Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution

The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the ava...

Full description

Saved in:
Bibliographic Details
Published inMolecular phylogenetics and evolution Vol. 151; p. 106903
Main Authors Gonçalves, Deise J.P., Jansen, Robert K., Ruhlman, Tracey A., Mandel, Jennifer R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2020
Subjects
Online AccessGet full text
ISSN1055-7903
1095-9513
1095-9513
DOI10.1016/j.ympev.2020.106903

Cover

Loading…
Abstract The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.
AbstractList The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.
The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.
ArticleNumber 106903
Author Ruhlman, Tracey A.
Jansen, Robert K.
Gonçalves, Deise J.P.
Mandel, Jennifer R.
Author_xml – sequence: 1
  givenname: Deise J.P.
  surname: Gonçalves
  fullname: Gonçalves, Deise J.P.
  email: deisejpg@umich.edu
  organization: Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 2
  givenname: Robert K.
  surname: Jansen
  fullname: Jansen, Robert K.
  organization: Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA
– sequence: 3
  givenname: Tracey A.
  surname: Ruhlman
  fullname: Ruhlman, Tracey A.
  organization: Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA
– sequence: 4
  givenname: Jennifer R.
  surname: Mandel
  fullname: Mandel, Jennifer R.
  organization: Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32628998$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQha0KVGDpL0CqcuSSrceOs3ElDggVWgmJC8vVcpzJ1qusndrOSvx7nC7tgUPLaazR90bP752RI-cdEnIBdAkU6i_b5fNuxP2SUTZvakn5B3IKVIpSCuBH81uIcpX3J-Qsxi2lAEKKj-SEs5o1Ujan5GntOgxF-olFmDZfi-tWu8476zbFiCHamNClYmej8c7gmKx3MdM6Fb7tp2h0wsKHjXY4DFjg3g_TzJyT414PET-9zgVZ3357vPle3j_c_bi5vi8NlyyVlTS1gKZvOt1Vom9AazANNRUzHDqxYo3hlRYNN8gptAw0GtlWWAPr8x80X5DLw90x-F8TxqRmq9lLNuSnqFjFZQUrIfg7UAbAOOUyo59f0andYafGYHc6PKs_sWWAHwATfIwB-78IUDWXo7bqdzlqLkcdyskq-UZlbNJzXCloO_xHe3XQYk5zbzGoaCzmSjob0CTVeftP_QtOq6vW
CitedBy_id crossref_primary_10_1007_s00425_021_03655_8
crossref_primary_10_1007_s11295_022_01549_8
crossref_primary_10_3390_ijms22052278
crossref_primary_10_1111_tpj_15676
crossref_primary_10_1111_jse_12814
crossref_primary_10_3390_plants10071360
crossref_primary_10_1038_s41598_021_99178_z
crossref_primary_10_1093_sysbio_syab053
crossref_primary_10_1002_ajb2_1775
crossref_primary_10_1111_jse_12698
crossref_primary_10_1007_s13205_023_03523_0
crossref_primary_10_1093_gbe_evad177
crossref_primary_10_1016_j_gene_2024_148177
crossref_primary_10_3389_fpls_2022_823190
crossref_primary_10_1371_journal_pone_0256373
crossref_primary_10_1038_s41598_022_25381_1
crossref_primary_10_1016_j_ympev_2024_108213
crossref_primary_10_1002_aps3_11537
crossref_primary_10_1093_jhered_esaa037
crossref_primary_10_3389_fpls_2021_824672
crossref_primary_10_1111_jse_13154
crossref_primary_10_1186_s12864_024_10149_w
crossref_primary_10_1002_ajb2_1702
crossref_primary_10_1093_sysbio_syae056
crossref_primary_10_3389_fpls_2023_1200302
crossref_primary_10_1071_SB23011
crossref_primary_10_1093_plcell_koae021
crossref_primary_10_1002_ajb2_16299
crossref_primary_10_1007_s11033_021_06913_w
crossref_primary_10_1111_mec_16151
crossref_primary_10_1093_aob_mcad098
crossref_primary_10_1371_journal_pone_0265449
crossref_primary_10_1111_nph_18966
crossref_primary_10_3390_plants11030448
crossref_primary_10_1016_j_ympev_2021_107232
crossref_primary_10_1002_tax_12676
crossref_primary_10_1016_j_ympev_2024_108024
crossref_primary_10_1038_s41598_021_92727_6
Cites_doi 10.1073/pnas.92.25.11331
10.1105/tpc.160771
10.1007/s11103-011-9762-4
10.1002/ajb2.1048
10.1111/j.1365-313X.2012.05057.x
10.1002/humu.22767
10.1146/annurev.genet.35.102401.090231
10.1534/g3.119.401023
10.1105/tpc.15.00879
10.1139/gen-2015-0090
10.1016/bs.abr.2017.11.017
10.1093/gbe/evz076
10.1038/301092a0
10.1111/nph.12395
10.1007/BF00425847
10.2307/3870324
10.1111/j.1365-294X.2010.04984.x
10.1111/nph.12431
10.1038/hdy.1994.19
10.1007/s00606-019-01610-5
10.1073/pnas.76.1.41
10.1371/journal.pgen.1008373
10.7717/peerj.7747
10.3389/fpls.2015.00883
10.1016/j.jmb.2003.11.020
10.1007/s10265-009-0306-9
10.1002/j.1537-2197.1988.tb11219.x
10.1016/j.ympev.2019.05.030
10.1093/pcp/pcm170
10.1007/s00299-016-1949-3
10.2307/2419070
10.1038/s41559-017-0126
10.1093/sysbio/syaa013
10.1093/jhered/91.6.435
10.1093/sysbio/syx050
10.1093/pcp/pcg121
10.1093/molbev/msi191
10.1002/j.1537-2197.1996.tb12718.x
10.1111/j.1469-8137.2010.03195.x
10.1534/genetics.118.300711
10.1007/s00294-006-0082-1
10.1111/syen.12431
10.1111/j.1365-313X.2007.03278.x
10.1016/j.bbamcr.2013.03.010
10.1038/256708a0
10.1007/BF00336777
10.1111/jse.12579
10.1016/j.ympev.2019.05.022
10.1600/0363644042451008
10.1146/annurev-arplant-043015-112232
10.1093/bioinformatics/btz300
10.1007/s10577-013-9349-9
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ympev.2020.106903
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-9513
ExternalDocumentID 32628998
10_1016_j_ympev_2020_106903
S1055790320301755
Genre Letter
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LW8
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
UNMZH
WUQ
XJT
XPP
XSW
YK3
ZCG
ZKB
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c392t-49c6518f8dad45f81aa1c80c42c31d5728c34a583ce301b21aec9b4e612f326a3
IEDL.DBID .~1
ISSN 1055-7903
1095-9513
IngestDate Tue Aug 05 10:36:34 EDT 2025
Fri Jul 11 05:02:28 EDT 2025
Wed Feb 19 02:29:10 EST 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:47:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Patterns of inheritance
Mitochondria
Plastome phylogenies
Single locus
Heteroplasmy
Chloroplast
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-49c6518f8dad45f81aa1c80c42c31d5728c34a583ce301b21aec9b4e612f326a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 32628998
PQID 2421123039
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439417553
proquest_miscellaneous_2421123039
pubmed_primary_32628998
crossref_primary_10_1016_j_ympev_2020_106903
crossref_citationtrail_10_1016_j_ympev_2020_106903
elsevier_sciencedirect_doi_10_1016_j_ympev_2020_106903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular phylogenetics and evolution
PublicationTitleAlternate Mol Phylogenet Evol
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wolfe, Randle (b0285) 2004; 29
Kozik, Rowan, Lavelle, Berke, Schranz, Michelmore, Christensen (b0135) 2019; 15
Christensen (b0050) 2018
Phan, Pham, Melton, Ramsey, Daigle, Mandel (b0200) 2019; 35
Bendich (b0020) 1993; 24
Thode, Lohmann, Sanmartín (b0255) 2020
Bendich (b0015) 2004; 16
Hagemann (b0100) 2000; 91
Oldenburg, Bendich (b0180) 2015; 6
Greiner, Rauwolf, Meurer, Herrmann (b0075) 2011; 20
Kim, Kim, Cameron (b0110) 2020
Massouh, Schubert, Yaneva-Roder, Ulbricht-Jones, Zupok, Johnson, Wright, Pellizzer, Sobanski, Bock, Greiner (b0160) 2016; 28
Sloan (b0245) 2013; 200
Oldenburg, Bendich (b0185) 2004; 335
Sato, Sato (b0230) 2013; 1833
Reboud, Zeyl (b0210) 1994; 72
Wicke, Schneeweiss, DePamphilis, Müller, Quandt (b0275) 2011; 76
Vellarikkal, Dhiman, Joshi, Hasija, Sivasubbu, Scaria (b0265) 2015; 36
Walker, Walker-Hale, Vargas, Larson, Stull (b0270) 2019; 7
Birky (b0030) 1995; 92
Sparks, Dale (b0250) 1980; 180
Hagemann (b0105) 2004
Oldenburg, Bendich (b0190) 1996; 8
Breton, Stewart (b0040) 2015; 58
Thyssen, Svab, Maliga (b0260) 2012; 72
Roy, Schreiber (b0225) 2014; 25
Bendich (b0010) 2013; 21
Kmiec, Woloszynska, Janska (b0120) 2006; 50
Wu, Waneka, Sloan (b0290) 2020; 10
Gruenstaeudl (b0080) 2019; 305
Shen, Hittinger, Rokas (b0235) 2017; 1
Maréchal, Brisson (b0155) 2010; 186
Choi, Jansen, Ruhlman (b0045) 2019; 11
Gonçalves, Shimizu, Ortiz, Simpson, Jansen (b0070) 2019; 138
Ramsey, Mandel (b0205) 2019; 2
Doyle (b0060) 1992; 17
Kirk, Tilney-Bassett (b0115) 1978
Kolodner, Tewari (b0125) 1975; 256
Shrestha, Weng, Theriot, Gilbert, Ruhlman, Krosnick, Jansen (b0240) 2019; 138
Palmer (b0195) 1983; 301
Kolodner, Tewari (b0130) 1979; 76
Ruhlman, Jansen (b0215) 2018
Zampini, Truche, Lepage, Tremblay-Belzile, Brisson (b0295) 2017
Leebens-Mack, Raubeson, Cui, Kuehl, Fourcade, Chumley, Boore, Jansen, DePamphilis (b0145) 2005; 22
Gitzendanner, Soltis, Wong, Ruhfel, Soltis (b0065) 2018; 105
Zhang, Liu, Sodmergen (b0300) 2003; 44
Gualberto, Newton (b0085) 2017; 68
Bohra, Jha, Adhimoolam, Bisht, Singh (b0035) 2016; 35
Kuroiwa (b0140) 2010; 123
Corriveau, Coleman (b0055) 1988; 75
Léveillé-Bourret, Starr, Ford, Lemmon, Lemmon (b0150) 2017; 67
Zhang, Wang, Jin, Stull, Bruneau, Cardoso, Queiroz, Moore, Zhang, Chen, Wang, Li, Yi (b0220) 2020; 69
Birky (b0025) 2001; 35
Azhagiri, Maliga (b0005) 2007; 52
Wilton, Zaidi, Makova, Nielsen (b0280) 2018; 20
McCauley (b0170) 2013; 200
Matsushima, Hu, Toyoda, Sodmergen, Sakamoto (b0165) 2008; 49
Mogensen (b0175) 1996; 83
Kmiec (10.1016/j.ympev.2020.106903_b0120) 2006; 50
Kolodner (10.1016/j.ympev.2020.106903_b0130) 1979; 76
Bendich (10.1016/j.ympev.2020.106903_b0010) 2013; 21
Greiner (10.1016/j.ympev.2020.106903_b0075) 2011; 20
Leebens-Mack (10.1016/j.ympev.2020.106903_b0145) 2005; 22
Shen (10.1016/j.ympev.2020.106903_b0235) 2017; 1
Azhagiri (10.1016/j.ympev.2020.106903_b0005) 2007; 52
Corriveau (10.1016/j.ympev.2020.106903_b0055) 1988; 75
Shrestha (10.1016/j.ympev.2020.106903_b0240) 2019; 138
Birky (10.1016/j.ympev.2020.106903_b0030) 1995; 92
Massouh (10.1016/j.ympev.2020.106903_b0160) 2016; 28
Oldenburg (10.1016/j.ympev.2020.106903_b0180) 2015; 6
Kozik (10.1016/j.ympev.2020.106903_b0135) 2019; 15
Thode (10.1016/j.ympev.2020.106903_b0255) 2020
Vellarikkal (10.1016/j.ympev.2020.106903_b0265) 2015; 36
Roy (10.1016/j.ympev.2020.106903_b0225) 2014; 25
Wolfe (10.1016/j.ympev.2020.106903_b0285) 2004; 29
Palmer (10.1016/j.ympev.2020.106903_b0195) 1983; 301
Birky (10.1016/j.ympev.2020.106903_b0025) 2001; 35
Doyle (10.1016/j.ympev.2020.106903_b0060) 1992; 17
Matsushima (10.1016/j.ympev.2020.106903_b0165) 2008; 49
Gitzendanner (10.1016/j.ympev.2020.106903_b0065) 2018; 105
Oldenburg (10.1016/j.ympev.2020.106903_b0185) 2004; 335
Hagemann (10.1016/j.ympev.2020.106903_b0105) 2004
Sloan (10.1016/j.ympev.2020.106903_b0245) 2013; 200
Ruhlman (10.1016/j.ympev.2020.106903_b0215) 2018
Zhang (10.1016/j.ympev.2020.106903_b0220) 2020; 69
Thyssen (10.1016/j.ympev.2020.106903_b0260) 2012; 72
Reboud (10.1016/j.ympev.2020.106903_b0210) 1994; 72
Zampini (10.1016/j.ympev.2020.106903_b0295) 2017
Léveillé-Bourret (10.1016/j.ympev.2020.106903_b0150) 2017; 67
Mogensen (10.1016/j.ympev.2020.106903_b0175) 1996; 83
Wicke (10.1016/j.ympev.2020.106903_b0275) 2011; 76
Kuroiwa (10.1016/j.ympev.2020.106903_b0140) 2010; 123
Ramsey (10.1016/j.ympev.2020.106903_b0205) 2019; 2
Maréchal (10.1016/j.ympev.2020.106903_b0155) 2010; 186
Breton (10.1016/j.ympev.2020.106903_b0040) 2015; 58
Gruenstaeudl (10.1016/j.ympev.2020.106903_b0080) 2019; 305
Bendich (10.1016/j.ympev.2020.106903_b0015) 2004; 16
Hagemann (10.1016/j.ympev.2020.106903_b0100) 2000; 91
Sato (10.1016/j.ympev.2020.106903_b0230) 2013; 1833
Kolodner (10.1016/j.ympev.2020.106903_b0125) 1975; 256
Wu (10.1016/j.ympev.2020.106903_b0290) 2020; 10
Zhang (10.1016/j.ympev.2020.106903_b0300) 2003; 44
Sparks (10.1016/j.ympev.2020.106903_b0250) 1980; 180
Phan (10.1016/j.ympev.2020.106903_b0200) 2019; 35
Oldenburg (10.1016/j.ympev.2020.106903_b0190) 1996; 8
Bohra (10.1016/j.ympev.2020.106903_b0035) 2016; 35
Kirk (10.1016/j.ympev.2020.106903_b0115) 1978
Gonçalves (10.1016/j.ympev.2020.106903_b0070) 2019; 138
Kim (10.1016/j.ympev.2020.106903_b0110) 2020
Choi (10.1016/j.ympev.2020.106903_b0045) 2019; 11
Gualberto (10.1016/j.ympev.2020.106903_b0085) 2017; 68
McCauley (10.1016/j.ympev.2020.106903_b0170) 2013; 200
Wilton (10.1016/j.ympev.2020.106903_b0280) 2018; 20
Bendich (10.1016/j.ympev.2020.106903_b0020) 1993; 24
Christensen (10.1016/j.ympev.2020.106903_b0050) 2018
Walker (10.1016/j.ympev.2020.106903_b0270) 2019; 7
References_xml – start-page: 2
  year: 2004
  end-page: 31
  ident: b0105
  article-title: The sexual inheritance of plant organelles
  publication-title: Molecular Biology and Biotechnology of Plant Organelles: Chloroplasts and Mitochondria
– volume: 35
  start-page: 4411
  year: 2019
  end-page: 4412
  ident: b0200
  article-title: icHET: Interactive visualization of cytoplasmic heteroplasmy
  publication-title: Bioinformatics
– volume: 1833
  start-page: 1979
  year: 2013
  end-page: 1984
  ident: b0230
  article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA
  publication-title: Biochim. Biophys. Acta
– volume: 49
  start-page: 81
  year: 2008
  end-page: 91
  ident: b0165
  article-title: The model plant
  publication-title: Plant Cell Physiol.
– start-page: 119
  year: 2017
  end-page: 163
  ident: b0295
  article-title: Plastid genome stability and repair
  publication-title: Somatic Genome Variation in Animals, Plants, and Microorganisms
– volume: 6
  start-page: 883
  year: 2015
  ident: b0180
  article-title: DNA maintenance in plastids and mitochondria of plants
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 671
  year: 2011
  end-page: 691
  ident: b0075
  article-title: The role of plastids in plant speciation
  publication-title: Mol. Ecol.
– volume: 22
  start-page: 1948
  year: 2005
  end-page: 1963
  ident: b0145
  article-title: Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone
  publication-title: Mol. Biol. Evol.
– volume: 50
  start-page: 149
  year: 2006
  end-page: 159
  ident: b0120
  article-title: Heteroplasmy as a common state of mitochondrial genetic information in plants and animals
  publication-title: Curr. Genet.
– volume: 335
  start-page: 953
  year: 2004
  end-page: 970
  ident: b0185
  article-title: Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms
  publication-title: J. Mol. Biol.
– volume: 186
  start-page: 299
  year: 2010
  end-page: 317
  ident: b0155
  article-title: Recombination and the maintenance of plant organelle genome stability
  publication-title: New Phytol.
– volume: 105
  start-page: 291
  year: 2018
  end-page: 301
  ident: b0065
  article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history
  publication-title: Am. J. Bot.
– volume: 20
  start-page: 1261
  year: 2018
  end-page: 1274
  ident: b0280
  article-title: A population phylogenetic view of mitochondrial heteroplasmy
  publication-title: Genetics
– volume: 28
  start-page: 911
  year: 2016
  end-page: 929
  ident: b0160
  article-title: Spontaneous chloroplast mutants mostly occur by replication slippage and show a biased pattern in the plastome of
  publication-title: Plant Cell
– volume: 72
  start-page: 84
  year: 2012
  end-page: 88
  ident: b0260
  article-title: Exceptional inheritance of plastids via pollen in
  publication-title: Plant J.
– volume: 92
  start-page: 11331
  year: 1995
  end-page: 11338
  ident: b0030
  article-title: Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 1321
  year: 2019
  end-page: 1333
  ident: b0045
  article-title: Lost and found: Return of the inverted repeat in the legume clade defined by its absence
  publication-title: Genome Biol. Evol.
– volume: 138
  start-page: 219
  year: 2019
  end-page: 232
  ident: b0070
  article-title: Incongruence between species tree and gene trees and phylogenetic signal variation in plastid genes
  publication-title: Mol. Phylogenet. Evol.
– volume: 17
  start-page: 144
  year: 1992
  end-page: 163
  ident: b0060
  article-title: Gene trees and species trees: molecular systematics as one-character taxonomy
  publication-title: Syst. Bot.
– volume: 10
  start-page: 1077
  year: 2020
  end-page: 1086
  ident: b0290
  article-title: The tempo and mode of angiosperm mitochondrial genome divergence inferred from intraspecific variation in
  publication-title: G3-Genes Genom. Genet.
– year: 2020
  ident: b0255
  article-title: Evaluating character partitioning and molecular models in plastid phylogenomics at low taxonomic levels: A case study using
  publication-title: J. Syst. Evol.
– volume: 67
  start-page: 94
  year: 2017
  end-page: 112
  ident: b0150
  article-title: Resolving rapid radiations within angiosperm families using anchored phylogenomics
  publication-title: Syst. Biol.
– volume: 44
  start-page: 941
  year: 2003
  end-page: 951
  ident: b0300
  article-title: Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species
  publication-title: Plant Cell Physiol.
– volume: 69
  start-page: 613
  year: 2020
  end-page: 622
  ident: b0220
  article-title: Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae
  publication-title: Syst. Biol.
– volume: 25
  start-page: S13
  year: 2014
  end-page: S14
  ident: b0225
  article-title: Detecting and quantifying low level gene variants in Sanger sequencing traces using the ab1 peak reporter tool
  publication-title: J. Biomol. Tech.
– volume: 58
  start-page: 423
  year: 2015
  end-page: 431
  ident: b0040
  article-title: Atypical mitochondrial inheritance patterns in eukaryotes
  publication-title: Genome
– volume: 72
  start-page: 132
  year: 1994
  end-page: 140
  ident: b0210
  article-title: Organelle inheritance in plants
  publication-title: Heredity
– volume: 35
  start-page: 125
  year: 2001
  end-page: 148
  ident: b0025
  article-title: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models
  publication-title: Annu. Rev. Genet.
– volume: 68
  start-page: 225
  year: 2017
  end-page: 252
  ident: b0085
  article-title: Plant mitochondrial genomes: dynamics and mechanisms of mutation
  publication-title: Annu. Rev. Plant Biol.
– volume: 138
  start-page: 53
  year: 2019
  end-page: 64
  ident: b0240
  article-title: Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of
  publication-title: Mol. Phylogenet. Evol.
– volume: 256
  start-page: 708
  year: 1975
  end-page: 711
  ident: b0125
  article-title: Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism
  publication-title: Nature
– volume: 76
  start-page: 273
  year: 2011
  end-page: 297
  ident: b0275
  article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
  publication-title: Plant Mol. Biol.
– volume: 16
  start-page: 1661
  year: 2004
  end-page: 1666
  ident: b0015
  article-title: Circular chloroplast chromosome: the grand illusion
  publication-title: Plant Cell
– volume: 200
  start-page: 978
  year: 2013
  end-page: 985
  ident: b0245
  article-title: One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure
  publication-title: New Phytol.
– volume: 35
  start-page: 967
  year: 2016
  end-page: 993
  ident: b0035
  article-title: Cytoplasmic male sterility (CMS) in hybrid breeding in field crops
  publication-title: Plant Cell Rep.
– volume: 15
  start-page: e1008373
  year: 2019
  ident: b0135
  article-title: The alternative reality of plant mitochondrial DNA: One ring does not rule them all
  publication-title: PLoS Genet.
– volume: 305
  start-page: 827
  year: 2019
  end-page: 836
  ident: b0080
  article-title: Why the monophyly of Nymphaeaceae currently remains indeterminate: an assessment based on gene-wise plastid phylogenomics
  publication-title: Plant. Syst. Evol.
– start-page: 223
  year: 2018
  end-page: 262
  ident: b0215
  article-title: Chapter Eight – Aberration or analogy? The atypical plastomes of Geraniaceae
  publication-title: Advances in Botanical Research, Plastid Genome Evolution
– year: 1978
  ident: b0115
  article-title: The Plastids. Their Chemistry, Structure, Growth and Inheritance
– volume: 21
  start-page: 287
  year: 2013
  end-page: 296
  ident: b0010
  article-title: DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts
  publication-title: Chromosome Res.
– volume: 91
  start-page: 435
  year: 2000
  end-page: 440
  ident: b0100
  article-title: Erwin Baur or Carl Correns: who really created the theory of plastid inheritance?
  publication-title: J. Hered.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 40
  ident: b0205
  article-title: When one genome is not enough: Organellar heteroplasmy in plants
  publication-title: Annu. Plant Rev.
– volume: 29
  start-page: 1011
  year: 2004
  end-page: 1020
  ident: b0285
  article-title: Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics
  publication-title: Syst. Bot.
– volume: 52
  start-page: 817
  year: 2007
  end-page: 823
  ident: b0005
  article-title: Exceptional paternal inheritance of plastids in
  publication-title: Plant J.
– volume: 200
  start-page: 966
  year: 2013
  end-page: 977
  ident: b0170
  article-title: Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes
  publication-title: New Phytol.
– volume: 301
  start-page: 92
  year: 1983
  end-page: 93
  ident: b0195
  article-title: Chloroplast DNA exists in two orientations
  publication-title: Nature
– start-page: 11
  year: 2018
  end-page: 32
  ident: b0050
  article-title: Mitochondrial DNA repair and genome evolution
  publication-title: Annual Plant Reviews Book Series
– volume: 24
  start-page: 279
  year: 1993
  end-page: 290
  ident: b0020
  article-title: Reaching for the ring: the study of mitochondrial genome structure
  publication-title: Curr. Genet.
– volume: 83
  start-page: 383
  year: 1996
  end-page: 404
  ident: b0175
  article-title: The hows and whys of cytoplasmic inheritance in seed plants
  publication-title: Am. J. Bot.
– volume: 123
  start-page: 207
  year: 2010
  end-page: 230
  ident: b0140
  article-title: Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids)
  publication-title: J. Plant Res.
– volume: 8
  start-page: 447
  year: 1996
  end-page: 461
  ident: b0190
  article-title: Size and structure of replicating mitochondrial DNA in cultured tobacco cells
  publication-title: Plant Cell
– volume: 76
  start-page: 41
  year: 1979
  end-page: 45
  ident: b0130
  article-title: Inverted repeats in chloroplast DNA from higher plants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 1443
  year: 1988
  end-page: 1458
  ident: b0055
  article-title: Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species
  publication-title: Am. J. Bot.
– volume: 7
  start-page: e7747
  year: 2019
  ident: b0270
  article-title: Characterizing gene tree conflict in plastome-inferred phylogenies
  publication-title: PeerJ
– volume: 36
  start-page: 419
  year: 2015
  end-page: 424
  ident: b0265
  article-title: Mit-o-matic: A comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets
  publication-title: Hum. Mutat.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0235
  article-title: Contentious relationships in phylogenomic studies can be driven by a handful of genes
  publication-title: Nat. Ecol. Evol.
– volume: 180
  start-page: 351
  year: 1980
  end-page: 355
  ident: b0250
  article-title: Characterization of 3H-labeled supercoiled mitochondrial DNA from tobacco suspension culture cells
  publication-title: Mol. Gen. Genet.
– year: 2020
  ident: b0110
  article-title: How well to multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepdoptera)
  publication-title: Entomol. Syst.
– volume: 92
  start-page: 11331
  year: 1995
  ident: 10.1016/j.ympev.2020.106903_b0030
  article-title: Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.25.11331
– volume: 16
  start-page: 1661
  year: 2004
  ident: 10.1016/j.ympev.2020.106903_b0015
  article-title: Circular chloroplast chromosome: the grand illusion
  publication-title: Plant Cell
  doi: 10.1105/tpc.160771
– volume: 76
  start-page: 273
  year: 2011
  ident: 10.1016/j.ympev.2020.106903_b0275
  article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9762-4
– volume: 105
  start-page: 291
  year: 2018
  ident: 10.1016/j.ympev.2020.106903_b0065
  article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history
  publication-title: Am. J. Bot.
  doi: 10.1002/ajb2.1048
– volume: 72
  start-page: 84
  year: 2012
  ident: 10.1016/j.ympev.2020.106903_b0260
  article-title: Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.05057.x
– start-page: 2
  year: 2004
  ident: 10.1016/j.ympev.2020.106903_b0105
  article-title: The sexual inheritance of plant organelles
– volume: 36
  start-page: 419
  year: 2015
  ident: 10.1016/j.ympev.2020.106903_b0265
  article-title: Mit-o-matic: A comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22767
– volume: 35
  start-page: 125
  year: 2001
  ident: 10.1016/j.ympev.2020.106903_b0025
  article-title: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.090231
– volume: 10
  start-page: 1077
  year: 2020
  ident: 10.1016/j.ympev.2020.106903_b0290
  article-title: The tempo and mode of angiosperm mitochondrial genome divergence inferred from intraspecific variation in Arabidopsis thaliana
  publication-title: G3-Genes Genom. Genet.
  doi: 10.1534/g3.119.401023
– volume: 28
  start-page: 911
  year: 2016
  ident: 10.1016/j.ympev.2020.106903_b0160
  article-title: Spontaneous chloroplast mutants mostly occur by replication slippage and show a biased pattern in the plastome of Oenothera
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00879
– volume: 58
  start-page: 423
  year: 2015
  ident: 10.1016/j.ympev.2020.106903_b0040
  article-title: Atypical mitochondrial inheritance patterns in eukaryotes
  publication-title: Genome
  doi: 10.1139/gen-2015-0090
– start-page: 223
  year: 2018
  ident: 10.1016/j.ympev.2020.106903_b0215
  article-title: Chapter Eight – Aberration or analogy? The atypical plastomes of Geraniaceae
  doi: 10.1016/bs.abr.2017.11.017
– volume: 11
  start-page: 1321
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0045
  article-title: Lost and found: Return of the inverted repeat in the legume clade defined by its absence
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evz076
– volume: 301
  start-page: 92
  year: 1983
  ident: 10.1016/j.ympev.2020.106903_b0195
  article-title: Chloroplast DNA exists in two orientations
  publication-title: Nature
  doi: 10.1038/301092a0
– volume: 200
  start-page: 978
  year: 2013
  ident: 10.1016/j.ympev.2020.106903_b0245
  article-title: One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure
  publication-title: New Phytol.
  doi: 10.1111/nph.12395
– volume: 180
  start-page: 351
  year: 1980
  ident: 10.1016/j.ympev.2020.106903_b0250
  article-title: Characterization of 3H-labeled supercoiled mitochondrial DNA from tobacco suspension culture cells
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00425847
– volume: 8
  start-page: 447
  year: 1996
  ident: 10.1016/j.ympev.2020.106903_b0190
  article-title: Size and structure of replicating mitochondrial DNA in cultured tobacco cells
  publication-title: Plant Cell
  doi: 10.2307/3870324
– volume: 20
  start-page: 671
  year: 2011
  ident: 10.1016/j.ympev.2020.106903_b0075
  article-title: The role of plastids in plant speciation
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2010.04984.x
– volume: 200
  start-page: 966
  year: 2013
  ident: 10.1016/j.ympev.2020.106903_b0170
  article-title: Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes
  publication-title: New Phytol.
  doi: 10.1111/nph.12431
– volume: 72
  start-page: 132
  year: 1994
  ident: 10.1016/j.ympev.2020.106903_b0210
  article-title: Organelle inheritance in plants
  publication-title: Heredity
  doi: 10.1038/hdy.1994.19
– volume: 305
  start-page: 827
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0080
  article-title: Why the monophyly of Nymphaeaceae currently remains indeterminate: an assessment based on gene-wise plastid phylogenomics
  publication-title: Plant. Syst. Evol.
  doi: 10.1007/s00606-019-01610-5
– volume: 76
  start-page: 41
  year: 1979
  ident: 10.1016/j.ympev.2020.106903_b0130
  article-title: Inverted repeats in chloroplast DNA from higher plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.76.1.41
– volume: 15
  start-page: e1008373
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0135
  article-title: The alternative reality of plant mitochondrial DNA: One ring does not rule them all
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008373
– volume: 7
  start-page: e7747
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0270
  article-title: Characterizing gene tree conflict in plastome-inferred phylogenies
  publication-title: PeerJ
  doi: 10.7717/peerj.7747
– volume: 6
  start-page: 883
  year: 2015
  ident: 10.1016/j.ympev.2020.106903_b0180
  article-title: DNA maintenance in plastids and mitochondria of plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00883
– volume: 25
  start-page: S13
  year: 2014
  ident: 10.1016/j.ympev.2020.106903_b0225
  article-title: Detecting and quantifying low level gene variants in Sanger sequencing traces using the ab1 peak reporter tool
  publication-title: J. Biomol. Tech.
– volume: 335
  start-page: 953
  year: 2004
  ident: 10.1016/j.ympev.2020.106903_b0185
  article-title: Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.11.020
– volume: 123
  start-page: 207
  year: 2010
  ident: 10.1016/j.ympev.2020.106903_b0140
  article-title: Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids)
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-009-0306-9
– volume: 75
  start-page: 1443
  year: 1988
  ident: 10.1016/j.ympev.2020.106903_b0055
  article-title: Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1988.tb11219.x
– volume: 138
  start-page: 53
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0240
  article-title: Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2019.05.030
– volume: 49
  start-page: 81
  year: 2008
  ident: 10.1016/j.ympev.2020.106903_b0165
  article-title: The model plant Medicago truncatula exhibits biparental plastid inheritance
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm170
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0205
  article-title: When one genome is not enough: Organellar heteroplasmy in plants
  publication-title: Annu. Plant Rev.
– volume: 35
  start-page: 967
  year: 2016
  ident: 10.1016/j.ympev.2020.106903_b0035
  article-title: Cytoplasmic male sterility (CMS) in hybrid breeding in field crops
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-1949-3
– year: 1978
  ident: 10.1016/j.ympev.2020.106903_b0115
– volume: 17
  start-page: 144
  year: 1992
  ident: 10.1016/j.ympev.2020.106903_b0060
  article-title: Gene trees and species trees: molecular systematics as one-character taxonomy
  publication-title: Syst. Bot.
  doi: 10.2307/2419070
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.ympev.2020.106903_b0235
  article-title: Contentious relationships in phylogenomic studies can be driven by a handful of genes
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0126
– start-page: 119
  year: 2017
  ident: 10.1016/j.ympev.2020.106903_b0295
  article-title: Plastid genome stability and repair
– volume: 69
  start-page: 613
  year: 2020
  ident: 10.1016/j.ympev.2020.106903_b0220
  article-title: Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syaa013
– volume: 91
  start-page: 435
  year: 2000
  ident: 10.1016/j.ympev.2020.106903_b0100
  article-title: Erwin Baur or Carl Correns: who really created the theory of plastid inheritance?
  publication-title: J. Hered.
  doi: 10.1093/jhered/91.6.435
– volume: 67
  start-page: 94
  year: 2017
  ident: 10.1016/j.ympev.2020.106903_b0150
  article-title: Resolving rapid radiations within angiosperm families using anchored phylogenomics
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syx050
– volume: 44
  start-page: 941
  year: 2003
  ident: 10.1016/j.ympev.2020.106903_b0300
  article-title: Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcg121
– volume: 22
  start-page: 1948
  year: 2005
  ident: 10.1016/j.ympev.2020.106903_b0145
  article-title: Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msi191
– volume: 83
  start-page: 383
  year: 1996
  ident: 10.1016/j.ympev.2020.106903_b0175
  article-title: The hows and whys of cytoplasmic inheritance in seed plants
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1996.tb12718.x
– start-page: 11
  year: 2018
  ident: 10.1016/j.ympev.2020.106903_b0050
  article-title: Mitochondrial DNA repair and genome evolution
– volume: 186
  start-page: 299
  year: 2010
  ident: 10.1016/j.ympev.2020.106903_b0155
  article-title: Recombination and the maintenance of plant organelle genome stability
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03195.x
– volume: 20
  start-page: 1261
  year: 2018
  ident: 10.1016/j.ympev.2020.106903_b0280
  article-title: A population phylogenetic view of mitochondrial heteroplasmy
  publication-title: Genetics
  doi: 10.1534/genetics.118.300711
– volume: 50
  start-page: 149
  year: 2006
  ident: 10.1016/j.ympev.2020.106903_b0120
  article-title: Heteroplasmy as a common state of mitochondrial genetic information in plants and animals
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-006-0082-1
– year: 2020
  ident: 10.1016/j.ympev.2020.106903_b0110
  article-title: How well to multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepdoptera)
  publication-title: Entomol. Syst.
  doi: 10.1111/syen.12431
– volume: 52
  start-page: 817
  year: 2007
  ident: 10.1016/j.ympev.2020.106903_b0005
  article-title: Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03278.x
– volume: 1833
  start-page: 1979
  year: 2013
  ident: 10.1016/j.ympev.2020.106903_b0230
  article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.03.010
– volume: 256
  start-page: 708
  year: 1975
  ident: 10.1016/j.ympev.2020.106903_b0125
  article-title: Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism
  publication-title: Nature
  doi: 10.1038/256708a0
– volume: 24
  start-page: 279
  year: 1993
  ident: 10.1016/j.ympev.2020.106903_b0020
  article-title: Reaching for the ring: the study of mitochondrial genome structure
  publication-title: Curr. Genet.
  doi: 10.1007/BF00336777
– year: 2020
  ident: 10.1016/j.ympev.2020.106903_b0255
  article-title: Evaluating character partitioning and molecular models in plastid phylogenomics at low taxonomic levels: A case study using Amphilophium (Bignonieae, Bignoniaceae)
  publication-title: J. Syst. Evol.
  doi: 10.1111/jse.12579
– volume: 138
  start-page: 219
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0070
  article-title: Incongruence between species tree and gene trees and phylogenetic signal variation in plastid genes
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2019.05.022
– volume: 29
  start-page: 1011
  year: 2004
  ident: 10.1016/j.ympev.2020.106903_b0285
  article-title: Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics
  publication-title: Syst. Bot.
  doi: 10.1600/0363644042451008
– volume: 68
  start-page: 225
  year: 2017
  ident: 10.1016/j.ympev.2020.106903_b0085
  article-title: Plant mitochondrial genomes: dynamics and mechanisms of mutation
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-112232
– volume: 35
  start-page: 4411
  year: 2019
  ident: 10.1016/j.ympev.2020.106903_b0200
  article-title: icHET: Interactive visualization of cytoplasmic heteroplasmy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz300
– volume: 21
  start-page: 287
  year: 2013
  ident: 10.1016/j.ympev.2020.106903_b0010
  article-title: DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-013-9349-9
SSID ssj0011595
Score 2.4859242
Snippet The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106903
SubjectTerms Base Sequence
Biological Evolution
Chloroplast
DNA
Genome, Mitochondrial
Heteroplasmy
high-throughput nucleotide sequencing
inheritance (genetics)
Inheritance Patterns - genetics
Mitochondria
mitochondrial genome
nucleotide sequences
Organelles - genetics
Organelles - metabolism
Patterns of inheritance
Phylogeny
Plastome phylogenies
Single locus
transcription (genetics)
translation (genetics)
Title Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution
URI https://dx.doi.org/10.1016/j.ympev.2020.106903
https://www.ncbi.nlm.nih.gov/pubmed/32628998
https://www.proquest.com/docview/2421123039
https://www.proquest.com/docview/2439417553
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEXwR73eJ4KN1S5OuqW9jKPOKeMO3kCapTKQbrhP24m_3nLQd-LA9-FRaTkL4ziHnS3qSj5CTjDspnJBBhBruAlJokMTOBda0hBYudizD88539-3ei7h-i94apFufhcGyymruL-d0P1tXX5oVms1hv998QmnHOEEBcAjSOMKD5nh7HcT02c-0zAMIj1deQeMAreubh3yN1wSo6TcsEkP8AutEPis7zWKfPgtdrpKVij7STjnCNdJw-TpZKgUlJxvk1csYUSB19Gv8fk47qUa1DkhPdIgbY-DSvKDgWlOeVsSYA2td0EGajUdYHUW9zhNu51P3XcXlJnm5vHju9oJKOSEwwHeKQCSmHTGZSautiDLJtGZGtowIDWc2ikNpuNCR5MYBdmnItDNJKhzQnQz4nOZbZCEf5G6H0BB6SmUWWhNbwSxqVqWAu2Gh0SzldpeENWLKVNeKo7rFp6rrxz6Uh1khzKqEeZecThsNy1s15pu3a1eoP8GhYN6f3_C4dpxCbLGgLHeD8Ujhn3BI2i2ezLPhicDIgn62S69PRwso-aXq3n-Htk-W8a2sCzwgC8XX2B0CvynSIx_AR2Sx0328fcDn1U3v_hclPvuj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60InoR32-N4NGlzSbpZr0VUeqrFx94C9lsViqyLboV_PfO7KPgwR68ZpMQvhkyXzaT-QBOM-G19FIHijTcJYbQII68D1LXkVb6yPOM3jvfD7r9J3nzol7m4KJ5C0NplfXeX-3p5W5dt7RrNNvj4bD9QNKOUUwC4OikkVLzsEDVqWQLFnrXt_3B9DIBI7YqLz0VVWfsiKb4UJnm9Y3s9AvPiSG14FFR_BWg_iKgZSC6WoWVmkGyXrXINZjz-TosVpqS3xvwXCoZMeR17GPyes56iSXBDoxQbEz_xtCqecHQuq56sEhuh71twUZJNvmkBClWSj3RH33mv2rX3ISnq8vHi35QiycEDilPEcjYdRXXmU5tKlWmubXc6Y6ToRM8VVGonZBWaeE8wpeE3HoXJ9Ij48mQ0lmxBa18lPsdYCHOlOgsTF2USp6SbFWC0DseOssTke5C2CBmXF1ZnAQu3k2TQvZmSpgNwWwqmHfhbDpoXBXWmN2925jC_PIPg1v_7IEnjeEMYUs5ZbkfTT4NXYZj3O6IeFYfEUtyLpxnu7L6dLWIUnla3fvv0o5hqf94f2furge3-7BMX6o0wQNoFR8Tf4h0p0iOanf-Ad7N_L8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Under+the+rug%3A+Abandoning+persistent+misconceptions+that+obfuscate+organelle+evolution&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Gon%C3%A7alves%2C+Deise+J+P&rft.au=Jansen%2C+Robert+K&rft.au=Ruhlman%2C+Tracey+A&rft.au=Mandel%2C+Jennifer+R&rft.date=2020-10-01&rft.issn=1095-9513&rft.eissn=1095-9513&rft.volume=151&rft.spage=106903&rft_id=info:doi/10.1016%2Fj.ympev.2020.106903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon