Energy-to-Peak State Estimation With Intermittent Measurement Outliers: The Single-Output Case

This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 11; pp. 11504 - 11515
Main Authors Zou, Lei, Wang, Zidong, Dong, Hongli, Han, Qing-Long
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3057545

Cover

Abstract This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.
AbstractList This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the “occurrence frequency” of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.
This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.
Author Zou, Lei
Dong, Hongli
Han, Qing-Long
Wang, Zidong
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-0409-7941
  surname: Zou
  fullname: Zou, Lei
  email: lei.zou@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Hongli
  orcidid: 0000-0001-8531-6757
  surname: Dong
  fullname: Dong, Hongli
  email: shiningdhl@vip.126.com
  organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing, China
– sequence: 4
  givenname: Qing-Long
  orcidid: 0000-0002-7207-0716
  surname: Han
  fullname: Han, Qing-Long
  email: qhan@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33750719$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT5_QCkUQy-5eKvRh2X11i6bNpCSQLaUXCK09jhRastbST7k30fb3eSQQ-cyw_C8w_C-h2TPjx4JeQ90BkD15-X85tuMUQYzTqWSQr4hBwyqumRMyb2XuVL75CTGB5qrzitdvyP7nCtJFegDcrvwGO4eyzSWV2j_FNfJJiwWMbnBJjf64rdL98W5TxgGlxL6VPxEG6eAw2a-nFLvMMQvxfIei2vn73os83I9pWJuIx6Tt53tI57s-hH5dbZYzn-UF5ffz-dfL8qGa5bKStCaIYDUHeoKFO9E04Hg2DQtrrilglreYbuyIKxstZWa1UIyLtpOQNXwI3K6vbsO498JYzKDiw32vfU4TtEwSQWXTFUio59eoQ_jFHz-zjDFKoC6VpCpjztqWg3YmnXIhoRH8-xcBtQWaMIYY8DONC79sywF63oD1GxiMpuYzCYms4spK-GV8vn4_zQfthqHiC-85jXLdvEnXXGb_A
CODEN ITCEB8
CitedBy_id crossref_primary_10_1002_acs_3833
crossref_primary_10_1080_21642583_2025_2474471
crossref_primary_10_1080_00207721_2021_1970278
crossref_primary_10_1109_JAS_2023_123051
crossref_primary_10_1109_TCYB_2022_3166649
crossref_primary_10_1080_00207721_2021_1995528
crossref_primary_10_1109_JAS_2023_123393
crossref_primary_10_1016_j_isatra_2022_04_011
crossref_primary_10_1109_TIM_2022_3220302
crossref_primary_10_1080_00207721_2022_2122903
crossref_primary_10_1002_oca_2996
crossref_primary_10_1177_00202940221104866
crossref_primary_10_1016_j_neucom_2023_126255
crossref_primary_10_1016_j_jfranklin_2023_03_028
crossref_primary_10_1007_s11071_025_10908_8
crossref_primary_10_1007_s00034_023_02497_x
crossref_primary_10_1016_j_ins_2024_120251
crossref_primary_10_1016_j_neucom_2023_01_066
crossref_primary_10_1109_TETCI_2022_3209306
crossref_primary_10_1109_TSMC_2024_3354883
crossref_primary_10_1016_j_ins_2024_120632
crossref_primary_10_1109_TPEL_2024_3494858
crossref_primary_10_53941_ijndi0201007
Cites_doi 10.1007/s00521-016-2271-2
10.1080/00207721.2019.1586002
10.1016/j.automatica.2016.01.015
10.1109/TAC.2020.2968975
10.1049/iet-cta.2009.0243
10.1109/TSMC.2019.2957810
10.1109/9.8655
10.1109/TSMC.2019.2895060
10.1109/TCYB.2018.2885653
10.1049/iet-cta.2015.1086
10.1080/00207721.2020.1768453
10.1080/00207179.2018.1490819
10.1016/j.automatica.2015.06.037
10.1109/TCYB.2018.2876615
10.1016/j.neucom.2019.04.065
10.1109/TNNLS.2019.2927554
10.1016/j.neucom.2018.12.022
10.1016/j.sigpro.2017.03.029
10.1016/j.automatica.2020.108908
10.1109/TSP.2009.2039731
10.1016/j.automatica.2007.06.029
10.1016/j.neunet.2020.01.013
10.1016/S0951-8320(02)00243-0
10.1109/TAC.2019.2910167
10.1080/00207721.2020.1794080
10.1016/j.neucom.2018.12.021
10.1109/TSMC.2018.2876203
10.1016/j.neunet.2020.08.023
10.1109/TR.1986.4335552
10.1016/j.jfranklin.2015.02.010
10.1016/j.neunet.2019.09.006
10.1109/7.625133
10.1016/j.jfranklin.2018.01.038
10.1109/TAC.1967.1098739
10.1109/TSMC.2019.2960541
10.1016/j.neucom.2020.10.050
10.1109/TAC.2020.3016767
10.1049/iet-cta.2013.1068
10.1109/JAS.2021.1003826
10.1109/TCYB.2017.2789212
10.1109/TCYB.2018.2836977
10.1016/j.neucom.2016.08.095
10.1109/TSMC.2018.2874508
10.1080/03081079.2018.1462352
10.1016/j.inffus.2019.08.013
10.1016/j.automatica.2017.10.022
10.1109/TNNLS.2019.2927610
10.1016/j.ins.2017.12.010
10.1109/TCYB.2017.2769722
10.1007/s11071-018-4322-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3057545
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 11515
ExternalDocumentID 33750719
10_1109_TCYB_2021_3057545
9382961
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province of China
  grantid: ZD2019F001
  funderid: 10.13039/501100005046
– fundername: Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/100005156
– fundername: European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 820776 (INTEGRADDE)
– fundername: National Natural Science Foundation of China
  grantid: 61703245; 61873148; 61933007; 61873058
  funderid: 10.13039/501100001809
– fundername: Postdoctoral Special Innovation Foundation of Shandong province of China
  grantid: 201701015
  funderid: 10.13039/501100018546
– fundername: Royal Society of the U.K.
  funderid: 10.13039/501100000288
– fundername: China Postdoctoral Science Foundation
  grantid: 2018T110702
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-64082e1159fe96173f4cf143eccdeb3a040a3fedba14a5d9a592845234df416c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 01:39:40 EDT 2025
Mon Jun 30 04:24:50 EDT 2025
Thu Jan 02 22:56:25 EST 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Wed Aug 27 02:18:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-64082e1159fe96173f4cf143eccdeb3a040a3fedba14a5d9a592845234df416c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7207-0716
0000-0002-0409-7941
0000-0002-9576-7401
0000-0001-8531-6757
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/23547/3/FullText.pdf
PMID 33750719
PQID 2726118871
PQPubID 85422
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3057545
crossref_primary_10_1109_TCYB_2021_3057545
proquest_journals_2726118871
proquest_miscellaneous_2504352764
pubmed_primary_33750719
ieee_primary_9382961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Gabriel (ref7)
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1007/s00521-016-2271-2
– ident: ref32
  doi: 10.1080/00207721.2019.1586002
– ident: ref3
  doi: 10.1016/j.automatica.2016.01.015
– ident: ref49
  doi: 10.1109/TAC.2020.2968975
– start-page: 1151
  volume-title: Proc. IEEE Int. Conf. Robot. Autom.
  ident: ref7
  article-title: An outlier-robust Kalman filter
– ident: ref46
  doi: 10.1049/iet-cta.2009.0243
– ident: ref29
  doi: 10.1109/TSMC.2019.2957810
– ident: ref40
  doi: 10.1109/9.8655
– ident: ref20
  doi: 10.1109/TSMC.2019.2895060
– ident: ref21
  doi: 10.1109/TCYB.2018.2885653
– ident: ref43
  doi: 10.1049/iet-cta.2015.1086
– ident: ref18
  doi: 10.1080/00207721.2020.1768453
– ident: ref47
  doi: 10.1080/00207179.2018.1490819
– ident: ref39
  doi: 10.1016/j.automatica.2015.06.037
– ident: ref17
  doi: 10.1109/TCYB.2018.2876615
– ident: ref24
  doi: 10.1016/j.neucom.2019.04.065
– ident: ref14
  doi: 10.1109/TNNLS.2019.2927554
– ident: ref25
  doi: 10.1016/j.neucom.2018.12.022
– ident: ref19
  doi: 10.1016/j.sigpro.2017.03.029
– ident: ref13
  doi: 10.1016/j.automatica.2020.108908
– ident: ref8
  doi: 10.1109/TSP.2009.2039731
– ident: ref1
  doi: 10.1016/j.automatica.2007.06.029
– ident: ref36
  doi: 10.1016/j.neunet.2020.01.013
– ident: ref5
  doi: 10.1016/S0951-8320(02)00243-0
– ident: ref50
  doi: 10.1109/TAC.2019.2910167
– ident: ref33
  doi: 10.1080/00207721.2020.1794080
– ident: ref26
  doi: 10.1016/j.neucom.2018.12.021
– ident: ref30
  doi: 10.1109/TSMC.2018.2876203
– ident: ref22
  doi: 10.1016/j.neunet.2020.08.023
– ident: ref4
  doi: 10.1109/TR.1986.4335552
– ident: ref11
  doi: 10.1016/j.jfranklin.2015.02.010
– ident: ref23
  doi: 10.1016/j.neunet.2019.09.006
– ident: ref10
  doi: 10.1109/7.625133
– ident: ref38
  doi: 10.1016/j.jfranklin.2018.01.038
– ident: ref41
  doi: 10.1109/TAC.1967.1098739
– ident: ref6
  doi: 10.1109/TSMC.2019.2960541
– ident: ref45
  doi: 10.1016/j.neucom.2020.10.050
– ident: ref31
  doi: 10.1109/TAC.2020.3016767
– ident: ref35
  doi: 10.1049/iet-cta.2013.1068
– ident: ref51
  doi: 10.1109/JAS.2021.1003826
– ident: ref44
  doi: 10.1109/TCYB.2017.2789212
– ident: ref27
  doi: 10.1109/TCYB.2018.2836977
– ident: ref16
  doi: 10.1016/j.neucom.2016.08.095
– ident: ref48
  doi: 10.1109/TSMC.2018.2874508
– ident: ref12
  doi: 10.1080/03081079.2018.1462352
– ident: ref37
  doi: 10.1016/j.inffus.2019.08.013
– ident: ref2
  doi: 10.1016/j.automatica.2017.10.022
– ident: ref28
  doi: 10.1109/TNNLS.2019.2927610
– ident: ref42
  doi: 10.1016/j.ins.2017.12.010
– ident: ref9
  doi: 10.1109/TCYB.2017.2769722
– ident: ref34
  doi: 10.1007/s11071-018-4322-y
SSID ssj0000816898
Score 2.4596422
Snippet This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11504
SubjectTerms Anomaly detection
Constraints
Data analysis
Discrete time systems
Energy measurement
Energy-to-peak performance
Gain measurement
intermittent measurement outliers (IMOs)
Noise measurement
Optimization
Outliers (statistics)
parameter-dependent (PD) state estimator
Pollution measurement
Sequences
State estimation
Step functions
Technological innovation
Title Energy-to-Peak State Estimation With Intermittent Measurement Outliers: The Single-Output Case
URI https://ieeexplore.ieee.org/document/9382961
https://www.ncbi.nlm.nih.gov/pubmed/33750719
https://www.proquest.com/docview/2726118871
https://www.proquest.com/docview/2504352764
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tfeKFMQZb2UBG4gEm3CWxk9S8QdWpQio8sInxQmQ7jjata6vNeeGv585xg4YA8WbFduLozr7fne8D4FVTmjJzOuF1qXMulbFcJ9bwRAhtGyPGqM2Rt8WnYnYuP17kF1vwto-Fcc4F5zM3oma4y69XtiVT2YkS40yRrrONbNbFavX2lFBAIpS-zbDBEVWU8RIzTdTJ2eTbB1QGs3QkCKBIKlgjRElgSN2TSKHEyt_RZpA6pzsw36y3cza5HrXejOyP31I5_u8PPYKHEX6y9x2_7MKWWz6G3bjB79jrmIX6zR58n4aoQO5XHI_NaxZQKZviidAFO7KvV_6SBYPizZVH5O3Z_Je9kX1u_YKqbL9jyIjsCwrIheP4cN16NkHJ-QTOT6dnkxmPxRi4RQjleUGVqR3iR9U4XHIpGmkbBFvIAjUq5BoPAy0aVxudSp3XSucKJR-qubJuEPRZ8RQGy9XSHQBzY1TCjCqUzaWkKaYWiSOvLFvUad4MIdkQpLIxUzkVzFhUQWNJVEXkrIicVSTnEI77KesuTce_Bu8RKfqBkQpDONpQvYob-a7KSlQxUzyJsftl341bkO5V9NKtWhxDWeDyrCzkEPY7bunfvWGyZ3_-5iE8yCieIgQ3HsHA37buOaIcb14E9v4JkX32pA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoJTHQgtG4gAIb5PYSdbcYLXVAt1yYCvKpZHtOKLqslu1zqW_vjOONwgEiJsV24mjGXu-Gc8D4EVTmjJzOuF1qXMulbFcJ9bwRAhtGyNGqM2Rt8VhMT2SH4_z4w1408fCOOeC85kbUjPc5dcr25KpbE-JUaZI17mBcl_mXbRWb1EJJSRC8dsMGxxxRRmvMdNE7c3H396jOpilQ0EQRVLJGiFKgkPqF5kUiqz8HW8GubN_B2brFXfuJmfD1puhvfotmeP__tJduB0BKHvXccwWbLjlPdiKW_ySvYx5qF9tw8kkxAVyv-J4cJ6xgEvZBM-ELtyRfT3131kwKf449Yi9PZv9tDiyz61fUJ3ttwxZkX1BEblwHB-et56NUXbeh6P9yXw85bEcA7cIojwvqDa1QwSpGodLLkUjbYNwC5mgRpVc43GgReNqo1Op81rpXKHsQ0VX1g3CPisewOZytXSPgLkRqmFGFcrmUtIUU4vEkV-WLeo0bwaQrAlS2ZirnEpmLKqgsySqInJWRM4qknMAr_sp512ijn8N3iZS9AMjFQaws6Z6FbfyZZWVqGSmeBZj9_O-Gzch3azopVu1OIbywOVZWcgBPOy4pX_3mske__mbz-DmdD47qA4-HH56Arcyiq4IoY47sOkvWreLmMebp4HVrwGh0vnx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-to-Peak+State+Estimation+With+Intermittent+Measurement+Outliers%3A+The+Single-Output+Case&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zou%2C+Lei&rft.au=Wang%2C+Zidong&rft.au=Dong%2C+Hongli&rft.au=Han%2C+Qing-Long&rft.date=2022-11-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=11&rft.spage=11504&rft_id=info:doi/10.1109%2FTCYB.2021.3057545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon