Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components
Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective featur...
Saved in:
Published in | Genomics (San Diego, Calif.) Vol. 112; no. 1; pp. 859 - 866 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.
•A novel predictor is develop to predict formylation sites.•The CKSAAP encoding is used to predict and analyze formylation sites.•The biased SVM is adopted as classifier.•A free online service is available for prediction. |
---|---|
AbstractList | Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation. Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as 'KA', 'SxxxxK' and 'SxxxA' around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as 'KA', 'SxxxxK' and 'SxxxA' around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation. Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation. •A novel predictor is develop to predict formylation sites.•The CKSAAP encoding is used to predict and analyze formylation sites.•The biased SVM is adopted as classifier.•A free online service is available for prediction. |
Author | Ju, Zhe Wang, Shi-Yun |
Author_xml | – sequence: 1 givenname: Zhe surname: Ju fullname: Ju, Zhe email: juzhe1120@hotmail.com – sequence: 2 givenname: Shi-Yun surname: Wang fullname: Wang, Shi-Yun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31175975$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFvFCEcxYmpsdvqJzAx3PQyKwzLwBw8mE21Jk30oGfCwJ-WdQZGYJrsp-hXlu5uLx4aTyQv7_fy570LdBZiAITeUrKmhHYfd-v9LYS4bgnt14SvSSteoBUlsm9kt-nO0IpIKRvBN-wcXeS8I4T0TLav0DmjVPBe8BV6-JHAelN8DDg6PO6zD4BdTNN-1Ac1-wIZL1W_xeUOsInTHKt4In43edYGLNaTDxFr4y2etU8Z33uNt3dxeZ8xb3KBOeO0jIB1sLgeDkmPeM6w2HjMDBBKfo1eOj1meHN6L9GvL1c_t9fNzfev37afbxrD-rY0nXNGGq5ZTzZOysEOlBHXWmE30mnCHBskGcTg6jc7MUBLoBOOwkAps4Mx7BJ9OObOKf5ZIBc1-WxgHHWAuGTVMtaLnra9-A8r4ZTz2nu1vjtZl2ECq-bkJ5326qnvauiPBpNizgmcMr4cei5J-1FRoh63VTt12FY9bqsIV3XbyrJ_2Kf456lPRwpqm_ceksrGQ6iL-QSmKBv9s_xfFv_Bkg |
CitedBy_id | crossref_primary_10_1016_j_biochi_2021_10_001 crossref_primary_10_1109_ACCESS_2022_3144226 crossref_primary_10_4236_ns_2020_129048 crossref_primary_10_1016_j_compbiolchem_2021_107553 crossref_primary_10_3389_fcell_2020_621144 crossref_primary_10_3389_fmicb_2022_790063 crossref_primary_10_2174_1570164617666191025101914 crossref_primary_10_3389_fgene_2022_853258 crossref_primary_10_1080_03610926_2022_2149243 crossref_primary_10_1038_s41598_020_63259_2 crossref_primary_10_2174_1381612825666190930101258 crossref_primary_10_4236_abb_2020_117020 crossref_primary_10_1038_s41598_021_03895_4 crossref_primary_10_1371_journal_pone_0286752 crossref_primary_10_4236_ns_2020_123011 crossref_primary_10_1038_s41598_021_98458_y crossref_primary_10_1093_bib_bbab089 crossref_primary_10_1111_jcmm_15205 crossref_primary_10_4236_ns_2020_1211063 crossref_primary_10_1109_TCBB_2020_3010975 crossref_primary_10_3389_fbioe_2021_752658 crossref_primary_10_3390_ijms21010075 crossref_primary_10_32604_cmc_2021_015041 crossref_primary_10_1371_journal_pcbi_1012544 crossref_primary_10_1371_journal_pone_0249396 crossref_primary_10_4236_ns_2020_123016 crossref_primary_10_4236_ns_2020_123013 crossref_primary_10_2174_1389202921999200831142629 crossref_primary_10_1016_j_chemolab_2020_104055 crossref_primary_10_1007_s11030_024_10937_2 crossref_primary_10_1093_database_baad094 crossref_primary_10_3934_mbe_2023954 crossref_primary_10_4236_ns_2020_126031 crossref_primary_10_4236_ns_2020_127042 crossref_primary_10_1109_ACCESS_2020_2989713 crossref_primary_10_4236_ns_2020_126032 crossref_primary_10_1109_ACCESS_2020_2982160 crossref_primary_10_4236_ns_2020_1212065 crossref_primary_10_4236_ns_2020_126034 crossref_primary_10_1007_s00438_019_01634_z crossref_primary_10_4236_abb_2020_117019 crossref_primary_10_4236_ns_2020_123008 crossref_primary_10_31083_j_fbl2909331 crossref_primary_10_1038_s41598_022_08555_9 crossref_primary_10_3389_fgene_2023_1294159 crossref_primary_10_4236_ns_2020_124018 crossref_primary_10_1515_jib_2019_0091 crossref_primary_10_1007_s40203_021_00095_w crossref_primary_10_1109_ACCESS_2020_3009125 crossref_primary_10_4236_ns_2020_127035 crossref_primary_10_1016_j_ijbiomac_2023_123180 crossref_primary_10_1109_TCBB_2021_3114349 crossref_primary_10_4236_ns_2020_127038 crossref_primary_10_4236_ns_2020_128047 crossref_primary_10_4236_ns_2020_127037 crossref_primary_10_1093_bib_bbac631 crossref_primary_10_1093_bib_bbab263 crossref_primary_10_1016_j_ymeth_2023_07_002 crossref_primary_10_3390_foods13213416 crossref_primary_10_1007_s12539_023_00595_7 crossref_primary_10_4236_ns_2020_127039 crossref_primary_10_1016_j_gene_2022_146445 crossref_primary_10_3390_cimb43030105 crossref_primary_10_1021_acs_jproteome_0c00864 |
Cites_doi | 10.1016/j.jtbi.2016.09.001 10.1016/j.jtbi.2018.09.005 10.18632/oncotarget.17028 10.1016/j.jtbi.2005.05.034 10.1039/C5MB00155B 10.18632/oncotarget.13758 10.1093/nar/gku1019 10.1016/j.jtbi.2018.12.017 10.18632/oncotarget.22585 10.1093/bioinformatics/btx711 10.1016/S0021-9258(18)53227-0 10.1093/bioinformatics/btl158 10.1093/bioinformatics/bth466 10.1016/j.jtbi.2019.03.011 10.1093/bioinformatics/btq003 10.1016/j.ab.2015.08.021 10.18632/oncotarget.9148 10.1093/bioinformatics/btw644 10.1093/bioinformatics/btl151 10.1016/j.jtbi.2018.04.037 10.1016/j.jtbi.2018.10.046 10.1073/pnas.0606775103 10.1016/j.omtn.2018.03.012 10.1021/bi00077a008 10.1016/j.ab.2017.07.011 10.1002/cbic.201500170 10.2174/1568026615666150819110421 10.3390/ijms150711204 10.1002/prot.1035 10.1093/bioinformatics/btx476 10.1016/S0196-9781(01)00540-X 10.1139/v81-107 10.1016/j.ygeno.2017.10.002 10.1093/protein/gzt042 10.1093/nar/gks1450 10.1093/bioinformatics/btw380 10.1093/bioinformatics/btt072 10.1080/07391102.2014.968875 10.1007/s11033-018-4417-z 10.1016/S0021-9258(18)82414-0 10.1042/bj2220169 10.1016/j.ab.2015.12.009 10.1016/j.jgg.2017.03.007 10.2174/138920010791514261 10.1016/j.jtbi.2010.12.024 10.1021/acs.jproteome.6b00686 10.1016/j.ab.2014.04.001 10.1016/j.jtbi.2018.05.033 10.1016/j.ab.2018.04.021 10.2174/157016409789973707 10.1093/nar/gkv458 10.1042/bj1870829 10.1371/journal.pone.0004920 10.7717/peerj.171 10.1016/j.jtbi.2018.12.015 10.1016/j.jtbi.2018.07.018 10.1016/j.jtbi.2018.12.034 10.1006/jmbi.1994.1267 10.1002/jcb.10719 10.1016/0301-4622(80)80002-0 10.1002/pro.5560010312 10.1016/0301-4622(90)80056-D 10.1007/s00438-015-1108-5 10.1093/nar/gkm1057 10.3390/ijms150610410 10.1016/j.ygeno.2018.01.005 10.1093/nar/26.8.1974 10.4236/jbise.2009.23024 10.2174/1573406413666170419150052 10.2174/1568026617666170414145508 10.18632/oncotarget.9987 10.1016/j.jmgm.2017.07.022 10.1093/bioinformatics/btx579 10.1186/s12859-019-2700-1 10.1016/j.ab.2013.05.024 10.1016/j.jtbi.2018.10.021 10.1016/j.ab.2014.06.022 10.1016/j.gene.2018.04.055 10.1145/1961189.1961199 10.3390/ijms15057594 10.1016/j.jtbi.2016.02.020 10.1007/s00438-018-1498-2 10.1016/j.ab.2018.12.019 10.1016/j.jtbi.2018.08.042 10.1016/j.jtbi.2014.09.029 10.2174/1381612824666181119145030 10.1016/j.ab.2015.12.017 10.2174/1573406413666170515120507 10.3390/ijms15033495 10.1093/bioinformatics/btv604 10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F 10.2174/1573406411666141229162834 10.18632/oncotarget.17104 10.1038/srep42362 10.5487/TR.2013.29.2.081 10.1186/1471-2105-9-101 10.1016/j.gene.2017.07.036 10.1016/0301-4622(88)85002-6 10.18632/oncotarget.10027 10.1080/07391102.2014.998710 10.1093/protein/gzp055 10.1093/bioinformatics/btw387 10.1016/j.jtbi.2015.08.025 10.1016/j.ygeno.2017.08.005 10.1016/j.jtbi.2016.01.020 10.1016/S0021-9258(18)80175-2 10.1073/pnas.0408677102 10.1021/pr025527k 10.1016/0301-4622(80)80003-2 10.1016/j.ab.2018.09.002 10.1016/j.ab.2014.12.009 10.1016/j.jtbi.2019.02.007 10.1039/c3mb25555g 10.1016/j.ygeno.2017.10.008 10.1016/j.ab.2012.03.015 10.1016/j.jmgm.2017.08.020 10.1093/protein/14.2.75 10.1016/j.omtn.2017.03.006 10.1016/j.jtbi.2011.06.006 10.1016/j.compbiolchem.2017.10.004 10.2174/1573406413666170623082245 10.1016/j.ab.2007.10.012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.ygeno.2019.05.027 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1089-8646 |
EndPage | 866 |
ExternalDocumentID | 31175975 10_1016_j_ygeno_2019_05_027 S0888754319302198 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM AAFWJ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c392t-6ffc8c5a3904f88bdb130f2d7d48fa03f3b80b7bf75967be20e67f1eb113dbcc3 |
IEDL.DBID | .~1 |
ISSN | 0888-7543 1089-8646 |
IngestDate | Sun Aug 24 04:14:22 EDT 2025 Mon Jul 21 11:07:27 EDT 2025 Wed Feb 19 02:32:11 EST 2025 Thu Apr 24 23:06:45 EDT 2025 Tue Jul 01 01:48:22 EDT 2025 Fri Feb 23 02:48:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Post-translational modification Feature extraction Formylation Support vector machine |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-6ffc8c5a3904f88bdb130f2d7d48fa03f3b80b7bf75967be20e67f1eb113dbcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 31175975 |
PQID | 2305155089 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2339791297 proquest_miscellaneous_2305155089 pubmed_primary_31175975 crossref_citationtrail_10_1016_j_ygeno_2019_05_027 crossref_primary_10_1016_j_ygeno_2019_05_027 elsevier_sciencedirect_doi_10_1016_j_ygeno_2019_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genomics (San Diego, Calif.) |
PublicationTitleAlternate | Genomics |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sabooh, Iqbal, Khan, Khan, Maqbool (bb0180) 2018; 452 Chou, Carter, Forsen (bb0550) 1981; 18 Ning, Ma, Zhao (bb0230) 2019; 470 Chou (bb0585) 2010; 11 Huang, Niu, Gao, Fu, Li (bb0315) 2010; 26 Xie, Fu, Nie (bb0025) 2013; 26 Xu, Ding, Ding, Lei, Wu, Deng (bb0685) 2015; 5 Cheng, Zhao, Lin, Xiao (bb0500) 2017; 33 Veropoulos, Campbell, Cristianini (bb0695) 1999 Vacic, Iakoucheva, Radivojac (bb0735) 2006; 22 Cheng, Xiao (bb0650) 2018; 24 Chou, Li, Forsen (bb0610) 1980; 12 Wan, Mak, Kung (bb0715) 2016; 15 Qiu, Sun, Xiao, Xu, Jia (bb0175) 2018; 110 Zhou, Deng (bb0560) 1984; 222 Liu, Xu (bb0120) 2017; 13 Xu, Li (bb0140) 2017; 13 Shyamili, Vellaichamy (bb0205) 2019 Sagara, Shimizu, Kawabata, Nakamura, Ikeguchi, Shimizu (bb0730) 1998; 26 Xu, Shao, Wu, Deng (bb0215) 2013; 1 Xu, Zhou, Lin, Deng, Zhang, Xue (bb0305) 2017; 44 Yu, Li, Qiu, Chen, Chen, Wang, Wang, Zhang (bb0385) 2017; 8 Cheng, Xiao (bb0635) 2018; 34 Ju, He (bb0380) 2017; 76 Xiao, Cheng, Chen, Mao (bb0655) 2018; 15 Xiao, Cheng, Su, Nao (bb0505) 2017; 9 Dehzangi, Heffernan, Sharma, Lyons, Paliwal, Sattar (bb0360) 2015; 364 Cheng, Xiao (bb0510) 2018; 110 Qiu, Xiao, Xu (bb0100) 2016; 7 Jiang, Zhou, Taghizadeh, Dong, Dedon (bb0015) 2007; 104 Qiu, Xiao, Lin (bb0225) 2014 Liu, Liu, Wang, Chen, Fang (bb0465) 2015; 43 Chen, Ding, Zhou, Lin (bb0150) 2018; 561-562 Wang, Zhang, Mu (bb0200) 2019; 461 Qiu, Sun, Xiao, Xu (bb0095) 2016; 32 Chou (bb0440) 2009; 6 Hussain, Khan, Rasool, Khan (bb0190) 2019; 568 Cheng, Zhao, Xiao (bb0520) 2017; 33, 2610 Jia, Li, Qiu, Xiao (bb0290) 2019; 460 Chou (bb0475) 2001; 42 Feng, Ding, Yang, Chen, Lin (bb0110) 2017; 7 Ahmad, Hayat (bb0405) 2019; 463 Ju, Sun, Li, Wang (bb0690) 2017; 71 Jia, Liu, Xiao, Liu (bb0070) 2016; 7 Meher, Sahu, Saini, Rao (bb0375) 2017; 7 Behbahani, Mohabatkar, Nosrati (bb0365) 2016; 411 Liu, Wu (bb0470) 2017; 9 Jia, Lin, Wang (bb0220) 2014; 15 Qiu, Sun, Xiao, Xu (bb0090) 2016; 7 Jia, Liu, Xiao, Liu (bb0065) 2016; 394 Liu, Yang, Huang (bb0455) 2018; 34 Nakashima, Nishikawa (bb0710) 1994; 238 Akbar, Hayat (bb0145) 2018; 455 Feng, Chen, Lin (bb0240) 2013; 442 Cai, Feng, Lu (bb0340) 2006; 238 Xiao, Cheng, Chen, Mao (bb0490) 2018 Liu, Xiao, Qiu (bb0265) 2015; 474 Chou (bb0575) 1990; 35 Chen, Feng, Deng, Lin (bb0250) 2014; 462 Althaus, Chou, Gonzales, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0570) 1993; 268 Kabir, Hayat (bb0370) 2016; 291 Zhang, Liang (bb0400) 2018; 457 Chou, Lin, Xiao (bb0600) 2011; 3 Khan, Rasool, Hussain, Khan (bb0170) 2018; 550 Chou (bb0485) 2001; 22 Cheng, Xiao (bb0515) 2018; 110 Contreras-Torres (bb0395) 2018; 454 Chou (bb0355) 2005; 21 Shen, Song (bb0615) 2009; 2 Chen, Tang, Ye, Lin (bb0055) 2016; 5 Chou, Forsen (bb0555) 1981; 59 Cheng (bb0495) 2017; 644, 156-156 Xu, Ding, Wu (bb0210) 2013; 8 Chou (bb0530) 2013; 9 Chou (bb0300) 2011; 273 Wisniewski, Zougman, Mann (bb0020) 2008; 36 Du, Wang, Xu, Gao (bb0425) 2012; 425 Khan, Jamil, Hussain, Rasool, Khan (bb0295) 2019; 463 Shen (bb0420) 2008; 373 Ju, He (bb0115) 2017; 77 Wang, Zhou, Li, Yu, Yin, Wang (bb0005) 2015; 16 Qiu, Xiao, Lin (bb0050) 2015; 33 Chou (bb0415) 2017; 17 Qiu, Jiang, Xu, Xiao (bb0130) 2017; 8 Xiao, Min, Lin, Liu, Cheng (bb0270) 2015; 33 Chen, Tang, Sheng, Zhang (bb0665) 2008; 9 Tahir, Tayara, Chong (bb0460) 2019; 465 Liu, Fang, Long, Lan (bb0275) 2016; 32 Chou (bb0345) 2015; 11 Xu (bb0105) 2016; 16 Xu, Wen, Shao, Deng (bb0030) 2014; 15 Chou (bb0625) 1988; 30 Ahmad, Hayat (bb0390) 2018; 463 Ju, Wang (bb0165) 2018; 664 Li, Godzik (bb0310) 2006; 22 Chou, Elrod (bb0325) 2002; 1 Lin, Deng, Ding, Chen (bb0245) 2014; 42 Althaus, Chou, Gonzales, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0595) 1993; 32 Chen, Feng, Yang, Ding, Lin (bb0155) 2018; 11 Chen, Lei, Jin, Lin (bb0445) 2014; 456 Chou, Shen (bb0630) 2009; 1 Chen, Chen, Wang, Wang, Yan, Zhang (bb0675) 2011; 6 Chou, Chen, Forsen (bb0620) 1981; 18 Ju, Cao (bb0660) 2017; 534 Qiu, Jiang, Sun, Xiao, Cheng (bb0125) 2017; 13 Liu, Fang, Wang, Wang, Li (bb0260) 2015; 385 Chou, Cai (bb0330) 2003; 90 Hussain, Khan, Rasool, Khan (bb0285) 2019; 468 Li, Zhang, Purcell, Webb, Lithgow, Li, Song (bb0195) 2019; 20 Liu, Xiao, Yu, Jia, Qiu (bb0085) 2016; 497 Cheng, Zhao, Xiao (bb0525) 2017; 8 Chen, Feng, Ding, Lin (bb0045) 2015; 490 Chen, Lin (bb0680) 2006 Chou (bb0350) 2001; 44, 60 Chou (bb0480) 2001; 14 Althaus, Gonzales, Chou, Diebel, Kezdy, Romero, Aristoff, Tarpley, Reusser (bb0580) 1993; 268 Chou, Forsen (bb0540) 1980; 187 Shao, Xu, Tsai, Wang, Ngai (bb0725) 2009; 4 Jia, Liu, Xiao, Liu (bb0060) 2016; 497 Chang, Lin (bb0705) 2011; 2 Khan, Rasool, Hussain, Khan (bb0185) 2018; 45 Chou, Forsen (bb0605) 1980; 12 Chou, Forsen, Zhou (bb0545) 1980; 16 Chen, Lin (bb0450) 2015; 11 Cheng, Xiao (bb0645) 2018; 458 Xu, Wen, Wen, Wu, Deng (bb0035) 2014; 9 Zhang (bb0320) 1992; 1 Cao, Xu, Liang (bb0430) 2013; 29 Batuwita, Palade (bb0700) 2013 Chen, Feng, Yang, Ding, Lin (bb0280) 2017; 8 Sangkyu (bb0010) 2013; 29 Chou, Jiang, Liu, Fee (bb0535) 1979; 22 Chen, Feng, Lin (bb0235) 2013; 41 Qiu, Sun, Xiao, Xu (bb0135) 2017; 36 Wang, Wu, Wang, Deng (bb0670) 2009; 22 Hu, Huang, Shi, Lu, Cai (bb0335) 2011; 6 Du, Gu, Jiao (bb0435) 2014; 15 Zhou (bb0590) 2011; 284 Ju, Cao, Gu (bb0080) 2016; 397 Chou (bb0565) 1989; 264 Zhang, Zhao, Sun, Ma (bb0040) 2014; 15 Tahir, Hayat, Khan (bb0410) 2019; 294 Feng, Yang, Ding, Lin, Chen (bb0160) 2019; 111 Jia, Zhang, Liu, Xiao (bb0075) 2016; 32 Ding, Deng, Yuan, Liu, Lin, Chen (bb0255) 2014 Chou, Cheng, Xiao (bb0640) 2018; 34 Atchley, Zhao, Fernandes, Drüke (bb0720) 2005; 102 Wang (10.1016/j.ygeno.2019.05.027_bb0005) 2015; 16 Jia (10.1016/j.ygeno.2019.05.027_bb0060) 2016; 497 Chen (10.1016/j.ygeno.2019.05.027_bb0055) 2016; 5 Du (10.1016/j.ygeno.2019.05.027_bb0435) 2014; 15 Chen (10.1016/j.ygeno.2019.05.027_bb0675) 2011; 6 Chou (10.1016/j.ygeno.2019.05.027_bb0565) 1989; 264 Chou (10.1016/j.ygeno.2019.05.027_bb0640) 2018; 34 Xiao (10.1016/j.ygeno.2019.05.027_bb0655) 2018; 15 Chang (10.1016/j.ygeno.2019.05.027_bb0705) 2011; 2 Jia (10.1016/j.ygeno.2019.05.027_bb0070) 2016; 7 Jia (10.1016/j.ygeno.2019.05.027_bb0220) 2014; 15 Shen (10.1016/j.ygeno.2019.05.027_bb0420) 2008; 373 Xiao (10.1016/j.ygeno.2019.05.027_bb0490) 2018 Jiang (10.1016/j.ygeno.2019.05.027_bb0015) 2007; 104 Qiu (10.1016/j.ygeno.2019.05.027_bb0095) 2016; 32 Khan (10.1016/j.ygeno.2019.05.027_bb0295) 2019; 463 Cheng (10.1016/j.ygeno.2019.05.027_bb0520) 2017; 33, 2610 Xu (10.1016/j.ygeno.2019.05.027_bb0035) 2014; 9 Chou (10.1016/j.ygeno.2019.05.027_bb0545) 1980; 16 Chou (10.1016/j.ygeno.2019.05.027_bb0620) 1981; 18 Chou (10.1016/j.ygeno.2019.05.027_bb0485) 2001; 22 Chou (10.1016/j.ygeno.2019.05.027_bb0330) 2003; 90 Chen (10.1016/j.ygeno.2019.05.027_bb0445) 2014; 456 Feng (10.1016/j.ygeno.2019.05.027_bb0240) 2013; 442 Hussain (10.1016/j.ygeno.2019.05.027_bb0190) 2019; 568 Wisniewski (10.1016/j.ygeno.2019.05.027_bb0020) 2008; 36 Wan (10.1016/j.ygeno.2019.05.027_bb0715) 2016; 15 Feng (10.1016/j.ygeno.2019.05.027_bb0160) 2019; 111 Meher (10.1016/j.ygeno.2019.05.027_bb0375) 2017; 7 Liu (10.1016/j.ygeno.2019.05.027_bb0275) 2016; 32 Chou (10.1016/j.ygeno.2019.05.027_bb0440) 2009; 6 Tahir (10.1016/j.ygeno.2019.05.027_bb0460) 2019; 465 Cheng (10.1016/j.ygeno.2019.05.027_bb0515) 2018; 110 Ju (10.1016/j.ygeno.2019.05.027_bb0115) 2017; 77 Sabooh (10.1016/j.ygeno.2019.05.027_bb0180) 2018; 452 Liu (10.1016/j.ygeno.2019.05.027_bb0120) 2017; 13 Xu (10.1016/j.ygeno.2019.05.027_bb0305) 2017; 44 Chou (10.1016/j.ygeno.2019.05.027_bb0300) 2011; 273 Liu (10.1016/j.ygeno.2019.05.027_bb0260) 2015; 385 Yu (10.1016/j.ygeno.2019.05.027_bb0385) 2017; 8 Chen (10.1016/j.ygeno.2019.05.027_bb0665) 2008; 9 Batuwita (10.1016/j.ygeno.2019.05.027_bb0700) 2013 Li (10.1016/j.ygeno.2019.05.027_bb0310) 2006; 22 Cheng (10.1016/j.ygeno.2019.05.027_bb0650) 2018; 24 Li (10.1016/j.ygeno.2019.05.027_bb0195) 2019; 20 Akbar (10.1016/j.ygeno.2019.05.027_bb0145) 2018; 455 Xu (10.1016/j.ygeno.2019.05.027_bb0215) 2013; 1 Zhang (10.1016/j.ygeno.2019.05.027_bb0040) 2014; 15 Chou (10.1016/j.ygeno.2019.05.027_bb0345) 2015; 11 Behbahani (10.1016/j.ygeno.2019.05.027_bb0365) 2016; 411 Liu (10.1016/j.ygeno.2019.05.027_bb0465) 2015; 43 Khan (10.1016/j.ygeno.2019.05.027_bb0170) 2018; 550 Qiu (10.1016/j.ygeno.2019.05.027_bb0130) 2017; 8 Ju (10.1016/j.ygeno.2019.05.027_bb0660) 2017; 534 Khan (10.1016/j.ygeno.2019.05.027_bb0185) 2018; 45 Chou (10.1016/j.ygeno.2019.05.027_bb0575) 1990; 35 Chen (10.1016/j.ygeno.2019.05.027_bb0250) 2014; 462 Chou (10.1016/j.ygeno.2019.05.027_bb0540) 1980; 187 Chou (10.1016/j.ygeno.2019.05.027_bb0605) 1980; 12 Chou (10.1016/j.ygeno.2019.05.027_bb0535) 1979; 22 Liu (10.1016/j.ygeno.2019.05.027_bb0265) 2015; 474 Chen (10.1016/j.ygeno.2019.05.027_bb0280) 2017; 8 Shyamili (10.1016/j.ygeno.2019.05.027_bb0205) 2019 Chou (10.1016/j.ygeno.2019.05.027_bb0350) 2001; 44, 60 Jia (10.1016/j.ygeno.2019.05.027_bb0290) 2019; 460 Chen (10.1016/j.ygeno.2019.05.027_bb0450) 2015; 11 Wang (10.1016/j.ygeno.2019.05.027_bb0670) 2009; 22 Chen (10.1016/j.ygeno.2019.05.027_bb0680) 2006 Jia (10.1016/j.ygeno.2019.05.027_bb0065) 2016; 394 Xu (10.1016/j.ygeno.2019.05.027_bb0210) 2013; 8 Qiu (10.1016/j.ygeno.2019.05.027_bb0125) 2017; 13 Chou (10.1016/j.ygeno.2019.05.027_bb0415) 2017; 17 Chou (10.1016/j.ygeno.2019.05.027_bb0475) 2001; 42 Zhou (10.1016/j.ygeno.2019.05.027_bb0560) 1984; 222 Xie (10.1016/j.ygeno.2019.05.027_bb0025) 2013; 26 Cheng (10.1016/j.ygeno.2019.05.027_bb0645) 2018; 458 Atchley (10.1016/j.ygeno.2019.05.027_bb0720) 2005; 102 Qiu (10.1016/j.ygeno.2019.05.027_bb0050) 2015; 33 Lin (10.1016/j.ygeno.2019.05.027_bb0245) 2014; 42 Hu (10.1016/j.ygeno.2019.05.027_bb0335) 2011; 6 Chen (10.1016/j.ygeno.2019.05.027_bb0150) 2018; 561-562 Cheng (10.1016/j.ygeno.2019.05.027_bb0525) 2017; 8 Xu (10.1016/j.ygeno.2019.05.027_bb0030) 2014; 15 Huang (10.1016/j.ygeno.2019.05.027_bb0315) 2010; 26 Althaus (10.1016/j.ygeno.2019.05.027_bb0595) 1993; 32 Nakashima (10.1016/j.ygeno.2019.05.027_bb0710) 1994; 238 Chen (10.1016/j.ygeno.2019.05.027_bb0045) 2015; 490 Cheng (10.1016/j.ygeno.2019.05.027_bb0495) 2017; 644, 156-156 Ju (10.1016/j.ygeno.2019.05.027_bb0080) 2016; 397 Chen (10.1016/j.ygeno.2019.05.027_bb0155) 2018; 11 Qiu (10.1016/j.ygeno.2019.05.027_bb0175) 2018; 110 Chou (10.1016/j.ygeno.2019.05.027_bb0625) 1988; 30 Xu (10.1016/j.ygeno.2019.05.027_bb0105) 2016; 16 Hussain (10.1016/j.ygeno.2019.05.027_bb0285) 2019; 468 Ning (10.1016/j.ygeno.2019.05.027_bb0230) 2019; 470 Qiu (10.1016/j.ygeno.2019.05.027_bb0225) 2014 Wang (10.1016/j.ygeno.2019.05.027_bb0200) 2019; 461 Feng (10.1016/j.ygeno.2019.05.027_bb0110) 2017; 7 Xiao (10.1016/j.ygeno.2019.05.027_bb0505) 2017; 9 Cai (10.1016/j.ygeno.2019.05.027_bb0340) 2006; 238 Chou (10.1016/j.ygeno.2019.05.027_bb0600) 2011; 3 Chou (10.1016/j.ygeno.2019.05.027_bb0325) 2002; 1 Liu (10.1016/j.ygeno.2019.05.027_bb0470) 2017; 9 Althaus (10.1016/j.ygeno.2019.05.027_bb0580) 1993; 268 Qiu (10.1016/j.ygeno.2019.05.027_bb0090) 2016; 7 Chou (10.1016/j.ygeno.2019.05.027_bb0355) 2005; 21 Zhou (10.1016/j.ygeno.2019.05.027_bb0590) 2011; 284 Qiu (10.1016/j.ygeno.2019.05.027_bb0135) 2017; 36 Chou (10.1016/j.ygeno.2019.05.027_bb0630) 2009; 1 Ahmad (10.1016/j.ygeno.2019.05.027_bb0390) 2018; 463 Ahmad (10.1016/j.ygeno.2019.05.027_bb0405) 2019; 463 Chou (10.1016/j.ygeno.2019.05.027_bb0555) 1981; 59 Cheng (10.1016/j.ygeno.2019.05.027_bb0635) 2018; 34 Xu (10.1016/j.ygeno.2019.05.027_bb0140) 2017; 13 Althaus (10.1016/j.ygeno.2019.05.027_bb0570) 1993; 268 Cheng (10.1016/j.ygeno.2019.05.027_bb0500) 2017; 33 Liu (10.1016/j.ygeno.2019.05.027_bb0455) 2018; 34 Ju (10.1016/j.ygeno.2019.05.027_bb0690) 2017; 71 Vacic (10.1016/j.ygeno.2019.05.027_bb0735) 2006; 22 Jia (10.1016/j.ygeno.2019.05.027_bb0075) 2016; 32 Cao (10.1016/j.ygeno.2019.05.027_bb0430) 2013; 29 Xu (10.1016/j.ygeno.2019.05.027_bb0685) 2015; 5 Shen (10.1016/j.ygeno.2019.05.027_bb0615) 2009; 2 Sangkyu (10.1016/j.ygeno.2019.05.027_bb0010) 2013; 29 Chou (10.1016/j.ygeno.2019.05.027_bb0610) 1980; 12 Contreras-Torres (10.1016/j.ygeno.2019.05.027_bb0395) 2018; 454 Ju (10.1016/j.ygeno.2019.05.027_bb0165) 2018; 664 Dehzangi (10.1016/j.ygeno.2019.05.027_bb0360) 2015; 364 Shao (10.1016/j.ygeno.2019.05.027_bb0725) 2009; 4 Chen (10.1016/j.ygeno.2019.05.027_bb0235) 2013; 41 Ding (10.1016/j.ygeno.2019.05.027_bb0255) 2014 Du (10.1016/j.ygeno.2019.05.027_bb0425) 2012; 425 Qiu (10.1016/j.ygeno.2019.05.027_bb0100) 2016; 7 Zhang (10.1016/j.ygeno.2019.05.027_bb0320) 1992; 1 Sagara (10.1016/j.ygeno.2019.05.027_bb0730) 1998; 26 Cheng (10.1016/j.ygeno.2019.05.027_bb0510) 2018; 110 Chou (10.1016/j.ygeno.2019.05.027_bb0480) 2001; 14 Chou (10.1016/j.ygeno.2019.05.027_bb0585) 2010; 11 Zhang (10.1016/j.ygeno.2019.05.027_bb0400) 2018; 457 Chou (10.1016/j.ygeno.2019.05.027_bb0550) 1981; 18 Tahir (10.1016/j.ygeno.2019.05.027_bb0410) 2019; 294 Chou (10.1016/j.ygeno.2019.05.027_bb0530) 2013; 9 Xiao (10.1016/j.ygeno.2019.05.027_bb0270) 2015; 33 Liu (10.1016/j.ygeno.2019.05.027_bb0085) 2016; 497 Kabir (10.1016/j.ygeno.2019.05.027_bb0370) 2016; 291 Ju (10.1016/j.ygeno.2019.05.027_bb0380) 2017; 76 Veropoulos (10.1016/j.ygeno.2019.05.027_bb0695) 1999 |
References_xml | – volume: 17 start-page: 2337 year: 2017 end-page: 2358 ident: bb0415 article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science publication-title: Curr.Top. Med. Chem. – volume: 425 start-page: 117 year: 2012 end-page: 119 ident: bb0425 article-title: PseAAC-builder: a cross-platform stand-alone program for generating various special Chou's pseudo amino acid compositions publication-title: Anal. Biochem. – volume: 110 start-page: 239 year: 2018 end-page: 246 ident: bb0175 article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier publication-title: Genomics – volume: 11 start-page: 2620 year: 2015 end-page: 2634 ident: bb0450 article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences publication-title: Mol. BioSyst. – volume: 8 start-page: 58494 year: 2017 end-page: 58503 ident: bb0525 article-title: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals publication-title: Oncotarget – volume: 33 start-page: 1731 year: 2015 end-page: 1742 ident: bb0050 article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model publication-title: J. Biomol. Struct. Dyn. – volume: 294 start-page: 199 year: 2019 end-page: 210 ident: bb0410 article-title: iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition publication-title: Mol. Gen. Genomics. – volume: 71 start-page: 98 year: 2017 end-page: 103 ident: bb0690 article-title: Predicting lysine glycation sites using bi-profile bayes feature extraction publication-title: Comput. Biol. Chem. – volume: 77 start-page: 200 year: 2017 end-page: 204 ident: bb0115 article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Mol. Graph. Model. – volume: 6 year: 2011 ident: bb0675 article-title: Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs publication-title: PLoS One – volume: 268 start-page: 14875 year: 1993 end-page: 14880 ident: bb0580 article-title: The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase publication-title: J. Biol. Chem. – volume: 24 start-page: 4013 year: 2018 end-page: 4022 ident: bb0650 article-title: pLoc_bal-mPlant: Predict subcellular localization of plant proteins by general PseAAC and balancing training dataset publication-title: Curr. Pharm. Des. – volume: 397 start-page: 145 year: 2016 end-page: 150 ident: bb0080 article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Theor. Biol. – volume: 15 start-page: 3495 year: 2014 end-page: 3506 ident: bb0435 article-title: PseAAC-general: fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 10410 year: 2014 end-page: 10423 ident: bb0220 article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile bayes and Chou's pseudo amino acid composition publication-title: Int. J. Mol. Sci. – volume: 44, 60 start-page: 246 year: 2001 end-page: 255 ident: bb0350 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Proteins – volume: 9 start-page: 1092 year: 2013 end-page: 1100 ident: bb0530 article-title: Some remarks on predicting multi-label attributes in molecular biosystems publication-title: Mol. BioSyst. – volume: 411 start-page: 1 year: 2016 end-page: 5 ident: bb0365 article-title: Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou's general pseudo amino acid composition publication-title: J. Theor. Biol. – volume: 8 start-page: 41178 year: 2017 end-page: 41188 ident: bb0130 article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition publication-title: Oncotarget – volume: 16 start-page: 1440 year: 2015 end-page: 1442 ident: bb0005 article-title: Genetic incorporation of n(ε)-formyllysine, a new histone post-translational modification publication-title: Chembiochem – volume: 36 start-page: 570 year: 2008 end-page: 577 ident: bb0020 article-title: N-Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function publication-title: Nucleic Acids Res. – volume: 474 start-page: 69 year: 2015 end-page: 77 ident: bb0265 article-title: iDNA-methyl: identifying DNA methylation sites via pseudo trinucleotide composition publication-title: Anal. Biochem. – volume: 490 start-page: 26 year: 2015 end-page: 33 ident: bb0045 article-title: iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition publication-title: Anal. Biochem. – volume: 15 start-page: 7594 year: 2014 end-page: 7610 ident: bb0030 article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition publication-title: Int. J. Mol. Sci. – volume: 26 start-page: 680 year: 2010 end-page: 682 ident: bb0315 article-title: CD-HIT Suite: a web server for clusteringand comparing biological sequences publication-title: Bioinformatics – volume: 2 start-page: 136 year: 2009 end-page: 143 ident: bb0615 article-title: Prediction of protein folding rates from primary sequence by fusing multiple sequential features publication-title: J. Biomed. Sci. Eng. – volume: 32 start-page: 3116 year: 2016 end-page: 3123 ident: bb0095 article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types publication-title: Bioinformatics – volume: 462 start-page: 76 year: 2014 end-page: 83 ident: bb0250 article-title: iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition publication-title: Anal. Biochem. – volume: 385 start-page: 153 year: 2015 end-page: 159 ident: bb0260 article-title: Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy publication-title: J. Theor. Biol. – volume: 460 start-page: 195 year: 2019 end-page: 203 ident: bb0290 article-title: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC publication-title: J. Theor. Biol. – start-page: 83 year: 2013 end-page: 96 ident: bb0700 article-title: Class imbalance learning methods for support vector machines publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications – volume: 284 start-page: 142 year: 2011 end-page: 148 ident: bb0590 article-title: The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism publication-title: J. Theor. Biol. – volume: 458 start-page: 92 year: 2018 end-page: 102 ident: bb0645 article-title: pLoc_bal-mGneg: Predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC publication-title: J. Theor. Biol. – volume: 76 start-page: 356 year: 2017 end-page: 363 ident: bb0380 article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC publication-title: J. Mol. Graph. Model. – volume: 104 start-page: 60 year: 2007 end-page: 65 ident: bb0015 article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage publication-title: P. Natl. Acad. Sci. – volume: 11 start-page: 218 year: 2015 end-page: 234 ident: bb0345 article-title: Impacts of bioinformatics to medicinal chemistry publication-title: Med. Chem. – volume: 463 start-page: 99 year: 2019 end-page: 109 ident: bb0405 article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components publication-title: J. Theor. Biol. – volume: 3 start-page: 862 year: 2011 end-page: 865 ident: bb0600 article-title: Wenxiang: a web-server for drawing wenxiang diagrams publication-title: Nat. Sci. – volume: 12 start-page: 255 year: 1980 end-page: 263 ident: bb0605 article-title: Diffusion-controlled effects in reversible enzymatic fast reaction system: critical spherical shell and proximity rate constants publication-title: Biophys. Chem. – year: 2014 ident: bb0225 article-title: iMethyl-PseAAC: identification of protein methylation sites via a Pseudo amino acid composition approach publication-title: Biomed. Res. Int. – year: 2014 ident: bb0255 article-title: iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels publication-title: Biomed. Res. Int. – volume: 22 start-page: 341 year: 1979 end-page: 358 ident: bb0535 article-title: Graph theory of enzyme kinetics: 1. Steady-state reaction system publication-title: Sci. Sinica – volume: 534 start-page: 40 year: 2017 end-page: 45 ident: bb0660 article-title: Prediction of protein N-formylation using the composition of k-spaced amino acid pairs publication-title: Anal. Biochem. – volume: 1 start-page: 401 year: 1992 end-page: 408 ident: bb0320 article-title: An optimization approach to predicting protein structural class from amino acid composition publication-title: Protein Sci. – volume: 457 start-page: 163 year: 2018 end-page: 169 ident: bb0400 article-title: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC publication-title: J. Theor. Biol. – volume: 16 start-page: 109 year: 1980 end-page: 113 ident: bb0545 article-title: Three schematic rules for deriving apparent rate constants publication-title: Chem. Scr. – volume: 470 start-page: 43 year: 2019 end-page: 49 ident: bb0230 article-title: dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou's 5-step rule and pseudo components publication-title: J. Theor. Biol. – volume: 8 start-page: 107640 year: 2017 end-page: 107665 ident: bb0385 article-title: Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising publication-title: Oncotarget – volume: 7 start-page: 44310 year: 2016 end-page: 44321 ident: bb0090 article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC publication-title: Oncotarget – volume: 8 year: 2013 ident: bb0210 article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition publication-title: PLoS One – volume: 291 start-page: 285 year: 2016 end-page: 296 ident: bb0370 article-title: iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples publication-title: Mol. Gen. Genomics. – volume: 32 start-page: 362 year: 2016 end-page: 369 ident: bb0275 article-title: iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition publication-title: Bioinformatics – volume: 6 year: 2011 ident: bb0335 article-title: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties publication-title: PLoS One – volume: 394 start-page: 223 year: 2016 end-page: 230 ident: bb0065 article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach publication-title: J. Theor. Biol. – volume: 664 start-page: 78 year: 2018 end-page: 83 ident: bb0165 article-title: Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition publication-title: Gene – volume: 5 start-page: e332 year: 2016 ident: bb0055 article-title: iRNA-PseU: Identifying RNA pseudouridine sites publication-title: Mol. Ther.-Nucleic Acids – volume: 497 start-page: 48 year: 2016 end-page: 56 ident: bb0060 article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset publication-title: Anal. Biochem. – volume: 14 start-page: 75 year: 2001 end-page: 79 ident: bb0480 article-title: Using subsite coupling to predict signal peptides publication-title: Protein Eng. Des. Sel. – volume: 30 start-page: 3 year: 1988 end-page: 48 ident: bb0625 article-title: Review: low-frequency collective motion in biomacromolecules and its biological functions publication-title: Biophys. Chem. – volume: 22 start-page: 1536 year: 2006 end-page: 1537 ident: bb0735 article-title: Two sample logo: a graphical representation of the differences between two sets of sequence alignments publication-title: Bioinformatics – volume: 16 start-page: 591 year: 2016 end-page: 603 ident: bb0105 article-title: Recent progress in predicting posttranslational modification sites in proteins publication-title: Curr. Top. Med. Chem. – volume: 34 start-page: 1448 year: 2018 end-page: 1456 ident: bb0635 article-title: pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information publication-title: Bioinformatics – volume: 90 start-page: 1250 year: 2003 end-page: 1260 ident: bb0330 article-title: Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition publication-title: J. Cell. Biochem. – volume: 7 start-page: 34558 year: 2016 end-page: 34570 ident: bb0070 article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC publication-title: Oncotarget – volume: 45 start-page: 2501 year: 2018 end-page: 2509 ident: bb0185 article-title: iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC publication-title: Mol. Biol. Rep. – volume: 461 start-page: 51 year: 2019 end-page: 58 ident: bb0200 article-title: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou's general PseAAC publication-title: J. Theor. Biol. – volume: 11 start-page: 369 year: 2010 end-page: 378 ident: bb0585 article-title: Graphic rule for drug metabolism systems publication-title: Curr. Drug Metab. – volume: 550 start-page: 109 year: 2018 end-page: 116 ident: bb0170 article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC publication-title: Anal. Biochem. – volume: 26 start-page: 735 year: 2013 end-page: 742 ident: bb0025 article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC publication-title: Protein Eng. Des. Sel. – volume: 26 start-page: 1974 year: 1998 end-page: 1979 ident: bb0730 article-title: The use of sequence comparison to detect ‘identities’ in tRNA genes publication-title: Nucleic Acids Res. – volume: 568 start-page: 14 year: 2019 end-page: 23 ident: bb0190 article-title: SPalmitoylC-PseAAC: a sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins publication-title: Anal. Biochem. – volume: 497 start-page: 60 year: 2016 end-page: 67 ident: bb0085 article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties publication-title: Anal. Biochem. – volume: 456 start-page: 53 year: 2014 end-page: 60 ident: bb0445 article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition publication-title: Anal. Biochem. – volume: 35 start-page: 1 year: 1990 end-page: 24 ident: bb0575 article-title: Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems publication-title: Biophys. Chem. – volume: 111 start-page: 96 year: 2019 end-page: 102 ident: bb0160 article-title: iDNA6mA-PseKNC: identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC publication-title: Genomics – volume: 222 start-page: 169 year: 1984 end-page: 176 ident: bb0560 article-title: An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways publication-title: Biochem. J. – volume: 34 start-page: 1448 year: 2018 end-page: 1456 ident: bb0640 article-title: pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset publication-title: Genomics – volume: 7 year: 2017 ident: bb0375 article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC publication-title: Sci. Rep. – volume: 15 start-page: 1 year: 2018 end-page: 14 ident: bb0655 article-title: pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset publication-title: Med. Chem. – volume: 455 start-page: 205 year: 2018 end-page: 211 ident: bb0145 article-title: iMethyl-STTNC: identification of N(6)-methyladenosine sites by extending the idea of SAAC into Chou's PseAAC to formulate RNA sequences publication-title: J. Theor. Biol. – volume: 9 start-page: 67 year: 2017 end-page: 91 ident: bb0470 article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nat. Sci. – volume: 1 start-page: 63 year: 2009 end-page: 92 ident: bb0630 article-title: Recent advances in developing web-servers for predicting protein attributes publication-title: Nat. Sci. – volume: 20 start-page: 112 year: 2019 ident: bb0195 article-title: Positive-unlabelled learning of glycosylation sites in the human proteome publication-title: BMC Bioinforma. – volume: 110 start-page: 231 year: 2018 end-page: 239 ident: bb0510 article-title: pLoc-mGneg: Predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC publication-title: Genomics – volume: 33 start-page: 2221 year: 2015 end-page: 2233 ident: bb0270 article-title: iDrug-target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach publication-title: J. Biomol. Struct. Dyn. – volume: 452 start-page: 1 year: 2018 end-page: 9 ident: bb0180 article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC publication-title: J. Theor. Biol. – volume: 11 start-page: 468 year: 2018 end-page: 474 ident: bb0155 article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites publication-title: Mol. Ther. Nucleic Acids – volume: 463 start-page: 47 year: 2019 end-page: 55 ident: bb0295 article-title: pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments publication-title: J. Theor. Biol. – volume: 102 start-page: 6395 year: 2005 end-page: 6400 ident: bb0720 article-title: Solving the protein sequence metric problem publication-title: Proc. Natl. Acad. Sci. – volume: 41 start-page: e68 year: 2013 ident: bb0235 article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition publication-title: Nucleic Acids Res. – volume: 42 start-page: 12961 year: 2014 end-page: 12972 ident: bb0245 article-title: iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition publication-title: Nucleic Acids Res. – volume: 9 year: 2014 ident: bb0035 article-title: iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition publication-title: PLoS One – volume: 1 start-page: e171 year: 2013 ident: bb0215 article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins publication-title: Peer. J. – volume: 42 start-page: 136 year: 2001 end-page: 139 ident: bb0475 article-title: Prediction of protein signal sequences and their cleavage sites publication-title: Proteins – volume: 13 start-page: 734 year: 2017 end-page: 743 ident: bb0125 article-title: iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier publication-title: Med. Chem. – start-page: 315e324 year: 2006 ident: bb0680 article-title: Combining svms with various feature selection strategies publication-title: Feature Extraction – volume: 463 start-page: 99 year: 2018 end-page: 109 ident: bb0390 article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components publication-title: J. Theor. Biol. – volume: 644, 156-156 start-page: 315 year: 2017 end-page: 321 ident: bb0495 article-title: X. Xiao, pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC publication-title: Gene – volume: 373 start-page: 386 year: 2008 end-page: 388 ident: bb0420 article-title: PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition publication-title: Anal. Biochem. – volume: 465 start-page: 1 year: 2019 end-page: 6 ident: bb0460 article-title: iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components publication-title: J. Theor. Biol. – volume: 238 start-page: 172 year: 2006 end-page: 176 ident: bb0340 article-title: Using LogitBoost classifier to predict protein structural classes publication-title: J. Theor. Biol. – volume: 5 year: 2015 ident: bb0685 article-title: iSuc-PseAAC: Predicting lysine succinylation in proteins by incorporating peptide position-specific propensity publication-title: Sci. Rep. – volume: 22 start-page: 1973 year: 2001 end-page: 1979 ident: bb0485 article-title: Prediction of signal peptides using scaled window publication-title: Peptides – volume: 32 start-page: 6548 year: 1993 end-page: 6554 ident: bb0595 article-title: Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E publication-title: Biochem – volume: 7 start-page: 51270 year: 2016 end-page: 51283 ident: bb0100 article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier publication-title: Oncotarget – volume: 442 start-page: 118 year: 2013 end-page: 125 ident: bb0240 article-title: iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition publication-title: Anal. Biochem. – volume: 268 start-page: 6119 year: 1993 end-page: 6124 ident: bb0570 article-title: Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E publication-title: J. Biol. Chem. – volume: 454 start-page: 139 year: 2018 end-page: 145 ident: bb0395 article-title: Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou's PseAAC publication-title: J. Theor. Biol. – volume: 238 start-page: 54 year: 1994 end-page: 61 ident: bb0710 article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies publication-title: J. Mol. Biol. – year: 2019 ident: bb0205 article-title: Sequence and structure-based characterization of human and yeast ubiquitination sites by using Chou's sample formulation publication-title: Proteins – volume: 110 start-page: 50 year: 2018 end-page: 58 ident: bb0515 article-title: pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC publication-title: Genomics – volume: 9 start-page: 331 year: 2017 end-page: 349 ident: bb0505 article-title: pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins publication-title: Nat. Sci. – volume: 44 start-page: 243 year: 2017 end-page: 250 ident: bb0305 article-title: PLMD: an updated data resource of protein lysine modifications publication-title: J. Genet. Genomics – year: 2018 ident: bb0490 article-title: pLoc_bal-mGpos: predict subcellular localization of gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC publication-title: Genomics – volume: 12 start-page: 265 year: 1980 end-page: 269 ident: bb0610 article-title: The critical spherical shell in enzymatic fast reaction systems publication-title: Biophys. Chem. – volume: 187 start-page: 829 year: 1980 end-page: 835 ident: bb0540 article-title: Graphical rules for enzyme-catalyzed rate laws publication-title: Biochem. J. – volume: 36 year: 2017 ident: bb0135 article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory publication-title: Mol. Informa. – volume: 9 start-page: 101 year: 2008 ident: bb0665 article-title: Prediction of mucintype o-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs publication-title: BMC Bioinforma. – volume: 29 start-page: 81 year: 2013 end-page: 86 ident: bb0010 article-title: Post-translational modification of proteins in toxicological research: focus on lysine acylation publication-title: Toxicol. Res. – volume: 29 start-page: 960 year: 2013 end-page: 962 ident: bb0430 article-title: propy: A tool to generate various modes of Chou's PseAAC publication-title: Bioinformatics – volume: 4 year: 2009 ident: bb0725 article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction publication-title: PLoS One – volume: 43 start-page: W65 year: 2015 end-page: W71 ident: bb0465 article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nucleic Acids Res. – volume: 6 start-page: 262 year: 2009 end-page: 274 ident: bb0440 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr. Proteomics – volume: 59 start-page: 737 year: 1981 end-page: 755 ident: bb0555 article-title: Graphical rules of steady-state reaction systems publication-title: Can. J. Chem. – volume: 22 start-page: 1658 year: 2006 end-page: 1659 ident: bb0310 article-title: Cd-hit: a fast program for clustering and comparing largesets of protein or nucleotide sequences publication-title: Bioinformatics – volume: 22 start-page: 707e712 year: 2009 ident: bb0670 article-title: Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs publication-title: Protein Eng. Des. Sel. – volume: 34 start-page: 33 year: 2018 end-page: 40 ident: bb0455 article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC publication-title: Bioinformatics – volume: 21 start-page: 10 year: 2005 end-page: 19 ident: bb0355 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics – volume: 33 start-page: 3524 year: 2017 end-page: 3531 ident: bb0500 article-title: pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites publication-title: Bioinformatics – volume: 15 start-page: 11204 year: 2014 end-page: 11219 ident: bb0040 article-title: PSNO: predicting cysteine S-Nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 552 year: 2017 end-page: 559 ident: bb0120 article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC publication-title: Med. Chem. – volume: 561-562 start-page: 59 year: 2018 end-page: 65 ident: bb0150 article-title: iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition publication-title: Anal. Biochem. – volume: 18 start-page: 82 year: 1981 end-page: 86 ident: bb0550 article-title: A new graphical method for deriving rate equations for complicated mechanisms publication-title: Chem. Scr. – start-page: 55 year: 1999 end-page: 60 ident: bb0695 article-title: Controlling the sensitivity of support vector machines publication-title: Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden – volume: 33, 2610 start-page: 341 year: 2017 end-page: 346 ident: bb0520 article-title: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals publication-title: Bioinformatics – volume: 7 start-page: 155 year: 2017 end-page: 163 ident: bb0110 article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC publication-title: Mol. Ther.-Nucleic Acids – volume: 15 start-page: 4755 year: 2016 end-page: 4762 ident: bb0715 article-title: Ensemble linear neighborhood propagation forpredicting subchloro plast localization of multi-location proteins publication-title: J. Proteome Res. – volume: 273 start-page: 236 year: 2011 end-page: 247 ident: bb0300 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review) publication-title: J. Theor. Biol. – volume: 1 start-page: 429 year: 2002 end-page: 433 ident: bb0325 article-title: Bioinformatical analysis of G-protein-coupled receptors publication-title: J. Proteome Res. – volume: 2 start-page: 27 year: 2011 ident: bb0705 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 468 start-page: 1 year: 2019 end-page: 11 ident: bb0285 article-title: SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins publication-title: J. Theor. Biol. – volume: 264 start-page: 12074 year: 1989 end-page: 12079 ident: bb0565 article-title: Graphic rules in steady and non-steady enzyme kinetics publication-title: J. Biol. Chem. – volume: 8 start-page: 4208 year: 2017 end-page: 4217 ident: bb0280 article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences publication-title: Oncotarget – volume: 18 start-page: 126 year: 1981 end-page: 132 ident: bb0620 article-title: The biological functions of low-frequency phonons: 2. Cooperative effects publication-title: Chem. Scr. – volume: 13 start-page: 544 year: 2017 end-page: 551 ident: bb0140 article-title: iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC publication-title: Med. Chem. – volume: 364 start-page: 284 year: 2015 end-page: 294 ident: bb0360 article-title: Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC publication-title: J. Theor. Biol. – volume: 32 start-page: 3133 year: 2016 end-page: 3141 ident: bb0075 article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC publication-title: Bioinformatics – volume: 411 start-page: 1 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0365 article-title: Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou's general pseudo amino acid composition publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.09.001 – volume: 5 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0685 article-title: iSuc-PseAAC: Predicting lysine succinylation in proteins by incorporating peptide position-specific propensity publication-title: Sci. Rep. – volume: 458 start-page: 92 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0645 article-title: pLoc_bal-mGneg: Predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.09.005 – volume: 8 start-page: 58494 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0525 article-title: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals publication-title: Oncotarget doi: 10.18632/oncotarget.17028 – volume: 238 start-page: 172 year: 2006 ident: 10.1016/j.ygeno.2019.05.027_bb0340 article-title: Using LogitBoost classifier to predict protein structural classes publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.05.034 – volume: 11 start-page: 2620 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0450 article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences publication-title: Mol. BioSyst. doi: 10.1039/C5MB00155B – volume: 8 start-page: 4208 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0280 article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences publication-title: Oncotarget doi: 10.18632/oncotarget.13758 – volume: 42 start-page: 12961 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0245 article-title: iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1019 – volume: 34 start-page: 1448 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0640 article-title: pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset publication-title: Genomics – volume: 463 start-page: 99 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0405 article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.12.017 – volume: 8 start-page: 107640 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0385 article-title: Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising publication-title: Oncotarget doi: 10.18632/oncotarget.22585 – volume: 34 start-page: 1448 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0635 article-title: pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx711 – volume: 268 start-page: 6119 year: 1993 ident: 10.1016/j.ygeno.2019.05.027_bb0570 article-title: Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53227-0 – volume: 22 start-page: 1658 year: 2006 ident: 10.1016/j.ygeno.2019.05.027_bb0310 article-title: Cd-hit: a fast program for clustering and comparing largesets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 21 start-page: 10 year: 2005 ident: 10.1016/j.ygeno.2019.05.027_bb0355 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth466 – volume: 470 start-page: 43 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0230 article-title: dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou's 5-step rule and pseudo components publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2019.03.011 – volume: 26 start-page: 680 year: 2010 ident: 10.1016/j.ygeno.2019.05.027_bb0315 article-title: CD-HIT Suite: a web server for clusteringand comparing biological sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – issue: 2014 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0225 article-title: iMethyl-PseAAC: identification of protein methylation sites via a Pseudo amino acid composition approach publication-title: Biomed. Res. Int. – volume: 490 start-page: 26 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0045 article-title: iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.08.021 – volume: 7 start-page: 34558 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0070 article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC publication-title: Oncotarget doi: 10.18632/oncotarget.9148 – volume: 33, 2610 start-page: 341 issue: 33 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0520 article-title: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw644 – volume: 22 start-page: 1536 year: 2006 ident: 10.1016/j.ygeno.2019.05.027_bb0735 article-title: Two sample logo: a graphical representation of the differences between two sets of sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl151 – volume: 452 start-page: 1 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0180 article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.04.037 – volume: 461 start-page: 51 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0200 article-title: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou's general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.10.046 – volume: 22 start-page: 341 year: 1979 ident: 10.1016/j.ygeno.2019.05.027_bb0535 article-title: Graph theory of enzyme kinetics: 1. Steady-state reaction system publication-title: Sci. Sinica – volume: 104 start-page: 60 year: 2007 ident: 10.1016/j.ygeno.2019.05.027_bb0015 article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage publication-title: P. Natl. Acad. Sci. doi: 10.1073/pnas.0606775103 – volume: 11 start-page: 468 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0155 article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.03.012 – volume: 32 start-page: 6548 year: 1993 ident: 10.1016/j.ygeno.2019.05.027_bb0595 article-title: Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E publication-title: Biochem doi: 10.1021/bi00077a008 – year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0490 article-title: pLoc_bal-mGpos: predict subcellular localization of gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC publication-title: Genomics – volume: 534 start-page: 40 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0660 article-title: Prediction of protein N-formylation using the composition of k-spaced amino acid pairs publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.07.011 – volume: 16 start-page: 1440 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0005 article-title: Genetic incorporation of n(ε)-formyllysine, a new histone post-translational modification publication-title: Chembiochem doi: 10.1002/cbic.201500170 – volume: 16 start-page: 591 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0105 article-title: Recent progress in predicting posttranslational modification sites in proteins publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026615666150819110421 – volume: 15 start-page: 11204 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0040 article-title: PSNO: predicting cysteine S-Nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150711204 – volume: 9 start-page: 331 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0505 article-title: pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins publication-title: Nat. Sci. – volume: 44, 60 start-page: 246 issue: 43 year: 2001 ident: 10.1016/j.ygeno.2019.05.027_bb0350 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Proteins doi: 10.1002/prot.1035 – volume: 33 start-page: 3524 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0500 article-title: pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx476 – volume: 9 start-page: 67 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0470 article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nat. Sci. – volume: 22 start-page: 1973 year: 2001 ident: 10.1016/j.ygeno.2019.05.027_bb0485 article-title: Prediction of signal peptides using scaled window publication-title: Peptides doi: 10.1016/S0196-9781(01)00540-X – volume: 59 start-page: 737 year: 1981 ident: 10.1016/j.ygeno.2019.05.027_bb0555 article-title: Graphical rules of steady-state reaction systems publication-title: Can. J. Chem. doi: 10.1139/v81-107 – issue: 2014 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0255 article-title: iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels publication-title: Biomed. Res. Int. – volume: 110 start-page: 231 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0510 article-title: pLoc-mGneg: Predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC publication-title: Genomics doi: 10.1016/j.ygeno.2017.10.002 – volume: 26 start-page: 735 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0025 article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzt042 – volume: 41 start-page: e68 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0235 article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1450 – volume: 32 start-page: 3116 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0095 article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw380 – volume: 29 start-page: 960 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0430 article-title: propy: A tool to generate various modes of Chou's PseAAC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt072 – volume: 33 start-page: 1731 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0050 article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2014.968875 – volume: 45 start-page: 2501 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0185 article-title: iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-018-4417-z – volume: 268 start-page: 14875 year: 1993 ident: 10.1016/j.ygeno.2019.05.027_bb0580 article-title: The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)82414-0 – volume: 6 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0335 article-title: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties publication-title: PLoS One – volume: 222 start-page: 169 year: 1984 ident: 10.1016/j.ygeno.2019.05.027_bb0560 article-title: An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways publication-title: Biochem. J. doi: 10.1042/bj2220169 – volume: 497 start-page: 48 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0060 article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.12.009 – volume: 44 start-page: 243 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0305 article-title: PLMD: an updated data resource of protein lysine modifications publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2017.03.007 – volume: 11 start-page: 369 year: 2010 ident: 10.1016/j.ygeno.2019.05.027_bb0585 article-title: Graphic rule for drug metabolism systems publication-title: Curr. Drug Metab. doi: 10.2174/138920010791514261 – volume: 273 start-page: 236 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0300 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review) publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.12.024 – volume: 15 start-page: 4755 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0715 article-title: Ensemble linear neighborhood propagation forpredicting subchloro plast localization of multi-location proteins publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00686 – volume: 456 start-page: 53 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0445 article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.04.001 – volume: 454 start-page: 139 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0395 article-title: Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou's PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.05.033 – volume: 3 start-page: 862 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0600 article-title: Wenxiang: a web-server for drawing wenxiang diagrams publication-title: Nat. Sci. – start-page: 315e324 year: 2006 ident: 10.1016/j.ygeno.2019.05.027_bb0680 article-title: Combining svms with various feature selection strategies – volume: 550 start-page: 109 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0170 article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.04.021 – volume: 6 start-page: 262 year: 2009 ident: 10.1016/j.ygeno.2019.05.027_bb0440 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr. Proteomics doi: 10.2174/157016409789973707 – volume: 43 start-page: W65 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0465 article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv458 – volume: 187 start-page: 829 year: 1980 ident: 10.1016/j.ygeno.2019.05.027_bb0540 article-title: Graphical rules for enzyme-catalyzed rate laws publication-title: Biochem. J. doi: 10.1042/bj1870829 – volume: 4 year: 2009 ident: 10.1016/j.ygeno.2019.05.027_bb0725 article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction publication-title: PLoS One doi: 10.1371/journal.pone.0004920 – volume: 1 start-page: e171 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0215 article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins publication-title: Peer. J. doi: 10.7717/peerj.171 – volume: 463 start-page: 47 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0295 article-title: pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.12.015 – volume: 455 start-page: 205 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0145 article-title: iMethyl-STTNC: identification of N(6)-methyladenosine sites by extending the idea of SAAC into Chou's PseAAC to formulate RNA sequences publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.07.018 – volume: 465 start-page: 1 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0460 article-title: iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.12.034 – volume: 238 start-page: 54 year: 1994 ident: 10.1016/j.ygeno.2019.05.027_bb0710 article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1267 – volume: 90 start-page: 1250 year: 2003 ident: 10.1016/j.ygeno.2019.05.027_bb0330 article-title: Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition publication-title: J. Cell. Biochem. doi: 10.1002/jcb.10719 – volume: 12 start-page: 255 year: 1980 ident: 10.1016/j.ygeno.2019.05.027_bb0605 article-title: Diffusion-controlled effects in reversible enzymatic fast reaction system: critical spherical shell and proximity rate constants publication-title: Biophys. Chem. doi: 10.1016/0301-4622(80)80002-0 – volume: 1 start-page: 401 year: 1992 ident: 10.1016/j.ygeno.2019.05.027_bb0320 article-title: An optimization approach to predicting protein structural class from amino acid composition publication-title: Protein Sci. doi: 10.1002/pro.5560010312 – volume: 35 start-page: 1 year: 1990 ident: 10.1016/j.ygeno.2019.05.027_bb0575 article-title: Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems publication-title: Biophys. Chem. doi: 10.1016/0301-4622(90)80056-D – volume: 291 start-page: 285 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0370 article-title: iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples publication-title: Mol. Gen. Genomics. doi: 10.1007/s00438-015-1108-5 – volume: 36 start-page: 570 year: 2008 ident: 10.1016/j.ygeno.2019.05.027_bb0020 article-title: N-Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1057 – start-page: 55 year: 1999 ident: 10.1016/j.ygeno.2019.05.027_bb0695 article-title: Controlling the sensitivity of support vector machines – volume: 15 start-page: 10410 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0220 article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile bayes and Chou's pseudo amino acid composition publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150610410 – volume: 111 start-page: 96 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0160 article-title: iDNA6mA-PseKNC: identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC publication-title: Genomics doi: 10.1016/j.ygeno.2018.01.005 – volume: 26 start-page: 1974 year: 1998 ident: 10.1016/j.ygeno.2019.05.027_bb0730 article-title: The use of sequence comparison to detect ‘identities’ in tRNA genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.8.1974 – volume: 2 start-page: 136 year: 2009 ident: 10.1016/j.ygeno.2019.05.027_bb0615 article-title: Prediction of protein folding rates from primary sequence by fusing multiple sequential features publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2009.23024 – volume: 13 start-page: 544 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0140 article-title: iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC publication-title: Med. Chem. doi: 10.2174/1573406413666170419150052 – volume: 17 start-page: 2337 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0415 article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science publication-title: Curr.Top. Med. Chem. doi: 10.2174/1568026617666170414145508 – volume: 7 start-page: 51270 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0100 article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier publication-title: Oncotarget doi: 10.18632/oncotarget.9987 – volume: 76 start-page: 356 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0380 article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2017.07.022 – volume: 8 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0210 article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition publication-title: PLoS One – volume: 34 start-page: 33 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0455 article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx579 – volume: 20 start-page: 112 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0195 article-title: Positive-unlabelled learning of glycosylation sites in the human proteome publication-title: BMC Bioinforma. doi: 10.1186/s12859-019-2700-1 – volume: 442 start-page: 118 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0240 article-title: iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.05.024 – volume: 460 start-page: 195 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0290 article-title: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.10.021 – volume: 462 start-page: 76 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0250 article-title: iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.06.022 – volume: 664 start-page: 78 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0165 article-title: Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition publication-title: Gene doi: 10.1016/j.gene.2018.04.055 – volume: 2 start-page: 27 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0705 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 36 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0135 article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory publication-title: Mol. Informa. – volume: 15 start-page: 7594 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0030 article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15057594 – volume: 397 start-page: 145 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0080 article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.02.020 – volume: 294 start-page: 199 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0410 article-title: iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition publication-title: Mol. Gen. Genomics. doi: 10.1007/s00438-018-1498-2 – volume: 15 start-page: 1 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0655 article-title: pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset publication-title: Med. Chem. – volume: 568 start-page: 14 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0190 article-title: SPalmitoylC-PseAAC: a sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.12.019 – volume: 457 start-page: 163 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0400 article-title: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.08.042 – volume: 364 start-page: 284 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0360 article-title: Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2014.09.029 – volume: 24 start-page: 4013 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0650 article-title: pLoc_bal-mPlant: Predict subcellular localization of plant proteins by general PseAAC and balancing training dataset publication-title: Curr. Pharm. Des. doi: 10.2174/1381612824666181119145030 – volume: 5 start-page: e332 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0055 article-title: iRNA-PseU: Identifying RNA pseudouridine sites publication-title: Mol. Ther.-Nucleic Acids – volume: 18 start-page: 126 year: 1981 ident: 10.1016/j.ygeno.2019.05.027_bb0620 article-title: The biological functions of low-frequency phonons: 2. Cooperative effects publication-title: Chem. Scr. – start-page: 83 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0700 article-title: Class imbalance learning methods for support vector machines – volume: 497 start-page: 60 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0085 article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.12.017 – volume: 13 start-page: 552 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0120 article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC publication-title: Med. Chem. doi: 10.2174/1573406413666170515120507 – volume: 16 start-page: 109 year: 1980 ident: 10.1016/j.ygeno.2019.05.027_bb0545 article-title: Three schematic rules for deriving apparent rate constants publication-title: Chem. Scr. – volume: 15 start-page: 3495 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0435 article-title: PseAAC-general: fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15033495 – year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0205 article-title: Sequence and structure-based characterization of human and yeast ubiquitination sites by using Chou's sample formulation publication-title: Proteins – volume: 32 start-page: 362 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0275 article-title: iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv604 – volume: 42 start-page: 136 year: 2001 ident: 10.1016/j.ygeno.2019.05.027_bb0475 article-title: Prediction of protein signal sequences and their cleavage sites publication-title: Proteins doi: 10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F – volume: 11 start-page: 218 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0345 article-title: Impacts of bioinformatics to medicinal chemistry publication-title: Med. Chem. doi: 10.2174/1573406411666141229162834 – volume: 8 start-page: 41178 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0130 article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition publication-title: Oncotarget doi: 10.18632/oncotarget.17104 – volume: 7 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0375 article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC publication-title: Sci. Rep. doi: 10.1038/srep42362 – volume: 29 start-page: 81 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0010 article-title: Post-translational modification of proteins in toxicological research: focus on lysine acylation publication-title: Toxicol. Res. doi: 10.5487/TR.2013.29.2.081 – volume: 9 start-page: 101 year: 2008 ident: 10.1016/j.ygeno.2019.05.027_bb0665 article-title: Prediction of mucintype o-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-9-101 – volume: 644, 156-156 start-page: 315 issue: 628 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0495 article-title: X. Xiao, pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC publication-title: Gene doi: 10.1016/j.gene.2017.07.036 – volume: 30 start-page: 3 year: 1988 ident: 10.1016/j.ygeno.2019.05.027_bb0625 article-title: Review: low-frequency collective motion in biomacromolecules and its biological functions publication-title: Biophys. Chem. doi: 10.1016/0301-4622(88)85002-6 – volume: 7 start-page: 44310 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0090 article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC publication-title: Oncotarget doi: 10.18632/oncotarget.10027 – volume: 33 start-page: 2221 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0270 article-title: iDrug-target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2014.998710 – volume: 22 start-page: 707e712 year: 2009 ident: 10.1016/j.ygeno.2019.05.027_bb0670 article-title: Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzp055 – volume: 32 start-page: 3133 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0075 article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw387 – volume: 463 start-page: 99 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0390 article-title: MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.12.017 – volume: 385 start-page: 153 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0260 article-title: Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2015.08.025 – volume: 6 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0675 article-title: Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs publication-title: PLoS One – volume: 110 start-page: 50 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0515 article-title: pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC publication-title: Genomics doi: 10.1016/j.ygeno.2017.08.005 – volume: 394 start-page: 223 year: 2016 ident: 10.1016/j.ygeno.2019.05.027_bb0065 article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.01.020 – volume: 264 start-page: 12074 year: 1989 ident: 10.1016/j.ygeno.2019.05.027_bb0565 article-title: Graphic rules in steady and non-steady enzyme kinetics publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)80175-2 – volume: 9 year: 2014 ident: 10.1016/j.ygeno.2019.05.027_bb0035 article-title: iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition publication-title: PLoS One – volume: 102 start-page: 6395 year: 2005 ident: 10.1016/j.ygeno.2019.05.027_bb0720 article-title: Solving the protein sequence metric problem publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0408677102 – volume: 1 start-page: 429 year: 2002 ident: 10.1016/j.ygeno.2019.05.027_bb0325 article-title: Bioinformatical analysis of G-protein-coupled receptors publication-title: J. Proteome Res. doi: 10.1021/pr025527k – volume: 12 start-page: 265 year: 1980 ident: 10.1016/j.ygeno.2019.05.027_bb0610 article-title: The critical spherical shell in enzymatic fast reaction systems publication-title: Biophys. Chem. doi: 10.1016/0301-4622(80)80003-2 – volume: 561-562 start-page: 59 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0150 article-title: iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.09.002 – volume: 474 start-page: 69 year: 2015 ident: 10.1016/j.ygeno.2019.05.027_bb0265 article-title: iDNA-methyl: identifying DNA methylation sites via pseudo trinucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.12.009 – volume: 1 start-page: 63 year: 2009 ident: 10.1016/j.ygeno.2019.05.027_bb0630 article-title: Recent advances in developing web-servers for predicting protein attributes publication-title: Nat. Sci. – volume: 468 start-page: 1 year: 2019 ident: 10.1016/j.ygeno.2019.05.027_bb0285 article-title: SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2019.02.007 – volume: 9 start-page: 1092 year: 2013 ident: 10.1016/j.ygeno.2019.05.027_bb0530 article-title: Some remarks on predicting multi-label attributes in molecular biosystems publication-title: Mol. BioSyst. doi: 10.1039/c3mb25555g – volume: 110 start-page: 239 year: 2018 ident: 10.1016/j.ygeno.2019.05.027_bb0175 article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier publication-title: Genomics doi: 10.1016/j.ygeno.2017.10.008 – volume: 18 start-page: 82 year: 1981 ident: 10.1016/j.ygeno.2019.05.027_bb0550 article-title: A new graphical method for deriving rate equations for complicated mechanisms publication-title: Chem. Scr. – volume: 425 start-page: 117 year: 2012 ident: 10.1016/j.ygeno.2019.05.027_bb0425 article-title: PseAAC-builder: a cross-platform stand-alone program for generating various special Chou's pseudo amino acid compositions publication-title: Anal. Biochem. doi: 10.1016/j.ab.2012.03.015 – volume: 77 start-page: 200 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0115 article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2017.08.020 – volume: 14 start-page: 75 year: 2001 ident: 10.1016/j.ygeno.2019.05.027_bb0480 article-title: Using subsite coupling to predict signal peptides publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/14.2.75 – volume: 7 start-page: 155 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0110 article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC publication-title: Mol. Ther.-Nucleic Acids doi: 10.1016/j.omtn.2017.03.006 – volume: 284 start-page: 142 year: 2011 ident: 10.1016/j.ygeno.2019.05.027_bb0590 article-title: The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2011.06.006 – volume: 71 start-page: 98 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0690 article-title: Predicting lysine glycation sites using bi-profile bayes feature extraction publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2017.10.004 – volume: 13 start-page: 734 year: 2017 ident: 10.1016/j.ygeno.2019.05.027_bb0125 article-title: iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier publication-title: Med. Chem. doi: 10.2174/1573406413666170623082245 – volume: 373 start-page: 386 year: 2008 ident: 10.1016/j.ygeno.2019.05.027_bb0420 article-title: PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2007.10.012 |
SSID | ssj0009382 |
Score | 2.4998684 |
Snippet | Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 859 |
SubjectTerms | bioinformatics chromatin DNA epigenetics Feature extraction Formylation histones lysine Post-translational modification prediction Support vector machine support vector machines |
Title | Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components |
URI | https://dx.doi.org/10.1016/j.ygeno.2019.05.027 https://www.ncbi.nlm.nih.gov/pubmed/31175975 https://www.proquest.com/docview/2305155089 https://www.proquest.com/docview/2339791297 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQcECyv8qgGCYkLYZN1EsfHsqLagqiQoNLeLMePkrYk0WaDtBf-Qv9yZ_IoIMEeOG5kJ1ZmPPNt5vM3jL3iOo6o1RFucZMGGP00xkGrA-4ijYA81iKj886fjtPFSfxhmSx32Hw8C0O0yiH29zG9i9bDlenwNqd1UUy_4P5AsI0JUHJMVJIO_MaxIC9_-_MXzUPyrmEUDQ5o9Kg81HG8NiSESvwu2cl3UmuZv2enf6HPLgsd3mN3B_gIB_0K77MdV07Yzb6h5GbCbs3H_m0Tduc3qcEH7PLzikoyZAaoPJAQSemAEOumZ8MBlZEbIB78KSAqBCKbD4wumnEeYOzB1wX6e1FWoE1hoaZiEPwoNMy_Ve3rBpIAnaZuYNVeONClhdNe1RrqxrW26u9ZEnfjITs5fP91vgiGZgyBQQi1DlLvTWYSzWUY-yzLbY7Zz8-ssHHmdcg9z7MwF7kXiUxF7mahS4WPMBVE3ObG8Edst8QnPGFgbGS4dk5Iy2Od6DxMtHUIVowQmbNij81GIygzKJVTw4wLNVLSzlRnOUWWU2Gi0HJ77M31pLoX6tg-PB2tq_7wN4WpZPvEl6MvKDQolVd06aq2UfhnjvrlhJncNobqqIix8D6Pe0e6Xi0n1VQpkqf_u7Rn7PaMvgZ0H4ies931qnUvEDKt8_1uT-yzGwdHHxfH-Oto-e4K20IZWA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESo9VLC8ynOQQFwIm8RJnBw4oIVqSx9CopV6cx3bKYE2iTYb0F76F_gx_EFm8iggwR6Qeo1ix_Jnz3z2fJlh7BlXgUeljnCL68hB66fQDhrlcOspJOSBEjH977y3H00Pg_dH4dEK-zH8C0Oyyt72dza9tdb9k3E_m-Mqz8cfcX8g2UYHmHB0VEncKyt37OIbntvq19tvEeTnvr_17mAydfrSAo5GQjB3oizTsQ4VnviDLI5Tk6Itz3wjTBBnyuUZT2M3FWkmwiQSqfVdG4nMQ8PmcZNqzbHfK-xqgOaCyia8Ov-lK0l4W6GKRufQ8IZUR62obEGZV0lQlrT5QqmWzd_d4b_obuv2tm6wjZ6vwptuSm6yFVuM2LWuguVixNYmQ8G4EVv_LbfhLfb9w4xiQIQ7lBlQ5pPCAlHkRSe_A4pb10DC-xNAGgqkbu8lZNTii4PGDvEBdZYXJSidG6go-gRfcwWTT2XzoobQwVVa1TBrTi2owsBJl0Ybqto2puz6LEgscpsdXgpEd9hqgV-4x0AbT3NlrUgMD1SoUjdUxiI70kLE1ohN5g8gSN2nRqcKHady0MB9li1ykpCTbigRuU328qJR1WUGWf56NKAr_1jgEn3X8oZPh7UgEVCK56jClk0t8fRIBXrcOFn2DgVukdRhP3e7hXQxWk5pWhMR3v_foT1ha9ODvV25u72_84Bd9-kqor2deshW57PGPkK-Nk8ft_sD2PFlb8ifIStVng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+lysine+formylation+sites+using+the+composition+of+k-spaced+amino+acid+pairs+via+Chou%27s+5-steps+rule+and+general+pseudo+components&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Ju%2C+Zhe&rft.au=Wang%2C+Shi-Yun&rft.date=2020-01-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=112&rft.issue=1&rft.spage=859&rft_id=info:doi/10.1016%2Fj.ygeno.2019.05.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |