Energy-to-Peak State Estimation With Intermittent Measurement Outliers: The Single-Output Case
This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occ...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 11; pp. 11504 - 11515 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2021.3057545 |
Cover
Abstract | This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy. |
---|---|
AbstractList | This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the “occurrence frequency” of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy. This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the "occurrence frequency" of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy. |
Author | Zou, Lei Dong, Hongli Han, Qing-Long Wang, Zidong |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-0409-7941 surname: Zou fullname: Zou, Lei email: lei.zou@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: zidong.wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Hongli orcidid: 0000-0001-8531-6757 surname: Dong fullname: Dong, Hongli email: shiningdhl@vip.126.com organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing, China – sequence: 4 givenname: Qing-Long orcidid: 0000-0002-7207-0716 surname: Han fullname: Han, Qing-Long email: qhan@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33750719$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaT5_QCkUQy-5eKvRh2X11i6bNpCSQLaUXCK09jhRastbST7k30fb3eSQQ-cyw_C8w_C-h2TPjx4JeQ90BkD15-X85tuMUQYzTqWSQr4hBwyqumRMyb2XuVL75CTGB5qrzitdvyP7nCtJFegDcrvwGO4eyzSWV2j_FNfJJiwWMbnBJjf64rdL98W5TxgGlxL6VPxEG6eAw2a-nFLvMMQvxfIei2vn73os83I9pWJuIx6Tt53tI57s-hH5dbZYzn-UF5ffz-dfL8qGa5bKStCaIYDUHeoKFO9E04Hg2DQtrrilglreYbuyIKxstZWa1UIyLtpOQNXwI3K6vbsO498JYzKDiw32vfU4TtEwSQWXTFUio59eoQ_jFHz-zjDFKoC6VpCpjztqWg3YmnXIhoRH8-xcBtQWaMIYY8DONC79sywF63oD1GxiMpuYzCYms4spK-GV8vn4_zQfthqHiC-85jXLdvEnXXGb_A |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1002_acs_3833 crossref_primary_10_1080_21642583_2025_2474471 crossref_primary_10_1080_00207721_2021_1970278 crossref_primary_10_1109_JAS_2023_123051 crossref_primary_10_1109_TCYB_2022_3166649 crossref_primary_10_1080_00207721_2021_1995528 crossref_primary_10_1109_JAS_2023_123393 crossref_primary_10_1016_j_isatra_2022_04_011 crossref_primary_10_1109_TIM_2022_3220302 crossref_primary_10_1080_00207721_2022_2122903 crossref_primary_10_1002_oca_2996 crossref_primary_10_1177_00202940221104866 crossref_primary_10_1016_j_neucom_2023_126255 crossref_primary_10_1016_j_jfranklin_2023_03_028 crossref_primary_10_1007_s11071_025_10908_8 crossref_primary_10_1007_s00034_023_02497_x crossref_primary_10_1016_j_ins_2024_120251 crossref_primary_10_1016_j_neucom_2023_01_066 crossref_primary_10_1109_TETCI_2022_3209306 crossref_primary_10_1109_TSMC_2024_3354883 crossref_primary_10_1016_j_ins_2024_120632 crossref_primary_10_1109_TPEL_2024_3494858 crossref_primary_10_53941_ijndi0201007 |
Cites_doi | 10.1007/s00521-016-2271-2 10.1080/00207721.2019.1586002 10.1016/j.automatica.2016.01.015 10.1109/TAC.2020.2968975 10.1049/iet-cta.2009.0243 10.1109/TSMC.2019.2957810 10.1109/9.8655 10.1109/TSMC.2019.2895060 10.1109/TCYB.2018.2885653 10.1049/iet-cta.2015.1086 10.1080/00207721.2020.1768453 10.1080/00207179.2018.1490819 10.1016/j.automatica.2015.06.037 10.1109/TCYB.2018.2876615 10.1016/j.neucom.2019.04.065 10.1109/TNNLS.2019.2927554 10.1016/j.neucom.2018.12.022 10.1016/j.sigpro.2017.03.029 10.1016/j.automatica.2020.108908 10.1109/TSP.2009.2039731 10.1016/j.automatica.2007.06.029 10.1016/j.neunet.2020.01.013 10.1016/S0951-8320(02)00243-0 10.1109/TAC.2019.2910167 10.1080/00207721.2020.1794080 10.1016/j.neucom.2018.12.021 10.1109/TSMC.2018.2876203 10.1016/j.neunet.2020.08.023 10.1109/TR.1986.4335552 10.1016/j.jfranklin.2015.02.010 10.1016/j.neunet.2019.09.006 10.1109/7.625133 10.1016/j.jfranklin.2018.01.038 10.1109/TAC.1967.1098739 10.1109/TSMC.2019.2960541 10.1016/j.neucom.2020.10.050 10.1109/TAC.2020.3016767 10.1049/iet-cta.2013.1068 10.1109/JAS.2021.1003826 10.1109/TCYB.2017.2789212 10.1109/TCYB.2018.2836977 10.1016/j.neucom.2016.08.095 10.1109/TSMC.2018.2874508 10.1080/03081079.2018.1462352 10.1016/j.inffus.2019.08.013 10.1016/j.automatica.2017.10.022 10.1109/TNNLS.2019.2927610 10.1016/j.ins.2017.12.010 10.1109/TCYB.2017.2769722 10.1007/s11071-018-4322-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3057545 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 11515 |
ExternalDocumentID | 33750719 10_1109_TCYB_2021_3057545 9382961 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province of China grantid: ZD2019F001 funderid: 10.13039/501100005046 – fundername: Alexander von Humboldt Foundation of Germany funderid: 10.13039/100005156 – fundername: European Union’s Horizon 2020 Research and Innovation Programme grantid: 820776 (INTEGRADDE) – fundername: National Natural Science Foundation of China grantid: 61703245; 61873148; 61933007; 61873058 funderid: 10.13039/501100001809 – fundername: Postdoctoral Special Innovation Foundation of Shandong province of China grantid: 201701015 funderid: 10.13039/501100018546 – fundername: Royal Society of the U.K. funderid: 10.13039/501100000288 – fundername: China Postdoctoral Science Foundation grantid: 2018T110702 funderid: 10.13039/501100002858 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c392t-64082e1159fe96173f4cf143eccdeb3a040a3fedba14a5d9a592845234df416c3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 01:39:40 EDT 2025 Mon Jun 30 04:24:50 EDT 2025 Thu Jan 02 22:56:25 EST 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Wed Aug 27 02:18:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-64082e1159fe96173f4cf143eccdeb3a040a3fedba14a5d9a592845234df416c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7207-0716 0000-0002-0409-7941 0000-0002-9576-7401 0000-0001-8531-6757 |
OpenAccessLink | http://bura.brunel.ac.uk/bitstream/2438/23547/3/FullText.pdf |
PMID | 33750719 |
PQID | 2726118871 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2021_3057545 crossref_primary_10_1109_TCYB_2021_3057545 proquest_journals_2726118871 proquest_miscellaneous_2504352764 pubmed_primary_33750719 ieee_primary_9382961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 Gabriel (ref7) ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref15 doi: 10.1007/s00521-016-2271-2 – ident: ref32 doi: 10.1080/00207721.2019.1586002 – ident: ref3 doi: 10.1016/j.automatica.2016.01.015 – ident: ref49 doi: 10.1109/TAC.2020.2968975 – start-page: 1151 volume-title: Proc. IEEE Int. Conf. Robot. Autom. ident: ref7 article-title: An outlier-robust Kalman filter – ident: ref46 doi: 10.1049/iet-cta.2009.0243 – ident: ref29 doi: 10.1109/TSMC.2019.2957810 – ident: ref40 doi: 10.1109/9.8655 – ident: ref20 doi: 10.1109/TSMC.2019.2895060 – ident: ref21 doi: 10.1109/TCYB.2018.2885653 – ident: ref43 doi: 10.1049/iet-cta.2015.1086 – ident: ref18 doi: 10.1080/00207721.2020.1768453 – ident: ref47 doi: 10.1080/00207179.2018.1490819 – ident: ref39 doi: 10.1016/j.automatica.2015.06.037 – ident: ref17 doi: 10.1109/TCYB.2018.2876615 – ident: ref24 doi: 10.1016/j.neucom.2019.04.065 – ident: ref14 doi: 10.1109/TNNLS.2019.2927554 – ident: ref25 doi: 10.1016/j.neucom.2018.12.022 – ident: ref19 doi: 10.1016/j.sigpro.2017.03.029 – ident: ref13 doi: 10.1016/j.automatica.2020.108908 – ident: ref8 doi: 10.1109/TSP.2009.2039731 – ident: ref1 doi: 10.1016/j.automatica.2007.06.029 – ident: ref36 doi: 10.1016/j.neunet.2020.01.013 – ident: ref5 doi: 10.1016/S0951-8320(02)00243-0 – ident: ref50 doi: 10.1109/TAC.2019.2910167 – ident: ref33 doi: 10.1080/00207721.2020.1794080 – ident: ref26 doi: 10.1016/j.neucom.2018.12.021 – ident: ref30 doi: 10.1109/TSMC.2018.2876203 – ident: ref22 doi: 10.1016/j.neunet.2020.08.023 – ident: ref4 doi: 10.1109/TR.1986.4335552 – ident: ref11 doi: 10.1016/j.jfranklin.2015.02.010 – ident: ref23 doi: 10.1016/j.neunet.2019.09.006 – ident: ref10 doi: 10.1109/7.625133 – ident: ref38 doi: 10.1016/j.jfranklin.2018.01.038 – ident: ref41 doi: 10.1109/TAC.1967.1098739 – ident: ref6 doi: 10.1109/TSMC.2019.2960541 – ident: ref45 doi: 10.1016/j.neucom.2020.10.050 – ident: ref31 doi: 10.1109/TAC.2020.3016767 – ident: ref35 doi: 10.1049/iet-cta.2013.1068 – ident: ref51 doi: 10.1109/JAS.2021.1003826 – ident: ref44 doi: 10.1109/TCYB.2017.2789212 – ident: ref27 doi: 10.1109/TCYB.2018.2836977 – ident: ref16 doi: 10.1016/j.neucom.2016.08.095 – ident: ref48 doi: 10.1109/TSMC.2018.2874508 – ident: ref12 doi: 10.1080/03081079.2018.1462352 – ident: ref37 doi: 10.1016/j.inffus.2019.08.013 – ident: ref2 doi: 10.1016/j.automatica.2017.10.022 – ident: ref28 doi: 10.1109/TNNLS.2019.2927610 – ident: ref42 doi: 10.1016/j.ins.2017.12.010 – ident: ref9 doi: 10.1109/TCYB.2017.2769722 – ident: ref34 doi: 10.1007/s11071-018-4322-y |
SSID | ssj0000816898 |
Score | 2.4596422 |
Snippet | This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11504 |
SubjectTerms | Anomaly detection Constraints Data analysis Discrete time systems Energy measurement Energy-to-peak performance Gain measurement intermittent measurement outliers (IMOs) Noise measurement Optimization Outliers (statistics) parameter-dependent (PD) state estimator Pollution measurement Sequences State estimation Step functions Technological innovation |
Title | Energy-to-Peak State Estimation With Intermittent Measurement Outliers: The Single-Output Case |
URI | https://ieeexplore.ieee.org/document/9382961 https://www.ncbi.nlm.nih.gov/pubmed/33750719 https://www.proquest.com/docview/2726118871 https://www.proquest.com/docview/2504352764 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tfeKFMQZb2UBG4gEm3CWxk9S8QdWpQio8sInxQmQ7jjata6vNeeGv585xg4YA8WbFduLozr7fne8D4FVTmjJzOuF1qXMulbFcJ9bwRAhtGyPGqM2Rt8WnYnYuP17kF1vwto-Fcc4F5zM3oma4y69XtiVT2YkS40yRrrONbNbFavX2lFBAIpS-zbDBEVWU8RIzTdTJ2eTbB1QGs3QkCKBIKlgjRElgSN2TSKHEyt_RZpA6pzsw36y3cza5HrXejOyP31I5_u8PPYKHEX6y9x2_7MKWWz6G3bjB79jrmIX6zR58n4aoQO5XHI_NaxZQKZviidAFO7KvV_6SBYPizZVH5O3Z_Je9kX1u_YKqbL9jyIjsCwrIheP4cN16NkHJ-QTOT6dnkxmPxRi4RQjleUGVqR3iR9U4XHIpGmkbBFvIAjUq5BoPAy0aVxudSp3XSucKJR-qubJuEPRZ8RQGy9XSHQBzY1TCjCqUzaWkKaYWiSOvLFvUad4MIdkQpLIxUzkVzFhUQWNJVEXkrIicVSTnEI77KesuTce_Bu8RKfqBkQpDONpQvYob-a7KSlQxUzyJsftl341bkO5V9NKtWhxDWeDyrCzkEPY7bunfvWGyZ3_-5iE8yCieIgQ3HsHA37buOaIcb14E9v4JkX32pA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoJTHQgtG4gAIb5PYSdbcYLXVAt1yYCvKpZHtOKLqslu1zqW_vjOONwgEiJsV24mjGXu-Gc8D4EVTmjJzOuF1qXMulbFcJ9bwRAhtGyNGqM2Rt8VhMT2SH4_z4w1408fCOOeC85kbUjPc5dcr25KpbE-JUaZI17mBcl_mXbRWb1EJJSRC8dsMGxxxRRmvMdNE7c3H396jOpilQ0EQRVLJGiFKgkPqF5kUiqz8HW8GubN_B2brFXfuJmfD1puhvfotmeP__tJduB0BKHvXccwWbLjlPdiKW_ySvYx5qF9tw8kkxAVyv-J4cJ6xgEvZBM-ELtyRfT3131kwKf449Yi9PZv9tDiyz61fUJ3ttwxZkX1BEblwHB-et56NUXbeh6P9yXw85bEcA7cIojwvqDa1QwSpGodLLkUjbYNwC5mgRpVc43GgReNqo1Op81rpXKHsQ0VX1g3CPisewOZytXSPgLkRqmFGFcrmUtIUU4vEkV-WLeo0bwaQrAlS2ZirnEpmLKqgsySqInJWRM4qknMAr_sp512ijn8N3iZS9AMjFQaws6Z6FbfyZZWVqGSmeBZj9_O-Gzch3azopVu1OIbywOVZWcgBPOy4pX_3mske__mbz-DmdD47qA4-HH56Arcyiq4IoY47sOkvWreLmMebp4HVrwGh0vnx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-to-Peak+State+Estimation+With+Intermittent+Measurement+Outliers%3A+The+Single-Output+Case&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zou%2C+Lei&rft.au=Wang%2C+Zidong&rft.au=Dong%2C+Hongli&rft.au=Han%2C+Qing-Long&rft.date=2022-11-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=11&rft.spage=11504&rft_id=info:doi/10.1109%2FTCYB.2021.3057545&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |