Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components

Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective featur...

Full description

Saved in:
Bibliographic Details
Published inGenomics (San Diego, Calif.) Vol. 112; no. 1; pp. 859 - 866
Main Authors Ju, Zhe, Wang, Shi-Yun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation. •A novel predictor is develop to predict formylation sites.•The CKSAAP encoding is used to predict and analyze formylation sites.•The biased SVM is adopted as classifier.•A free online service is available for prediction.
AbstractList Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.
Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as 'KA', 'SxxxxK' and 'SxxxA' around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as 'KA', 'SxxxxK' and 'SxxxA' around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.
Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation. •A novel predictor is develop to predict formylation sites.•The CKSAAP encoding is used to predict and analyze formylation sites.•The biased SVM is adopted as classifier.•A free online service is available for prediction.
Author Ju, Zhe
Wang, Shi-Yun
Author_xml – sequence: 1
  givenname: Zhe
  surname: Ju
  fullname: Ju, Zhe
  email: juzhe1120@hotmail.com
– sequence: 2
  givenname: Shi-Yun
  surname: Wang
  fullname: Wang, Shi-Yun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31175975$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFvFCEcxYmpsdvqJzAx3PQyKwzLwBw8mE21Jk30oGfCwJ-WdQZGYJrsp-hXlu5uLx4aTyQv7_fy570LdBZiAITeUrKmhHYfd-v9LYS4bgnt14SvSSteoBUlsm9kt-nO0IpIKRvBN-wcXeS8I4T0TLav0DmjVPBe8BV6-JHAelN8DDg6PO6zD4BdTNN-1Ac1-wIZL1W_xeUOsInTHKt4In43edYGLNaTDxFr4y2etU8Z33uNt3dxeZ8xb3KBOeO0jIB1sLgeDkmPeM6w2HjMDBBKfo1eOj1meHN6L9GvL1c_t9fNzfev37afbxrD-rY0nXNGGq5ZTzZOysEOlBHXWmE30mnCHBskGcTg6jc7MUBLoBOOwkAps4Mx7BJ9OObOKf5ZIBc1-WxgHHWAuGTVMtaLnra9-A8r4ZTz2nu1vjtZl2ECq-bkJ5326qnvauiPBpNizgmcMr4cei5J-1FRoh63VTt12FY9bqsIV3XbyrJ_2Kf456lPRwpqm_ceksrGQ6iL-QSmKBv9s_xfFv_Bkg
CitedBy_id crossref_primary_10_1016_j_biochi_2021_10_001
crossref_primary_10_1109_ACCESS_2022_3144226
crossref_primary_10_4236_ns_2020_129048
crossref_primary_10_1016_j_compbiolchem_2021_107553
crossref_primary_10_3389_fcell_2020_621144
crossref_primary_10_3389_fmicb_2022_790063
crossref_primary_10_2174_1570164617666191025101914
crossref_primary_10_3389_fgene_2022_853258
crossref_primary_10_1080_03610926_2022_2149243
crossref_primary_10_1038_s41598_020_63259_2
crossref_primary_10_2174_1381612825666190930101258
crossref_primary_10_4236_abb_2020_117020
crossref_primary_10_1038_s41598_021_03895_4
crossref_primary_10_1371_journal_pone_0286752
crossref_primary_10_4236_ns_2020_123011
crossref_primary_10_1038_s41598_021_98458_y
crossref_primary_10_1093_bib_bbab089
crossref_primary_10_1111_jcmm_15205
crossref_primary_10_4236_ns_2020_1211063
crossref_primary_10_1109_TCBB_2020_3010975
crossref_primary_10_3389_fbioe_2021_752658
crossref_primary_10_3390_ijms21010075
crossref_primary_10_32604_cmc_2021_015041
crossref_primary_10_1371_journal_pcbi_1012544
crossref_primary_10_1371_journal_pone_0249396
crossref_primary_10_4236_ns_2020_123016
crossref_primary_10_4236_ns_2020_123013
crossref_primary_10_2174_1389202921999200831142629
crossref_primary_10_1016_j_chemolab_2020_104055
crossref_primary_10_1007_s11030_024_10937_2
crossref_primary_10_1093_database_baad094
crossref_primary_10_3934_mbe_2023954
crossref_primary_10_4236_ns_2020_126031
crossref_primary_10_4236_ns_2020_127042
crossref_primary_10_1109_ACCESS_2020_2989713
crossref_primary_10_4236_ns_2020_126032
crossref_primary_10_1109_ACCESS_2020_2982160
crossref_primary_10_4236_ns_2020_1212065
crossref_primary_10_4236_ns_2020_126034
crossref_primary_10_1007_s00438_019_01634_z
crossref_primary_10_4236_abb_2020_117019
crossref_primary_10_4236_ns_2020_123008
crossref_primary_10_31083_j_fbl2909331
crossref_primary_10_1038_s41598_022_08555_9
crossref_primary_10_3389_fgene_2023_1294159
crossref_primary_10_4236_ns_2020_124018
crossref_primary_10_1515_jib_2019_0091
crossref_primary_10_1007_s40203_021_00095_w
crossref_primary_10_1109_ACCESS_2020_3009125
crossref_primary_10_4236_ns_2020_127035
crossref_primary_10_1016_j_ijbiomac_2023_123180
crossref_primary_10_1109_TCBB_2021_3114349
crossref_primary_10_4236_ns_2020_127038
crossref_primary_10_4236_ns_2020_128047
crossref_primary_10_4236_ns_2020_127037
crossref_primary_10_1093_bib_bbac631
crossref_primary_10_1093_bib_bbab263
crossref_primary_10_1016_j_ymeth_2023_07_002
crossref_primary_10_3390_foods13213416
crossref_primary_10_1007_s12539_023_00595_7
crossref_primary_10_4236_ns_2020_127039
crossref_primary_10_1016_j_gene_2022_146445
crossref_primary_10_3390_cimb43030105
crossref_primary_10_1021_acs_jproteome_0c00864
Cites_doi 10.1016/j.jtbi.2016.09.001
10.1016/j.jtbi.2018.09.005
10.18632/oncotarget.17028
10.1016/j.jtbi.2005.05.034
10.1039/C5MB00155B
10.18632/oncotarget.13758
10.1093/nar/gku1019
10.1016/j.jtbi.2018.12.017
10.18632/oncotarget.22585
10.1093/bioinformatics/btx711
10.1016/S0021-9258(18)53227-0
10.1093/bioinformatics/btl158
10.1093/bioinformatics/bth466
10.1016/j.jtbi.2019.03.011
10.1093/bioinformatics/btq003
10.1016/j.ab.2015.08.021
10.18632/oncotarget.9148
10.1093/bioinformatics/btw644
10.1093/bioinformatics/btl151
10.1016/j.jtbi.2018.04.037
10.1016/j.jtbi.2018.10.046
10.1073/pnas.0606775103
10.1016/j.omtn.2018.03.012
10.1021/bi00077a008
10.1016/j.ab.2017.07.011
10.1002/cbic.201500170
10.2174/1568026615666150819110421
10.3390/ijms150711204
10.1002/prot.1035
10.1093/bioinformatics/btx476
10.1016/S0196-9781(01)00540-X
10.1139/v81-107
10.1016/j.ygeno.2017.10.002
10.1093/protein/gzt042
10.1093/nar/gks1450
10.1093/bioinformatics/btw380
10.1093/bioinformatics/btt072
10.1080/07391102.2014.968875
10.1007/s11033-018-4417-z
10.1016/S0021-9258(18)82414-0
10.1042/bj2220169
10.1016/j.ab.2015.12.009
10.1016/j.jgg.2017.03.007
10.2174/138920010791514261
10.1016/j.jtbi.2010.12.024
10.1021/acs.jproteome.6b00686
10.1016/j.ab.2014.04.001
10.1016/j.jtbi.2018.05.033
10.1016/j.ab.2018.04.021
10.2174/157016409789973707
10.1093/nar/gkv458
10.1042/bj1870829
10.1371/journal.pone.0004920
10.7717/peerj.171
10.1016/j.jtbi.2018.12.015
10.1016/j.jtbi.2018.07.018
10.1016/j.jtbi.2018.12.034
10.1006/jmbi.1994.1267
10.1002/jcb.10719
10.1016/0301-4622(80)80002-0
10.1002/pro.5560010312
10.1016/0301-4622(90)80056-D
10.1007/s00438-015-1108-5
10.1093/nar/gkm1057
10.3390/ijms150610410
10.1016/j.ygeno.2018.01.005
10.1093/nar/26.8.1974
10.4236/jbise.2009.23024
10.2174/1573406413666170419150052
10.2174/1568026617666170414145508
10.18632/oncotarget.9987
10.1016/j.jmgm.2017.07.022
10.1093/bioinformatics/btx579
10.1186/s12859-019-2700-1
10.1016/j.ab.2013.05.024
10.1016/j.jtbi.2018.10.021
10.1016/j.ab.2014.06.022
10.1016/j.gene.2018.04.055
10.1145/1961189.1961199
10.3390/ijms15057594
10.1016/j.jtbi.2016.02.020
10.1007/s00438-018-1498-2
10.1016/j.ab.2018.12.019
10.1016/j.jtbi.2018.08.042
10.1016/j.jtbi.2014.09.029
10.2174/1381612824666181119145030
10.1016/j.ab.2015.12.017
10.2174/1573406413666170515120507
10.3390/ijms15033495
10.1093/bioinformatics/btv604
10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F
10.2174/1573406411666141229162834
10.18632/oncotarget.17104
10.1038/srep42362
10.5487/TR.2013.29.2.081
10.1186/1471-2105-9-101
10.1016/j.gene.2017.07.036
10.1016/0301-4622(88)85002-6
10.18632/oncotarget.10027
10.1080/07391102.2014.998710
10.1093/protein/gzp055
10.1093/bioinformatics/btw387
10.1016/j.jtbi.2015.08.025
10.1016/j.ygeno.2017.08.005
10.1016/j.jtbi.2016.01.020
10.1016/S0021-9258(18)80175-2
10.1073/pnas.0408677102
10.1021/pr025527k
10.1016/0301-4622(80)80003-2
10.1016/j.ab.2018.09.002
10.1016/j.ab.2014.12.009
10.1016/j.jtbi.2019.02.007
10.1039/c3mb25555g
10.1016/j.ygeno.2017.10.008
10.1016/j.ab.2012.03.015
10.1016/j.jmgm.2017.08.020
10.1093/protein/14.2.75
10.1016/j.omtn.2017.03.006
10.1016/j.jtbi.2011.06.006
10.1016/j.compbiolchem.2017.10.004
10.2174/1573406413666170623082245
10.1016/j.ab.2007.10.012
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1016/j.ygeno.2019.05.027
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 866
ExternalDocumentID 31175975
10_1016_j_ygeno_2019_05_027
S0888754319302198
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
PKN
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c392t-6ffc8c5a3904f88bdb130f2d7d48fa03f3b80b7bf75967be20e67f1eb113dbcc3
IEDL.DBID .~1
ISSN 0888-7543
1089-8646
IngestDate Sun Aug 24 04:14:22 EDT 2025
Mon Jul 21 11:07:27 EDT 2025
Wed Feb 19 02:32:11 EST 2025
Thu Apr 24 23:06:45 EDT 2025
Tue Jul 01 01:48:22 EDT 2025
Fri Feb 23 02:48:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Post-translational modification
Feature extraction
Formylation
Support vector machine
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-6ffc8c5a3904f88bdb130f2d7d48fa03f3b80b7bf75967be20e67f1eb113dbcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 31175975
PQID 2305155089
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2339791297
proquest_miscellaneous_2305155089
pubmed_primary_31175975
crossref_citationtrail_10_1016_j_ygeno_2019_05_027
crossref_primary_10_1016_j_ygeno_2019_05_027
elsevier_sciencedirect_doi_10_1016_j_ygeno_2019_05_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sabooh, Iqbal, Khan, Khan, Maqbool (bb0180) 2018; 452
Chou, Carter, Forsen (bb0550) 1981; 18
Ning, Ma, Zhao (bb0230) 2019; 470
Chou (bb0585) 2010; 11
Huang, Niu, Gao, Fu, Li (bb0315) 2010; 26
Xie, Fu, Nie (bb0025) 2013; 26
Xu, Ding, Ding, Lei, Wu, Deng (bb0685) 2015; 5
Cheng, Zhao, Lin, Xiao (bb0500) 2017; 33
Veropoulos, Campbell, Cristianini (bb0695) 1999
Vacic, Iakoucheva, Radivojac (bb0735) 2006; 22
Cheng, Xiao (bb0650) 2018; 24
Chou, Li, Forsen (bb0610) 1980; 12
Wan, Mak, Kung (bb0715) 2016; 15
Qiu, Sun, Xiao, Xu, Jia (bb0175) 2018; 110
Zhou, Deng (bb0560) 1984; 222
Liu, Xu (bb0120) 2017; 13
Xu, Li (bb0140) 2017; 13
Shyamili, Vellaichamy (bb0205) 2019
Sagara, Shimizu, Kawabata, Nakamura, Ikeguchi, Shimizu (bb0730) 1998; 26
Xu, Shao, Wu, Deng (bb0215) 2013; 1
Xu, Zhou, Lin, Deng, Zhang, Xue (bb0305) 2017; 44
Yu, Li, Qiu, Chen, Chen, Wang, Wang, Zhang (bb0385) 2017; 8
Cheng, Xiao (bb0635) 2018; 34
Ju, He (bb0380) 2017; 76
Xiao, Cheng, Chen, Mao (bb0655) 2018; 15
Xiao, Cheng, Su, Nao (bb0505) 2017; 9
Dehzangi, Heffernan, Sharma, Lyons, Paliwal, Sattar (bb0360) 2015; 364
Cheng, Xiao (bb0510) 2018; 110
Qiu, Xiao, Xu (bb0100) 2016; 7
Jiang, Zhou, Taghizadeh, Dong, Dedon (bb0015) 2007; 104
Qiu, Xiao, Lin (bb0225) 2014
Liu, Liu, Wang, Chen, Fang (bb0465) 2015; 43
Chen, Ding, Zhou, Lin (bb0150) 2018; 561-562
Wang, Zhang, Mu (bb0200) 2019; 461
Qiu, Sun, Xiao, Xu (bb0095) 2016; 32
Chou (bb0440) 2009; 6
Hussain, Khan, Rasool, Khan (bb0190) 2019; 568
Cheng, Zhao, Xiao (bb0520) 2017; 33, 2610
Jia, Li, Qiu, Xiao (bb0290) 2019; 460
Chou (bb0475) 2001; 42
Feng, Ding, Yang, Chen, Lin (bb0110) 2017; 7
Ahmad, Hayat (bb0405) 2019; 463
Ju, Sun, Li, Wang (bb0690) 2017; 71
Jia, Liu, Xiao, Liu (bb0070) 2016; 7
Meher, Sahu, Saini, Rao (bb0375) 2017; 7
Behbahani, Mohabatkar, Nosrati (bb0365) 2016; 411
Liu, Wu (bb0470) 2017; 9
Jia, Lin, Wang (bb0220) 2014; 15
Qiu, Sun, Xiao, Xu (bb0090) 2016; 7
Jia, Liu, Xiao, Liu (bb0065) 2016; 394
Liu, Yang, Huang (bb0455) 2018; 34
Nakashima, Nishikawa (bb0710) 1994; 238
Akbar, Hayat (bb0145) 2018; 455
Feng, Chen, Lin (bb0240) 2013; 442
Cai, Feng, Lu (bb0340) 2006; 238
Xiao, Cheng, Chen, Mao (bb0490) 2018
Liu, Xiao, Qiu (bb0265) 2015; 474
Chou (bb0575) 1990; 35
Chen, Feng, Deng, Lin (bb0250) 2014; 462
Althaus, Chou, Gonzales, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0570) 1993; 268
Kabir, Hayat (bb0370) 2016; 291
Zhang, Liang (bb0400) 2018; 457
Chou, Lin, Xiao (bb0600) 2011; 3
Khan, Rasool, Hussain, Khan (bb0170) 2018; 550
Chou (bb0485) 2001; 22
Cheng, Xiao (bb0515) 2018; 110
Contreras-Torres (bb0395) 2018; 454
Chou (bb0355) 2005; 21
Shen, Song (bb0615) 2009; 2
Chen, Tang, Ye, Lin (bb0055) 2016; 5
Chou, Forsen (bb0555) 1981; 59
Cheng (bb0495) 2017; 644, 156-156
Xu, Ding, Wu (bb0210) 2013; 8
Chou (bb0530) 2013; 9
Chou (bb0300) 2011; 273
Wisniewski, Zougman, Mann (bb0020) 2008; 36
Du, Wang, Xu, Gao (bb0425) 2012; 425
Khan, Jamil, Hussain, Rasool, Khan (bb0295) 2019; 463
Shen (bb0420) 2008; 373
Ju, He (bb0115) 2017; 77
Wang, Zhou, Li, Yu, Yin, Wang (bb0005) 2015; 16
Qiu, Xiao, Lin (bb0050) 2015; 33
Chou (bb0415) 2017; 17
Qiu, Jiang, Xu, Xiao (bb0130) 2017; 8
Xiao, Min, Lin, Liu, Cheng (bb0270) 2015; 33
Chen, Tang, Sheng, Zhang (bb0665) 2008; 9
Tahir, Tayara, Chong (bb0460) 2019; 465
Liu, Fang, Long, Lan (bb0275) 2016; 32
Chou (bb0345) 2015; 11
Xu (bb0105) 2016; 16
Xu, Wen, Shao, Deng (bb0030) 2014; 15
Chou (bb0625) 1988; 30
Ahmad, Hayat (bb0390) 2018; 463
Ju, Wang (bb0165) 2018; 664
Li, Godzik (bb0310) 2006; 22
Chou, Elrod (bb0325) 2002; 1
Lin, Deng, Ding, Chen (bb0245) 2014; 42
Althaus, Chou, Gonzales, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0595) 1993; 32
Chen, Feng, Yang, Ding, Lin (bb0155) 2018; 11
Chen, Lei, Jin, Lin (bb0445) 2014; 456
Chou, Shen (bb0630) 2009; 1
Chen, Chen, Wang, Wang, Yan, Zhang (bb0675) 2011; 6
Chou, Chen, Forsen (bb0620) 1981; 18
Ju, Cao (bb0660) 2017; 534
Qiu, Jiang, Sun, Xiao, Cheng (bb0125) 2017; 13
Liu, Fang, Wang, Wang, Li (bb0260) 2015; 385
Chou, Cai (bb0330) 2003; 90
Hussain, Khan, Rasool, Khan (bb0285) 2019; 468
Li, Zhang, Purcell, Webb, Lithgow, Li, Song (bb0195) 2019; 20
Liu, Xiao, Yu, Jia, Qiu (bb0085) 2016; 497
Cheng, Zhao, Xiao (bb0525) 2017; 8
Chen, Feng, Ding, Lin (bb0045) 2015; 490
Chen, Lin (bb0680) 2006
Chou (bb0350) 2001; 44, 60
Chou (bb0480) 2001; 14
Althaus, Gonzales, Chou, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0580) 1993; 268
Chou, Forsen (bb0540) 1980; 187
Shao, Xu, Tsai, Wang, Ngai (bb0725) 2009; 4
Jia, Liu, Xiao, Liu (bb0060) 2016; 497
Chang, Lin (bb0705) 2011; 2
Khan, Rasool, Hussain, Khan (bb0185) 2018; 45
Chou, Forsen (bb0605) 1980; 12
Chou, Forsen, Zhou (bb0545) 1980; 16
Chen, Lin (bb0450) 2015; 11
Cheng, Xiao (bb0645) 2018; 458
Xu, Wen, Wen, Wu, Deng (bb0035) 2014; 9
Zhang (bb0320) 1992; 1
Cao, Xu, Liang (bb0430) 2013; 29
Batuwita, Palade (bb0700) 2013
Chen, Feng, Yang, Ding, Lin (bb0280) 2017; 8
Sangkyu (bb0010) 2013; 29
Chou, Jiang, Liu, Fee (bb0535) 1979; 22
Chen, Feng, Lin (bb0235) 2013; 41
Qiu, Sun, Xiao, Xu (bb0135) 2017; 36
Wang, Wu, Wang, Deng (bb0670) 2009; 22
Hu, Huang, Shi, Lu, Cai (bb0335) 2011; 6
Du, Gu, Jiao (bb0435) 2014; 15
Zhou (bb0590) 2011; 284
Ju, Cao, Gu (bb0080) 2016; 397
Chou (bb0565) 1989; 264
Zhang, Zhao, Sun, Ma (bb0040) 2014; 15
Tahir, Hayat, Khan (bb0410) 2019; 294
Feng, Yang, Ding, Lin, Chen (bb0160) 2019; 111
Jia, Zhang, Liu, Xiao (bb0075) 2016; 32
Ding, Deng, Yuan, Liu, Lin, Chen (bb0255) 2014
Chou, Cheng, Xiao (bb0640) 2018; 34
Atchley, Zhao, Fernandes, Drüke (bb0720) 2005; 102
Wang (10.1016/j.ygeno.2019.05.027_bb0005) 2015; 16
Jia (10.1016/j.ygeno.2019.05.027_bb0060) 2016; 497
Chen (10.1016/j.ygeno.2019.05.027_bb0055) 2016; 5
Du (10.1016/j.ygeno.2019.05.027_bb0435) 2014; 15
Chen (10.1016/j.ygeno.2019.05.027_bb0675) 2011; 6
Chou (10.1016/j.ygeno.2019.05.027_bb0565) 1989; 264
Chou (10.1016/j.ygeno.2019.05.027_bb0640) 2018; 34
Xiao (10.1016/j.ygeno.2019.05.027_bb0655) 2018; 15
Chang (10.1016/j.ygeno.2019.05.027_bb0705) 2011; 2
Jia (10.1016/j.ygeno.2019.05.027_bb0070) 2016; 7
Jia (10.1016/j.ygeno.2019.05.027_bb0220) 2014; 15
Shen (10.1016/j.ygeno.2019.05.027_bb0420) 2008; 373
Xiao (10.1016/j.ygeno.2019.05.027_bb0490) 2018
Jiang (10.1016/j.ygeno.2019.05.027_bb0015) 2007; 104
Qiu (10.1016/j.ygeno.2019.05.027_bb0095) 2016; 32
Khan (10.1016/j.ygeno.2019.05.027_bb0295) 2019; 463
Cheng (10.1016/j.ygeno.2019.05.027_bb0520) 2017; 33, 2610
Xu (10.1016/j.ygeno.2019.05.027_bb0035) 2014; 9
Chou (10.1016/j.ygeno.2019.05.027_bb0545) 1980; 16
Chou (10.1016/j.ygeno.2019.05.027_bb0620) 1981; 18
Chou (10.1016/j.ygeno.2019.05.027_bb0485) 2001; 22
Chou (10.1016/j.ygeno.2019.05.027_bb0330) 2003; 90
Chen (10.1016/j.ygeno.2019.05.027_bb0445) 2014; 456
Feng (10.1016/j.ygeno.2019.05.027_bb0240) 2013; 442
Hussain (10.1016/j.ygeno.2019.05.027_bb0190) 2019; 568
Wisniewski (10.1016/j.ygeno.2019.05.027_bb0020) 2008; 36
Wan (10.1016/j.ygeno.2019.05.027_bb0715) 2016; 15
Feng (10.1016/j.ygeno.2019.05.027_bb0160) 2019; 111
Meher (10.1016/j.ygeno.2019.05.027_bb0375) 2017; 7
Liu (10.1016/j.ygeno.2019.05.027_bb0275) 2016; 32
Chou (10.1016/j.ygeno.2019.05.027_bb0440) 2009; 6
Tahir (10.1016/j.ygeno.2019.05.027_bb0460) 2019; 465
Cheng (10.1016/j.ygeno.2019.05.027_bb0515) 2018; 110
Ju (10.1016/j.ygeno.2019.05.027_bb0115) 2017; 77
Sabooh (10.1016/j.ygeno.2019.05.027_bb0180) 2018; 452
Liu (10.1016/j.ygeno.2019.05.027_bb0120) 2017; 13
Xu (10.1016/j.ygeno.2019.05.027_bb0305) 2017; 44
Chou (10.1016/j.ygeno.2019.05.027_bb0300) 2011; 273
Liu (10.1016/j.ygeno.2019.05.027_bb0260) 2015; 385
Yu (10.1016/j.ygeno.2019.05.027_bb0385) 2017; 8
Chen (10.1016/j.ygeno.2019.05.027_bb0665) 2008; 9
Batuwita (10.1016/j.ygeno.2019.05.027_bb0700) 2013
Li (10.1016/j.ygeno.2019.05.027_bb0310) 2006; 22
Cheng (10.1016/j.ygeno.2019.05.027_bb0650) 2018; 24
Li (10.1016/j.ygeno.2019.05.027_bb0195) 2019; 20
Akbar (10.1016/j.ygeno.2019.05.027_bb0145) 2018; 455
Xu (10.1016/j.ygeno.2019.05.027_bb0215) 2013; 1
Zhang (10.1016/j.ygeno.2019.05.027_bb0040) 2014; 15
Chou (10.1016/j.ygeno.2019.05.027_bb0345) 2015; 11
Behbahani (10.1016/j.ygeno.2019.05.027_bb0365) 2016; 411
Liu (10.1016/j.ygeno.2019.05.027_bb0465) 2015; 43
Khan (10.1016/j.ygeno.2019.05.027_bb0170) 2018; 550
Qiu (10.1016/j.ygeno.2019.05.027_bb0130) 2017; 8
Ju (10.1016/j.ygeno.2019.05.027_bb0660) 2017; 534
Khan (10.1016/j.ygeno.2019.05.027_bb0185) 2018; 45
Chou (10.1016/j.ygeno.2019.05.027_bb0575) 1990; 35
Chen (10.1016/j.ygeno.2019.05.027_bb0250) 2014; 462
Chou (10.1016/j.ygeno.2019.05.027_bb0540) 1980; 187
Chou (10.1016/j.ygeno.2019.05.027_bb0605) 1980; 12
Chou (10.1016/j.ygeno.2019.05.027_bb0535) 1979; 22
Liu (10.1016/j.ygeno.2019.05.027_bb0265) 2015; 474
Chen (10.1016/j.ygeno.2019.05.027_bb0280) 2017; 8
Shyamili (10.1016/j.ygeno.2019.05.027_bb0205) 2019
Chou (10.1016/j.ygeno.2019.05.027_bb0350) 2001; 44, 60
Jia (10.1016/j.ygeno.2019.05.027_bb0290) 2019; 460
Chen (10.1016/j.ygeno.2019.05.027_bb0450) 2015; 11
Wang (10.1016/j.ygeno.2019.05.027_bb0670) 2009; 22
Chen (10.1016/j.ygeno.2019.05.027_bb0680) 2006
Jia (10.1016/j.ygeno.2019.05.027_bb0065) 2016; 394
Xu (10.1016/j.ygeno.2019.05.027_bb0210) 2013; 8
Qiu (10.1016/j.ygeno.2019.05.027_bb0125) 2017; 13
Chou (10.1016/j.ygeno.2019.05.027_bb0415) 2017; 17
Chou (10.1016/j.ygeno.2019.05.027_bb0475) 2001; 42
Zhou (10.1016/j.ygeno.2019.05.027_bb0560) 1984; 222
Xie (10.1016/j.ygeno.2019.05.027_bb0025) 2013; 26
Cheng (10.1016/j.ygeno.2019.05.027_bb0645) 2018; 458
Atchley (10.1016/j.ygeno.2019.05.027_bb0720) 2005; 102
Qiu (10.1016/j.ygeno.2019.05.027_bb0050) 2015; 33
Lin (10.1016/j.ygeno.2019.05.027_bb0245) 2014; 42
Hu (10.1016/j.ygeno.2019.05.027_bb0335) 2011; 6
Chen (10.1016/j.ygeno.2019.05.027_bb0150) 2018; 561-562
Cheng (10.1016/j.ygeno.2019.05.027_bb0525) 2017; 8
Xu (10.1016/j.ygeno.2019.05.027_bb0030) 2014; 15
Huang (10.1016/j.ygeno.2019.05.027_bb0315) 2010; 26
Althaus (10.1016/j.ygeno.2019.05.027_bb0595) 1993; 32
Nakashima (10.1016/j.ygeno.2019.05.027_bb0710) 1994; 238
Chen (10.1016/j.ygeno.2019.05.027_bb0045) 2015; 490
Cheng (10.1016/j.ygeno.2019.05.027_bb0495) 2017; 644, 156-156
Ju (10.1016/j.ygeno.2019.05.027_bb0080) 2016; 397
Chen (10.1016/j.ygeno.2019.05.027_bb0155) 2018; 11
Qiu (10.1016/j.ygeno.2019.05.027_bb0175) 2018; 110
Chou (10.1016/j.ygeno.2019.05.027_bb0625) 1988; 30
Xu (10.1016/j.ygeno.2019.05.027_bb0105) 2016; 16
Hussain (10.1016/j.ygeno.2019.05.027_bb0285) 2019; 468
Ning (10.1016/j.ygeno.2019.05.027_bb0230) 2019; 470
Qiu (10.1016/j.ygeno.2019.05.027_bb0225) 2014
Wang (10.1016/j.ygeno.2019.05.027_bb0200) 2019; 461
Feng (10.1016/j.ygeno.2019.05.027_bb0110) 2017; 7
Xiao (10.1016/j.ygeno.2019.05.027_bb0505) 2017; 9
Cai (10.1016/j.ygeno.2019.05.027_bb0340) 2006; 238
Chou (10.1016/j.ygeno.2019.05.027_bb0600) 2011; 3
Chou (10.1016/j.ygeno.2019.05.027_bb0325) 2002; 1
Liu (10.1016/j.ygeno.2019.05.027_bb0470) 2017; 9
Althaus (10.1016/j.ygeno.2019.05.027_bb0580) 1993; 268
Qiu (10.1016/j.ygeno.2019.05.027_bb0090) 2016; 7
Chou (10.1016/j.ygeno.2019.05.027_bb0355) 2005; 21
Zhou (10.1016/j.ygeno.2019.05.027_bb0590) 2011; 284
Qiu (10.1016/j.ygeno.2019.05.027_bb0135) 2017; 36
Chou (10.1016/j.ygeno.2019.05.027_bb0630) 2009; 1
Ahmad (10.1016/j.ygeno.2019.05.027_bb0390) 2018; 463
Ahmad (10.1016/j.ygeno.2019.05.027_bb0405) 2019; 463
Chou (10.1016/j.ygeno.2019.05.027_bb0555) 1981; 59
Cheng (10.1016/j.ygeno.2019.05.027_bb0635) 2018; 34
Xu (10.1016/j.ygeno.2019.05.027_bb0140) 2017; 13
Althaus (10.1016/j.ygeno.2019.05.027_bb0570) 1993; 268
Cheng (10.1016/j.ygeno.2019.05.027_bb0500) 2017; 33
Liu (10.1016/j.ygeno.2019.05.027_bb0455) 2018; 34
Ju (10.1016/j.ygeno.2019.05.027_bb0690) 2017; 71
Vacic (10.1016/j.ygeno.2019.05.027_bb0735) 2006; 22
Jia (10.1016/j.ygeno.2019.05.027_bb0075) 2016; 32
Cao (10.1016/j.ygeno.2019.05.027_bb0430) 2013; 29
Xu (10.1016/j.ygeno.2019.05.027_bb0685) 2015; 5
Shen (10.1016/j.ygeno.2019.05.027_bb0615) 2009; 2
Sangkyu (10.1016/j.ygeno.2019.05.027_bb0010) 2013; 29
Chou (10.1016/j.ygeno.2019.05.027_bb0610) 1980; 12
Contreras-Torres (10.1016/j.ygeno.2019.05.027_bb0395) 2018; 454
Ju (10.1016/j.ygeno.2019.05.027_bb0165) 2018; 664
Dehzangi (10.1016/j.ygeno.2019.05.027_bb0360) 2015; 364
Shao (10.1016/j.ygeno.2019.05.027_bb0725) 2009; 4
Chen (10.1016/j.ygeno.2019.05.027_bb0235) 2013; 41
Ding (10.1016/j.ygeno.2019.05.027_bb0255) 2014
Du (10.1016/j.ygeno.2019.05.027_bb0425) 2012; 425
Qiu (10.1016/j.ygeno.2019.05.027_bb0100) 2016; 7
Zhang (10.1016/j.ygeno.2019.05.027_bb0320) 1992; 1
Sagara (10.1016/j.ygeno.2019.05.027_bb0730) 1998; 26
Cheng (10.1016/j.ygeno.2019.05.027_bb0510) 2018; 110
Chou (10.1016/j.ygeno.2019.05.027_bb0480) 2001; 14
Chou (10.1016/j.ygeno.2019.05.027_bb0585) 2010; 11
Zhang (10.1016/j.ygeno.2019.05.027_bb0400) 2018; 457
Chou (10.1016/j.ygeno.2019.05.027_bb0550) 1981; 18
Tahir (10.1016/j.ygeno.2019.05.027_bb0410) 2019; 294
Chou (10.1016/j.ygeno.2019.05.027_bb0530) 2013; 9
Xiao (10.1016/j.ygeno.2019.05.027_bb0270) 2015; 33
Liu (10.1016/j.ygeno.2019.05.027_bb0085) 2016; 497
Kabir (10.1016/j.ygeno.2019.05.027_bb0370) 2016; 291
Ju (10.1016/j.ygeno.2019.05.027_bb0380) 2017; 76
Veropoulos (10.1016/j.ygeno.2019.05.027_bb0695) 1999
References_xml – volume: 17
  start-page: 2337
  year: 2017
  end-page: 2358
  ident: bb0415
  article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science
  publication-title: Curr.Top. Med. Chem.
– volume: 425
  start-page: 117
  year: 2012
  end-page: 119
  ident: bb0425
  article-title: PseAAC-builder: a cross-platform stand-alone program for generating various special Chou's pseudo amino acid compositions
  publication-title: Anal. Biochem.
– volume: 110
  start-page: 239
  year: 2018
  end-page: 246
  ident: bb0175
  article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier
  publication-title: Genomics
– volume: 11
  start-page: 2620
  year: 2015
  end-page: 2634
  ident: bb0450
  article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
  publication-title: Mol. BioSyst.
– volume: 8
  start-page: 58494
  year: 2017
  end-page: 58503
  ident: bb0525
  article-title: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals
  publication-title: Oncotarget
– volume: 33
  start-page: 1731
  year: 2015
  end-page: 1742
  ident: bb0050
  article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
  publication-title: J. Biomol. Struct. Dyn.
– volume: 294
  start-page: 199
  year: 2019
  end-page: 210
  ident: bb0410
  article-title: iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition
  publication-title: Mol. Gen. Genomics.
– volume: 71
  start-page: 98
  year: 2017
  end-page: 103
  ident: bb0690
  article-title: Predicting lysine glycation sites using bi-profile bayes feature extraction
  publication-title: Comput. Biol. Chem.
– volume: 77
  start-page: 200
  year: 2017
  end-page: 204
  ident: bb0115
  article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Mol. Graph. Model.
– volume: 6
  year: 2011
  ident: bb0675
  article-title: Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs
  publication-title: PLoS One
– volume: 268
  start-page: 14875
  year: 1993
  end-page: 14880
  ident: bb0580
  article-title: The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 4013
  year: 2018
  end-page: 4022
  ident: bb0650
  article-title: pLoc_bal-mPlant: Predict subcellular localization of plant proteins by general PseAAC and balancing training dataset
  publication-title: Curr. Pharm. Des.
– volume: 397
  start-page: 145
  year: 2016
  end-page: 150
  ident: bb0080
  article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Theor. Biol.
– volume: 15
  start-page: 3495
  year: 2014
  end-page: 3506
  ident: bb0435
  article-title: PseAAC-general: fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets
  publication-title: Int. J. Mol. Sci.
– volume: 15
  start-page: 10410
  year: 2014
  end-page: 10423
  ident: bb0220
  article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile bayes and Chou's pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
– volume: 44, 60
  start-page: 246
  year: 2001
  end-page: 255
  ident: bb0350
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Proteins
– volume: 9
  start-page: 1092
  year: 2013
  end-page: 1100
  ident: bb0530
  article-title: Some remarks on predicting multi-label attributes in molecular biosystems
  publication-title: Mol. BioSyst.
– volume: 411
  start-page: 1
  year: 2016
  end-page: 5
  ident: bb0365
  article-title: Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou's general pseudo amino acid composition
  publication-title: J. Theor. Biol.
– volume: 8
  start-page: 41178
  year: 2017
  end-page: 41188
  ident: bb0130
  article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition
  publication-title: Oncotarget
– volume: 16
  start-page: 1440
  year: 2015
  end-page: 1442
  ident: bb0005
  article-title: Genetic incorporation of n(ε)-formyllysine, a new histone post-translational modification
  publication-title: Chembiochem
– volume: 36
  start-page: 570
  year: 2008
  end-page: 577
  ident: bb0020
  article-title: N-Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function
  publication-title: Nucleic Acids Res.
– volume: 474
  start-page: 69
  year: 2015
  end-page: 77
  ident: bb0265
  article-title: iDNA-methyl: identifying DNA methylation sites via pseudo trinucleotide composition
  publication-title: Anal. Biochem.
– volume: 490
  start-page: 26
  year: 2015
  end-page: 33
  ident: bb0045
  article-title: iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition
  publication-title: Anal. Biochem.
– volume: 15
  start-page: 7594
  year: 2014
  end-page: 7610
  ident: bb0030
  article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
– volume: 26
  start-page: 680
  year: 2010
  end-page: 682
  ident: bb0315
  article-title: CD-HIT Suite: a web server for clusteringand comparing biological sequences
  publication-title: Bioinformatics
– volume: 2
  start-page: 136
  year: 2009
  end-page: 143
  ident: bb0615
  article-title: Prediction of protein folding rates from primary sequence by fusing multiple sequential features
  publication-title: J. Biomed. Sci. Eng.
– volume: 32
  start-page: 3116
  year: 2016
  end-page: 3123
  ident: bb0095
  article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types
  publication-title: Bioinformatics
– volume: 462
  start-page: 76
  year: 2014
  end-page: 83
  ident: bb0250
  article-title: iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
  publication-title: Anal. Biochem.
– volume: 385
  start-page: 153
  year: 2015
  end-page: 159
  ident: bb0260
  article-title: Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy
  publication-title: J. Theor. Biol.
– volume: 460
  start-page: 195
  year: 2019
  end-page: 203
  ident: bb0290
  article-title: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC
  publication-title: J. Theor. Biol.
– start-page: 83
  year: 2013
  end-page: 96
  ident: bb0700
  article-title: Class imbalance learning methods for support vector machines
  publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications
– volume: 284
  start-page: 142
  year: 2011
  end-page: 148
  ident: bb0590
  article-title: The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism
  publication-title: J. Theor. Biol.
– volume: 458
  start-page: 92
  year: 2018
  end-page: 102
  ident: bb0645
  article-title: pLoc_bal-mGneg: Predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC
  publication-title: J. Theor. Biol.
– volume: 76
  start-page: 356
  year: 2017
  end-page: 363
  ident: bb0380
  article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC
  publication-title: J. Mol. Graph. Model.
– volume: 104
  start-page: 60
  year: 2007
  end-page: 65
  ident: bb0015
  article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage
  publication-title: P. Natl. Acad. Sci.
– volume: 11
  start-page: 218
  year: 2015
  end-page: 234
  ident: bb0345
  article-title: Impacts of bioinformatics to medicinal chemistry
  publication-title: Med. Chem.
– volume: 463
  start-page: 99
  year: 2019
  end-page: 109
  ident: bb0405
  article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components
  publication-title: J. Theor. Biol.
– volume: 3
  start-page: 862
  year: 2011
  end-page: 865
  ident: bb0600
  article-title: Wenxiang: a web-server for drawing wenxiang diagrams
  publication-title: Nat. Sci.
– volume: 12
  start-page: 255
  year: 1980
  end-page: 263
  ident: bb0605
  article-title: Diffusion-controlled effects in reversible enzymatic fast reaction system: critical spherical shell and proximity rate constants
  publication-title: Biophys. Chem.
– year: 2014
  ident: bb0225
  article-title: iMethyl-PseAAC: identification of protein methylation sites via a Pseudo amino acid composition approach
  publication-title: Biomed. Res. Int.
– year: 2014
  ident: bb0255
  article-title: iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
  publication-title: Biomed. Res. Int.
– volume: 22
  start-page: 341
  year: 1979
  end-page: 358
  ident: bb0535
  article-title: Graph theory of enzyme kinetics: 1. Steady-state reaction system
  publication-title: Sci. Sinica
– volume: 534
  start-page: 40
  year: 2017
  end-page: 45
  ident: bb0660
  article-title: Prediction of protein N-formylation using the composition of k-spaced amino acid pairs
  publication-title: Anal. Biochem.
– volume: 1
  start-page: 401
  year: 1992
  end-page: 408
  ident: bb0320
  article-title: An optimization approach to predicting protein structural class from amino acid composition
  publication-title: Protein Sci.
– volume: 457
  start-page: 163
  year: 2018
  end-page: 169
  ident: bb0400
  article-title: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC
  publication-title: J. Theor. Biol.
– volume: 16
  start-page: 109
  year: 1980
  end-page: 113
  ident: bb0545
  article-title: Three schematic rules for deriving apparent rate constants
  publication-title: Chem. Scr.
– volume: 470
  start-page: 43
  year: 2019
  end-page: 49
  ident: bb0230
  article-title: dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou's 5-step rule and pseudo components
  publication-title: J. Theor. Biol.
– volume: 8
  start-page: 107640
  year: 2017
  end-page: 107665
  ident: bb0385
  article-title: Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising
  publication-title: Oncotarget
– volume: 7
  start-page: 44310
  year: 2016
  end-page: 44321
  ident: bb0090
  article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC
  publication-title: Oncotarget
– volume: 8
  year: 2013
  ident: bb0210
  article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
  publication-title: PLoS One
– volume: 291
  start-page: 285
  year: 2016
  end-page: 296
  ident: bb0370
  article-title: iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
  publication-title: Mol. Gen. Genomics.
– volume: 32
  start-page: 362
  year: 2016
  end-page: 369
  ident: bb0275
  article-title: iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
  publication-title: Bioinformatics
– volume: 6
  year: 2011
  ident: bb0335
  article-title: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties
  publication-title: PLoS One
– volume: 394
  start-page: 223
  year: 2016
  end-page: 230
  ident: bb0065
  article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
  publication-title: J. Theor. Biol.
– volume: 664
  start-page: 78
  year: 2018
  end-page: 83
  ident: bb0165
  article-title: Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition
  publication-title: Gene
– volume: 5
  start-page: e332
  year: 2016
  ident: bb0055
  article-title: iRNA-PseU: Identifying RNA pseudouridine sites
  publication-title: Mol. Ther.-Nucleic Acids
– volume: 497
  start-page: 48
  year: 2016
  end-page: 56
  ident: bb0060
  article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
  publication-title: Anal. Biochem.
– volume: 14
  start-page: 75
  year: 2001
  end-page: 79
  ident: bb0480
  article-title: Using subsite coupling to predict signal peptides
  publication-title: Protein Eng. Des. Sel.
– volume: 30
  start-page: 3
  year: 1988
  end-page: 48
  ident: bb0625
  article-title: Review: low-frequency collective motion in biomacromolecules and its biological functions
  publication-title: Biophys. Chem.
– volume: 22
  start-page: 1536
  year: 2006
  end-page: 1537
  ident: bb0735
  article-title: Two sample logo: a graphical representation of the differences between two sets of sequence alignments
  publication-title: Bioinformatics
– volume: 16
  start-page: 591
  year: 2016
  end-page: 603
  ident: bb0105
  article-title: Recent progress in predicting posttranslational modification sites in proteins
  publication-title: Curr. Top. Med. Chem.
– volume: 34
  start-page: 1448
  year: 2018
  end-page: 1456
  ident: bb0635
  article-title: pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information
  publication-title: Bioinformatics
– volume: 90
  start-page: 1250
  year: 2003
  end-page: 1260
  ident: bb0330
  article-title: Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition
  publication-title: J. Cell. Biochem.
– volume: 7
  start-page: 34558
  year: 2016
  end-page: 34570
  ident: bb0070
  article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
  publication-title: Oncotarget
– volume: 45
  start-page: 2501
  year: 2018
  end-page: 2509
  ident: bb0185
  article-title: iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Mol. Biol. Rep.
– volume: 461
  start-page: 51
  year: 2019
  end-page: 58
  ident: bb0200
  article-title: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou's general PseAAC
  publication-title: J. Theor. Biol.
– volume: 11
  start-page: 369
  year: 2010
  end-page: 378
  ident: bb0585
  article-title: Graphic rule for drug metabolism systems
  publication-title: Curr. Drug Metab.
– volume: 550
  start-page: 109
  year: 2018
  end-page: 116
  ident: bb0170
  article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Anal. Biochem.
– volume: 26
  start-page: 735
  year: 2013
  end-page: 742
  ident: bb0025
  article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC
  publication-title: Protein Eng. Des. Sel.
– volume: 26
  start-page: 1974
  year: 1998
  end-page: 1979
  ident: bb0730
  article-title: The use of sequence comparison to detect ‘identities’ in tRNA genes
  publication-title: Nucleic Acids Res.
– volume: 568
  start-page: 14
  year: 2019
  end-page: 23
  ident: bb0190
  article-title: SPalmitoylC-PseAAC: a sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins
  publication-title: Anal. Biochem.
– volume: 497
  start-page: 60
  year: 2016
  end-page: 67
  ident: bb0085
  article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
  publication-title: Anal. Biochem.
– volume: 456
  start-page: 53
  year: 2014
  end-page: 60
  ident: bb0445
  article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
  publication-title: Anal. Biochem.
– volume: 35
  start-page: 1
  year: 1990
  end-page: 24
  ident: bb0575
  article-title: Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems
  publication-title: Biophys. Chem.
– volume: 111
  start-page: 96
  year: 2019
  end-page: 102
  ident: bb0160
  article-title: iDNA6mA-PseKNC: identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC
  publication-title: Genomics
– volume: 222
  start-page: 169
  year: 1984
  end-page: 176
  ident: bb0560
  article-title: An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways
  publication-title: Biochem. J.
– volume: 34
  start-page: 1448
  year: 2018
  end-page: 1456
  ident: bb0640
  article-title: pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset
  publication-title: Genomics
– volume: 7
  year: 2017
  ident: bb0375
  article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC
  publication-title: Sci. Rep.
– volume: 15
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0655
  article-title: pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset
  publication-title: Med. Chem.
– volume: 455
  start-page: 205
  year: 2018
  end-page: 211
  ident: bb0145
  article-title: iMethyl-STTNC: identification of N(6)-methyladenosine sites by extending the idea of SAAC into Chou's PseAAC to formulate RNA sequences
  publication-title: J. Theor. Biol.
– volume: 9
  start-page: 67
  year: 2017
  end-page: 91
  ident: bb0470
  article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nat. Sci.
– volume: 1
  start-page: 63
  year: 2009
  end-page: 92
  ident: bb0630
  article-title: Recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat. Sci.
– volume: 20
  start-page: 112
  year: 2019
  ident: bb0195
  article-title: Positive-unlabelled learning of glycosylation sites in the human proteome
  publication-title: BMC Bioinforma.
– volume: 110
  start-page: 231
  year: 2018
  end-page: 239
  ident: bb0510
  article-title: pLoc-mGneg: Predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC
  publication-title: Genomics
– volume: 33
  start-page: 2221
  year: 2015
  end-page: 2233
  ident: bb0270
  article-title: iDrug-target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
  publication-title: J. Biomol. Struct. Dyn.
– volume: 452
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0180
  article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC
  publication-title: J. Theor. Biol.
– volume: 11
  start-page: 468
  year: 2018
  end-page: 474
  ident: bb0155
  article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites
  publication-title: Mol. Ther. Nucleic Acids
– volume: 463
  start-page: 47
  year: 2019
  end-page: 55
  ident: bb0295
  article-title: pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments
  publication-title: J. Theor. Biol.
– volume: 102
  start-page: 6395
  year: 2005
  end-page: 6400
  ident: bb0720
  article-title: Solving the protein sequence metric problem
  publication-title: Proc. Natl. Acad. Sci.
– volume: 41
  start-page: e68
  year: 2013
  ident: bb0235
  article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 12961
  year: 2014
  end-page: 12972
  ident: bb0245
  article-title: iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
  publication-title: Nucleic Acids Res.
– volume: 9
  year: 2014
  ident: bb0035
  article-title: iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
  publication-title: PLoS One
– volume: 1
  start-page: e171
  year: 2013
  ident: bb0215
  article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
  publication-title: Peer. J.
– volume: 42
  start-page: 136
  year: 2001
  end-page: 139
  ident: bb0475
  article-title: Prediction of protein signal sequences and their cleavage sites
  publication-title: Proteins
– volume: 13
  start-page: 734
  year: 2017
  end-page: 743
  ident: bb0125
  article-title: iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier
  publication-title: Med. Chem.
– start-page: 315e324
  year: 2006
  ident: bb0680
  article-title: Combining svms with various feature selection strategies
  publication-title: Feature Extraction
– volume: 463
  start-page: 99
  year: 2018
  end-page: 109
  ident: bb0390
  article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components
  publication-title: J. Theor. Biol.
– volume: 644, 156-156
  start-page: 315
  year: 2017
  end-page: 321
  ident: bb0495
  article-title: X. Xiao, pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Gene
– volume: 373
  start-page: 386
  year: 2008
  end-page: 388
  ident: bb0420
  article-title: PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition
  publication-title: Anal. Biochem.
– volume: 465
  start-page: 1
  year: 2019
  end-page: 6
  ident: bb0460
  article-title: iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components
  publication-title: J. Theor. Biol.
– volume: 238
  start-page: 172
  year: 2006
  end-page: 176
  ident: bb0340
  article-title: Using LogitBoost classifier to predict protein structural classes
  publication-title: J. Theor. Biol.
– volume: 5
  year: 2015
  ident: bb0685
  article-title: iSuc-PseAAC: Predicting lysine succinylation in proteins by incorporating peptide position-specific propensity
  publication-title: Sci. Rep.
– volume: 22
  start-page: 1973
  year: 2001
  end-page: 1979
  ident: bb0485
  article-title: Prediction of signal peptides using scaled window
  publication-title: Peptides
– volume: 32
  start-page: 6548
  year: 1993
  end-page: 6554
  ident: bb0595
  article-title: Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E
  publication-title: Biochem
– volume: 7
  start-page: 51270
  year: 2016
  end-page: 51283
  ident: bb0100
  article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
  publication-title: Oncotarget
– volume: 442
  start-page: 118
  year: 2013
  end-page: 125
  ident: bb0240
  article-title: iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition
  publication-title: Anal. Biochem.
– volume: 268
  start-page: 6119
  year: 1993
  end-page: 6124
  ident: bb0570
  article-title: Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E
  publication-title: J. Biol. Chem.
– volume: 454
  start-page: 139
  year: 2018
  end-page: 145
  ident: bb0395
  article-title: Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou's PseAAC
  publication-title: J. Theor. Biol.
– volume: 238
  start-page: 54
  year: 1994
  end-page: 61
  ident: bb0710
  article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
  publication-title: J. Mol. Biol.
– year: 2019
  ident: bb0205
  article-title: Sequence and structure-based characterization of human and yeast ubiquitination sites by using Chou's sample formulation
  publication-title: Proteins
– volume: 110
  start-page: 50
  year: 2018
  end-page: 58
  ident: bb0515
  article-title: pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC
  publication-title: Genomics
– volume: 9
  start-page: 331
  year: 2017
  end-page: 349
  ident: bb0505
  article-title: pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins
  publication-title: Nat. Sci.
– volume: 44
  start-page: 243
  year: 2017
  end-page: 250
  ident: bb0305
  article-title: PLMD: an updated data resource of protein lysine modifications
  publication-title: J. Genet. Genomics
– year: 2018
  ident: bb0490
  article-title: pLoc_bal-mGpos: predict subcellular localization of gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC
  publication-title: Genomics
– volume: 12
  start-page: 265
  year: 1980
  end-page: 269
  ident: bb0610
  article-title: The critical spherical shell in enzymatic fast reaction systems
  publication-title: Biophys. Chem.
– volume: 187
  start-page: 829
  year: 1980
  end-page: 835
  ident: bb0540
  article-title: Graphical rules for enzyme-catalyzed rate laws
  publication-title: Biochem. J.
– volume: 36
  year: 2017
  ident: bb0135
  article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
  publication-title: Mol. Informa.
– volume: 9
  start-page: 101
  year: 2008
  ident: bb0665
  article-title: Prediction of mucintype o-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs
  publication-title: BMC Bioinforma.
– volume: 29
  start-page: 81
  year: 2013
  end-page: 86
  ident: bb0010
  article-title: Post-translational modification of proteins in toxicological research: focus on lysine acylation
  publication-title: Toxicol. Res.
– volume: 29
  start-page: 960
  year: 2013
  end-page: 962
  ident: bb0430
  article-title: propy: A tool to generate various modes of Chou's PseAAC
  publication-title: Bioinformatics
– volume: 4
  year: 2009
  ident: bb0725
  article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction
  publication-title: PLoS One
– volume: 43
  start-page: W65
  year: 2015
  end-page: W71
  ident: bb0465
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 262
  year: 2009
  end-page: 274
  ident: bb0440
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr. Proteomics
– volume: 59
  start-page: 737
  year: 1981
  end-page: 755
  ident: bb0555
  article-title: Graphical rules of steady-state reaction systems
  publication-title: Can. J. Chem.
– volume: 22
  start-page: 1658
  year: 2006
  end-page: 1659
  ident: bb0310
  article-title: Cd-hit: a fast program for clustering and comparing largesets of protein or nucleotide sequences
  publication-title: Bioinformatics
– volume: 22
  start-page: 707e712
  year: 2009
  ident: bb0670
  article-title: Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs
  publication-title: Protein Eng. Des. Sel.
– volume: 34
  start-page: 33
  year: 2018
  end-page: 40
  ident: bb0455
  article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC
  publication-title: Bioinformatics
– volume: 21
  start-page: 10
  year: 2005
  end-page: 19
  ident: bb0355
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
– volume: 33
  start-page: 3524
  year: 2017
  end-page: 3531
  ident: bb0500
  article-title: pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites
  publication-title: Bioinformatics
– volume: 15
  start-page: 11204
  year: 2014
  end-page: 11219
  ident: bb0040
  article-title: PSNO: predicting cysteine S-Nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 552
  year: 2017
  end-page: 559
  ident: bb0120
  article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC
  publication-title: Med. Chem.
– volume: 561-562
  start-page: 59
  year: 2018
  end-page: 65
  ident: bb0150
  article-title: iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition
  publication-title: Anal. Biochem.
– volume: 18
  start-page: 82
  year: 1981
  end-page: 86
  ident: bb0550
  article-title: A new graphical method for deriving rate equations for complicated mechanisms
  publication-title: Chem. Scr.
– start-page: 55
  year: 1999
  end-page: 60
  ident: bb0695
  article-title: Controlling the sensitivity of support vector machines
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden
– volume: 33, 2610
  start-page: 341
  year: 2017
  end-page: 346
  ident: bb0520
  article-title: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals
  publication-title: Bioinformatics
– volume: 7
  start-page: 155
  year: 2017
  end-page: 163
  ident: bb0110
  article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC
  publication-title: Mol. Ther.-Nucleic Acids
– volume: 15
  start-page: 4755
  year: 2016
  end-page: 4762
  ident: bb0715
  article-title: Ensemble linear neighborhood propagation forpredicting subchloro plast localization of multi-location proteins
  publication-title: J. Proteome Res.
– volume: 273
  start-page: 236
  year: 2011
  end-page: 247
  ident: bb0300
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review)
  publication-title: J. Theor. Biol.
– volume: 1
  start-page: 429
  year: 2002
  end-page: 433
  ident: bb0325
  article-title: Bioinformatical analysis of G-protein-coupled receptors
  publication-title: J. Proteome Res.
– volume: 2
  start-page: 27
  year: 2011
  ident: bb0705
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 468
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0285
  article-title: SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins
  publication-title: J. Theor. Biol.
– volume: 264
  start-page: 12074
  year: 1989
  end-page: 12079
  ident: bb0565
  article-title: Graphic rules in steady and non-steady enzyme kinetics
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 4208
  year: 2017
  end-page: 4217
  ident: bb0280
  article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences
  publication-title: Oncotarget
– volume: 18
  start-page: 126
  year: 1981
  end-page: 132
  ident: bb0620
  article-title: The biological functions of low-frequency phonons: 2. Cooperative effects
  publication-title: Chem. Scr.
– volume: 13
  start-page: 544
  year: 2017
  end-page: 551
  ident: bb0140
  article-title: iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC
  publication-title: Med. Chem.
– volume: 364
  start-page: 284
  year: 2015
  end-page: 294
  ident: bb0360
  article-title: Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
  publication-title: J. Theor. Biol.
– volume: 32
  start-page: 3133
  year: 2016
  end-page: 3141
  ident: bb0075
  article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
  publication-title: Bioinformatics
– volume: 411
  start-page: 1
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0365
  article-title: Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou's general pseudo amino acid composition
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.09.001
– volume: 5
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0685
  article-title: iSuc-PseAAC: Predicting lysine succinylation in proteins by incorporating peptide position-specific propensity
  publication-title: Sci. Rep.
– volume: 458
  start-page: 92
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0645
  article-title: pLoc_bal-mGneg: Predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.09.005
– volume: 8
  start-page: 58494
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0525
  article-title: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17028
– volume: 238
  start-page: 172
  year: 2006
  ident: 10.1016/j.ygeno.2019.05.027_bb0340
  article-title: Using LogitBoost classifier to predict protein structural classes
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.05.034
– volume: 11
  start-page: 2620
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0450
  article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
  publication-title: Mol. BioSyst.
  doi: 10.1039/C5MB00155B
– volume: 8
  start-page: 4208
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0280
  article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13758
– volume: 42
  start-page: 12961
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0245
  article-title: iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1019
– volume: 34
  start-page: 1448
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0640
  article-title: pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset
  publication-title: Genomics
– volume: 463
  start-page: 99
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0405
  article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.12.017
– volume: 8
  start-page: 107640
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0385
  article-title: Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22585
– volume: 34
  start-page: 1448
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0635
  article-title: pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx711
– volume: 268
  start-page: 6119
  year: 1993
  ident: 10.1016/j.ygeno.2019.05.027_bb0570
  article-title: Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)53227-0
– volume: 22
  start-page: 1658
  year: 2006
  ident: 10.1016/j.ygeno.2019.05.027_bb0310
  article-title: Cd-hit: a fast program for clustering and comparing largesets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 21
  start-page: 10
  year: 2005
  ident: 10.1016/j.ygeno.2019.05.027_bb0355
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 470
  start-page: 43
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0230
  article-title: dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou's 5-step rule and pseudo components
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2019.03.011
– volume: 26
  start-page: 680
  year: 2010
  ident: 10.1016/j.ygeno.2019.05.027_bb0315
  article-title: CD-HIT Suite: a web server for clusteringand comparing biological sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq003
– issue: 2014
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0225
  article-title: iMethyl-PseAAC: identification of protein methylation sites via a Pseudo amino acid composition approach
  publication-title: Biomed. Res. Int.
– volume: 490
  start-page: 26
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0045
  article-title: iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.08.021
– volume: 7
  start-page: 34558
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0070
  article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9148
– volume: 33, 2610
  start-page: 341
  issue: 33
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0520
  article-title: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw644
– volume: 22
  start-page: 1536
  year: 2006
  ident: 10.1016/j.ygeno.2019.05.027_bb0735
  article-title: Two sample logo: a graphical representation of the differences between two sets of sequence alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl151
– volume: 452
  start-page: 1
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0180
  article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.04.037
– volume: 461
  start-page: 51
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0200
  article-title: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou's general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.10.046
– volume: 22
  start-page: 341
  year: 1979
  ident: 10.1016/j.ygeno.2019.05.027_bb0535
  article-title: Graph theory of enzyme kinetics: 1. Steady-state reaction system
  publication-title: Sci. Sinica
– volume: 104
  start-page: 60
  year: 2007
  ident: 10.1016/j.ygeno.2019.05.027_bb0015
  article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage
  publication-title: P. Natl. Acad. Sci.
  doi: 10.1073/pnas.0606775103
– volume: 11
  start-page: 468
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0155
  article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.03.012
– volume: 32
  start-page: 6548
  year: 1993
  ident: 10.1016/j.ygeno.2019.05.027_bb0595
  article-title: Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E
  publication-title: Biochem
  doi: 10.1021/bi00077a008
– year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0490
  article-title: pLoc_bal-mGpos: predict subcellular localization of gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC
  publication-title: Genomics
– volume: 534
  start-page: 40
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0660
  article-title: Prediction of protein N-formylation using the composition of k-spaced amino acid pairs
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2017.07.011
– volume: 16
  start-page: 1440
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0005
  article-title: Genetic incorporation of n(ε)-formyllysine, a new histone post-translational modification
  publication-title: Chembiochem
  doi: 10.1002/cbic.201500170
– volume: 16
  start-page: 591
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0105
  article-title: Recent progress in predicting posttranslational modification sites in proteins
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150819110421
– volume: 15
  start-page: 11204
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0040
  article-title: PSNO: predicting cysteine S-Nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150711204
– volume: 9
  start-page: 331
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0505
  article-title: pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins
  publication-title: Nat. Sci.
– volume: 44, 60
  start-page: 246
  issue: 43
  year: 2001
  ident: 10.1016/j.ygeno.2019.05.027_bb0350
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Proteins
  doi: 10.1002/prot.1035
– volume: 33
  start-page: 3524
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0500
  article-title: pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx476
– volume: 9
  start-page: 67
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0470
  article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nat. Sci.
– volume: 22
  start-page: 1973
  year: 2001
  ident: 10.1016/j.ygeno.2019.05.027_bb0485
  article-title: Prediction of signal peptides using scaled window
  publication-title: Peptides
  doi: 10.1016/S0196-9781(01)00540-X
– volume: 59
  start-page: 737
  year: 1981
  ident: 10.1016/j.ygeno.2019.05.027_bb0555
  article-title: Graphical rules of steady-state reaction systems
  publication-title: Can. J. Chem.
  doi: 10.1139/v81-107
– issue: 2014
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0255
  article-title: iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
  publication-title: Biomed. Res. Int.
– volume: 110
  start-page: 231
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0510
  article-title: pLoc-mGneg: Predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.10.002
– volume: 26
  start-page: 735
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0025
  article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzt042
– volume: 41
  start-page: e68
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0235
  article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1450
– volume: 32
  start-page: 3116
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0095
  article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw380
– volume: 29
  start-page: 960
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0430
  article-title: propy: A tool to generate various modes of Chou's PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt072
– volume: 33
  start-page: 1731
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0050
  article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2014.968875
– volume: 45
  start-page: 2501
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0185
  article-title: iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-018-4417-z
– volume: 268
  start-page: 14875
  year: 1993
  ident: 10.1016/j.ygeno.2019.05.027_bb0580
  article-title: The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)82414-0
– volume: 6
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0335
  article-title: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties
  publication-title: PLoS One
– volume: 222
  start-page: 169
  year: 1984
  ident: 10.1016/j.ygeno.2019.05.027_bb0560
  article-title: An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways
  publication-title: Biochem. J.
  doi: 10.1042/bj2220169
– volume: 497
  start-page: 48
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0060
  article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.12.009
– volume: 44
  start-page: 243
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0305
  article-title: PLMD: an updated data resource of protein lysine modifications
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2017.03.007
– volume: 11
  start-page: 369
  year: 2010
  ident: 10.1016/j.ygeno.2019.05.027_bb0585
  article-title: Graphic rule for drug metabolism systems
  publication-title: Curr. Drug Metab.
  doi: 10.2174/138920010791514261
– volume: 273
  start-page: 236
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0300
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review)
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 15
  start-page: 4755
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0715
  article-title: Ensemble linear neighborhood propagation forpredicting subchloro plast localization of multi-location proteins
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00686
– volume: 456
  start-page: 53
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0445
  article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.04.001
– volume: 454
  start-page: 139
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0395
  article-title: Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou's PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.05.033
– volume: 3
  start-page: 862
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0600
  article-title: Wenxiang: a web-server for drawing wenxiang diagrams
  publication-title: Nat. Sci.
– start-page: 315e324
  year: 2006
  ident: 10.1016/j.ygeno.2019.05.027_bb0680
  article-title: Combining svms with various feature selection strategies
– volume: 550
  start-page: 109
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0170
  article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.04.021
– volume: 6
  start-page: 262
  year: 2009
  ident: 10.1016/j.ygeno.2019.05.027_bb0440
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr. Proteomics
  doi: 10.2174/157016409789973707
– volume: 43
  start-page: W65
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0465
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv458
– volume: 187
  start-page: 829
  year: 1980
  ident: 10.1016/j.ygeno.2019.05.027_bb0540
  article-title: Graphical rules for enzyme-catalyzed rate laws
  publication-title: Biochem. J.
  doi: 10.1042/bj1870829
– volume: 4
  year: 2009
  ident: 10.1016/j.ygeno.2019.05.027_bb0725
  article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004920
– volume: 1
  start-page: e171
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0215
  article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
  publication-title: Peer. J.
  doi: 10.7717/peerj.171
– volume: 463
  start-page: 47
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0295
  article-title: pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.12.015
– volume: 455
  start-page: 205
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0145
  article-title: iMethyl-STTNC: identification of N(6)-methyladenosine sites by extending the idea of SAAC into Chou's PseAAC to formulate RNA sequences
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.07.018
– volume: 465
  start-page: 1
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0460
  article-title: iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.12.034
– volume: 238
  start-page: 54
  year: 1994
  ident: 10.1016/j.ygeno.2019.05.027_bb0710
  article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1267
– volume: 90
  start-page: 1250
  year: 2003
  ident: 10.1016/j.ygeno.2019.05.027_bb0330
  article-title: Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.10719
– volume: 12
  start-page: 255
  year: 1980
  ident: 10.1016/j.ygeno.2019.05.027_bb0605
  article-title: Diffusion-controlled effects in reversible enzymatic fast reaction system: critical spherical shell and proximity rate constants
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(80)80002-0
– volume: 1
  start-page: 401
  year: 1992
  ident: 10.1016/j.ygeno.2019.05.027_bb0320
  article-title: An optimization approach to predicting protein structural class from amino acid composition
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560010312
– volume: 35
  start-page: 1
  year: 1990
  ident: 10.1016/j.ygeno.2019.05.027_bb0575
  article-title: Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(90)80056-D
– volume: 291
  start-page: 285
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0370
  article-title: iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
  publication-title: Mol. Gen. Genomics.
  doi: 10.1007/s00438-015-1108-5
– volume: 36
  start-page: 570
  year: 2008
  ident: 10.1016/j.ygeno.2019.05.027_bb0020
  article-title: N-Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1057
– start-page: 55
  year: 1999
  ident: 10.1016/j.ygeno.2019.05.027_bb0695
  article-title: Controlling the sensitivity of support vector machines
– volume: 15
  start-page: 10410
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0220
  article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile bayes and Chou's pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150610410
– volume: 111
  start-page: 96
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0160
  article-title: iDNA6mA-PseKNC: identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.01.005
– volume: 26
  start-page: 1974
  year: 1998
  ident: 10.1016/j.ygeno.2019.05.027_bb0730
  article-title: The use of sequence comparison to detect ‘identities’ in tRNA genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.8.1974
– volume: 2
  start-page: 136
  year: 2009
  ident: 10.1016/j.ygeno.2019.05.027_bb0615
  article-title: Prediction of protein folding rates from primary sequence by fusing multiple sequential features
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2009.23024
– volume: 13
  start-page: 544
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0140
  article-title: iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC
  publication-title: Med. Chem.
  doi: 10.2174/1573406413666170419150052
– volume: 17
  start-page: 2337
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0415
  article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science
  publication-title: Curr.Top. Med. Chem.
  doi: 10.2174/1568026617666170414145508
– volume: 7
  start-page: 51270
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0100
  article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9987
– volume: 76
  start-page: 356
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0380
  article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2017.07.022
– volume: 8
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0210
  article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
  publication-title: PLoS One
– volume: 34
  start-page: 33
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0455
  article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx579
– volume: 20
  start-page: 112
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0195
  article-title: Positive-unlabelled learning of glycosylation sites in the human proteome
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-019-2700-1
– volume: 442
  start-page: 118
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0240
  article-title: iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2013.05.024
– volume: 460
  start-page: 195
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0290
  article-title: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.10.021
– volume: 462
  start-page: 76
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0250
  article-title: iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.06.022
– volume: 664
  start-page: 78
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0165
  article-title: Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition
  publication-title: Gene
  doi: 10.1016/j.gene.2018.04.055
– volume: 2
  start-page: 27
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0705
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 36
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0135
  article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
  publication-title: Mol. Informa.
– volume: 15
  start-page: 7594
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0030
  article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15057594
– volume: 397
  start-page: 145
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0080
  article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.02.020
– volume: 294
  start-page: 199
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0410
  article-title: iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition
  publication-title: Mol. Gen. Genomics.
  doi: 10.1007/s00438-018-1498-2
– volume: 15
  start-page: 1
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0655
  article-title: pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset
  publication-title: Med. Chem.
– volume: 568
  start-page: 14
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0190
  article-title: SPalmitoylC-PseAAC: a sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.12.019
– volume: 457
  start-page: 163
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0400
  article-title: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.08.042
– volume: 364
  start-page: 284
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0360
  article-title: Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2014.09.029
– volume: 24
  start-page: 4013
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0650
  article-title: pLoc_bal-mPlant: Predict subcellular localization of plant proteins by general PseAAC and balancing training dataset
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612824666181119145030
– volume: 5
  start-page: e332
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0055
  article-title: iRNA-PseU: Identifying RNA pseudouridine sites
  publication-title: Mol. Ther.-Nucleic Acids
– volume: 18
  start-page: 126
  year: 1981
  ident: 10.1016/j.ygeno.2019.05.027_bb0620
  article-title: The biological functions of low-frequency phonons: 2. Cooperative effects
  publication-title: Chem. Scr.
– start-page: 83
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0700
  article-title: Class imbalance learning methods for support vector machines
– volume: 497
  start-page: 60
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0085
  article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.12.017
– volume: 13
  start-page: 552
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0120
  article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC
  publication-title: Med. Chem.
  doi: 10.2174/1573406413666170515120507
– volume: 16
  start-page: 109
  year: 1980
  ident: 10.1016/j.ygeno.2019.05.027_bb0545
  article-title: Three schematic rules for deriving apparent rate constants
  publication-title: Chem. Scr.
– volume: 15
  start-page: 3495
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0435
  article-title: PseAAC-general: fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15033495
– year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0205
  article-title: Sequence and structure-based characterization of human and yeast ubiquitination sites by using Chou's sample formulation
  publication-title: Proteins
– volume: 32
  start-page: 362
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0275
  article-title: iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv604
– volume: 42
  start-page: 136
  year: 2001
  ident: 10.1016/j.ygeno.2019.05.027_bb0475
  article-title: Prediction of protein signal sequences and their cleavage sites
  publication-title: Proteins
  doi: 10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F
– volume: 11
  start-page: 218
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0345
  article-title: Impacts of bioinformatics to medicinal chemistry
  publication-title: Med. Chem.
  doi: 10.2174/1573406411666141229162834
– volume: 8
  start-page: 41178
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0130
  article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17104
– volume: 7
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0375
  article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC
  publication-title: Sci. Rep.
  doi: 10.1038/srep42362
– volume: 29
  start-page: 81
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0010
  article-title: Post-translational modification of proteins in toxicological research: focus on lysine acylation
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2013.29.2.081
– volume: 9
  start-page: 101
  year: 2008
  ident: 10.1016/j.ygeno.2019.05.027_bb0665
  article-title: Prediction of mucintype o-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-9-101
– volume: 644, 156-156
  start-page: 315
  issue: 628
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0495
  article-title: X. Xiao, pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Gene
  doi: 10.1016/j.gene.2017.07.036
– volume: 30
  start-page: 3
  year: 1988
  ident: 10.1016/j.ygeno.2019.05.027_bb0625
  article-title: Review: low-frequency collective motion in biomacromolecules and its biological functions
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(88)85002-6
– volume: 7
  start-page: 44310
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0090
  article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10027
– volume: 33
  start-page: 2221
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0270
  article-title: iDrug-target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2014.998710
– volume: 22
  start-page: 707e712
  year: 2009
  ident: 10.1016/j.ygeno.2019.05.027_bb0670
  article-title: Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzp055
– volume: 32
  start-page: 3133
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0075
  article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw387
– volume: 463
  start-page: 99
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0390
  article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.12.017
– volume: 385
  start-page: 153
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0260
  article-title: Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2015.08.025
– volume: 6
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0675
  article-title: Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs
  publication-title: PLoS One
– volume: 110
  start-page: 50
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0515
  article-title: pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.08.005
– volume: 394
  start-page: 223
  year: 2016
  ident: 10.1016/j.ygeno.2019.05.027_bb0065
  article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.01.020
– volume: 264
  start-page: 12074
  year: 1989
  ident: 10.1016/j.ygeno.2019.05.027_bb0565
  article-title: Graphic rules in steady and non-steady enzyme kinetics
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)80175-2
– volume: 9
  year: 2014
  ident: 10.1016/j.ygeno.2019.05.027_bb0035
  article-title: iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
  publication-title: PLoS One
– volume: 102
  start-page: 6395
  year: 2005
  ident: 10.1016/j.ygeno.2019.05.027_bb0720
  article-title: Solving the protein sequence metric problem
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0408677102
– volume: 1
  start-page: 429
  year: 2002
  ident: 10.1016/j.ygeno.2019.05.027_bb0325
  article-title: Bioinformatical analysis of G-protein-coupled receptors
  publication-title: J. Proteome Res.
  doi: 10.1021/pr025527k
– volume: 12
  start-page: 265
  year: 1980
  ident: 10.1016/j.ygeno.2019.05.027_bb0610
  article-title: The critical spherical shell in enzymatic fast reaction systems
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(80)80003-2
– volume: 561-562
  start-page: 59
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0150
  article-title: iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.09.002
– volume: 474
  start-page: 69
  year: 2015
  ident: 10.1016/j.ygeno.2019.05.027_bb0265
  article-title: iDNA-methyl: identifying DNA methylation sites via pseudo trinucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.12.009
– volume: 1
  start-page: 63
  year: 2009
  ident: 10.1016/j.ygeno.2019.05.027_bb0630
  article-title: Recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat. Sci.
– volume: 468
  start-page: 1
  year: 2019
  ident: 10.1016/j.ygeno.2019.05.027_bb0285
  article-title: SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2019.02.007
– volume: 9
  start-page: 1092
  year: 2013
  ident: 10.1016/j.ygeno.2019.05.027_bb0530
  article-title: Some remarks on predicting multi-label attributes in molecular biosystems
  publication-title: Mol. BioSyst.
  doi: 10.1039/c3mb25555g
– volume: 110
  start-page: 239
  year: 2018
  ident: 10.1016/j.ygeno.2019.05.027_bb0175
  article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.10.008
– volume: 18
  start-page: 82
  year: 1981
  ident: 10.1016/j.ygeno.2019.05.027_bb0550
  article-title: A new graphical method for deriving rate equations for complicated mechanisms
  publication-title: Chem. Scr.
– volume: 425
  start-page: 117
  year: 2012
  ident: 10.1016/j.ygeno.2019.05.027_bb0425
  article-title: PseAAC-builder: a cross-platform stand-alone program for generating various special Chou's pseudo amino acid compositions
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2012.03.015
– volume: 77
  start-page: 200
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0115
  article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2017.08.020
– volume: 14
  start-page: 75
  year: 2001
  ident: 10.1016/j.ygeno.2019.05.027_bb0480
  article-title: Using subsite coupling to predict signal peptides
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/14.2.75
– volume: 7
  start-page: 155
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0110
  article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC
  publication-title: Mol. Ther.-Nucleic Acids
  doi: 10.1016/j.omtn.2017.03.006
– volume: 284
  start-page: 142
  year: 2011
  ident: 10.1016/j.ygeno.2019.05.027_bb0590
  article-title: The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2011.06.006
– volume: 71
  start-page: 98
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0690
  article-title: Predicting lysine glycation sites using bi-profile bayes feature extraction
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2017.10.004
– volume: 13
  start-page: 734
  year: 2017
  ident: 10.1016/j.ygeno.2019.05.027_bb0125
  article-title: iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier
  publication-title: Med. Chem.
  doi: 10.2174/1573406413666170623082245
– volume: 373
  start-page: 386
  year: 2008
  ident: 10.1016/j.ygeno.2019.05.027_bb0420
  article-title: PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2007.10.012
SSID ssj0009382
Score 2.4998684
Snippet Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms bioinformatics
chromatin
DNA
epigenetics
Feature extraction
Formylation
histones
lysine
Post-translational modification
prediction
Support vector machine
support vector machines
Title Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components
URI https://dx.doi.org/10.1016/j.ygeno.2019.05.027
https://www.ncbi.nlm.nih.gov/pubmed/31175975
https://www.proquest.com/docview/2305155089
https://www.proquest.com/docview/2339791297
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQcECyv8qgGCYkLYZN1EsfHsqLagqiQoNLeLMePkrYk0WaDtBf-Qv9yZ_IoIMEeOG5kJ1ZmPPNt5vM3jL3iOo6o1RFucZMGGP00xkGrA-4ijYA81iKj886fjtPFSfxhmSx32Hw8C0O0yiH29zG9i9bDlenwNqd1UUy_4P5AsI0JUHJMVJIO_MaxIC9_-_MXzUPyrmEUDQ5o9Kg81HG8NiSESvwu2cl3UmuZv2enf6HPLgsd3mN3B_gIB_0K77MdV07Yzb6h5GbCbs3H_m0Tduc3qcEH7PLzikoyZAaoPJAQSemAEOumZ8MBlZEbIB78KSAqBCKbD4wumnEeYOzB1wX6e1FWoE1hoaZiEPwoNMy_Ve3rBpIAnaZuYNVeONClhdNe1RrqxrW26u9ZEnfjITs5fP91vgiGZgyBQQi1DlLvTWYSzWUY-yzLbY7Zz8-ssHHmdcg9z7MwF7kXiUxF7mahS4WPMBVE3ObG8Edst8QnPGFgbGS4dk5Iy2Od6DxMtHUIVowQmbNij81GIygzKJVTw4wLNVLSzlRnOUWWU2Gi0HJ77M31pLoX6tg-PB2tq_7wN4WpZPvEl6MvKDQolVd06aq2UfhnjvrlhJncNobqqIix8D6Pe0e6Xi0n1VQpkqf_u7Rn7PaMvgZ0H4ies931qnUvEDKt8_1uT-yzGwdHHxfH-Oto-e4K20IZWA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESo9VLC8ynOQQFwIm8RJnBw4oIVqSx9CopV6cx3bKYE2iTYb0F76F_gx_EFm8iggwR6Qeo1ix_Jnz3z2fJlh7BlXgUeljnCL68hB66fQDhrlcOspJOSBEjH977y3H00Pg_dH4dEK-zH8C0Oyyt72dza9tdb9k3E_m-Mqz8cfcX8g2UYHmHB0VEncKyt37OIbntvq19tvEeTnvr_17mAydfrSAo5GQjB3oizTsQ4VnviDLI5Tk6Itz3wjTBBnyuUZT2M3FWkmwiQSqfVdG4nMQ8PmcZNqzbHfK-xqgOaCyia8Ov-lK0l4W6GKRufQ8IZUR62obEGZV0lQlrT5QqmWzd_d4b_obuv2tm6wjZ6vwptuSm6yFVuM2LWuguVixNYmQ8G4EVv_LbfhLfb9w4xiQIQ7lBlQ5pPCAlHkRSe_A4pb10DC-xNAGgqkbu8lZNTii4PGDvEBdZYXJSidG6go-gRfcwWTT2XzoobQwVVa1TBrTi2owsBJl0Ybqto2puz6LEgscpsdXgpEd9hqgV-4x0AbT3NlrUgMD1SoUjdUxiI70kLE1ohN5g8gSN2nRqcKHady0MB9li1ykpCTbigRuU328qJR1WUGWf56NKAr_1jgEn3X8oZPh7UgEVCK56jClk0t8fRIBXrcOFn2DgVukdRhP3e7hXQxWk5pWhMR3v_foT1ha9ODvV25u72_84Bd9-kqor2deshW57PGPkK-Nk8ft_sD2PFlb8ifIStVng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+lysine+formylation+sites+using+the+composition+of+k-spaced+amino+acid+pairs+via+Chou%27s+5-steps+rule+and+general+pseudo+components&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Ju%2C+Zhe&rft.au=Wang%2C+Shi-Yun&rft.date=2020-01-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=112&rft.issue=1&rft.spage=859&rft_id=info:doi/10.1016%2Fj.ygeno.2019.05.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon