GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation

Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily learn deep learning, most existing tools focus on si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 25; no. 1; pp. 310 - 320
Main Authors Kahng, Minsuk, Thorat, Nikhil, Chau, Duen Horng, Viegas, Fernanda B., Wattenberg, Martin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process's intermediate results. GAN Lab tightly integrates an model overview graph that summarizes GAN's structure, and a layered distributions view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate training dynamics. Implemented using TensorFlow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for installation or specialized hardware, overcoming a major practical challenge in deploying interactive tools for deep learning.
AbstractList Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process's intermediate results. GAN Lab tightly integrates an model overview graph that summarizes GAN's structure, and a layered distributions view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate training dynamics. Implemented using TensorFlow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for installation or specialized hardware, overcoming a major practical challenge in deploying interactive tools for deep learning.
Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process's intermediate results. GAN Lab tightly integrates an model overview graph that summarizes GAN's structure, and a layered distributions view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate training dynamics. Implemented using TensorFlow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for installation or specialized hardware, overcoming a major practical challenge in deploying interactive tools for deep learning.Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process's intermediate results. GAN Lab tightly integrates an model overview graph that summarizes GAN's structure, and a layered distributions view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate training dynamics. Implemented using TensorFlow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for installation or specialized hardware, overcoming a major practical challenge in deploying interactive tools for deep learning.
Author Kahng, Minsuk
Wattenberg, Martin
Thorat, Nikhil
Chau, Duen Horng
Viegas, Fernanda B.
Author_xml – sequence: 1
  givenname: Minsuk
  surname: Kahng
  fullname: Kahng, Minsuk
  email: kahng@gatech.edu
  organization: Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: Nikhil
  surname: Thorat
  fullname: Thorat, Nikhil
  email: nsthoratwattenberg@google.com
  organization: Google Brain, Mountain View, CA, USA
– sequence: 3
  givenname: Duen Horng
  surname: Chau
  fullname: Chau, Duen Horng
  email: polo@gatech.edu
  organization: Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 4
  givenname: Fernanda B.
  surname: Viegas
  fullname: Viegas, Fernanda B.
  email: viegas@google.com
  organization: Google Brain, Mountain View, CA, USA
– sequence: 5
  givenname: Martin
  surname: Wattenberg
  fullname: Wattenberg, Martin
  email: wattenberg@google.com
  organization: Google Brain, Mountain View, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130198$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxS0E4l_7AapKVSQuXLIdO3Zi94YWWJCW9gIcazn2bBWUdVI7QfDtcdiFAwckS2N5fu_JM--I7PrOIyHfKMwoBfXz9n6-mDGgcsZkyQXADjmkitMcBJS76Q5VlbOSlQfkKMYHAMq5VPvkoACajpKH5O_i7He2NPWv7M47DHEw3jX-Xzbv1n2LT9k5Yp8t0GMwQ_OI2U3nsI3ZGCfo2g_p3b427ps4mja7eOoxNGv0Q-I7_4XsrUwb8eu2HpO7y4vb-VW-_LO4np8tc1soNuTCKOuwrqVQBgtVWSWkQ2erqkYBljMHrhCF5FRWrsSVow4MmLoCLleCu-KYnG58-9D9HzEOet1Ei21rPHZj1AwUlYwBsISefEAfujH49DvNqOBpdVJN1I8tNdZrdLpPQ5nwrN82l4BqA9jQxRhwpW2zmXkIpmk1BT1lpKeM9JSR3maUlPSD8s38M833jaZBxHdecg7AVfECW2ebxg
CODEN ITVGEA
CitedBy_id crossref_primary_10_1016_j_visinf_2018_09_001
crossref_primary_10_1109_TVCG_2024_3456142
crossref_primary_10_1016_j_compag_2021_106183
crossref_primary_10_1109_TII_2020_3046036
crossref_primary_10_1145_3672276
crossref_primary_10_1109_TVCG_2020_3030449
crossref_primary_10_1111_cgf_14418
crossref_primary_10_1177_14738716231216030
crossref_primary_10_1088_1742_6596_1952_3_032031
crossref_primary_10_1109_MCI_2024_3487134
crossref_primary_10_1109_TVCG_2023_3243676
crossref_primary_10_1109_TVCG_2019_2934261
crossref_primary_10_1109_TVCG_2021_3076749
crossref_primary_10_1109_TVCG_2024_3357065
crossref_primary_10_1016_j_inpa_2023_11_002
crossref_primary_10_1016_j_cag_2019_03_009
crossref_primary_10_1109_JAS_2024_124221
crossref_primary_10_1109_TVCG_2022_3146806
crossref_primary_10_1016_j_visinf_2024_10_004
crossref_primary_10_1016_j_visinf_2024_10_002
crossref_primary_10_1007_s11042_024_18665_3
crossref_primary_10_1109_TKDE_2021_3130191
crossref_primary_10_1109_TVCG_2024_3388557
crossref_primary_10_3390_fi16110406
crossref_primary_10_1109_TVCG_2023_3326577
crossref_primary_10_1109_TVCG_2022_3209462
crossref_primary_10_1007_s10489_022_04278_6
crossref_primary_10_1109_TVCG_2019_2934631
crossref_primary_10_1109_TVCG_2022_3148107
crossref_primary_10_1109_TVCG_2019_2934591
crossref_primary_10_1109_TVCG_2020_3030418
crossref_primary_10_1109_TVCG_2021_3057483
crossref_primary_10_4018_IJWLTT_333601
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_3390_s21072514
crossref_primary_10_1109_TVCG_2020_3030384
crossref_primary_10_1109_TVCG_2020_3030461
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1007_s11704_024_3735_7
crossref_primary_10_1109_TVCG_2023_3285210
crossref_primary_10_1109_TVCG_2023_3326921
crossref_primary_10_1016_j_visinf_2022_01_001
crossref_primary_10_1109_TVCG_2020_2969185
crossref_primary_10_1016_j_cag_2024_104058
crossref_primary_10_2478_amns_2020_2_00072
crossref_primary_10_35940_ijitee_F8804_0410621
crossref_primary_10_2139_ssrn_4172218
crossref_primary_10_1002_ail2_36
crossref_primary_10_1109_TVCG_2019_2903943
crossref_primary_10_1080_01969722_2021_1982160
crossref_primary_10_1080_15481603_2022_2163048
crossref_primary_10_1007_s12650_020_00704_4
crossref_primary_10_1109_TVCG_2023_3326591
crossref_primary_10_1515_itit_2022_0034
crossref_primary_10_1016_j_neunet_2019_04_024
crossref_primary_10_1109_TVCG_2019_2934659
crossref_primary_10_1109_ACCESS_2021_3133762
crossref_primary_10_3390_electronics12122563
crossref_primary_10_1145_3458928
crossref_primary_10_1109_TVCG_2020_3012063
crossref_primary_10_1111_cgf_14524
crossref_primary_10_1007_s10639_023_12349_5
crossref_primary_10_1111_cgf_14329
crossref_primary_10_1109_TVCG_2023_3339585
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_1109_TVCG_2020_3028888
crossref_primary_10_1109_TVCG_2022_3219248
crossref_primary_10_1080_01969722_2022_2137640
crossref_primary_10_1109_TASE_2020_2998467
crossref_primary_10_2196_27414
Cites_doi 10.23915/distill.00002
10.1109/TVCG.2018.2816223
10.1109/TVCG.2017.2744358
10.1109/TVCG.2017.2744158
10.1145/2445196.2445368
10.1109/TVCG.2016.2640960
10.1145/1227504.1227384
10.1006/jvlc.2002.0237
10.23915/distill.00006
10.1109/TVCG.2017.2744683
10.1016/j.visinf.2017.01.006
10.1109/TVCG.2017.2744938
10.1109/TVCG.2010.177
10.1109/TVCG.2017.2744718
10.1145/971300.971432
10.1145/1821996.1821997
10.1016/j.jvlc.2006.03.002
10.1109/MSP.2017.2765202
10.1109/TVCG.2017.2744878
10.1109/TVCG.2008.119
10.1109/18.61115
10.1145/1067445.1067495
10.1109/TVCG.2016.2598831
10.23915/distill.00009
10.1109/CVPR.2015.7298935
10.1109/ICCV.2017.304
10.23915/distill.00005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2018.2864500
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 320
ExternalDocumentID 30130198
10_1109_TVCG_2018_2864500
8440049
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: IIS-1563816; CNS-1704701; TWC-1526254
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-5a9cdebb859ae397c958dedc77be50c42d0d35384187d6efd1d0a0ab7048f54d3
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 13:22:38 EDT 2025
Mon Jun 30 04:44:09 EDT 2025
Wed Feb 19 02:09:30 EST 2025
Tue Jul 01 03:58:53 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Wed Aug 27 05:50:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-5a9cdebb859ae397c958dedc77be50c42d0d35384187d6efd1d0a0ab7048f54d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8440049
PMID 30130198
PQID 2154050892
PQPubID 75741
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TVCG_2018_2864500
proquest_miscellaneous_2091822002
proquest_journals_2154050892
pubmed_primary_30130198
crossref_primary_10_1109_TVCG_2018_2864500
ieee_primary_8440049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References victor (ref39) 0
ref35
ref34
olah (ref28) 0
ref37
ref15
ref14
ref30
ref33
yosinski (ref44) 2015
ref10
ref2
karpathy (ref17) 0
carter (ref5) 2017
rosenberg (ref31) 0
ref16
ref19
abadi (ref1) 2016
liu (ref24) 2010; 16
hohman (ref13) 2018
goh (ref7) 2017
smilkov (ref36) 2016
harley (ref11) 2015
goodfellow (ref8) 2016
salimans (ref32) 2016
hindupur (ref12) 0
ref23
lecun (ref18) 0
ref25
theis (ref38) 2016
ref20
ref41
ref22
ref21
ref43
wattenberg (ref42) 2016
ming (ref27) 2017
ref4
ref3
ref6
goodfellow (ref9) 2014
ref40
olah (ref29) 2017
metz (ref26) 2017
References_xml – year: 2016
  ident: ref42
  article-title: How to use t-SNE effectively
  publication-title: Distillation
  doi: 10.23915/distill.00002
– ident: ref41
  doi: 10.1109/TVCG.2018.2816223
– year: 0
  ident: ref12
  publication-title: The GAN Zoo A list of all named GANs!
– year: 2015
  ident: ref44
  article-title: Understanding neural networks through deep visualization
  publication-title: Deep Learning Workshop International Conference on Machine Learning (ICML)
– year: 0
  ident: ref31
  publication-title: Machine learning crash course
– start-page: 2672
  year: 2014
  ident: ref9
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– ident: ref30
  doi: 10.1109/TVCG.2017.2744358
– ident: ref37
  doi: 10.1109/TVCG.2017.2744158
– ident: ref10
  doi: 10.1145/2445196.2445368
– year: 0
  ident: ref17
  publication-title: ConvNetJS MNIST demo
– year: 0
  ident: ref28
  publication-title: Neural networks manifolds and topology
– ident: ref22
  doi: 10.1109/TVCG.2016.2640960
– year: 2016
  ident: ref36
  article-title: Direct-manipulation visualization of deep networks
  publication-title: Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML)
– year: 2018
  ident: ref13
  article-title: Visual analytics in deep learning: An interrogative survey for the next frontiers
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: ref34
  doi: 10.1145/1227504.1227384
– ident: ref15
  doi: 10.1006/jvlc.2002.0237
– year: 2017
  ident: ref7
  article-title: Why momentum really works
  publication-title: Distillation
  doi: 10.23915/distill.00006
– start-page: 2234
  year: 2016
  ident: ref32
  article-title: Improved techniques for training GANs
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– ident: ref4
  doi: 10.1109/TVCG.2017.2744683
– ident: ref23
  doi: 10.1016/j.visinf.2017.01.006
– ident: ref20
  doi: 10.1109/TVCG.2017.2744938
– volume: 16
  start-page: 999
  year: 2010
  ident: ref24
  article-title: Mental models, visual reasoning and interaction in information visualization: A top-down perspective
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2010.177
– year: 2016
  ident: ref1
  publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems
– ident: ref16
  doi: 10.1109/TVCG.2017.2744718
– year: 2017
  ident: ref27
  article-title: Understanding hidden memories of recurrent neural networks
  publication-title: IEEE Visual Analytics in Science and Technology
– year: 2017
  ident: ref26
  article-title: Unrolled generative adversarial networks
  publication-title: International Conference on Learning Representations (ICLR)
– ident: ref33
  doi: 10.1145/971300.971432
– ident: ref35
  doi: 10.1145/1821996.1821997
– ident: ref14
  doi: 10.1016/j.jvlc.2006.03.002
– year: 0
  ident: ref39
  publication-title: Explorable explanations
– ident: ref6
  doi: 10.1109/MSP.2017.2765202
– ident: ref43
  doi: 10.1109/TVCG.2017.2744878
– ident: ref3
  doi: 10.1109/TVCG.2008.119
– ident: ref19
  doi: 10.1109/18.61115
– ident: ref2
  doi: 10.1145/1067445.1067495
– year: 2016
  ident: ref38
  article-title: A note on the evaluation of generative models
  publication-title: International Conference on Learning Representations (ICLR)
– year: 0
  ident: ref18
  publication-title: Answer to "what are some recent and potentially upcoming breakthroughs in deep learning?"
– ident: ref21
  doi: 10.1109/TVCG.2016.2598831
– start-page: 867
  year: 2015
  ident: ref11
  article-title: An interactive node-link visualization of convolutional neural networks
  publication-title: Proceedings of the 11 th International Symposium on Visual Computing
– year: 2017
  ident: ref5
  article-title: Using artificial intelligence to augment human intelligence
  publication-title: Distillation
  doi: 10.23915/distill.00009
– ident: ref40
  doi: 10.1109/CVPR.2015.7298935
– year: 2016
  ident: ref8
  publication-title: Nips 2016 tutorial Generative adversarial networks
– ident: ref25
  doi: 10.1109/ICCV.2017.304
– year: 2017
  ident: ref29
  article-title: Research debt
  publication-title: Distillation
  doi: 10.23915/distill.00005
SSID ssj0014489
Score 2.5792468
Snippet Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to learn about this new technology. While...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 310
SubjectTerms Data visualization
Deep learning
Experimentation
explorable explanations
Gallium nitride
Generative adversarial networks
Generators
information visualization
interactive experimentation
Machine learning
New technology
Training
visual analytics
Title GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation
URI https://ieeexplore.ieee.org/document/8440049
https://www.ncbi.nlm.nih.gov/pubmed/30130198
https://www.proquest.com/docview/2154050892
https://www.proquest.com/docview/2091822002
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poefSx5SFX6gk1izdrJzY3xFOocGIRp0aOPamqrnZRdyNV_fWdcbKBooK4RYoTO5nx-Js3wGer9CB3Mk-8MVmiKuMSY7VPZLCZTZ3KleYE58ur7HykLm717RJ86XJhEDEGn2GfL6MvP0x9zaayfaOY4-wyLJPi1uRqdR4DUjNsE1-YJymh9NaDOZB2__rm6IyDuEw_NZnSkru_DdljRwr3P8dR7K_yNNSMR87pG7hcLLaJNPnZr-dl3_95VMfxpV-zBq9b7CkOG2ZZhyWcbMCrBxUJN-Hb2eGV-OrKAzF6mPUiWGyM8bc4RrwTTalqlpOCW6mNZ4Kj57-LaF10UYCKmx-zmuY6uW8gwBzwFkanJ9dH50nbgiHxBJzmiXbWByxLo61Dgi7eahMw-DwvUUuv0iDDkGSmGpg8ZFiFQZBOujInwVBpFYbvYGUyneAHEJkN3NcedVU6lclgbDWUqiLMFUslpz2QC0oUvq1Pzm0yxkXUU6QtmI4F07Fo6diDve6Ru6Y4x3ODN5kG3cD29_dge0Huot2-s4JwEAFZaSyt6lN3mzYee1PcBKc1jSGkReiKTpQevG_YpHv3grs-_n_OLVilldnGkrMNK_NfNe4QtpmXu5Gp_wLD3PE3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8MMYYdBtgJJ4Q6ZzUTuy9TWNbt7V9aqc9ETm2M01U7UQbCfHX785Js4EA8RYpTuzkzne_830BfNRCxpnhWWSVSiNRKhMpLW3EnU51YkQmJCU4D0dpfyLOr-TVGnxuc2G89yH4zHfpMvjy3dxWdFS2rwRxnH4Ej1Hvy7jO1mp9Bmho6DrCMIsSxOmNDzPmen98eXRKYVyqm6hUSE7933rks0OT-xeFFDqs_B1sBqVzsgHD1XLrWJNv3WpZdO3P3yo5_u_3vIDnDfpkhzW7bMKan72EZw9qEm7B19PDERuY4oBNHua9MBIcU_-DffH-ltXFqklSMmqmNl0wip-_ZuF80QQRyi5vFhXOdXzfQoB44BVMTo7HR_2oacIQWYROy0gabZ0vCiW18QherJbKeWezrPCSW5E47nooNUWsMpf60sWOG26KDEVDKYXrbcP6bD7zb4Cl2lFney_LwoiUO6XLHhcloq5QLDnpAF9RIrdNhXJqlDHNg6XCdU50zImOeUPHDnxqH7mty3P8a_AW0aAd2Pz-DuytyJ03G3iRIxJCKMuVxlV9aG_j1iN_ipn5eYVjEGshvkKd0oHXNZu0715x186f53wPT_rj4SAfnI0uduEprlLX5zp7sL78Xvm3iHSWxbvA4HeAUPSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN+Lab%3A+Understanding+Complex+Deep+Generative+Models+using+Interactive+Visual+Experimentation&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Kahng%2C+Minsuk&rft.au=Thorat%2C+Nikhil&rft.au=Chau%2C+Duen+Horng+Polo&rft.au=Viegas%2C+Fernanda+B.&rft.date=2019-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=25&rft.issue=1&rft.spage=310&rft.epage=320&rft_id=info:doi/10.1109%2FTVCG.2018.2864500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2018_2864500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon