Fault Tree Analysis of floating offshore wind turbines
With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative...
Saved in:
Published in | Renewable energy Vol. 133; pp. 1455 - 1467 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance.
•Fault Tree Analysis method is proposed for evaluation of floating offshore wind turbine failure.•The floating offshore wind turbine is divided into several assemblies.•Failure rates of relevant offshore structures are collected from previous studies.•Quantitative assessment of Minimum Cut Sets and Importance Measures are achieved.•Salt-spray and high wind speed, show the most significant impact on wind turbine performance. |
---|---|
AbstractList | With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance. With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance. •Fault Tree Analysis method is proposed for evaluation of floating offshore wind turbine failure.•The floating offshore wind turbine is divided into several assemblies.•Failure rates of relevant offshore structures are collected from previous studies.•Quantitative assessment of Minimum Cut Sets and Importance Measures are achieved.•Salt-spray and high wind speed, show the most significant impact on wind turbine performance. |
Author | Kang, Jichuan Guedes Soares, C. Sun, Liping |
Author_xml | – sequence: 1 givenname: Jichuan surname: Kang fullname: Kang, Jichuan organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal – sequence: 2 givenname: Liping surname: Sun fullname: Sun, Liping organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: C. surname: Guedes Soares fullname: Guedes Soares, C. email: c.guedes.soares@centec.tecnico.ulisboa.pt organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal |
BookMark | eNqFkDFPwzAQhS1UJNrCP2DIyJJgO05iMyBVFQWkSixlthznDK5Su9gOqP-eVGViAN2T7ob3nnTfDE2cd4DQNcEFwaS-3RYB3DgFxYQXeJRoztCU8EbkuOZ0gqZY1DgnjJMLNItxizGpeMOmqF6poU_ZJgBkC6f6Q7Qx8yYzvVfJurfxNvHdB8i-rOuyNITWOoiX6NyoPsLVz56j19XDZvmUr18en5eLda5LQVNeE1a1lLUVo23d6k4xwAY6A6IVhinMW1CCibZTjQFNMDMVUBCqUqTSlJblHN2cevfBfwwQk9zZqKHvlQM_RElJVdaE8-ZovTtZdfAxBjBS2zT-4F0KyvaSYHmEJbfyBEseYUk8SjRjmP0K74PdqXD4L3Z_isHI4NNCkFFbcBo6G0An2Xn7d8E3zquI7g |
CitedBy_id | crossref_primary_10_1007_s11666_023_01560_y crossref_primary_10_1016_j_oceaneng_2021_109062 crossref_primary_10_3390_jmse12071051 crossref_primary_10_1002_qre_3334 crossref_primary_10_1002_ese3_618 crossref_primary_10_1016_j_apenergy_2020_115967 crossref_primary_10_1016_j_renene_2024_122267 crossref_primary_10_1002_eng2_12128 crossref_primary_10_1002_qre_2805 crossref_primary_10_1016_j_renene_2020_09_033 crossref_primary_10_1016_j_oceaneng_2022_113043 crossref_primary_10_1007_s41062_022_00982_x crossref_primary_10_1016_j_resourpol_2022_102591 crossref_primary_10_1016_j_ijmecsci_2022_107721 crossref_primary_10_1109_ACCESS_2024_3486000 crossref_primary_10_1016_j_oceaneng_2022_112469 crossref_primary_10_3390_en13143518 crossref_primary_10_1016_j_ijhydene_2024_05_029 crossref_primary_10_1007_s10661_019_7944_8 crossref_primary_10_3390_en17081964 crossref_primary_10_1155_2021_2087027 crossref_primary_10_1109_ACCESS_2019_2963197 crossref_primary_10_1016_j_oceaneng_2024_117598 crossref_primary_10_1016_j_ress_2021_107911 crossref_primary_10_1016_j_egyr_2024_05_026 crossref_primary_10_1016_j_oceaneng_2020_107827 crossref_primary_10_1016_j_ymssp_2024_111803 crossref_primary_10_3390_jmse10101395 crossref_primary_10_1088_1755_1315_1198_1_012030 crossref_primary_10_1142_S0218539323500183 crossref_primary_10_1108_BIJ_08_2021_0465 crossref_primary_10_3390_en15197186 crossref_primary_10_1016_j_renene_2020_08_001 crossref_primary_10_18186_thermal_871949 crossref_primary_10_3390_en15176329 crossref_primary_10_1177_1748006X241235727 crossref_primary_10_1080_20464177_2024_2423425 crossref_primary_10_3390_w14213555 crossref_primary_10_1080_02185377_2023_2227162 crossref_primary_10_1016_j_oceaneng_2022_113021 crossref_primary_10_1016_j_ress_2022_108777 crossref_primary_10_1016_j_ress_2024_110508 crossref_primary_10_3390_en14113023 crossref_primary_10_1016_j_jlp_2020_104170 crossref_primary_10_1080_00207543_2023_2202280 crossref_primary_10_1016_j_esd_2022_08_024 crossref_primary_10_1016_j_eswa_2025_126580 crossref_primary_10_3390_en16031471 crossref_primary_10_1049_rpg2_12714 crossref_primary_10_2478_auseme_2023_0004 crossref_primary_10_3390_s22218428 crossref_primary_10_1177_2633366X20966337 crossref_primary_10_1080_14786451_2023_2189490 crossref_primary_10_3389_fenrg_2022_884886 crossref_primary_10_3390_en15020464 crossref_primary_10_1016_j_jclepro_2019_119402 crossref_primary_10_1016_j_oceaneng_2021_109261 crossref_primary_10_1016_j_oceaneng_2024_117727 crossref_primary_10_1051_e3sconf_202451715009 crossref_primary_10_1080_15435075_2023_2253896 crossref_primary_10_1155_2022_5389574 crossref_primary_10_1088_1361_6501_aca347 crossref_primary_10_3390_jmse10111616 crossref_primary_10_1016_j_heliyon_2024_e34649 crossref_primary_10_1016_j_jobe_2021_103752 crossref_primary_10_2478_agriceng_2023_0019 crossref_primary_10_3390_math12111660 crossref_primary_10_1016_j_rser_2023_114094 crossref_primary_10_35414_akufemubid_664701 crossref_primary_10_1016_j_apenergy_2021_117420 crossref_primary_10_1016_j_psep_2022_09_017 crossref_primary_10_1109_ACCESS_2021_3124529 crossref_primary_10_1016_j_energy_2023_129374 crossref_primary_10_3390_math12182842 crossref_primary_10_1007_s10934_022_01293_3 crossref_primary_10_1016_j_oceaneng_2023_116089 crossref_primary_10_1016_j_renene_2024_120970 crossref_primary_10_52547_johe_10_2_105 crossref_primary_10_1002_qre_3706 crossref_primary_10_1016_j_egyr_2021_12_034 crossref_primary_10_1109_TEM_2019_2937579 crossref_primary_10_1016_j_oceaneng_2024_118157 crossref_primary_10_3390_en15176263 crossref_primary_10_3390_jmse8010058 crossref_primary_10_3390_app13042711 crossref_primary_10_1016_j_apenergy_2021_118067 crossref_primary_10_1016_j_jfranklin_2024_107279 crossref_primary_10_1088_1742_6596_2319_1_012014 crossref_primary_10_1177_01423312211057994 crossref_primary_10_1177_09576509241296585 crossref_primary_10_1016_j_oceaneng_2023_116450 crossref_primary_10_1016_j_rser_2024_114302 crossref_primary_10_3389_fmars_2022_970081 crossref_primary_10_1007_s42417_023_01267_y crossref_primary_10_1016_j_renene_2020_02_060 crossref_primary_10_1016_j_oceaneng_2021_109168 crossref_primary_10_4236_jamp_2023_117125 crossref_primary_10_46578_humder_989695 crossref_primary_10_3390_wevj15080365 crossref_primary_10_1016_j_oceaneng_2020_108075 crossref_primary_10_3390_jmse10121965 crossref_primary_10_1002_qre_3644 crossref_primary_10_1016_j_oceaneng_2022_111433 crossref_primary_10_47134_par_v1i2_2467 crossref_primary_10_3390_jmse10071000 crossref_primary_10_3390_jmse9121448 crossref_primary_10_3390_math12121843 crossref_primary_10_1016_j_oceaneng_2021_109859 crossref_primary_10_1016_j_rser_2022_112958 crossref_primary_10_1016_j_aej_2024_12_025 crossref_primary_10_1016_j_apor_2022_103211 crossref_primary_10_1016_j_ress_2021_108028 crossref_primary_10_1016_j_jclepro_2022_132366 crossref_primary_10_1016_j_apor_2022_103290 |
Cites_doi | 10.1016/j.renene.2010.01.006 10.1016/j.renene.2016.05.022 10.1002/we.421 10.1016/j.renene.2016.06.016 10.1016/j.renene.2015.09.038 10.1016/j.rser.2015.04.139 10.1109/TEC.2004.837299 10.1016/j.engfailanal.2007.01.013 10.1002/we.1887 10.1049/iet-rpg.2008.0060 10.1016/j.rser.2013.03.018 10.1016/j.renene.2012.03.003 10.1109/TEC.2011.2176129 10.1016/j.cosrev.2015.03.001 10.1016/j.ijepes.2010.01.019 10.3390/en8076286 10.1016/j.jweia.2016.04.005 10.1016/j.eswa.2017.01.058 10.1016/j.rser.2008.09.004 10.1016/j.renene.2015.04.035 10.1016/j.renene.2009.04.014 10.1002/we.1508 10.1016/j.renene.2006.10.008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2018.08.097 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 1467 |
ExternalDocumentID | 10_1016_j_renene_2018_08_097 S0960148118310474 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c392t-6145b24b542b6bcda4e0fedfe9b9f4a08bea949bda7fec104f5e2e9a5a15c2233 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Tue Aug 05 10:24:23 EDT 2025 Tue Jul 01 03:20:49 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Fri Feb 23 02:34:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Floating offshore wind turbine Reliability analysis Importance measures Minimum cut sets Fault Tree Analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-6145b24b542b6bcda4e0fedfe9b9f4a08bea949bda7fec104f5e2e9a5a15c2233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2153618873 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2153618873 crossref_citationtrail_10_1016_j_renene_2018_08_097 crossref_primary_10_1016_j_renene_2018_08_097 elsevier_sciencedirect_doi_10_1016_j_renene_2018_08_097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sheng (bib41) 2014 Katsavounis, Patsianis, Konstantinidis, Botsaris (bib18) 2014 Bharatbhai (bib14) 2015; 2 Wan, Cheng, Sheng (bib36) 2015; 8 Dinmohammadi, Shafiee (bib10) 2013; 4 Santos, Teixeira, Guedes Soares (bib3) 2015; 229 Arbian-Hoseynabadi, Oraee, Tavner (bib17) 2010; 32 Ossai, Boswell, Davies (bib13) 2016; 96 Marquez, Perez, Marugan, Papaelias (bib15) 2016; 87 Kang, Sun, Guedes Soares (bib21) 2016 Santos, Teixeira, Guedes Soares (bib4) 2016 Perez, Marquez, Tobias, Papaelias (bib7) 2013; 2013 Rausand (bib37) 2004 Santos, Teixeira, Guedes Soares (bib9) 2015 Santos, Teixeira, Guedes Soares (bib11) 2015 Uzunoglu, Karmakar, Guedes Soares (bib24) 2016 Blanco (bib5) 2009; 13 Yang, Tavner, Carbtree, Feng, Qiu (bib6) 2012; 17 Ruijters, Stoelinga (bib23) 2015; 15 Faulstich, Hahn, Tavner (bib20) 2011; 14 Castro-Santos, Martins, Guedes Soares (bib2) 2016; 97 Wu, Chapman (bib32) 2005; 20 Fischer, Besnard, Bertling (bib19) 2012; 27 Marquez, Tobias, Perez, Papaelias (bib39) 2012; 46 Guo, Sun, Luo, Liu (bib12) 2015 Belsak, Flasker (bib26) 2007; 14 Carroll, McDonald, McMillan (bib8) 2015; 19 Sheng (bib40) 2013 Li, Valla, Zio (bib28) 2015; 83 Spinato, Tavner, Bussel, Koutoulakos (bib25) 2009; 3 OREDA (bib34) 2015 Hansena, Michalke (bib30) 2007; 32 Liu, Tang, Jiang (bib31) 2010; 35 Igba, Alemzadeh, Durugbo, Henningsen (bib29) 2015; 50 Global Wind Energy Council (bib1) 2014 Zhang, Sun, Sun, Guo, Bai (bib16) 2016; 154 Kabir (bib22) 2017; 77 Lu, Li, Wu, Yang (bib33) 2009 Arbian-Hoseynabadi, Oraee, Tavner (bib35) 2010; 35 Sheng, McDade, Errichello (bib27) 2011 He, Hu, Xing (bib38) 2011; 29 Global Wind Energy Council (10.1016/j.renene.2018.08.097_bib1) 2014 Katsavounis (10.1016/j.renene.2018.08.097_bib18) 2014 Santos (10.1016/j.renene.2018.08.097_bib4) 2016 Ruijters (10.1016/j.renene.2018.08.097_bib23) 2015; 15 Uzunoglu (10.1016/j.renene.2018.08.097_bib24) 2016 Kabir (10.1016/j.renene.2018.08.097_bib22) 2017; 77 Perez (10.1016/j.renene.2018.08.097_bib7) 2013; 2013 Marquez (10.1016/j.renene.2018.08.097_bib39) 2012; 46 Marquez (10.1016/j.renene.2018.08.097_bib15) 2016; 87 Liu (10.1016/j.renene.2018.08.097_bib31) 2010; 35 Sheng (10.1016/j.renene.2018.08.097_bib40) 2013 Arbian-Hoseynabadi (10.1016/j.renene.2018.08.097_bib17) 2010; 32 Zhang (10.1016/j.renene.2018.08.097_bib16) 2016; 154 Wu (10.1016/j.renene.2018.08.097_bib32) 2005; 20 Sheng (10.1016/j.renene.2018.08.097_bib27) 2011 Yang (10.1016/j.renene.2018.08.097_bib6) 2012; 17 Santos (10.1016/j.renene.2018.08.097_bib9) 2015 Spinato (10.1016/j.renene.2018.08.097_bib25) 2009; 3 Santos (10.1016/j.renene.2018.08.097_bib11) 2015 Igba (10.1016/j.renene.2018.08.097_bib29) 2015; 50 OREDA (10.1016/j.renene.2018.08.097_bib34) 2015 Bharatbhai (10.1016/j.renene.2018.08.097_bib14) 2015; 2 Lu (10.1016/j.renene.2018.08.097_bib33) 2009 Ossai (10.1016/j.renene.2018.08.097_bib13) 2016; 96 Li (10.1016/j.renene.2018.08.097_bib28) 2015; 83 He (10.1016/j.renene.2018.08.097_bib38) 2011; 29 Carroll (10.1016/j.renene.2018.08.097_bib8) 2015; 19 Faulstich (10.1016/j.renene.2018.08.097_bib20) 2011; 14 Wan (10.1016/j.renene.2018.08.097_bib36) 2015; 8 Arbian-Hoseynabadi (10.1016/j.renene.2018.08.097_bib35) 2010; 35 Blanco (10.1016/j.renene.2018.08.097_bib5) 2009; 13 Rausand (10.1016/j.renene.2018.08.097_bib37) 2004 Castro-Santos (10.1016/j.renene.2018.08.097_bib2) 2016; 97 Guo (10.1016/j.renene.2018.08.097_bib12) 2015 Fischer (10.1016/j.renene.2018.08.097_bib19) 2012; 27 Hansena (10.1016/j.renene.2018.08.097_bib30) 2007; 32 Kang (10.1016/j.renene.2018.08.097_bib21) 2016 Sheng (10.1016/j.renene.2018.08.097_bib41) 2014 Belsak (10.1016/j.renene.2018.08.097_bib26) 2007; 14 Santos (10.1016/j.renene.2018.08.097_bib3) 2015; 229 Dinmohammadi (10.1016/j.renene.2018.08.097_bib10) 2013; 4 |
References_xml | – start-page: 221 year: 2014 end-page: 228 ident: bib18 article-title: Reliability analysis on crucial subsystems of a wind turbine through FTA approach publication-title: Proceedings of Maintenance Performance Measurement and Management Conference, Coimbra, Portugal, September 4-5 – volume: 8 start-page: 6286 year: 2015 end-page: 6301 ident: bib36 article-title: Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model publication-title: Energies – start-page: 181 year: 2016 end-page: 193 ident: bib4 article-title: Operation and maintenance of floating offshore wind turbines publication-title: Floating Offshore Wind Farms – volume: 27 start-page: 184 year: 2012 end-page: 195 ident: bib19 article-title: Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience publication-title: IEEE Trans. Energy Convers. – volume: 14 start-page: 327 year: 2011 end-page: 337 ident: bib20 article-title: Wind turbine downtime and its importance for offshore deployment publication-title: Wind Energy – year: 2004 ident: bib37 article-title: System Reliability Theory: Models, Statistical Methods, and Application – volume: 29 start-page: 120 year: 2011 end-page: 126 ident: bib38 article-title: Failure mode analysis of wind turbines based on FMEA method publication-title: Renew. Energy Resour. – volume: 2013 start-page: 463 year: 2013 end-page: 472 ident: bib7 article-title: Wind turbine reliability analysis publication-title: Renew. Sustain. Energy Rev. – year: 2013 ident: bib40 article-title: Report on Wind Turbine Subsystem Reliability-a Survey of Various Databases – volume: 87 start-page: 833 year: 2016 end-page: 869 ident: bib15 article-title: Identification of critical components of wind turbines using FTA over the time publication-title: Renew. Energy – volume: 19 start-page: 1107 year: 2015 end-page: 1119 ident: bib8 article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines publication-title: Wind Energy – volume: 97 start-page: 866 year: 2016 end-page: 880 ident: bib2 article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems publication-title: Renew. Energy – volume: 32 start-page: 817 year: 2010 end-page: 824 ident: bib17 article-title: Failure modes and effects analysis (FMEA) for wind turbines publication-title: Electr. Power Energy Syst. – volume: 229 start-page: 385 year: 2015 end-page: 393 ident: bib3 article-title: Modelling and simulation of the operation and maintenance of offshore wind turbines publication-title: J. Risk Reliab. – volume: 96 start-page: 775 year: 2016 end-page: 783 ident: bib13 article-title: A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components publication-title: Renew. Energy – volume: 46 start-page: 169 year: 2012 end-page: 178 ident: bib39 article-title: Condition monitoring of wind turbines: techniques and methods publication-title: Renew. Energy – volume: 83 start-page: 222 year: 2015 end-page: 233 ident: bib28 article-title: Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation publication-title: Renew. Energy – year: 2014 ident: bib1 article-title: Global Wind Report Annual Market Update 2013 – year: 2014 ident: bib41 article-title: Gearbox typical failure modes, detection and mitigation methods publication-title: AWEA Operations & Maintenance and Safety Seminar, January 15–16 – volume: 15 start-page: 29 year: 2015 end-page: 62 ident: bib23 article-title: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools publication-title: Comput. Sci. Rev. – volume: 35 start-page: 190 year: 2010 end-page: 197 ident: bib35 article-title: Wind turbine productivity considering electrical subassembly reliability publication-title: Renew. Energy – volume: 14 start-page: 1466 year: 2007 end-page: 1475 ident: bib26 article-title: Detecting cracks in the tooth root of gears publication-title: Eng. Fail. Anal. – volume: 35 start-page: 1414 year: 2010 end-page: 1418 ident: bib31 article-title: Status and problems of WT structural health monitoring techniques in China publication-title: Renew. Energy – volume: 13 start-page: 387 year: 2009 end-page: 401 ident: bib5 article-title: The economics of wind energy publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2009 end-page: 7 ident: bib33 article-title: A review of recent advances in WT condition monitoring and fault diagnosis publication-title: IEEE Power Electron. Mach. Wind Appl. – year: 2015 ident: bib34 article-title: Offshore Reliability Handbook – start-page: 953 year: 2015 end-page: 959 ident: bib9 article-title: Review of wind turbine accident and failure data publication-title: Renewable Energies Offshore London – volume: 77 start-page: 114 year: 2017 end-page: 135 ident: bib22 article-title: An overview of fault tree analysis and its application in model based dependability analysis publication-title: Expert Syst. Appl. – volume: 3 start-page: 387 year: 2009 end-page: 401 ident: bib25 article-title: Reliability of WT subassemblies publication-title: IET Renew. Power Gener. – start-page: 53 year: 2016 end-page: 76 ident: bib24 article-title: Floating offshore wind platforms publication-title: Floating Offshore Wind Farms – volume: 32 start-page: 1594 year: 2007 end-page: 1610 ident: bib30 article-title: Fault ride-through capability of DFIG wind turbines publication-title: Renew. Energy – start-page: 692 year: 2015 end-page: 698 ident: bib12 article-title: Reliability allocation and fault tree qualitative analysis for floating wind turbine publication-title: Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015 – volume: 2 start-page: 2394 year: 2015 end-page: 2444 ident: bib14 article-title: Reliability analysis of repower 5M wind turbine publication-title: Int. J. Adv. Res. Eng. Sci. Technol. – volume: 17 start-page: 673 year: 2012 end-page: 693 ident: bib6 article-title: Wind turbine condition monitoring: technical and commercial challenges publication-title: Wind Energy – start-page: 741 year: 2016 end-page: 749 ident: bib21 article-title: Fault tree analysis of the failure of floating offshore wind turbines support structures and blade systems publication-title: Progress in Renewable Energies Offshore – year: 2011 ident: bib27 article-title: Wind turbine gearbox failure modes- a brief publication-title: ASME/STLE 2011 International Joint Tribology Conference, October 24–26, Los Angeles, California, USA – volume: 50 start-page: 144 year: 2015 end-page: 159 ident: bib29 article-title: Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends publication-title: Renew. Sustain. Energy Rev. – start-page: 1147 year: 2015 end-page: 1155 ident: bib11 article-title: An age-based preventive maintenance for offshore wind turbine. Nowakowski publication-title: Safety and Reliability: Methodology and Applications – volume: 154 start-page: 21 year: 2016 end-page: 33 ident: bib16 article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA publication-title: J. Wind Eng. Ind. Aerod. – volume: 20 start-page: 151 year: 2005 end-page: 157 ident: bib32 article-title: Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives publication-title: IEEE Trans. Energy Convers. – volume: 4 start-page: 1 year: 2013 end-page: 10 ident: bib10 article-title: A fuzzy-FMEA risk assessment approach for offshore wind turbines publication-title: Int. J. Prognostics Health Manag. – volume: 35 start-page: 1414 year: 2010 ident: 10.1016/j.renene.2018.08.097_bib31 article-title: Status and problems of WT structural health monitoring techniques in China publication-title: Renew. Energy doi: 10.1016/j.renene.2010.01.006 – year: 2014 ident: 10.1016/j.renene.2018.08.097_bib41 article-title: Gearbox typical failure modes, detection and mitigation methods – volume: 96 start-page: 775 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib13 article-title: A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components publication-title: Renew. Energy doi: 10.1016/j.renene.2016.05.022 – start-page: 221 year: 2014 ident: 10.1016/j.renene.2018.08.097_bib18 article-title: Reliability analysis on crucial subsystems of a wind turbine through FTA approach – volume: 14 start-page: 327 year: 2011 ident: 10.1016/j.renene.2018.08.097_bib20 article-title: Wind turbine downtime and its importance for offshore deployment publication-title: Wind Energy doi: 10.1002/we.421 – volume: 97 start-page: 866 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib2 article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems publication-title: Renew. Energy doi: 10.1016/j.renene.2016.06.016 – volume: 87 start-page: 833 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib15 article-title: Identification of critical components of wind turbines using FTA over the time publication-title: Renew. Energy doi: 10.1016/j.renene.2015.09.038 – start-page: 53 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib24 article-title: Floating offshore wind platforms – volume: 50 start-page: 144 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib29 article-title: Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.139 – volume: 20 start-page: 151 year: 2005 ident: 10.1016/j.renene.2018.08.097_bib32 article-title: Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2004.837299 – volume: 14 start-page: 1466 year: 2007 ident: 10.1016/j.renene.2018.08.097_bib26 article-title: Detecting cracks in the tooth root of gears publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2007.01.013 – year: 2015 ident: 10.1016/j.renene.2018.08.097_bib34 – volume: 19 start-page: 1107 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib8 article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.1887 – start-page: 953 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib9 article-title: Review of wind turbine accident and failure data – volume: 229 start-page: 385 issue: 5 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib3 article-title: Modelling and simulation of the operation and maintenance of offshore wind turbines publication-title: J. Risk Reliab. – volume: 3 start-page: 387 year: 2009 ident: 10.1016/j.renene.2018.08.097_bib25 article-title: Reliability of WT subassemblies publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2008.0060 – year: 2014 ident: 10.1016/j.renene.2018.08.097_bib1 – start-page: 741 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib21 article-title: Fault tree analysis of the failure of floating offshore wind turbines support structures and blade systems – volume: 2013 start-page: 463 issue: 23 year: 2013 ident: 10.1016/j.renene.2018.08.097_bib7 article-title: Wind turbine reliability analysis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.018 – year: 2004 ident: 10.1016/j.renene.2018.08.097_bib37 – start-page: 181 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib4 article-title: Operation and maintenance of floating offshore wind turbines – volume: 2 start-page: 2394 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib14 article-title: Reliability analysis of repower 5M wind turbine publication-title: Int. J. Adv. Res. Eng. Sci. Technol. – volume: 46 start-page: 169 year: 2012 ident: 10.1016/j.renene.2018.08.097_bib39 article-title: Condition monitoring of wind turbines: techniques and methods publication-title: Renew. Energy doi: 10.1016/j.renene.2012.03.003 – start-page: 1147 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib11 article-title: An age-based preventive maintenance for offshore wind turbine. Nowakowski – volume: 27 start-page: 184 year: 2012 ident: 10.1016/j.renene.2018.08.097_bib19 article-title: Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2011.2176129 – volume: 15 start-page: 29 issue: 16 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib23 article-title: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2015.03.001 – volume: 32 start-page: 817 year: 2010 ident: 10.1016/j.renene.2018.08.097_bib17 article-title: Failure modes and effects analysis (FMEA) for wind turbines publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2010.01.019 – volume: 8 start-page: 6286 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib36 article-title: Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model publication-title: Energies doi: 10.3390/en8076286 – volume: 29 start-page: 120 year: 2011 ident: 10.1016/j.renene.2018.08.097_bib38 article-title: Failure mode analysis of wind turbines based on FMEA method publication-title: Renew. Energy Resour. – year: 2013 ident: 10.1016/j.renene.2018.08.097_bib40 – volume: 154 start-page: 21 year: 2016 ident: 10.1016/j.renene.2018.08.097_bib16 article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2016.04.005 – volume: 77 start-page: 114 year: 2017 ident: 10.1016/j.renene.2018.08.097_bib22 article-title: An overview of fault tree analysis and its application in model based dependability analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.058 – volume: 13 start-page: 387 year: 2009 ident: 10.1016/j.renene.2018.08.097_bib5 article-title: The economics of wind energy publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2008.09.004 – volume: 4 start-page: 1 year: 2013 ident: 10.1016/j.renene.2018.08.097_bib10 article-title: A fuzzy-FMEA risk assessment approach for offshore wind turbines publication-title: Int. J. Prognostics Health Manag. – start-page: 692 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib12 article-title: Reliability allocation and fault tree qualitative analysis for floating wind turbine – year: 2011 ident: 10.1016/j.renene.2018.08.097_bib27 article-title: Wind turbine gearbox failure modes- a brief – volume: 83 start-page: 222 year: 2015 ident: 10.1016/j.renene.2018.08.097_bib28 article-title: Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation publication-title: Renew. Energy doi: 10.1016/j.renene.2015.04.035 – volume: 35 start-page: 190 year: 2010 ident: 10.1016/j.renene.2018.08.097_bib35 article-title: Wind turbine productivity considering electrical subassembly reliability publication-title: Renew. Energy doi: 10.1016/j.renene.2009.04.014 – volume: 17 start-page: 673 year: 2012 ident: 10.1016/j.renene.2018.08.097_bib6 article-title: Wind turbine condition monitoring: technical and commercial challenges publication-title: Wind Energy doi: 10.1002/we.1508 – volume: 32 start-page: 1594 year: 2007 ident: 10.1016/j.renene.2018.08.097_bib30 article-title: Fault ride-through capability of DFIG wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2006.10.008 – start-page: 1 year: 2009 ident: 10.1016/j.renene.2018.08.097_bib33 article-title: A review of recent advances in WT condition monitoring and fault diagnosis publication-title: IEEE Power Electron. Mach. Wind Appl. |
SSID | ssj0015874 |
Score | 2.5896618 |
Snippet | With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1455 |
SubjectTerms | Fault Tree Analysis Floating offshore wind turbine Importance measures Minimum cut sets quantitative analysis Reliability analysis transmission systems wind power wind speed wind turbines |
Title | Fault Tree Analysis of floating offshore wind turbines |
URI | https://dx.doi.org/10.1016/j.renene.2018.08.097 https://www.proquest.com/docview/2153618873 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8rm2yj2SPpViqYi-20Nuym-xipSSlD7z5253No6gIBW9JmE3CzGbmW_LNtwjdAUjVLjUx4VEiCROGE62lJgFA09hRS5nw_c4vIzGcsKcpnzZQv-6F8bTKKveXOb3I1tWVTuXNzmI267x68A1gHhAy9XoDXhOUscjP8vvPLc0DnlkqMYMx8dZ1-1zB8fKqkZkXywziQsjTSz_9XZ5-Jeqi-gyO0GEFG3GvfLNj1LDZCTr4JiZ4isRAb-ZrPF5ai2upEZw77Oa59txmOHart3xp8QeswzGUGuMp72doMngY94ek2hWBJIBl1rDWY9yEzHAWGmGSVDPbdTZ1VhrpmO7GxmrJpEl15GwCnnHchlZqrgOeABig56iZ5Zm9QJhzYVngqIgBBMYQMafDSAotUiGd47SFaO0MlVSS4X7nirmquWHvqnSh8i5UfkNLGbUQ2Y5alJIZO-yj2s_qR-gVZPUdI2_rsCj4KvyvDp3ZfLNSAGSoCCCB0st_3_0K7cOZLGk616i5Xm7sDSCQtWkXU6yN9nqPz8PRF50O26w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHpIfSRkEcfKrRHd2PrYeuQQ2m7bJ6XbiA3VbJHZMtih32w5JI_lT-YkR-hLYFAIDdjW0IejWc-oU_fAHwmkGp94bJIprmOhHIyslbbKCZomnmOXKhw3vn0TA3PxdGFvFiB2-4sTKBVtrG_iel1tG7v9Ftr9q_G4_6vAL4JzBNC5kFvQLTMymO8XtK6bXZw-IMm-UuSDH6Ovg-jtrRAlBMgmNOCSUiXCCdF4pTLCytw32PhUTvthd3PHFottCts6jGn7r3EBLWVNpY5ZVRO_a7CmqBwEcomfL2555XQRzbSzzS6KAyvO69Xk8qCTGUZ1DnjrFYODVpTD-fD_zJDne4Gr2CjxansW2OK17CC5Rt4-Zd64VtQA7uYzNloisg6bRNWeeYnlQ1karr2s8tqimxJC39Guc0Fjv0mnD-LrbagV1YlbgOTUqGIPVcZoc6MXMTbJNXKqkJp7yXfAd4Zw-StRnkolTExHRntj2lMaIIJTaigqdMdiO5bXTUaHY-8n3Z2Nv_4mqE08kjLT920GPoNw96KLbFazAwhJ65iith898m9f4QXw9HpiTk5PDveg3V6ohuO0DvozacLfE_wZ-4-1O7G4Pdz-_cdd2QZqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Tree+Analysis+of+floating+offshore+wind+turbines&rft.jtitle=Renewable+energy&rft.au=Kang%2C+Jichuan&rft.au=Sun%2C+Liping&rft.au=Guedes+Soares%2C+C.&rft.date=2019-04-01&rft.issn=0960-1481&rft.volume=133&rft.spage=1455&rft.epage=1467&rft_id=info:doi/10.1016%2Fj.renene.2018.08.097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2018_08_097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |