crossref_primary_10_1016_j_compchemeng_2023_108565 crossref_primary_10_1016_j_ecmx_2024_100727 crossref_primary_10_1007_s10479_021_03985_6 crossref_primary_10_1016_j_eswa_2023_120510 crossref_primary_10_3390_pr12102204 crossref_primary_10_1007_s10479_021_04254_2 crossref_primary_10_1016_j_ecmx_2024_100687 crossref_primary_10_1007_s11356_022_21373_w crossref_primary_10_3390_en16031187 crossref_primary_10_1080_15567249_2020_1868620 crossref_primary_10_1016_j_renene_2019_03_093 crossref_primary_10_1109_ACCESS_2020_3014460 crossref_primary_10_1016_j_biombioe_2020_105777 crossref_primary_10_1016_j_cie_2021_107406 crossref_primary_10_1016_j_ijpe_2023_108773 crossref_primary_10_1016_j_jclepro_2020_125141 crossref_primary_10_1007_s10479_021_04490_6 crossref_primary_10_1007_s10479_021_03977_6 crossref_primary_10_1016_j_jclepro_2022_131741 crossref_primary_10_1016_j_cogsc_2018_08_008 crossref_primary_10_1016_j_segan_2023_101011 crossref_primary_10_1016_j_eswa_2023_121895 crossref_primary_10_1016_j_renene_2022_12_036 crossref_primary_10_1016_j_jclepro_2017_12_218 crossref_primary_10_1007_s11356_023_29331_w crossref_primary_10_1016_j_apenergy_2019_04_088 crossref_primary_10_1016_j_engappai_2023_106511 crossref_primary_10_1016_j_apenergy_2019_113857 crossref_primary_10_1016_j_seta_2024_103747 crossref_primary_10_1016_j_cor_2024_106803 crossref_primary_10_1016_j_enbuild_2021_110933 crossref_primary_10_1007_s11356_021_13059_6 crossref_primary_10_1016_j_apenergy_2024_123683 crossref_primary_10_3389_fceng_2022_778315 crossref_primary_10_1016_j_fuel_2023_128168 crossref_primary_10_1016_j_compchemeng_2022_107875 crossref_primary_10_1080_00207543_2025_2466049 crossref_primary_10_1016_j_jenvman_2020_110428 crossref_primary_10_1016_j_resconrec_2019_104652 crossref_primary_10_1287_trsc_2021_0357 crossref_primary_10_1016_j_jclepro_2019_02_268 crossref_primary_10_1016_j_renene_2022_10_003 crossref_primary_10_1016_j_clet_2024_100785 crossref_primary_10_1016_j_cie_2023_109009 crossref_primary_10_1016_j_apenergy_2020_115921 crossref_primary_10_1007_s11356_022_19105_1 crossref_primary_10_1007_s10668_023_03258_1 crossref_primary_10_3390_su13147774 crossref_primary_10_3390_su141610169 crossref_primary_10_1016_j_jclepro_2024_143630 crossref_primary_10_3390_polym12051091 crossref_primary_10_1021_acs_iecr_1c00446 crossref_primary_10_1016_j_apenergy_2024_123794 crossref_primary_10_1007_s10479_024_06128_9 crossref_primary_10_1016_j_asoc_2023_110357 crossref_primary_10_1016_j_cej_2022_136756 crossref_primary_10_1016_j_cie_2020_106520 crossref_primary_10_1016_j_indcrop_2022_114747 crossref_primary_10_1007_s13399_020_00639_8 crossref_primary_10_1039_D2GC04670A crossref_primary_10_1080_00207543_2020_1746427 crossref_primary_10_1016_j_cherd_2022_02_028 crossref_primary_10_1007_s10479_024_06038_w crossref_primary_10_1051_e3sconf_202346502022 crossref_primary_10_1080_10410236_2023_2170092 crossref_primary_10_1016_j_cie_2022_108046 crossref_primary_10_1007_s10098_019_01773_2 crossref_primary_10_1016_j_compchemeng_2019_01_013 crossref_primary_10_1007_s00500_023_07825_6 crossref_primary_10_1007_s11356_024_35428_7 crossref_primary_10_1016_j_eswa_2022_119267 crossref_primary_10_1016_j_jclepro_2020_122385 crossref_primary_10_1016_j_ecolind_2020_106799 crossref_primary_10_1007_s10479_023_05288_4 crossref_primary_10_1007_s13762_023_05357_y crossref_primary_10_1016_j_energy_2022_123285 crossref_primary_10_1080_13675567_2021_2017418 crossref_primary_10_1016_j_ijpe_2019_04_035 crossref_primary_10_1021_acs_iecr_1c02110 crossref_primary_10_3389_fchem_2018_00141 crossref_primary_10_1007_s10479_025_06465_3 crossref_primary_10_3390_en12040636 crossref_primary_10_1007_s00500_024_10365_2 crossref_primary_10_1016_j_compchemeng_2021_107305 crossref_primary_10_1016_j_seps_2022_101303 crossref_primary_10_1007_s41660_019_00103_9 crossref_primary_10_1016_j_rser_2018_12_060 crossref_primary_10_1007_s13399_022_02804_7 crossref_primary_10_1016_j_cie_2021_107326 crossref_primary_10_1007_s41660_020_00108_9 crossref_primary_10_1016_j_tre_2018_12_015 crossref_primary_10_1016_j_apenergy_2024_122961 crossref_primary_10_1016_j_compchemeng_2022_107940 crossref_primary_10_1108_JM2_07_2018_0093 crossref_primary_10_1016_j_apenergy_2023_122404 crossref_primary_10_1007_s10668_021_01809_y crossref_primary_10_1016_j_jclepro_2020_123336 crossref_primary_10_2516_ogst_2021021 crossref_primary_10_1016_j_cie_2024_110823 crossref_primary_10_3390_en13071799 crossref_primary_10_1016_j_cie_2023_109811 crossref_primary_10_1016_j_cie_2023_109139 crossref_primary_10_1016_j_engappai_2024_107942 crossref_primary_10_1021_acssuschemeng_1c03945 crossref_primary_10_1016_j_compchemeng_2020_107073 crossref_primary_10_1016_j_engappai_2021_104459 crossref_primary_10_1021_acs_iecr_3c02545 crossref_primary_10_1016_j_jclepro_2021_129100 crossref_primary_10_1016_j_renene_2022_06_118 crossref_primary_10_1016_j_jclepro_2021_127165 crossref_primary_10_1007_s12597_025_00929_7 crossref_primary_10_1016_j_cie_2025_111017 crossref_primary_10_1016_j_jclepro_2023_137314 crossref_primary_10_1007_s10668_023_03166_4 crossref_primary_10_1016_j_autcon_2023_105190 crossref_primary_10_1016_j_apenergy_2024_123808 crossref_primary_10_1016_j_eswa_2020_113906 |
Cites_doi | 10.1002/aic.12637 10.1016/j.enconman.2008.02.020 10.1016/j.biombioe.2011.01.060 10.1016/j.energy.2016.06.025 10.1016/j.jclepro.2015.09.034 10.1016/j.ejor.2011.09.050 10.1016/j.cor.2014.03.010 10.1016/j.ejor.2015.02.045 10.1016/j.omega.2015.12.010 10.1016/j.rser.2013.12.036 10.1287/opre.21.5.1154 10.1016/j.energy.2014.07.023 10.1016/j.apm.2015.04.054 10.1016/j.wasman.2016.03.025 10.1016/j.rser.2011.10.016 10.1016/j.rser.2013.03.049 10.1016/j.energy.2013.07.043 10.1016/j.renene.2016.02.070 10.1016/S0925-5273(99)00074-2 10.1016/j.cie.2009.07.003 10.1016/j.tre.2011.08.004 10.1016/j.energy.2014.04.043 10.1016/j.cie.2015.04.025 10.1016/j.compchemeng.2011.02.008 10.1016/0165-0114(92)90062-9 10.1016/j.biortech.2011.05.060 10.1016/j.apenergy.2014.11.057 10.1016/j.fss.2012.04.010 10.1016/S0165-0114(96)00236-9 10.1016/j.energy.2014.07.073 10.1016/j.biortech.2013.09.120 10.1007/s00267-010-9494-2 10.1016/j.compchemeng.2014.05.003 10.1016/j.biombioe.2013.08.005 10.1021/acs.iecr.5b02875 10.1016/j.ejor.2009.06.011 10.1287/trsc.2013.0505 10.1016/j.ejor.2013.03.033 10.1016/j.biortech.2015.04.078 10.1016/j.ijpe.2014.11.012 10.1016/j.trb.2010.04.006 10.1016/j.biombioe.2013.10.023 10.1016/j.fss.2006.11.003 10.1016/j.cherd.2011.07.013 10.1016/j.tre.2014.04.001 10.1016/j.apenergy.2013.10.024 10.1016/j.apenergy.2009.05.024 10.1287/opre.1030.0065 10.1016/j.ces.2011.05.055 10.1016/j.jclepro.2014.10.045 10.1016/j.ejor.2008.05.007 10.1016/j.biombioe.2012.09.002 10.1287/opre.43.2.264 10.1021/sc400267t 10.1016/j.jclepro.2016.03.168 10.1007/s00170-008-1715-y 10.1137/S1052623496305717 10.1016/j.energy.2015.05.106 10.1002/aic.13844 10.1016/j.tre.2015.02.008 10.1016/j.energy.2014.08.048 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2017.09.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 517 |
ExternalDocumentID | 10_1016_j_renene_2017_09_020 S0960148117308820 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c392t-70928cef2c22eb7a6aa58a436e98b8cc1cb44df1569e546ab7570beb488611d33 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 06:48:56 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Tue Jul 01 03:20:41 EDT 2025 Fri Feb 23 02:34:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biorefinery Supply chain network design Robust optimization Lignocellulosic biomass Second generation bioethanol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-70928cef2c22eb7a6aa58a436e98b8cc1cb44df1569e546ab7570beb488611d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000557749 |
PQPubID | 24069 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2000557749 crossref_primary_10_1016_j_renene_2017_09_020 crossref_citationtrail_10_1016_j_renene_2017_09_020 elsevier_sciencedirect_doi_10_1016_j_renene_2017_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tong, Gleeson, Rong, You (bib29) 2014; 60 Marufuzzaman, Ekşioğlu, Hernandez (bib45) 2014; 48 Gebreslassie, Yao, You (bib34) 2012; 58 Babazadeh, Razmi, Pishvaee, Rabbani (bib60) 2017; 66 Yu, Li (bib16) 2000; 64 Galbraith (bib12) 1973 Alavijeh, Yaghmaei (bib65) 2016; 52 Sharma, Ingalls, Jones, Huhnke, Khanchi (bib53) 2013; 150 De Meyer, Cattrysse, Rasinmäki, Van Orshoven (bib11) 2014; 31 Kim, Realff, Lee (bib35) 2011; 35 Ben-Tal, El Ghaoui, Nemirovski (bib18) 2009 Peidro, Mula, Poler, Lario (bib25) 2009; 43 Bertsimas, Brown, Caramanis (bib26) 2007 Bai, Hwang, Kang, Ouyang (bib23) 2011; 45 Dal-Mas, Giarola, Zamboni, Bezzo (bib43) 2011; 35 Zakeri, Dehghanian, Fahimnia, Sarkis (bib47) 2015; 164 Azadeh, Arani (bib58) 2016; 93 Giarola, Bezzo, Shah (bib44) 2013; 58 Tong, You, Rong (bib31) 2014; 68 Mirzapour Al-e-Hashem, Baboli, Sazvar (bib61) 2013; 230 Azadeh, Arani, Dashti (bib32) 2014; 76 Walther, Schatka, Spengler (bib40) 2012; 218 (2013). Ng, Ng, Tan (bib2) 2015; 87 An, Wilhelm, Searcy (bib50) 2011; 102 Gonela, Zhang, Osmani, Onyeaghala (bib56) 2015; 77 Kostin, Guillén-Gosálbez, Mele, Bagajewicz, Jiménez (bib52) 2012; 90 Liu, Iwamura (bib64) 1998; 94 Demirbas (bib3) 2008; 49 Mu, Seager, Rao, Zhao (bib7) 2010; 46 Awudu, Zhang (bib4) 2012; 16 Marufuzzaman, Eksioglu, Huang (bib46) 2014; 49 Marvin, Schmidt, Benjaafar, Tiffany, Daoutidis (bib36) 2012; 67 Soyster (bib20) 1973; 21 Heilpern (bib63) 1992; 47 Pishvaee, Razmi, Torabi (bib69) 2014; 67 El Ghaoui, Oustry, Lebret (bib62) 1998; 9 National Document for Knowledge-based Development of Renewable energies (bib67) 2015 Wajszczuk (bib8) August 23-27, 2005 Melo, Nickel, Saldanha-da-Gama (bib24) 2009; 196 Balaman, Selim (bib28) 2015; 191 Balaman, Selim (bib33) 2014; 74 Gonela, Zhang, Osmani (bib57) 2015; 87 Sharma, Ingalls, Jones, Khanchi (bib5) 2013; 24 De Meyer, Cattrysse, Van Orshoven (bib10) 2015; 245 Bertsimas, Sim (bib19) 2004; 52 Klibi, Martel, Guitouni (bib14) 2010; 203 Zhu, Li, Huang, Fan, Nie (bib22) 2015; 88 Mulvey, Vanderbei, Zenios (bib15) 1995; 43 You, Tao, Graziano, Snyder (bib6) 2012; 58 Tong, Gong, Yue, You (bib39) 2013; 2 Chen, Fan (bib42) 2012; 48 Iran Statistical Yearbook of oil products consumption (bib68) 2014 Pishvaee, Basiri, Sheikh Sajadieh (bib9) 2009 Iran Statistical Yearbook of Agricultural Products, Iran’s Ministry of Agriculture Osmani, Zhang (bib38) 2014; 114 Ekşioğlu, Acharya, Leightley, Arora (bib48) 2009; 57 Osmani, Zhang (bib37) 2013; 59 Pishvaee, Khalaf (bib27) 2016; 40 Li, Hu (bib55) 2014; 74 Mohseni, Pishvaee, Sahebi (bib41) 2016; 111 Shabani, Sowlati (bib30) 2016; 112 Leduc, Natarajan, Dotzauer, McCallum, Obersteiner (bib49) 2009; 86 Pishvaee, Razmi, Torabi (bib17) 2012; 206 Santibañez-Aguilar, Morales-Rodriguez, González-Campos, Ponce-Ortega (bib59) 2016; 136 Zhou, Li, Huang (bib21) 2015; 140 Osmani, Zhang (bib54) 2014; 70 Mula, Poler, Garcia-Sabater (bib13) 2007; 158 An, Searcy (bib51) 2012; 46 Bairamzadeh, Pishvaee, Saidi-Mehrabad (bib1) 2015; 55 Galbraith (10.1016/j.renene.2017.09.020_bib12) 1973 Zhou (10.1016/j.renene.2017.09.020_bib21) 2015; 140 Liu (10.1016/j.renene.2017.09.020_bib64) 1998; 94 Alavijeh (10.1016/j.renene.2017.09.020_bib65) 2016; 52 10.1016/j.renene.2017.09.020_bib66 Mulvey (10.1016/j.renene.2017.09.020_bib15) 1995; 43 Melo (10.1016/j.renene.2017.09.020_bib24) 2009; 196 Zhu (10.1016/j.renene.2017.09.020_bib22) 2015; 88 Sharma (10.1016/j.renene.2017.09.020_bib53) 2013; 150 Pishvaee (10.1016/j.renene.2017.09.020_bib69) 2014; 67 Bai (10.1016/j.renene.2017.09.020_bib23) 2011; 45 Tong (10.1016/j.renene.2017.09.020_bib31) 2014; 68 Balaman (10.1016/j.renene.2017.09.020_bib33) 2014; 74 An (10.1016/j.renene.2017.09.020_bib51) 2012; 46 Gonela (10.1016/j.renene.2017.09.020_bib56) 2015; 77 Dal-Mas (10.1016/j.renene.2017.09.020_bib43) 2011; 35 Klibi (10.1016/j.renene.2017.09.020_bib14) 2010; 203 Azadeh (10.1016/j.renene.2017.09.020_bib58) 2016; 93 Bertsimas (10.1016/j.renene.2017.09.020_bib19) 2004; 52 Osmani (10.1016/j.renene.2017.09.020_bib37) 2013; 59 Babazadeh (10.1016/j.renene.2017.09.020_bib60) 2017; 66 Mirzapour Al-e-Hashem (10.1016/j.renene.2017.09.020_bib61) 2013; 230 National Document for Knowledge-based Development of Renewable energies (10.1016/j.renene.2017.09.020_bib67) 2015 Leduc (10.1016/j.renene.2017.09.020_bib49) 2009; 86 Peidro (10.1016/j.renene.2017.09.020_bib25) 2009; 43 Kostin (10.1016/j.renene.2017.09.020_bib52) 2012; 90 Heilpern (10.1016/j.renene.2017.09.020_bib63) 1992; 47 An (10.1016/j.renene.2017.09.020_bib50) 2011; 102 Osmani (10.1016/j.renene.2017.09.020_bib38) 2014; 114 Tong (10.1016/j.renene.2017.09.020_bib39) 2013; 2 Azadeh (10.1016/j.renene.2017.09.020_bib32) 2014; 76 Bairamzadeh (10.1016/j.renene.2017.09.020_bib1) 2015; 55 Demirbas (10.1016/j.renene.2017.09.020_bib3) 2008; 49 Yu (10.1016/j.renene.2017.09.020_bib16) 2000; 64 Kim (10.1016/j.renene.2017.09.020_bib35) 2011; 35 Tong (10.1016/j.renene.2017.09.020_bib29) 2014; 60 Giarola (10.1016/j.renene.2017.09.020_bib44) 2013; 58 De Meyer (10.1016/j.renene.2017.09.020_bib10) 2015; 245 De Meyer (10.1016/j.renene.2017.09.020_bib11) 2014; 31 Santibañez-Aguilar (10.1016/j.renene.2017.09.020_bib59) 2016; 136 Wajszczuk (10.1016/j.renene.2017.09.020_bib8) 2005 Pishvaee (10.1016/j.renene.2017.09.020_bib27) 2016; 40 You (10.1016/j.renene.2017.09.020_bib6) 2012; 58 El Ghaoui (10.1016/j.renene.2017.09.020_bib62) 1998; 9 Marufuzzaman (10.1016/j.renene.2017.09.020_bib45) 2014; 48 Mula (10.1016/j.renene.2017.09.020_bib13) 2007; 158 Balaman (10.1016/j.renene.2017.09.020_bib28) 2015; 191 Gonela (10.1016/j.renene.2017.09.020_bib57) 2015; 87 Osmani (10.1016/j.renene.2017.09.020_bib54) 2014; 70 Sharma (10.1016/j.renene.2017.09.020_bib5) 2013; 24 Ekşioğlu (10.1016/j.renene.2017.09.020_bib48) 2009; 57 Marvin (10.1016/j.renene.2017.09.020_bib36) 2012; 67 Chen (10.1016/j.renene.2017.09.020_bib42) 2012; 48 Gebreslassie (10.1016/j.renene.2017.09.020_bib34) 2012; 58 Bertsimas (10.1016/j.renene.2017.09.020_bib26) 2007 Walther (10.1016/j.renene.2017.09.020_bib40) 2012; 218 Mohseni (10.1016/j.renene.2017.09.020_bib41) 2016; 111 Awudu (10.1016/j.renene.2017.09.020_bib4) 2012; 16 Li (10.1016/j.renene.2017.09.020_bib55) 2014; 74 Pishvaee (10.1016/j.renene.2017.09.020_bib17) 2012; 206 Iran Statistical Yearbook of oil products consumption (10.1016/j.renene.2017.09.020_bib68) 2014 Ng (10.1016/j.renene.2017.09.020_bib2) 2015; 87 Soyster (10.1016/j.renene.2017.09.020_bib20) 1973; 21 Mu (10.1016/j.renene.2017.09.020_bib7) 2010; 46 Marufuzzaman (10.1016/j.renene.2017.09.020_bib46) 2014; 49 Shabani (10.1016/j.renene.2017.09.020_bib30) 2016; 112 Pishvaee (10.1016/j.renene.2017.09.020_bib9) 2009 Ben-Tal (10.1016/j.renene.2017.09.020_bib18) 2009 Zakeri (10.1016/j.renene.2017.09.020_bib47) 2015; 164 |
References_xml | – volume: 49 start-page: 2106 year: 2008 end-page: 2116 ident: bib3 article-title: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections publication-title: Energy Convers. Manag. – volume: 67 start-page: 14 year: 2014 end-page: 38 ident: bib69 article-title: An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain publication-title: Transp. Res. Part E Logist. Transp. Rev. – volume: 77 start-page: 1 year: 2015 end-page: 28 ident: bib56 article-title: Stochastic optimization of sustainable hybrid generation bioethanol supply chains publication-title: Transp. Res. Part E Logist. Transp. Rev. – volume: 203 start-page: 283 year: 2010 end-page: 293 ident: bib14 article-title: The design of robust value-creating supply chain networks: a critical review publication-title: Eur. J. Operational Res. – volume: 111 start-page: 736 year: 2016 end-page: 755 ident: bib41 article-title: Robust design and planning of microalgae biomass-to-biodiesel supply chain: a case study in Iran publication-title: Energy – volume: 40 start-page: 407 year: 2016 end-page: 418 ident: bib27 article-title: Novel robust fuzzy mathematical programming methods publication-title: Appl. Math. Model. – volume: 114 start-page: 572 year: 2014 end-page: 587 ident: bib38 article-title: Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment publication-title: Appl. Energy – reference: Iran Statistical Yearbook of Agricultural Products, Iran’s Ministry of Agriculture – volume: 164 start-page: 197 year: 2015 end-page: 205 ident: bib47 article-title: Carbon pricing versus emissions trading: a supply chain planning perspective publication-title: Int. J. Prod. Econ. – year: 1973 ident: bib12 article-title: Designing Complex Organizations – volume: 52 start-page: 35 year: 2004 end-page: 53 ident: bib19 article-title: The price of robustness publication-title: Operations Res. – volume: 52 start-page: 375 year: 2016 end-page: 394 ident: bib65 article-title: Biochemical production of bioenergy from agricultural crops and residue in Iran publication-title: Waste Manag. – volume: 158 start-page: 783 year: 2007 end-page: 793 ident: bib13 article-title: Material requirement planning with fuzzy constraints and fuzzy coefficients publication-title: Fuzzy Sets Syst. – volume: 64 start-page: 385 year: 2000 end-page: 397 ident: bib16 article-title: A robust optimization model for stochastic logistic problems publication-title: Int. J. Prod. Econ. – volume: 45 start-page: 162 year: 2011 end-page: 175 ident: bib23 article-title: Biofuel refinery location and supply chain planning under traffic congestion publication-title: Transp. Res. Part B Methodol. – volume: 76 start-page: 513 year: 2014 end-page: 525 ident: bib32 article-title: A stochastic programming approach towards optimization of biofuel supply chain publication-title: Energy – volume: 191 start-page: 97 year: 2015 end-page: 109 ident: bib28 article-title: A decision model for cost effective design of biomass based green energy supply chains publication-title: Bioresour. Technol. – volume: 74 start-page: 576 year: 2014 end-page: 584 ident: bib55 article-title: Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification publication-title: Energy – volume: 68 start-page: 128 year: 2014 end-page: 139 ident: bib31 article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective publication-title: Comput. Chem. Eng. – volume: 67 start-page: 68 year: 2012 end-page: 79 ident: bib36 article-title: Economic optimization of a lignocellulosic biomass-to-ethanol supply chain publication-title: Chem. Eng. Sci. – volume: 93 start-page: 383 year: 2016 end-page: 403 ident: bib58 article-title: Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach publication-title: Renew. Energy – volume: 112 start-page: 3285 year: 2016 end-page: 3293 ident: bib30 article-title: A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties publication-title: J. Clean. Prod. – volume: 47 start-page: 81 year: 1992 end-page: 86 ident: bib63 article-title: The expected value of a fuzzy number publication-title: Fuzzy sets Syst. – volume: 46 start-page: 190 year: 2012 end-page: 202 ident: bib51 article-title: Economic and energy evaluation of a logistics system based on biomass modules publication-title: Biomass Bioenergy – volume: 35 start-page: 2059 year: 2011 end-page: 2071 ident: bib43 article-title: Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty publication-title: Biomass Bioenergy – volume: 87 start-page: 40 year: 2015 end-page: 65 ident: bib57 article-title: Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains publication-title: Comput. Ind. Eng. – volume: 16 start-page: 1359 year: 2012 end-page: 1368 ident: bib4 article-title: Uncertainties and sustainability concepts in biofuel supply chain management: a review publication-title: Renew. Sustain. Energy Rev. – year: 2014 ident: bib68 article-title: National Iranian Oil Products Distribution Company (NIOPDC) – volume: 58 start-page: 1157 year: 2012 end-page: 1180 ident: bib6 article-title: Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis publication-title: AIChE J. – volume: 60 start-page: 108 year: 2014 end-page: 120 ident: bib29 article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty publication-title: Biomass Bioenergy – volume: 86 start-page: S125 year: 2009 end-page: S131 ident: bib49 article-title: Optimizing biodiesel production in India publication-title: Appl. Energy – volume: 55 start-page: 237 year: 2015 end-page: 256 ident: bib1 article-title: Multiobjective robust possibilistic programming approach to sustainable bioethanol supply chain design under multiple uncertainties publication-title: Ind. Eng. Chem. Res. – volume: 24 start-page: 608 year: 2013 end-page: 627 ident: bib5 article-title: Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future publication-title: Renew. Sustain. Energy Rev. – volume: 88 start-page: 636 year: 2015 end-page: 649 ident: bib22 article-title: A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty publication-title: Energy – volume: 59 start-page: 157 year: 2013 end-page: 172 ident: bib37 article-title: Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties publication-title: Energy – volume: 48 start-page: 555 year: 2014 end-page: 574 ident: bib45 article-title: Environmentally friendly supply chain planning and design for biodiesel production via wastewater sludge publication-title: Transp. Sci. – volume: 87 start-page: 291 year: 2015 end-page: 302 ident: bib2 article-title: Optimal planning, design and synthesis of symbiotic bioenergy parks publication-title: J. Clean. Prod. – volume: 43 start-page: 400 year: 2009 end-page: 420 ident: bib25 article-title: Quantitative models for supply chain planning under uncertainty: a review publication-title: Int. J. Adv. Manuf. Technol. – year: 2015 ident: bib67 article-title: National Iranian Oil Company (NIOC) – year: August 23-27, 2005 ident: bib8 article-title: Logistics Costs Analysis as an Assisting Tool to Achieve Competitive Advantage for Agricultural Enterprises, 2005 International Congress – start-page: 57 year: 2009 end-page: 83 ident: bib9 article-title: National Logistics Costs, Supply Chain and Logistics in National – year: 2009 ident: bib18 article-title: Robust Optimization – volume: 140 start-page: 350 year: 2015 end-page: 364 ident: bib21 article-title: Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty publication-title: Appl. Energy – volume: 9 start-page: 33 year: 1998 end-page: 52 ident: bib62 article-title: Robust solutions to uncertain semidefinite programs publication-title: SIAM J. Optim. – volume: 102 start-page: 7860 year: 2011 end-page: 7870 ident: bib50 article-title: A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas publication-title: Bioresour. Technol. – volume: 58 start-page: 2155 year: 2012 end-page: 2179 ident: bib34 article-title: Design under uncertainty of hydrocarbon biorefinery supply chains: multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk publication-title: AIChE J. – volume: 35 start-page: 1738 year: 2011 end-page: 1751 ident: bib35 article-title: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty publication-title: Comput. Chem. Eng. – volume: 21 start-page: 1154 year: 1973 end-page: 1157 ident: bib20 article-title: Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming publication-title: Operations Res. – volume: 245 start-page: 247 year: 2015 end-page: 264 ident: bib10 article-title: A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS) publication-title: Eur. J. Operational Res. – volume: 206 start-page: 1 year: 2012 end-page: 20 ident: bib17 article-title: Robust possibilistic programming for socially responsible supply chain network design: a new approach publication-title: Fuzzy sets Syst. – volume: 90 start-page: 359 year: 2012 end-page: 376 ident: bib52 article-title: Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty publication-title: Chem. Eng. Res. And Des. – volume: 70 start-page: 514 year: 2014 end-page: 528 ident: bib54 article-title: Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties publication-title: Energy – volume: 136 start-page: 224 year: 2016 end-page: 245 ident: bib59 article-title: Stochastic design of biorefinery supply chains considering economic and environmental objectives publication-title: J. Clean. Prod. – volume: 43 start-page: 264 year: 1995 end-page: 281 ident: bib15 article-title: Robust optimization of large-scale systems publication-title: Operations Res. – volume: 74 start-page: 928 year: 2014 end-page: 940 ident: bib33 article-title: A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains publication-title: Energy – volume: 2 start-page: 49 year: 2013 end-page: 61 ident: bib39 article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains publication-title: ACS Sustain. Chem. Eng. – volume: 58 start-page: 31 year: 2013 end-page: 51 ident: bib44 article-title: A risk management approach to the economic and environmental strategic design of ethanol supply chains publication-title: Biomass Bioenergy – volume: 31 start-page: 657 year: 2014 end-page: 670 ident: bib11 article-title: Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review publication-title: Renew. Sustain. Energy Rev. – volume: 218 start-page: 280 year: 2012 end-page: 292 ident: bib40 article-title: Design of regional production networks for second generation synthetic bio-fuel–A case study in Northern Germany publication-title: Eur. J. Operational Res. – volume: 49 start-page: 1 year: 2014 end-page: 17 ident: bib46 article-title: Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment publication-title: Comput. Operations Res. – volume: 196 start-page: 401 year: 2009 end-page: 412 ident: bib24 article-title: Facility location and supply chain management–A review publication-title: Eur. J. Operational Res. – volume: 48 start-page: 150 year: 2012 end-page: 164 ident: bib42 article-title: Bioethanol supply chain system planning under supply and demand uncertainties publication-title: Transp. Res. Part E Logist. Transp. Rev. – volume: 150 start-page: 163 year: 2013 end-page: 171 ident: bib53 article-title: Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system publication-title: Bioresour. Technol. – volume: 46 start-page: 565 year: 2010 end-page: 578 ident: bib7 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ. Manag. – volume: 66 start-page: 258 year: 2017 end-page: 277 ident: bib60 article-title: A sustainable second-generation biodiesel supply chain network design problem under risk publication-title: Omega – volume: 94 start-page: 227 year: 1998 end-page: 237 ident: bib64 article-title: Chance constrained programming with fuzzy parameters publication-title: Fuzzy Sets And Syst. – volume: 57 start-page: 1342 year: 2009 end-page: 1352 ident: bib48 article-title: Analyzing the design and management of biomass-to-biorefinery supply chain publication-title: Comput. Ind. Eng. – year: 2007 ident: bib26 article-title: Theory and Applications of Robust Optimization – volume: 230 start-page: 26 year: 2013 end-page: 41 ident: bib61 article-title: A stochastic aggregate production planning model in a green supply chain: considering flexible lead times, nonlinear purchase and shortage cost functions publication-title: Eur. J. Operational Res. – reference: (2013). – volume: 58 start-page: 1157 issue: 4 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib6 article-title: Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis publication-title: AIChE J. doi: 10.1002/aic.12637 – volume: 49 start-page: 2106 issue: 8 year: 2008 ident: 10.1016/j.renene.2017.09.020_bib3 article-title: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.02.020 – year: 2007 ident: 10.1016/j.renene.2017.09.020_bib26 – volume: 35 start-page: 2059 issue: 5 year: 2011 ident: 10.1016/j.renene.2017.09.020_bib43 article-title: Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.060 – volume: 111 start-page: 736 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib41 article-title: Robust design and planning of microalgae biomass-to-biodiesel supply chain: a case study in Iran publication-title: Energy doi: 10.1016/j.energy.2016.06.025 – volume: 112 start-page: 3285 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib30 article-title: A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.09.034 – volume: 218 start-page: 280 issue: 1 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib40 article-title: Design of regional production networks for second generation synthetic bio-fuel–A case study in Northern Germany publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2011.09.050 – volume: 49 start-page: 1 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib46 article-title: Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment publication-title: Comput. Operations Res. doi: 10.1016/j.cor.2014.03.010 – volume: 245 start-page: 247 issue: 1 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib10 article-title: A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS) publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2015.02.045 – ident: 10.1016/j.renene.2017.09.020_bib66 – volume: 66 start-page: 258 year: 2017 ident: 10.1016/j.renene.2017.09.020_bib60 article-title: A sustainable second-generation biodiesel supply chain network design problem under risk publication-title: Omega doi: 10.1016/j.omega.2015.12.010 – volume: 31 start-page: 657 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib11 article-title: Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.036 – volume: 21 start-page: 1154 issue: 5 year: 1973 ident: 10.1016/j.renene.2017.09.020_bib20 article-title: Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming publication-title: Operations Res. doi: 10.1287/opre.21.5.1154 – volume: 74 start-page: 576 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib55 article-title: Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification publication-title: Energy doi: 10.1016/j.energy.2014.07.023 – year: 2014 ident: 10.1016/j.renene.2017.09.020_bib68 – volume: 40 start-page: 407 issue: 1 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib27 article-title: Novel robust fuzzy mathematical programming methods publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.04.054 – volume: 52 start-page: 375 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib65 article-title: Biochemical production of bioenergy from agricultural crops and residue in Iran publication-title: Waste Manag. doi: 10.1016/j.wasman.2016.03.025 – volume: 16 start-page: 1359 issue: 2 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib4 article-title: Uncertainties and sustainability concepts in biofuel supply chain management: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.10.016 – volume: 24 start-page: 608 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib5 article-title: Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.049 – volume: 59 start-page: 157 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib37 article-title: Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties publication-title: Energy doi: 10.1016/j.energy.2013.07.043 – volume: 93 start-page: 383 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib58 article-title: Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach publication-title: Renew. Energy doi: 10.1016/j.renene.2016.02.070 – volume: 64 start-page: 385 issue: 1 year: 2000 ident: 10.1016/j.renene.2017.09.020_bib16 article-title: A robust optimization model for stochastic logistic problems publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(99)00074-2 – volume: 57 start-page: 1342 issue: 4 year: 2009 ident: 10.1016/j.renene.2017.09.020_bib48 article-title: Analyzing the design and management of biomass-to-biorefinery supply chain publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2009.07.003 – volume: 48 start-page: 150 issue: 1 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib42 article-title: Bioethanol supply chain system planning under supply and demand uncertainties publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2011.08.004 – year: 2005 ident: 10.1016/j.renene.2017.09.020_bib8 – volume: 70 start-page: 514 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib54 article-title: Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties publication-title: Energy doi: 10.1016/j.energy.2014.04.043 – volume: 87 start-page: 40 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib57 article-title: Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.04.025 – volume: 35 start-page: 1738 issue: 9 year: 2011 ident: 10.1016/j.renene.2017.09.020_bib35 article-title: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2011.02.008 – volume: 47 start-page: 81 issue: 1 year: 1992 ident: 10.1016/j.renene.2017.09.020_bib63 article-title: The expected value of a fuzzy number publication-title: Fuzzy sets Syst. doi: 10.1016/0165-0114(92)90062-9 – volume: 102 start-page: 7860 issue: 17 year: 2011 ident: 10.1016/j.renene.2017.09.020_bib50 article-title: A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.05.060 – volume: 140 start-page: 350 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib21 article-title: Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.057 – volume: 206 start-page: 1 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib17 article-title: Robust possibilistic programming for socially responsible supply chain network design: a new approach publication-title: Fuzzy sets Syst. doi: 10.1016/j.fss.2012.04.010 – volume: 94 start-page: 227 issue: 2 year: 1998 ident: 10.1016/j.renene.2017.09.020_bib64 article-title: Chance constrained programming with fuzzy parameters publication-title: Fuzzy Sets And Syst. doi: 10.1016/S0165-0114(96)00236-9 – volume: 74 start-page: 928 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib33 article-title: A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains publication-title: Energy doi: 10.1016/j.energy.2014.07.073 – volume: 150 start-page: 163 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib53 article-title: Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.09.120 – volume: 46 start-page: 565 issue: 4 year: 2010 ident: 10.1016/j.renene.2017.09.020_bib7 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ. Manag. doi: 10.1007/s00267-010-9494-2 – volume: 68 start-page: 128 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib31 article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.003 – volume: 58 start-page: 31 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib44 article-title: A risk management approach to the economic and environmental strategic design of ethanol supply chains publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.08.005 – volume: 55 start-page: 237 issue: 1 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib1 article-title: Multiobjective robust possibilistic programming approach to sustainable bioethanol supply chain design under multiple uncertainties publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b02875 – volume: 203 start-page: 283 issue: 2 year: 2010 ident: 10.1016/j.renene.2017.09.020_bib14 article-title: The design of robust value-creating supply chain networks: a critical review publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2009.06.011 – volume: 48 start-page: 555 issue: 4 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib45 article-title: Environmentally friendly supply chain planning and design for biodiesel production via wastewater sludge publication-title: Transp. Sci. doi: 10.1287/trsc.2013.0505 – volume: 230 start-page: 26 issue: 1 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib61 article-title: A stochastic aggregate production planning model in a green supply chain: considering flexible lead times, nonlinear purchase and shortage cost functions publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2013.03.033 – volume: 191 start-page: 97 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib28 article-title: A decision model for cost effective design of biomass based green energy supply chains publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.078 – volume: 164 start-page: 197 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib47 article-title: Carbon pricing versus emissions trading: a supply chain planning perspective publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.11.012 – volume: 45 start-page: 162 issue: 1 year: 2011 ident: 10.1016/j.renene.2017.09.020_bib23 article-title: Biofuel refinery location and supply chain planning under traffic congestion publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2010.04.006 – volume: 60 start-page: 108 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib29 article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.10.023 – volume: 158 start-page: 783 issue: 7 year: 2007 ident: 10.1016/j.renene.2017.09.020_bib13 article-title: Material requirement planning with fuzzy constraints and fuzzy coefficients publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2006.11.003 – volume: 90 start-page: 359 issue: 3 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib52 article-title: Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty publication-title: Chem. Eng. Res. And Des. doi: 10.1016/j.cherd.2011.07.013 – volume: 67 start-page: 14 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib69 article-title: An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2014.04.001 – start-page: 57 year: 2009 ident: 10.1016/j.renene.2017.09.020_bib9 – volume: 114 start-page: 572 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib38 article-title: Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.024 – volume: 86 start-page: S125 year: 2009 ident: 10.1016/j.renene.2017.09.020_bib49 article-title: Optimizing biodiesel production in India publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.05.024 – volume: 52 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.renene.2017.09.020_bib19 article-title: The price of robustness publication-title: Operations Res. doi: 10.1287/opre.1030.0065 – volume: 67 start-page: 68 issue: 1 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib36 article-title: Economic optimization of a lignocellulosic biomass-to-ethanol supply chain publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.055 – volume: 87 start-page: 291 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib2 article-title: Optimal planning, design and synthesis of symbiotic bioenergy parks publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.10.045 – volume: 196 start-page: 401 issue: 2 year: 2009 ident: 10.1016/j.renene.2017.09.020_bib24 article-title: Facility location and supply chain management–A review publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2008.05.007 – volume: 46 start-page: 190 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib51 article-title: Economic and energy evaluation of a logistics system based on biomass modules publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.09.002 – volume: 43 start-page: 264 issue: 2 year: 1995 ident: 10.1016/j.renene.2017.09.020_bib15 article-title: Robust optimization of large-scale systems publication-title: Operations Res. doi: 10.1287/opre.43.2.264 – volume: 2 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.renene.2017.09.020_bib39 article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400267t – volume: 136 start-page: 224 year: 2016 ident: 10.1016/j.renene.2017.09.020_bib59 article-title: Stochastic design of biorefinery supply chains considering economic and environmental objectives publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.03.168 – year: 1973 ident: 10.1016/j.renene.2017.09.020_bib12 – volume: 43 start-page: 400 issue: 3–4 year: 2009 ident: 10.1016/j.renene.2017.09.020_bib25 article-title: Quantitative models for supply chain planning under uncertainty: a review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1715-y – volume: 9 start-page: 33 issue: 1 year: 1998 ident: 10.1016/j.renene.2017.09.020_bib62 article-title: Robust solutions to uncertain semidefinite programs publication-title: SIAM J. Optim. doi: 10.1137/S1052623496305717 – volume: 88 start-page: 636 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib22 article-title: A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty publication-title: Energy doi: 10.1016/j.energy.2015.05.106 – volume: 58 start-page: 2155 issue: 7 year: 2012 ident: 10.1016/j.renene.2017.09.020_bib34 article-title: Design under uncertainty of hydrocarbon biorefinery supply chains: multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk publication-title: AIChE J. doi: 10.1002/aic.13844 – volume: 77 start-page: 1 year: 2015 ident: 10.1016/j.renene.2017.09.020_bib56 article-title: Stochastic optimization of sustainable hybrid generation bioethanol supply chains publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2015.02.008 – year: 2009 ident: 10.1016/j.renene.2017.09.020_bib18 – year: 2015 ident: 10.1016/j.renene.2017.09.020_bib67 – volume: 76 start-page: 513 year: 2014 ident: 10.1016/j.renene.2017.09.020_bib32 article-title: A stochastic programming approach towards optimization of biofuel supply chain publication-title: Energy doi: 10.1016/j.energy.2014.08.048 |
SSID | ssj0015874 |
Score | 2.5832694 |
Snippet | This article proposes a mixed-integer programming (MILP) model to determine the strategic and tactical level decisions of lignocellulosic bioethanol supply... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 500 |
SubjectTerms | bioethanol biomass production Biorefinery biorefining case studies deterministic models Iran lignocellulose Lignocellulosic biomass planning Robust optimization Second generation bioethanol supply chain Supply chain network design uncertainty |
Title | Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach |
URI | https://dx.doi.org/10.1016/j.renene.2017.09.020 https://www.proquest.com/docview/2000557749 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPnF9MYLXuk2bNq23RZRVwYsueAtJmsLK2i67XcGLv92ZPkRFEDy2pKVkJvNovnwfY2dhKKyfO2xTUxl5IvdTL80z48VaO-xAQh3oGiB7H4_G4vYpeuqxy-4sDMEq29jfxPQ6Wrd3Bu1sDmaTyeCBim8s5jlHJ8U6kfp2ISR5-fn7J8yDR0nDxIyDPRrdHZ-rMV7EGlkQWSaXNdspqX7_np5-BOo6-1xvso22bIRh82VbrOeKbbb-hUxwh72SrFnNsA2d6kkF9Id1AWUOmL6azf_qDSYFmEmZL90UFiTq-QZFAwaHrMZzgC4ymLVqRhcwhHlplosKSgwvL-25TejIyHfZ-Prq8XLktaoKnsVaqPKknwaJdXlgg8AZqdEqUaJFGLs0MYm13Bohshz7utRFItZGRtI3zuBKjznPwnCPrRRl4fYZRLFNAqNx5VoupIy1jAR3GfHv4FSHus_CbjKVbSnHSfliqjps2bNqTKDIBMpPFZqgz7zPp2YN5cYf42VnJ_XNdRRmhT-ePO3MqnBV0VaJLly5XJA4J5GTSZEe_Pvth2wNr5IG4n3EVqr50h1jBVOZk9pFT9jq8OZudP8BqH3yvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yH9QH8YrzegRfy3pJmta3IY7p5l6c4FtI0hQm2g7XCf57T9pUVATB1zYJJSc5l-bL9xFyEUVU-7nBMjXlzKO5n3ppnikvltJgBRLJUNYA2Uk8fKC3j-xxhVy1d2EsrNL5_san197aPem52ezNZ7PevU2-MZkPAlykmCdi3b5q2alYh6z2b0bDyedhAksaMmZs79kO7Q26GuZliSMLy5cZ8Jrw1Ap__x6hfvjqOgANtsimyxyh33zcNlkxxQ7Z-MInuEverLJZTbINrfBJBfYn6wLKHDCCNef_1TvMClCzMl-aZ1hYXc93KBo8OGQ1pANkkcHcCRpdQh9eS7VcVFCih3lxVzeh5SPfIw-D6-nV0HPCCp7GdKjyuJ-GiTZ5qMPQKC7RMCyRNIpNmqhE60ArSrMcS7vUMBpLxRn3lVG42eMgyKJon3SKsjAHBFisk1BJ3Lw6oJzHkjMamMxS8OBUR7JLonYyhXas41b84lm08LIn0ZhAWBMIPxVogi7xPnvNG9aNP9rz1k7i2-oRGBj-6HnemlXgxrKnJbIw5XJh9TktPxmn6eG_Rz8ja8Pp3ViMbyajI7KOb5IG8X1MOtXr0pxgQlOpU7dgPwD02fVu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+different+types+of+uncertainty+in+biofuel+supply+network+design+and+planning%3A+A+robust+optimization+approach&rft.jtitle=Renewable+energy&rft.au=Bairamzadeh%2C+Samira&rft.au=Saidi-Mehrabad%2C+Mohammad&rft.au=Pishvaee%2C+Mir+Saman&rft.date=2018-02-01&rft.issn=0960-1481&rft.volume=116&rft.spage=500&rft.epage=517&rft_id=info:doi/10.1016%2Fj.renene.2017.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2017_09_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |