Fault Tree Analysis of floating offshore wind turbines

With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 133; pp. 1455 - 1467
Main Authors Kang, Jichuan, Sun, Liping, Guedes Soares, C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance. •Fault Tree Analysis method is proposed for evaluation of floating offshore wind turbine failure.•The floating offshore wind turbine is divided into several assemblies.•Failure rates of relevant offshore structures are collected from previous studies.•Quantitative assessment of Minimum Cut Sets and Importance Measures are achieved.•Salt-spray and high wind speed, show the most significant impact on wind turbine performance.
AbstractList With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance.
With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and negative impacts in harsh operating conditions. In this study, the Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-submersible floating offshore wind turbine failure characteristics. The floating offshore wind turbine is divided into several assemblies, including support structures, pitch and hydraulic system, gearbox, generator and the other systems. Failure rates of relevant offshore structures are collected from previous studies, reports and reliability databases. On this basis, the quantitative assessment of Minimum Cut Sets and Importance Measures are achieved. The calculated results are generally in conformity with statistical data, indicating that most of the failures are caused by several basic factors. Marine conditions, especially the salt-spray and high wind speed, show the most significant impact on floating offshore wind turbine performance. •Fault Tree Analysis method is proposed for evaluation of floating offshore wind turbine failure.•The floating offshore wind turbine is divided into several assemblies.•Failure rates of relevant offshore structures are collected from previous studies.•Quantitative assessment of Minimum Cut Sets and Importance Measures are achieved.•Salt-spray and high wind speed, show the most significant impact on wind turbine performance.
Author Kang, Jichuan
Guedes Soares, C.
Sun, Liping
Author_xml – sequence: 1
  givenname: Jichuan
  surname: Kang
  fullname: Kang, Jichuan
  organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
– sequence: 2
  givenname: Liping
  surname: Sun
  fullname: Sun, Liping
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: C.
  surname: Guedes Soares
  fullname: Guedes Soares, C.
  email: c.guedes.soares@centec.tecnico.ulisboa.pt
  organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
BookMark eNqFkDFPwzAQhS1UJNrCP2DIyJJgO05iMyBVFQWkSixlthznDK5Su9gOqP-eVGViAN2T7ob3nnTfDE2cd4DQNcEFwaS-3RYB3DgFxYQXeJRoztCU8EbkuOZ0gqZY1DgnjJMLNItxizGpeMOmqF6poU_ZJgBkC6f6Q7Qx8yYzvVfJurfxNvHdB8i-rOuyNITWOoiX6NyoPsLVz56j19XDZvmUr18en5eLda5LQVNeE1a1lLUVo23d6k4xwAY6A6IVhinMW1CCibZTjQFNMDMVUBCqUqTSlJblHN2cevfBfwwQk9zZqKHvlQM_RElJVdaE8-ZovTtZdfAxBjBS2zT-4F0KyvaSYHmEJbfyBEseYUk8SjRjmP0K74PdqXD4L3Z_isHI4NNCkFFbcBo6G0An2Xn7d8E3zquI7g
CitedBy_id crossref_primary_10_1007_s11666_023_01560_y
crossref_primary_10_1016_j_oceaneng_2021_109062
crossref_primary_10_3390_jmse12071051
crossref_primary_10_1002_qre_3334
crossref_primary_10_1002_ese3_618
crossref_primary_10_1016_j_apenergy_2020_115967
crossref_primary_10_1016_j_renene_2024_122267
crossref_primary_10_1002_eng2_12128
crossref_primary_10_1002_qre_2805
crossref_primary_10_1016_j_renene_2020_09_033
crossref_primary_10_1016_j_oceaneng_2022_113043
crossref_primary_10_1007_s41062_022_00982_x
crossref_primary_10_1016_j_resourpol_2022_102591
crossref_primary_10_1016_j_ijmecsci_2022_107721
crossref_primary_10_1109_ACCESS_2024_3486000
crossref_primary_10_1016_j_oceaneng_2022_112469
crossref_primary_10_3390_en13143518
crossref_primary_10_1016_j_ijhydene_2024_05_029
crossref_primary_10_1007_s10661_019_7944_8
crossref_primary_10_3390_en17081964
crossref_primary_10_1155_2021_2087027
crossref_primary_10_1109_ACCESS_2019_2963197
crossref_primary_10_1016_j_oceaneng_2024_117598
crossref_primary_10_1016_j_ress_2021_107911
crossref_primary_10_1016_j_egyr_2024_05_026
crossref_primary_10_1016_j_oceaneng_2020_107827
crossref_primary_10_1016_j_ymssp_2024_111803
crossref_primary_10_3390_jmse10101395
crossref_primary_10_1088_1755_1315_1198_1_012030
crossref_primary_10_1142_S0218539323500183
crossref_primary_10_1108_BIJ_08_2021_0465
crossref_primary_10_3390_en15197186
crossref_primary_10_1016_j_renene_2020_08_001
crossref_primary_10_18186_thermal_871949
crossref_primary_10_3390_en15176329
crossref_primary_10_1177_1748006X241235727
crossref_primary_10_1080_20464177_2024_2423425
crossref_primary_10_3390_w14213555
crossref_primary_10_1080_02185377_2023_2227162
crossref_primary_10_1016_j_oceaneng_2022_113021
crossref_primary_10_1016_j_ress_2022_108777
crossref_primary_10_1016_j_ress_2024_110508
crossref_primary_10_3390_en14113023
crossref_primary_10_1016_j_jlp_2020_104170
crossref_primary_10_1080_00207543_2023_2202280
crossref_primary_10_1016_j_esd_2022_08_024
crossref_primary_10_1016_j_eswa_2025_126580
crossref_primary_10_3390_en16031471
crossref_primary_10_1049_rpg2_12714
crossref_primary_10_2478_auseme_2023_0004
crossref_primary_10_3390_s22218428
crossref_primary_10_1177_2633366X20966337
crossref_primary_10_1080_14786451_2023_2189490
crossref_primary_10_3389_fenrg_2022_884886
crossref_primary_10_3390_en15020464
crossref_primary_10_1016_j_jclepro_2019_119402
crossref_primary_10_1016_j_oceaneng_2021_109261
crossref_primary_10_1016_j_oceaneng_2024_117727
crossref_primary_10_1051_e3sconf_202451715009
crossref_primary_10_1080_15435075_2023_2253896
crossref_primary_10_1155_2022_5389574
crossref_primary_10_1088_1361_6501_aca347
crossref_primary_10_3390_jmse10111616
crossref_primary_10_1016_j_heliyon_2024_e34649
crossref_primary_10_1016_j_jobe_2021_103752
crossref_primary_10_2478_agriceng_2023_0019
crossref_primary_10_3390_math12111660
crossref_primary_10_1016_j_rser_2023_114094
crossref_primary_10_35414_akufemubid_664701
crossref_primary_10_1016_j_apenergy_2021_117420
crossref_primary_10_1016_j_psep_2022_09_017
crossref_primary_10_1109_ACCESS_2021_3124529
crossref_primary_10_1016_j_energy_2023_129374
crossref_primary_10_3390_math12182842
crossref_primary_10_1007_s10934_022_01293_3
crossref_primary_10_1016_j_oceaneng_2023_116089
crossref_primary_10_1016_j_renene_2024_120970
crossref_primary_10_52547_johe_10_2_105
crossref_primary_10_1002_qre_3706
crossref_primary_10_1016_j_egyr_2021_12_034
crossref_primary_10_1109_TEM_2019_2937579
crossref_primary_10_1016_j_oceaneng_2024_118157
crossref_primary_10_3390_en15176263
crossref_primary_10_3390_jmse8010058
crossref_primary_10_3390_app13042711
crossref_primary_10_1016_j_apenergy_2021_118067
crossref_primary_10_1016_j_jfranklin_2024_107279
crossref_primary_10_1088_1742_6596_2319_1_012014
crossref_primary_10_1177_01423312211057994
crossref_primary_10_1177_09576509241296585
crossref_primary_10_1016_j_oceaneng_2023_116450
crossref_primary_10_1016_j_rser_2024_114302
crossref_primary_10_3389_fmars_2022_970081
crossref_primary_10_1007_s42417_023_01267_y
crossref_primary_10_1016_j_renene_2020_02_060
crossref_primary_10_1016_j_oceaneng_2021_109168
crossref_primary_10_4236_jamp_2023_117125
crossref_primary_10_46578_humder_989695
crossref_primary_10_3390_wevj15080365
crossref_primary_10_1016_j_oceaneng_2020_108075
crossref_primary_10_3390_jmse10121965
crossref_primary_10_1002_qre_3644
crossref_primary_10_1016_j_oceaneng_2022_111433
crossref_primary_10_47134_par_v1i2_2467
crossref_primary_10_3390_jmse10071000
crossref_primary_10_3390_jmse9121448
crossref_primary_10_3390_math12121843
crossref_primary_10_1016_j_oceaneng_2021_109859
crossref_primary_10_1016_j_rser_2022_112958
crossref_primary_10_1016_j_aej_2024_12_025
crossref_primary_10_1016_j_apor_2022_103211
crossref_primary_10_1016_j_ress_2021_108028
crossref_primary_10_1016_j_jclepro_2022_132366
crossref_primary_10_1016_j_apor_2022_103290
Cites_doi 10.1016/j.renene.2010.01.006
10.1016/j.renene.2016.05.022
10.1002/we.421
10.1016/j.renene.2016.06.016
10.1016/j.renene.2015.09.038
10.1016/j.rser.2015.04.139
10.1109/TEC.2004.837299
10.1016/j.engfailanal.2007.01.013
10.1002/we.1887
10.1049/iet-rpg.2008.0060
10.1016/j.rser.2013.03.018
10.1016/j.renene.2012.03.003
10.1109/TEC.2011.2176129
10.1016/j.cosrev.2015.03.001
10.1016/j.ijepes.2010.01.019
10.3390/en8076286
10.1016/j.jweia.2016.04.005
10.1016/j.eswa.2017.01.058
10.1016/j.rser.2008.09.004
10.1016/j.renene.2015.04.035
10.1016/j.renene.2009.04.014
10.1002/we.1508
10.1016/j.renene.2006.10.008
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2018.08.097
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 1467
ExternalDocumentID 10_1016_j_renene_2018_08_097
S0960148118310474
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c392t-6145b24b542b6bcda4e0fedfe9b9f4a08bea949bda7fec104f5e2e9a5a15c2233
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Tue Aug 05 10:24:23 EDT 2025
Tue Jul 01 03:20:49 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Floating offshore wind turbine
Reliability analysis
Importance measures
Minimum cut sets
Fault Tree Analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-6145b24b542b6bcda4e0fedfe9b9f4a08bea949bda7fec104f5e2e9a5a15c2233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2153618873
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2153618873
crossref_citationtrail_10_1016_j_renene_2018_08_097
crossref_primary_10_1016_j_renene_2018_08_097
elsevier_sciencedirect_doi_10_1016_j_renene_2018_08_097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sheng (bib41) 2014
Katsavounis, Patsianis, Konstantinidis, Botsaris (bib18) 2014
Bharatbhai (bib14) 2015; 2
Wan, Cheng, Sheng (bib36) 2015; 8
Dinmohammadi, Shafiee (bib10) 2013; 4
Santos, Teixeira, Guedes Soares (bib3) 2015; 229
Arbian-Hoseynabadi, Oraee, Tavner (bib17) 2010; 32
Ossai, Boswell, Davies (bib13) 2016; 96
Marquez, Perez, Marugan, Papaelias (bib15) 2016; 87
Kang, Sun, Guedes Soares (bib21) 2016
Santos, Teixeira, Guedes Soares (bib4) 2016
Perez, Marquez, Tobias, Papaelias (bib7) 2013; 2013
Rausand (bib37) 2004
Santos, Teixeira, Guedes Soares (bib9) 2015
Santos, Teixeira, Guedes Soares (bib11) 2015
Uzunoglu, Karmakar, Guedes Soares (bib24) 2016
Blanco (bib5) 2009; 13
Yang, Tavner, Carbtree, Feng, Qiu (bib6) 2012; 17
Ruijters, Stoelinga (bib23) 2015; 15
Faulstich, Hahn, Tavner (bib20) 2011; 14
Castro-Santos, Martins, Guedes Soares (bib2) 2016; 97
Wu, Chapman (bib32) 2005; 20
Fischer, Besnard, Bertling (bib19) 2012; 27
Marquez, Tobias, Perez, Papaelias (bib39) 2012; 46
Guo, Sun, Luo, Liu (bib12) 2015
Belsak, Flasker (bib26) 2007; 14
Carroll, McDonald, McMillan (bib8) 2015; 19
Sheng (bib40) 2013
Li, Valla, Zio (bib28) 2015; 83
Spinato, Tavner, Bussel, Koutoulakos (bib25) 2009; 3
OREDA (bib34) 2015
Hansena, Michalke (bib30) 2007; 32
Liu, Tang, Jiang (bib31) 2010; 35
Igba, Alemzadeh, Durugbo, Henningsen (bib29) 2015; 50
Global Wind Energy Council (bib1) 2014
Zhang, Sun, Sun, Guo, Bai (bib16) 2016; 154
Kabir (bib22) 2017; 77
Lu, Li, Wu, Yang (bib33) 2009
Arbian-Hoseynabadi, Oraee, Tavner (bib35) 2010; 35
Sheng, McDade, Errichello (bib27) 2011
He, Hu, Xing (bib38) 2011; 29
Global Wind Energy Council (10.1016/j.renene.2018.08.097_bib1) 2014
Katsavounis (10.1016/j.renene.2018.08.097_bib18) 2014
Santos (10.1016/j.renene.2018.08.097_bib4) 2016
Ruijters (10.1016/j.renene.2018.08.097_bib23) 2015; 15
Uzunoglu (10.1016/j.renene.2018.08.097_bib24) 2016
Kabir (10.1016/j.renene.2018.08.097_bib22) 2017; 77
Perez (10.1016/j.renene.2018.08.097_bib7) 2013; 2013
Marquez (10.1016/j.renene.2018.08.097_bib39) 2012; 46
Marquez (10.1016/j.renene.2018.08.097_bib15) 2016; 87
Liu (10.1016/j.renene.2018.08.097_bib31) 2010; 35
Sheng (10.1016/j.renene.2018.08.097_bib40) 2013
Arbian-Hoseynabadi (10.1016/j.renene.2018.08.097_bib17) 2010; 32
Zhang (10.1016/j.renene.2018.08.097_bib16) 2016; 154
Wu (10.1016/j.renene.2018.08.097_bib32) 2005; 20
Sheng (10.1016/j.renene.2018.08.097_bib27) 2011
Yang (10.1016/j.renene.2018.08.097_bib6) 2012; 17
Santos (10.1016/j.renene.2018.08.097_bib9) 2015
Spinato (10.1016/j.renene.2018.08.097_bib25) 2009; 3
Santos (10.1016/j.renene.2018.08.097_bib11) 2015
Igba (10.1016/j.renene.2018.08.097_bib29) 2015; 50
OREDA (10.1016/j.renene.2018.08.097_bib34) 2015
Bharatbhai (10.1016/j.renene.2018.08.097_bib14) 2015; 2
Lu (10.1016/j.renene.2018.08.097_bib33) 2009
Ossai (10.1016/j.renene.2018.08.097_bib13) 2016; 96
Li (10.1016/j.renene.2018.08.097_bib28) 2015; 83
He (10.1016/j.renene.2018.08.097_bib38) 2011; 29
Carroll (10.1016/j.renene.2018.08.097_bib8) 2015; 19
Faulstich (10.1016/j.renene.2018.08.097_bib20) 2011; 14
Wan (10.1016/j.renene.2018.08.097_bib36) 2015; 8
Arbian-Hoseynabadi (10.1016/j.renene.2018.08.097_bib35) 2010; 35
Blanco (10.1016/j.renene.2018.08.097_bib5) 2009; 13
Rausand (10.1016/j.renene.2018.08.097_bib37) 2004
Castro-Santos (10.1016/j.renene.2018.08.097_bib2) 2016; 97
Guo (10.1016/j.renene.2018.08.097_bib12) 2015
Fischer (10.1016/j.renene.2018.08.097_bib19) 2012; 27
Hansena (10.1016/j.renene.2018.08.097_bib30) 2007; 32
Kang (10.1016/j.renene.2018.08.097_bib21) 2016
Sheng (10.1016/j.renene.2018.08.097_bib41) 2014
Belsak (10.1016/j.renene.2018.08.097_bib26) 2007; 14
Santos (10.1016/j.renene.2018.08.097_bib3) 2015; 229
Dinmohammadi (10.1016/j.renene.2018.08.097_bib10) 2013; 4
References_xml – start-page: 221
  year: 2014
  end-page: 228
  ident: bib18
  article-title: Reliability analysis on crucial subsystems of a wind turbine through FTA approach
  publication-title: Proceedings of Maintenance Performance Measurement and Management Conference, Coimbra, Portugal, September 4-5
– volume: 8
  start-page: 6286
  year: 2015
  end-page: 6301
  ident: bib36
  article-title: Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model
  publication-title: Energies
– start-page: 181
  year: 2016
  end-page: 193
  ident: bib4
  article-title: Operation and maintenance of floating offshore wind turbines
  publication-title: Floating Offshore Wind Farms
– volume: 27
  start-page: 184
  year: 2012
  end-page: 195
  ident: bib19
  article-title: Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience
  publication-title: IEEE Trans. Energy Convers.
– volume: 14
  start-page: 327
  year: 2011
  end-page: 337
  ident: bib20
  article-title: Wind turbine downtime and its importance for offshore deployment
  publication-title: Wind Energy
– year: 2004
  ident: bib37
  article-title: System Reliability Theory: Models, Statistical Methods, and Application
– volume: 29
  start-page: 120
  year: 2011
  end-page: 126
  ident: bib38
  article-title: Failure mode analysis of wind turbines based on FMEA method
  publication-title: Renew. Energy Resour.
– volume: 2013
  start-page: 463
  year: 2013
  end-page: 472
  ident: bib7
  article-title: Wind turbine reliability analysis
  publication-title: Renew. Sustain. Energy Rev.
– year: 2013
  ident: bib40
  article-title: Report on Wind Turbine Subsystem Reliability-a Survey of Various Databases
– volume: 87
  start-page: 833
  year: 2016
  end-page: 869
  ident: bib15
  article-title: Identification of critical components of wind turbines using FTA over the time
  publication-title: Renew. Energy
– volume: 19
  start-page: 1107
  year: 2015
  end-page: 1119
  ident: bib8
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
– volume: 97
  start-page: 866
  year: 2016
  end-page: 880
  ident: bib2
  article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems
  publication-title: Renew. Energy
– volume: 32
  start-page: 817
  year: 2010
  end-page: 824
  ident: bib17
  article-title: Failure modes and effects analysis (FMEA) for wind turbines
  publication-title: Electr. Power Energy Syst.
– volume: 229
  start-page: 385
  year: 2015
  end-page: 393
  ident: bib3
  article-title: Modelling and simulation of the operation and maintenance of offshore wind turbines
  publication-title: J. Risk Reliab.
– volume: 96
  start-page: 775
  year: 2016
  end-page: 783
  ident: bib13
  article-title: A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components
  publication-title: Renew. Energy
– volume: 46
  start-page: 169
  year: 2012
  end-page: 178
  ident: bib39
  article-title: Condition monitoring of wind turbines: techniques and methods
  publication-title: Renew. Energy
– volume: 83
  start-page: 222
  year: 2015
  end-page: 233
  ident: bib28
  article-title: Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation
  publication-title: Renew. Energy
– year: 2014
  ident: bib1
  article-title: Global Wind Report Annual Market Update 2013
– year: 2014
  ident: bib41
  article-title: Gearbox typical failure modes, detection and mitigation methods
  publication-title: AWEA Operations & Maintenance and Safety Seminar, January 15–16
– volume: 15
  start-page: 29
  year: 2015
  end-page: 62
  ident: bib23
  article-title: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools
  publication-title: Comput. Sci. Rev.
– volume: 35
  start-page: 190
  year: 2010
  end-page: 197
  ident: bib35
  article-title: Wind turbine productivity considering electrical subassembly reliability
  publication-title: Renew. Energy
– volume: 14
  start-page: 1466
  year: 2007
  end-page: 1475
  ident: bib26
  article-title: Detecting cracks in the tooth root of gears
  publication-title: Eng. Fail. Anal.
– volume: 35
  start-page: 1414
  year: 2010
  end-page: 1418
  ident: bib31
  article-title: Status and problems of WT structural health monitoring techniques in China
  publication-title: Renew. Energy
– volume: 13
  start-page: 387
  year: 2009
  end-page: 401
  ident: bib5
  article-title: The economics of wind energy
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1
  year: 2009
  end-page: 7
  ident: bib33
  article-title: A review of recent advances in WT condition monitoring and fault diagnosis
  publication-title: IEEE Power Electron. Mach. Wind Appl.
– year: 2015
  ident: bib34
  article-title: Offshore Reliability Handbook
– start-page: 953
  year: 2015
  end-page: 959
  ident: bib9
  article-title: Review of wind turbine accident and failure data
  publication-title: Renewable Energies Offshore London
– volume: 77
  start-page: 114
  year: 2017
  end-page: 135
  ident: bib22
  article-title: An overview of fault tree analysis and its application in model based dependability analysis
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 387
  year: 2009
  end-page: 401
  ident: bib25
  article-title: Reliability of WT subassemblies
  publication-title: IET Renew. Power Gener.
– start-page: 53
  year: 2016
  end-page: 76
  ident: bib24
  article-title: Floating offshore wind platforms
  publication-title: Floating Offshore Wind Farms
– volume: 32
  start-page: 1594
  year: 2007
  end-page: 1610
  ident: bib30
  article-title: Fault ride-through capability of DFIG wind turbines
  publication-title: Renew. Energy
– start-page: 692
  year: 2015
  end-page: 698
  ident: bib12
  article-title: Reliability allocation and fault tree qualitative analysis for floating wind turbine
  publication-title: Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015
– volume: 2
  start-page: 2394
  year: 2015
  end-page: 2444
  ident: bib14
  article-title: Reliability analysis of repower 5M wind turbine
  publication-title: Int. J. Adv. Res. Eng. Sci. Technol.
– volume: 17
  start-page: 673
  year: 2012
  end-page: 693
  ident: bib6
  article-title: Wind turbine condition monitoring: technical and commercial challenges
  publication-title: Wind Energy
– start-page: 741
  year: 2016
  end-page: 749
  ident: bib21
  article-title: Fault tree analysis of the failure of floating offshore wind turbines support structures and blade systems
  publication-title: Progress in Renewable Energies Offshore
– year: 2011
  ident: bib27
  article-title: Wind turbine gearbox failure modes- a brief
  publication-title: ASME/STLE 2011 International Joint Tribology Conference, October 24–26, Los Angeles, California, USA
– volume: 50
  start-page: 144
  year: 2015
  end-page: 159
  ident: bib29
  article-title: Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1147
  year: 2015
  end-page: 1155
  ident: bib11
  article-title: An age-based preventive maintenance for offshore wind turbine. Nowakowski
  publication-title: Safety and Reliability: Methodology and Applications
– volume: 154
  start-page: 21
  year: 2016
  end-page: 33
  ident: bib16
  article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 20
  start-page: 151
  year: 2005
  end-page: 157
  ident: bib32
  article-title: Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives
  publication-title: IEEE Trans. Energy Convers.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib10
  article-title: A fuzzy-FMEA risk assessment approach for offshore wind turbines
  publication-title: Int. J. Prognostics Health Manag.
– volume: 35
  start-page: 1414
  year: 2010
  ident: 10.1016/j.renene.2018.08.097_bib31
  article-title: Status and problems of WT structural health monitoring techniques in China
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.01.006
– year: 2014
  ident: 10.1016/j.renene.2018.08.097_bib41
  article-title: Gearbox typical failure modes, detection and mitigation methods
– volume: 96
  start-page: 775
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib13
  article-title: A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.05.022
– start-page: 221
  year: 2014
  ident: 10.1016/j.renene.2018.08.097_bib18
  article-title: Reliability analysis on crucial subsystems of a wind turbine through FTA approach
– volume: 14
  start-page: 327
  year: 2011
  ident: 10.1016/j.renene.2018.08.097_bib20
  article-title: Wind turbine downtime and its importance for offshore deployment
  publication-title: Wind Energy
  doi: 10.1002/we.421
– volume: 97
  start-page: 866
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib2
  article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.016
– volume: 87
  start-page: 833
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib15
  article-title: Identification of critical components of wind turbines using FTA over the time
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.09.038
– start-page: 53
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib24
  article-title: Floating offshore wind platforms
– volume: 50
  start-page: 144
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib29
  article-title: Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.139
– volume: 20
  start-page: 151
  year: 2005
  ident: 10.1016/j.renene.2018.08.097_bib32
  article-title: Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2004.837299
– volume: 14
  start-page: 1466
  year: 2007
  ident: 10.1016/j.renene.2018.08.097_bib26
  article-title: Detecting cracks in the tooth root of gears
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2007.01.013
– year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib34
– volume: 19
  start-page: 1107
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib8
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1887
– start-page: 953
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib9
  article-title: Review of wind turbine accident and failure data
– volume: 229
  start-page: 385
  issue: 5
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib3
  article-title: Modelling and simulation of the operation and maintenance of offshore wind turbines
  publication-title: J. Risk Reliab.
– volume: 3
  start-page: 387
  year: 2009
  ident: 10.1016/j.renene.2018.08.097_bib25
  article-title: Reliability of WT subassemblies
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2008.0060
– year: 2014
  ident: 10.1016/j.renene.2018.08.097_bib1
– start-page: 741
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib21
  article-title: Fault tree analysis of the failure of floating offshore wind turbines support structures and blade systems
– volume: 2013
  start-page: 463
  issue: 23
  year: 2013
  ident: 10.1016/j.renene.2018.08.097_bib7
  article-title: Wind turbine reliability analysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.018
– year: 2004
  ident: 10.1016/j.renene.2018.08.097_bib37
– start-page: 181
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib4
  article-title: Operation and maintenance of floating offshore wind turbines
– volume: 2
  start-page: 2394
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib14
  article-title: Reliability analysis of repower 5M wind turbine
  publication-title: Int. J. Adv. Res. Eng. Sci. Technol.
– volume: 46
  start-page: 169
  year: 2012
  ident: 10.1016/j.renene.2018.08.097_bib39
  article-title: Condition monitoring of wind turbines: techniques and methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.003
– start-page: 1147
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib11
  article-title: An age-based preventive maintenance for offshore wind turbine. Nowakowski
– volume: 27
  start-page: 184
  year: 2012
  ident: 10.1016/j.renene.2018.08.097_bib19
  article-title: Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2011.2176129
– volume: 15
  start-page: 29
  issue: 16
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib23
  article-title: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2015.03.001
– volume: 32
  start-page: 817
  year: 2010
  ident: 10.1016/j.renene.2018.08.097_bib17
  article-title: Failure modes and effects analysis (FMEA) for wind turbines
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2010.01.019
– volume: 8
  start-page: 6286
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib36
  article-title: Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model
  publication-title: Energies
  doi: 10.3390/en8076286
– volume: 29
  start-page: 120
  year: 2011
  ident: 10.1016/j.renene.2018.08.097_bib38
  article-title: Failure mode analysis of wind turbines based on FMEA method
  publication-title: Renew. Energy Resour.
– year: 2013
  ident: 10.1016/j.renene.2018.08.097_bib40
– volume: 154
  start-page: 21
  year: 2016
  ident: 10.1016/j.renene.2018.08.097_bib16
  article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2016.04.005
– volume: 77
  start-page: 114
  year: 2017
  ident: 10.1016/j.renene.2018.08.097_bib22
  article-title: An overview of fault tree analysis and its application in model based dependability analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.058
– volume: 13
  start-page: 387
  year: 2009
  ident: 10.1016/j.renene.2018.08.097_bib5
  article-title: The economics of wind energy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2008.09.004
– volume: 4
  start-page: 1
  year: 2013
  ident: 10.1016/j.renene.2018.08.097_bib10
  article-title: A fuzzy-FMEA risk assessment approach for offshore wind turbines
  publication-title: Int. J. Prognostics Health Manag.
– start-page: 692
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib12
  article-title: Reliability allocation and fault tree qualitative analysis for floating wind turbine
– year: 2011
  ident: 10.1016/j.renene.2018.08.097_bib27
  article-title: Wind turbine gearbox failure modes- a brief
– volume: 83
  start-page: 222
  year: 2015
  ident: 10.1016/j.renene.2018.08.097_bib28
  article-title: Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.04.035
– volume: 35
  start-page: 190
  year: 2010
  ident: 10.1016/j.renene.2018.08.097_bib35
  article-title: Wind turbine productivity considering electrical subassembly reliability
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.04.014
– volume: 17
  start-page: 673
  year: 2012
  ident: 10.1016/j.renene.2018.08.097_bib6
  article-title: Wind turbine condition monitoring: technical and commercial challenges
  publication-title: Wind Energy
  doi: 10.1002/we.1508
– volume: 32
  start-page: 1594
  year: 2007
  ident: 10.1016/j.renene.2018.08.097_bib30
  article-title: Fault ride-through capability of DFIG wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2006.10.008
– start-page: 1
  year: 2009
  ident: 10.1016/j.renene.2018.08.097_bib33
  article-title: A review of recent advances in WT condition monitoring and fault diagnosis
  publication-title: IEEE Power Electron. Mach. Wind Appl.
SSID ssj0015874
Score 2.5896618
Snippet With the development of offshore wind power, the reliability analysis of offshore wind turbines is increasingly significant due to the system complexity and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1455
SubjectTerms Fault Tree Analysis
Floating offshore wind turbine
Importance measures
Minimum cut sets
quantitative analysis
Reliability analysis
transmission systems
wind power
wind speed
wind turbines
Title Fault Tree Analysis of floating offshore wind turbines
URI https://dx.doi.org/10.1016/j.renene.2018.08.097
https://www.proquest.com/docview/2153618873
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8rm2yj2SPpViqYi-20Nuym-xipSSlD7z5253No6gIBW9JmE3CzGbmW_LNtwjdAUjVLjUx4VEiCROGE62lJgFA09hRS5nw_c4vIzGcsKcpnzZQv-6F8bTKKveXOb3I1tWVTuXNzmI267x68A1gHhAy9XoDXhOUscjP8vvPLc0DnlkqMYMx8dZ1-1zB8fKqkZkXywziQsjTSz_9XZ5-Jeqi-gyO0GEFG3GvfLNj1LDZCTr4JiZ4isRAb-ZrPF5ai2upEZw77Oa59txmOHart3xp8QeswzGUGuMp72doMngY94ek2hWBJIBl1rDWY9yEzHAWGmGSVDPbdTZ1VhrpmO7GxmrJpEl15GwCnnHchlZqrgOeABig56iZ5Zm9QJhzYVngqIgBBMYQMafDSAotUiGd47SFaO0MlVSS4X7nirmquWHvqnSh8i5UfkNLGbUQ2Y5alJIZO-yj2s_qR-gVZPUdI2_rsCj4KvyvDp3ZfLNSAGSoCCCB0st_3_0K7cOZLGk616i5Xm7sDSCQtWkXU6yN9nqPz8PRF50O26w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHpIfSRkEcfKrRHd2PrYeuQQ2m7bJ6XbiA3VbJHZMtih32w5JI_lT-YkR-hLYFAIDdjW0IejWc-oU_fAHwmkGp94bJIprmOhHIyslbbKCZomnmOXKhw3vn0TA3PxdGFvFiB2-4sTKBVtrG_iel1tG7v9Ftr9q_G4_6vAL4JzBNC5kFvQLTMymO8XtK6bXZw-IMm-UuSDH6Ovg-jtrRAlBMgmNOCSUiXCCdF4pTLCytw32PhUTvthd3PHFottCts6jGn7r3EBLWVNpY5ZVRO_a7CmqBwEcomfL2555XQRzbSzzS6KAyvO69Xk8qCTGUZ1DnjrFYODVpTD-fD_zJDne4Gr2CjxansW2OK17CC5Rt4-Zd64VtQA7uYzNloisg6bRNWeeYnlQ1karr2s8tqimxJC39Guc0Fjv0mnD-LrbagV1YlbgOTUqGIPVcZoc6MXMTbJNXKqkJp7yXfAd4Zw-StRnkolTExHRntj2lMaIIJTaigqdMdiO5bXTUaHY-8n3Z2Nv_4mqE08kjLT920GPoNw96KLbFazAwhJ65iith898m9f4QXw9HpiTk5PDveg3V6ohuO0DvozacLfE_wZ-4-1O7G4Pdz-_cdd2QZqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Tree+Analysis+of+floating+offshore+wind+turbines&rft.jtitle=Renewable+energy&rft.au=Kang%2C+Jichuan&rft.au=Sun%2C+Liping&rft.au=Guedes+Soares%2C+C.&rft.date=2019-04-01&rft.issn=0960-1481&rft.volume=133&rft.spage=1455&rft.epage=1467&rft_id=info:doi/10.1016%2Fj.renene.2018.08.097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2018_08_097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon