Alternating DCA for reduced-rank multitask linear regression with covariance matrix estimation

We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to build a linear relationship between multiple output variables and input variables of a multitask learning process, taking into account the ge...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 90; no. 7-9; pp. 809 - 829
Main Authors Le Thi, Hoai An, Ho, Vinh Thanh
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to build a linear relationship between multiple output variables and input variables of a multitask learning process, taking into account the general covariance structure for the errors of the regression model in one hand, and reduced-rank regression model in another hand. The problem is formulated as minimizing a nonconvex function in two joint matrix variables ( X , Θ ) under the low-rank constraint on X and positive definiteness constraint on Θ . It has a double difficulty due to the non-convexity of the objective function as well as the low-rank constraint. We investigate a nonconvex, nonsmooth optimization approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for this hard problem. A penalty reformulation is considered which takes the form of a partial DC program. An alternating DCA and its inexact version are developed, both algorithms converge to a weak critical point of the considered problem. Numerical experiments are performed on several synthetic and benchmark real multitask linear regression datasets. The numerical results show the performance of the proposed algorithms and their superiority compared with three classical alternating/joint methods.
AbstractList We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to build a linear relationship between multiple output variables and input variables of a multitask learning process, taking into account the general covariance structure for the errors of the regression model in one hand, and reduced-rank regression model in another hand. The problem is formulated as minimizing a nonconvex function in two joint matrix variables (X, [THETA]) under the low-rank constraint on X and positive definiteness constraint on [THETA]. It has a double difficulty due to the non-convexity of the objective function as well as the low-rank constraint. We investigate a nonconvex, nonsmooth optimization approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for this hard problem. A penalty reformulation is considered which takes the form of a partial DC program. An alternating DCA and its inexact version are developed, both algorithms converge to a weak critical point of the considered problem. Numerical experiments are performed on several synthetic and benchmark real multitask linear regression datasets. The numerical results show the performance of the proposed algorithms and their superiority compared with three classical alternating/joint methods. Keywords Reduced-rank multitask linear regression * Covariance matrix estimation * DC programming * DCA * Partial DC program * Alternating DCA Mathematics Subject Classification (2010) 90C26 * 90C90 * 62J05
We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to build a linear relationship between multiple output variables and input variables of a multitask learning process, taking into account the general covariance structure for the errors of the regression model in one hand, and reduced-rank regression model in another hand. The problem is formulated as minimizing a nonconvex function in two joint matrix variables ( X , Θ ) under the low-rank constraint on X and positive definiteness constraint on Θ . It has a double difficulty due to the non-convexity of the objective function as well as the low-rank constraint. We investigate a nonconvex, nonsmooth optimization approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for this hard problem. A penalty reformulation is considered which takes the form of a partial DC program. An alternating DCA and its inexact version are developed, both algorithms converge to a weak critical point of the considered problem. Numerical experiments are performed on several synthetic and benchmark real multitask linear regression datasets. The numerical results show the performance of the proposed algorithms and their superiority compared with three classical alternating/joint methods.
We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to build a linear relationship between multiple output variables and input variables of a multitask learning process, taking into account the general covariance structure for the errors of the regression model in one hand, and reduced-rank regression model in another hand. The problem is formulated as minimizing a nonconvex function in two joint matrix variables (X,Θ) under the low-rank constraint on X and positive definiteness constraint on Θ. It has a double difficulty due to the non-convexity of the objective function as well as the low-rank constraint. We investigate a nonconvex, nonsmooth optimization approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for this hard problem. A penalty reformulation is considered which takes the form of a partial DC program. An alternating DCA and its inexact version are developed, both algorithms converge to a weak critical point of the considered problem. Numerical experiments are performed on several synthetic and benchmark real multitask linear regression datasets. The numerical results show the performance of the proposed algorithms and their superiority compared with three classical alternating/joint methods.
Audience Academic
Author Le Thi, Hoai An
Ho, Vinh Thanh
Author_xml – sequence: 1
  givenname: Hoai An
  orcidid: 0000-0002-2239-2100
  surname: Le Thi
  fullname: Le Thi, Hoai An
  email: hoai-an.le-thi@univ-lorraine.fr
  organization: Université de Lorraine, LGIPM, Le Département IA
– sequence: 2
  givenname: Vinh Thanh
  surname: Ho
  fullname: Ho, Vinh Thanh
  organization: Université de Lorraine, LGIPM, Le Département IA
BackLink https://hal.univ-lorraine.fr/hal-03212805$$DView record in HAL
BookMark eNp9kU1vFSEUhompiW31D7giceWC9vAxw7CcXD9qchM3XUsoA7e0c6HC3Kr_3nMdTRMXDQtODu8DnPc9Iye55EDIWw4XHEBfNg5KCwaCMzBaCja8IKe805JppeEEa-CCCaXkK3LW2h0AmH7oT8m3cV5CzW5JeUc_bEYaS6U1TAcfJlZdvqf7w7ykxbV7Oqcc3PF0V0NrqWT6Iy231JdHV5PLPtC9W2r6SUNbEpaoeE1eRje38Obvfk6uP3283lyx7dfPXzbjlnlpxMJkMJ3XRk9eB_AwKaWnqLrYxSg1TFp60wvRmdiFG9AqgBShj7yLToubQctz8n699tbN9qHi4_WXLS7Zq3Frjz0EuBige-SofbdqH2r5fsCv2rtyQAfmZoXhgwAhBomqi1W1c3OwKceyVOdxTWGfPJofE_ZHzRVoY3pAYFgBX0trNUTr0bWjBwim2XKwx6TsmpTFpOyfpOyAqPgP_TfCs5BcoYbivAv1aYxnqN9xMKeE
CitedBy_id crossref_primary_10_1038_s41598_022_21889_8
Cites_doi 10.1093/bioinformatics/btw249
10.1007/BF02288367
10.1007/s10898-018-0698-y
10.14492/hokmj/1381757647
10.1080/02331934.2019.1648467
10.1007/978-1-4757-2853-8
10.1007/978-3-319-06569-4_2
10.1137/S1052623494274313
10.1142/5021
10.1007/978-3-642-54455-2_1
10.1002/9780470057339.var024
10.1016/0022-247X(77)90060-9
10.1080/01621459.2012.734178
10.1080/00207543.2019.1657245
10.1007/s11222-014-9517-6
10.1016/j.amc.2017.08.061
10.1016/j.ejor.2014.11.031
10.1016/j.cor.2016.11.003
10.1007/s10287-009-0098-3
10.1016/S0169-7439(01)00155-1
10.1016/j.neunet.2019.05.011
10.1007/s10479-016-2333-y
10.1016/j.neunet.2020.09.021
10.1016/0022-2496(85)90006-9
10.1162/neco_a_01266
10.1007/s10898-011-9765-3
10.1007/s11081-017-9359-0
10.1111/j.1467-9868.2007.00591.x
10.1162/NECO_a_00673
10.1016/j.neucom.2015.12.068
10.1007/978-0-387-77117-5
10.1111/j.1464-410X.2011.10665.x
10.1137/0609033
10.1016/j.neucom.2014.11.051
10.1007/s10994-016-5546-z
10.1016/S1053-8119(03)00160-5
10.1016/0047-259X(75)90042-1
10.1089/end.2012.0147
10.1016/j.patcog.2013.07.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
DOI 10.1007/s10472-021-09732-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 829
ExternalDocumentID oai_HAL_hal_03212805v1
A714079960
10_1007_s10472_021_09732_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
ID FETCH-LOGICAL-c392t-3e95c797dc7e0c0d447df45f5ff370d73c962259f5eb074e032e6f15fa72b873
IEDL.DBID BENPR
ISSN 1012-2443
IngestDate Fri May 09 12:15:36 EDT 2025
Fri Jul 25 11:02:58 EDT 2025
Tue Jun 10 21:26:00 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 03:19:44 EDT 2025
Fri Feb 21 02:46:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-9
Keywords DCA
62J05
Reduced-rank multitask linear regression
DC programming
90C90
90C26
Partial DC program
Covariance matrix estimation
Alternating DCA
Partial DC programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-3e95c797dc7e0c0d447df45f5ff370d73c962259f5eb074e032e6f15fa72b873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2239-2100
0009-0009-1416-5360
PQID 2918202283
PQPubID 2043872
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_03212805v1
proquest_journals_2918202283
gale_infotracacademiconefile_A714079960
crossref_citationtrail_10_1007_s10472_021_09732_8
crossref_primary_10_1007_s10472_021_09732_8
springer_journals_10_1007_s10472_021_09732_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References WoldSSjöströmMErikssonLPLS-Regression: a basic tool of chemometricsChemom. Intell. Lab. Syst.200158210913010.1016/S0169-7439(01)00155-1
KoshiSConvergence of convex functions and dualityHokkaido Math. J.198514339941480882010.14492/hokmj/1381757647
Le ThiHAPham DinhTThe DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problemsAnn. Oper. Res.20051331–4234621193111116.90122
Le ThiHAPham DinhTLeHMVoXTDC Approximation approaches for sparse optimizationEur. J. Oper. Res.201524412646332076310.1016/j.ejor.2014.11.031
Le ThiHAHoVTPham DinhTA unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learningJ. Glob. Optim.2019732279310390836010.1007/s10898-018-0698-y
Le ThiHALeHMPham DinhTNew and efficient DCA based algorithms for minimum sum-of-squares clusteringPattern Recogn.201447138840110.1016/j.patcog.2013.07.012
NguyenMNLe ThiHADanielGNguyenTASmoothing techniques and difference of convex functions algorithms for image reconstructionsOptim.2020697-816011633412090010.1080/02331934.2019.1648467
DevHSharmaNLDawsonSNNealDEShahNDetailed analysis of operating time learning curves in robotic prostatectomy by a novice surgeonBJU Int.201210971074108010.1111/j.1464-410X.2011.10665.x
Le ThiHANguyenMCDCA Based algorithms for feature selection in multi-class support vector machineAnn. Oper. Res.20172491273300360441410.1007/s10479-016-2333-y
Foygel, R., Horrell, M., Drton, M., Lafferty, J.: Nonparametric reduced rank regression. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp 1628–1636. Curran Associates, Inc. (2012)
ChenLHuangJZSparse reduced-rank regression for simultaneous dimension reduction and variable selectionJ. Am. Stat. Assoc.201210750015331545303641410.1080/01621459.2012.734178
Le ThiHATaASPham DinhTAn efficient DCA based algorithm for power control in large scale wireless networksAppl. Math. Comput.201831821522637138571426.68012
YuanMEkiciALuZMonteiroRDimension reduction and coefficient estimation in multivariate linear regressionJournal of the Royal Statistical Society: Series B (Statistical Methodology)2007693329346232375610.1111/j.1467-9868.2007.00591.x
Pham DinhTLe ThiHADC Optimization algorithms for solving the trust region subproblemSIAM J. Optim.199882476505161853110.1137/S1052623494274313
Aldrin, M.: Reduced-Rank Regression. Encyclopedia of Environmetrics, Vol. 3. Wiley, pp. 1724–1728 (2002)
HyamsEMullinsJPierorazioPPartinAAllafMMatlagaBImpact of robotic technique and surgical volume on the cost of radical prostatectomyJ. Endourol.201327329830310.1089/end.2012.0147
Le Thi, H.A., Le, H.M., Phan, D.N., Tran, B.: Stochastic DCA for the large-sum of non-convex functions problem and its application to group variable selection in classification. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70. JMLR.org, pp. 3394–3403 (2017)
Ha, W., Foygel Barber, R.: Alternating minimization and alternating descent over nonconvex sets. ArXiv e-prints arXiv:1709.04451 (2017)
Le ThiHAPham DinhTDifference of convex functions algorithms (DCA) for image restoration via a Markov random field modelOptim. Eng.2017184873906371910010.1007/s11081-017-9359-0
SalinettiGWetsRJOn the relations between two types of convergence for convex functionsJ. Math. Anal. Appl.197760121122647939810.1016/0022-247X(77)90060-9
Pham DinhTLe ThiHAConvex analysis approach to DC programming: theory, algorithms and applicationsActa Math. Vietnam.199722128935514797510895.90152
Spyromitros-XioufisETsoumakasGGrovesWVlahavasIMulti-target regression via input space expansion: treating targets as inputsMach. Learn.201610415598351328410.1007/s10994-016-5546-z
Le ThiHADC Programming and DCA for supply chain and production management: state-of-the-art models and methodsInt. J. Prod. Res.202058206078611410.1080/00207543.2019.1657245
Zălinescu, C.: Convex analysis in general vector spaces. World Scientific (2002)
Dubois, B., Delmas, J.F., Obozinski, G.: Fast algorithms for sparse reduced-rank regression. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of Machine Learning Research, Proceedings of Machine Learning Research, vol. 89, pp 2415–2424. PMLR (2019)
Le ThiHAHoVTOnline learning based on online DCA and application to online classificationNeural Comput.2020324759793410116210.1162/neco_a_01266
EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika1936121121810.1007/BF02288367
Ioffe, A., Tihomirov, V.: Theory of extremal problems. North-Holland (1979)
IzenmanAJReduced-rank regression for the multivariate linear modelJ. Multivar. Anal.19755224826437317910.1016/0047-259X(75)90042-1
LeeCLLeeCAleeJHandbook of Quantitative Finance and Risk Management2010USASpringer10.1007/978-0-387-77117-5
Smith, A.E., Coit, D.W.: Constraint-handling techniques - penalty functions. In: Handbook of Evolutionary Computation, Oxford University Press, pp. C5.2:1–C5.2.6 (1997)
ChenLHuangJZSparse reduced-rank regression with covariance estimationStat. Comput.2016261461470343938510.1007/s11222-014-9517-6
CoverTMThomasADeterminant inequalities via information theorySIAM J. Matrix Anal. Appl.19889338439294893610.1137/0609033
Le ThiHANguyenMCPham DinhTA DC programming approach for finding communities in networksNeural Comput.2014261228272854322319210.1162/NECO_a_00673
LeHMLe ThiHANguyenMCSparse semi-supervised support vector machines by DC programming and DCANeurocomputing2015153627610.1016/j.neucom.2014.11.051
PhanDNLe ThiHAGroup variable selection via ℓp,0 regularization and application to optimal scoringNeural Netw.201911822023410.1016/j.neunet.2019.05.011
Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: DC Programming and DCA for General DC Programs. In: Van Do, T., Le Thi, H.A., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge Engineering, vol. 282, pp 15–35. Springer International Publishing (2014)
HeDParidaLKuhnDNovel applications of multitask learning and multiple output regression to multiple genetic trait predictionBioinformatics20163212i37i4310.1093/bioinformatics/btw249
Pham Dinh, T., Le Thi, H.A.: Recent Advances in DC Programming and DCA. In: Nguyen, N.T., Le Thi, H.A. (eds.) Transactions on Computational Intelligence XIII, vol. 8342, pp 1–37. Springer, Berlin (2014)
Le ThiHAPortfolio selection under downside risk measures and cardinality constraints based on DC programming and DCAComput. Manag. Sci.200964459475253483210.1007/s10287-009-0098-3
ReinselGCVeluRPMultivariate Reduced-Rank regression: Theory and Applications, 1 edn. Lecture Notes in Statistics 1361998New YorkSpringer10.1007/978-1-4757-2853-8
Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Alternating DC Algorithm for Partial DC Programming. Technical report, University of Lorraine (2016)
Le ThiHAPham DinhTNgaiHVExact penalty and error bounds in dc programmingJ. Glob. Optim.2012523509535289253410.1007/s10898-011-9765-3
Le ThiHASolving Large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and D.C. ProgrammingJ. Glob. Optim.200327137539720128121064.90036
Le ThiHAPhanDNDC Programming and DCA for sparse optimal scoring problemNeurocomputing201618617018110.1016/j.neucom.2015.12.068
HarrisonLPennyWFristonKMultivariate autoregressive modeling of fMRI time seriesNeuroimage2003191477149110.1016/S1053-8119(03)00160-5
Le Thi, H.A.: Analyse numérique des algorithmes de l’optimisation DC. approches locale et globale. codes et simulations numériques en grande dimension. applications. Ph.D. thesis, University of Rouen France (1994)
Hu, Z., Nie, F., Wang, R., Li, X.: Low rank regularization: A review. Neural Networks. In Press. Available online 31 October 2020. https://doi.org/10.1016/j.neunet.2020.09.021 (2020)
MagnusJRNeudeckerHMatrix differential calculus with applications to simple, hadamard, and kronecker productsJ. Math. Psychol.198529447449281811210.1016/0022-2496(85)90006-9
Le ThiHAPham DinhTDC Programming and DCA: thirty years of developments. Mathematical programming, Special issue: DC Programming - TheoryAlgorithms and Applications201816915681387.90197
TranTTLe ThiHAPham DinhTDC Programming and DCA for enhancing physical layer security via cooperative jammingComput. Oper. Res.201787235244367196610.1016/j.cor.2016.11.003
GC Reinsel (9732_CR44) 1998
HA Le Thi (9732_CR19) 2003; 27
HA Le Thi (9732_CR28) 2017; 249
HA Le Thi (9732_CR30) 2005; 133
E Spyromitros-Xioufis (9732_CR47) 2016; 104
HA Le Thi (9732_CR29) 2014; 26
9732_CR42
TT Tran (9732_CR48) 2017; 87
HA Le Thi (9732_CR36) 2018; 318
TM Cover (9732_CR4) 1988; 9
D He (9732_CR11) 2016; 32
HA Le Thi (9732_CR31) 2017; 18
DN Phan (9732_CR43) 2019; 118
9732_CR46
L Chen (9732_CR2) 2012; 107
HA Le Thi (9732_CR21) 2020; 58
G Salinetti (9732_CR45) 1977; 60
JR Magnus (9732_CR38) 1985; 29
CL Lee (9732_CR37) 2010
HA Le Thi (9732_CR26) 2014; 47
L Harrison (9732_CR10) 2003; 19
S Koshi (9732_CR16) 1985; 14
HA Le Thi (9732_CR22) 2020; 32
AJ Izenman (9732_CR15) 1975; 5
HA Le Thi (9732_CR23) 2019; 73
HA Le Thi (9732_CR35) 2016; 186
9732_CR27
9732_CR25
T Pham Dinh (9732_CR41) 1998; 8
9732_CR24
L Chen (9732_CR3) 2016; 26
M Yuan (9732_CR50) 2007; 69
9732_CR9
9732_CR6
C Eckart (9732_CR7) 1936; 1
E Hyams (9732_CR13) 2013; 27
9732_CR8
9732_CR51
HA Le Thi (9732_CR32) 2018; 169
9732_CR1
H Dev (9732_CR5) 2012; 109
T Pham Dinh (9732_CR40) 1997; 22
HA Le Thi (9732_CR20) 2009; 6
9732_CR14
9732_CR12
MN Nguyen (9732_CR39) 2020; 69
S Wold (9732_CR49) 2001; 58
HM Le (9732_CR17) 2015; 153
9732_CR18
HA Le Thi (9732_CR33) 2015; 244
HA Le Thi (9732_CR34) 2012; 52
References_xml – reference: Pham Dinh, T., Le Thi, H.A.: Recent Advances in DC Programming and DCA. In: Nguyen, N.T., Le Thi, H.A. (eds.) Transactions on Computational Intelligence XIII, vol. 8342, pp 1–37. Springer, Berlin (2014)
– reference: LeHMLe ThiHANguyenMCSparse semi-supervised support vector machines by DC programming and DCANeurocomputing2015153627610.1016/j.neucom.2014.11.051
– reference: Le ThiHAHoVTPham DinhTA unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learningJ. Glob. Optim.2019732279310390836010.1007/s10898-018-0698-y
– reference: WoldSSjöströmMErikssonLPLS-Regression: a basic tool of chemometricsChemom. Intell. Lab. Syst.200158210913010.1016/S0169-7439(01)00155-1
– reference: Zălinescu, C.: Convex analysis in general vector spaces. World Scientific (2002)
– reference: MagnusJRNeudeckerHMatrix differential calculus with applications to simple, hadamard, and kronecker productsJ. Math. Psychol.198529447449281811210.1016/0022-2496(85)90006-9
– reference: HarrisonLPennyWFristonKMultivariate autoregressive modeling of fMRI time seriesNeuroimage2003191477149110.1016/S1053-8119(03)00160-5
– reference: Le ThiHAPortfolio selection under downside risk measures and cardinality constraints based on DC programming and DCAComput. Manag. Sci.200964459475253483210.1007/s10287-009-0098-3
– reference: Hu, Z., Nie, F., Wang, R., Li, X.: Low rank regularization: A review. Neural Networks. In Press. Available online 31 October 2020. https://doi.org/10.1016/j.neunet.2020.09.021 (2020)
– reference: ReinselGCVeluRPMultivariate Reduced-Rank regression: Theory and Applications, 1 edn. Lecture Notes in Statistics 1361998New YorkSpringer10.1007/978-1-4757-2853-8
– reference: Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Alternating DC Algorithm for Partial DC Programming. Technical report, University of Lorraine (2016)
– reference: KoshiSConvergence of convex functions and dualityHokkaido Math. J.198514339941480882010.14492/hokmj/1381757647
– reference: Smith, A.E., Coit, D.W.: Constraint-handling techniques - penalty functions. In: Handbook of Evolutionary Computation, Oxford University Press, pp. C5.2:1–C5.2.6 (1997)
– reference: YuanMEkiciALuZMonteiroRDimension reduction and coefficient estimation in multivariate linear regressionJournal of the Royal Statistical Society: Series B (Statistical Methodology)2007693329346232375610.1111/j.1467-9868.2007.00591.x
– reference: Foygel, R., Horrell, M., Drton, M., Lafferty, J.: Nonparametric reduced rank regression. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp 1628–1636. Curran Associates, Inc. (2012)
– reference: NguyenMNLe ThiHADanielGNguyenTASmoothing techniques and difference of convex functions algorithms for image reconstructionsOptim.2020697-816011633412090010.1080/02331934.2019.1648467
– reference: Le ThiHANguyenMCPham DinhTA DC programming approach for finding communities in networksNeural Comput.2014261228272854322319210.1162/NECO_a_00673
– reference: ChenLHuangJZSparse reduced-rank regression for simultaneous dimension reduction and variable selectionJ. Am. Stat. Assoc.201210750015331545303641410.1080/01621459.2012.734178
– reference: HeDParidaLKuhnDNovel applications of multitask learning and multiple output regression to multiple genetic trait predictionBioinformatics20163212i37i4310.1093/bioinformatics/btw249
– reference: SalinettiGWetsRJOn the relations between two types of convergence for convex functionsJ. Math. Anal. Appl.197760121122647939810.1016/0022-247X(77)90060-9
– reference: IzenmanAJReduced-rank regression for the multivariate linear modelJ. Multivar. Anal.19755224826437317910.1016/0047-259X(75)90042-1
– reference: Pham DinhTLe ThiHADC Optimization algorithms for solving the trust region subproblemSIAM J. Optim.199882476505161853110.1137/S1052623494274313
– reference: CoverTMThomasADeterminant inequalities via information theorySIAM J. Matrix Anal. Appl.19889338439294893610.1137/0609033
– reference: Le ThiHANguyenMCDCA Based algorithms for feature selection in multi-class support vector machineAnn. Oper. Res.20172491273300360441410.1007/s10479-016-2333-y
– reference: Le ThiHATaASPham DinhTAn efficient DCA based algorithm for power control in large scale wireless networksAppl. Math. Comput.201831821522637138571426.68012
– reference: DevHSharmaNLDawsonSNNealDEShahNDetailed analysis of operating time learning curves in robotic prostatectomy by a novice surgeonBJU Int.201210971074108010.1111/j.1464-410X.2011.10665.x
– reference: Aldrin, M.: Reduced-Rank Regression. Encyclopedia of Environmetrics, Vol. 3. Wiley, pp. 1724–1728 (2002)
– reference: Le ThiHAHoVTOnline learning based on online DCA and application to online classificationNeural Comput.2020324759793410116210.1162/neco_a_01266
– reference: Le Thi, H.A., Le, H.M., Phan, D.N., Tran, B.: Stochastic DCA for the large-sum of non-convex functions problem and its application to group variable selection in classification. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70. JMLR.org, pp. 3394–3403 (2017)
– reference: HyamsEMullinsJPierorazioPPartinAAllafMMatlagaBImpact of robotic technique and surgical volume on the cost of radical prostatectomyJ. Endourol.201327329830310.1089/end.2012.0147
– reference: Le Thi, H.A.: Analyse numérique des algorithmes de l’optimisation DC. approches locale et globale. codes et simulations numériques en grande dimension. applications. Ph.D. thesis, University of Rouen France (1994)
– reference: Le ThiHAPham DinhTNgaiHVExact penalty and error bounds in dc programmingJ. Glob. Optim.2012523509535289253410.1007/s10898-011-9765-3
– reference: Le ThiHAPham DinhTDifference of convex functions algorithms (DCA) for image restoration via a Markov random field modelOptim. Eng.2017184873906371910010.1007/s11081-017-9359-0
– reference: Le ThiHADC Programming and DCA for supply chain and production management: state-of-the-art models and methodsInt. J. Prod. Res.202058206078611410.1080/00207543.2019.1657245
– reference: Le ThiHAPham DinhTThe DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problemsAnn. Oper. Res.20051331–4234621193111116.90122
– reference: Le ThiHASolving Large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and D.C. ProgrammingJ. Glob. Optim.200327137539720128121064.90036
– reference: Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: DC Programming and DCA for General DC Programs. In: Van Do, T., Le Thi, H.A., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge Engineering, vol. 282, pp 15–35. Springer International Publishing (2014)
– reference: Pham DinhTLe ThiHAConvex analysis approach to DC programming: theory, algorithms and applicationsActa Math. Vietnam.199722128935514797510895.90152
– reference: EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika1936121121810.1007/BF02288367
– reference: Ha, W., Foygel Barber, R.: Alternating minimization and alternating descent over nonconvex sets. ArXiv e-prints arXiv:1709.04451 (2017)
– reference: Le ThiHAPham DinhTDC Programming and DCA: thirty years of developments. Mathematical programming, Special issue: DC Programming - TheoryAlgorithms and Applications201816915681387.90197
– reference: Ioffe, A., Tihomirov, V.: Theory of extremal problems. North-Holland (1979)
– reference: Le ThiHALeHMPham DinhTNew and efficient DCA based algorithms for minimum sum-of-squares clusteringPattern Recogn.201447138840110.1016/j.patcog.2013.07.012
– reference: Le ThiHAPhanDNDC Programming and DCA for sparse optimal scoring problemNeurocomputing201618617018110.1016/j.neucom.2015.12.068
– reference: LeeCLLeeCAleeJHandbook of Quantitative Finance and Risk Management2010USASpringer10.1007/978-0-387-77117-5
– reference: TranTTLe ThiHAPham DinhTDC Programming and DCA for enhancing physical layer security via cooperative jammingComput. Oper. Res.201787235244367196610.1016/j.cor.2016.11.003
– reference: PhanDNLe ThiHAGroup variable selection via ℓp,0 regularization and application to optimal scoringNeural Netw.201911822023410.1016/j.neunet.2019.05.011
– reference: Le ThiHAPham DinhTLeHMVoXTDC Approximation approaches for sparse optimizationEur. J. Oper. Res.201524412646332076310.1016/j.ejor.2014.11.031
– reference: ChenLHuangJZSparse reduced-rank regression with covariance estimationStat. Comput.2016261461470343938510.1007/s11222-014-9517-6
– reference: Spyromitros-XioufisETsoumakasGGrovesWVlahavasIMulti-target regression via input space expansion: treating targets as inputsMach. Learn.201610415598351328410.1007/s10994-016-5546-z
– reference: Dubois, B., Delmas, J.F., Obozinski, G.: Fast algorithms for sparse reduced-rank regression. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of Machine Learning Research, Proceedings of Machine Learning Research, vol. 89, pp 2415–2424. PMLR (2019)
– volume: 32
  start-page: i37
  issue: 12
  year: 2016
  ident: 9732_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw249
– volume: 1
  start-page: 211
  year: 1936
  ident: 9732_CR7
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 73
  start-page: 279
  issue: 2
  year: 2019
  ident: 9732_CR23
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0698-y
– volume: 14
  start-page: 399
  issue: 3
  year: 1985
  ident: 9732_CR16
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1381757647
– volume: 69
  start-page: 1601
  issue: 7-8
  year: 2020
  ident: 9732_CR39
  publication-title: Optim.
  doi: 10.1080/02331934.2019.1648467
– ident: 9732_CR46
– volume-title: Multivariate Reduced-Rank regression: Theory and Applications, 1 edn. Lecture Notes in Statistics 136
  year: 1998
  ident: 9732_CR44
  doi: 10.1007/978-1-4757-2853-8
– ident: 9732_CR24
  doi: 10.1007/978-3-319-06569-4_2
– volume: 8
  start-page: 476
  issue: 2
  year: 1998
  ident: 9732_CR41
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494274313
– ident: 9732_CR51
  doi: 10.1142/5021
– volume: 22
  start-page: 289
  issue: 1
  year: 1997
  ident: 9732_CR40
  publication-title: Acta Math. Vietnam.
– ident: 9732_CR8
– ident: 9732_CR14
– ident: 9732_CR42
  doi: 10.1007/978-3-642-54455-2_1
– ident: 9732_CR18
– ident: 9732_CR1
  doi: 10.1002/9780470057339.var024
– volume: 60
  start-page: 211
  issue: 1
  year: 1977
  ident: 9732_CR45
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(77)90060-9
– volume: 107
  start-page: 1533
  issue: 500
  year: 2012
  ident: 9732_CR2
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.734178
– volume: 133
  start-page: 23
  issue: 1–4
  year: 2005
  ident: 9732_CR30
  publication-title: Ann. Oper. Res.
– volume: 58
  start-page: 6078
  issue: 20
  year: 2020
  ident: 9732_CR21
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1657245
– volume: 26
  start-page: 461
  issue: 1
  year: 2016
  ident: 9732_CR3
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-014-9517-6
– ident: 9732_CR9
– volume: 318
  start-page: 215
  year: 2018
  ident: 9732_CR36
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.08.061
– volume: 244
  start-page: 26
  issue: 1
  year: 2015
  ident: 9732_CR33
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.031
– volume: 169
  start-page: 5
  issue: 1
  year: 2018
  ident: 9732_CR32
  publication-title: Algorithms and Applications
– volume: 87
  start-page: 235
  year: 2017
  ident: 9732_CR48
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.11.003
– volume: 6
  start-page: 459
  issue: 4
  year: 2009
  ident: 9732_CR20
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-009-0098-3
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 9732_CR49
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 118
  start-page: 220
  year: 2019
  ident: 9732_CR43
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.05.011
– ident: 9732_CR25
– volume: 249
  start-page: 273
  issue: 1
  year: 2017
  ident: 9732_CR28
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2333-y
– ident: 9732_CR6
– ident: 9732_CR12
  doi: 10.1016/j.neunet.2020.09.021
– volume: 29
  start-page: 474
  issue: 4
  year: 1985
  ident: 9732_CR38
  publication-title: J. Math. Psychol.
  doi: 10.1016/0022-2496(85)90006-9
– volume: 27
  start-page: 375
  issue: 1
  year: 2003
  ident: 9732_CR19
  publication-title: J. Glob. Optim.
– volume: 32
  start-page: 759
  issue: 4
  year: 2020
  ident: 9732_CR22
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01266
– volume: 52
  start-page: 509
  issue: 3
  year: 2012
  ident: 9732_CR34
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-011-9765-3
– volume: 18
  start-page: 873
  issue: 4
  year: 2017
  ident: 9732_CR31
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-017-9359-0
– volume: 69
  start-page: 329
  issue: 3
  year: 2007
  ident: 9732_CR50
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2007.00591.x
– volume: 26
  start-page: 2827
  issue: 12
  year: 2014
  ident: 9732_CR29
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00673
– volume: 186
  start-page: 170
  year: 2016
  ident: 9732_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.068
– volume-title: Handbook of Quantitative Finance and Risk Management
  year: 2010
  ident: 9732_CR37
  doi: 10.1007/978-0-387-77117-5
– volume: 109
  start-page: 1074
  issue: 7
  year: 2012
  ident: 9732_CR5
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2011.10665.x
– volume: 9
  start-page: 384
  issue: 3
  year: 1988
  ident: 9732_CR4
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0609033
– volume: 153
  start-page: 62
  year: 2015
  ident: 9732_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.051
– ident: 9732_CR27
– volume: 104
  start-page: 55
  issue: 1
  year: 2016
  ident: 9732_CR47
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5546-z
– volume: 19
  start-page: 1477
  year: 2003
  ident: 9732_CR10
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00160-5
– volume: 5
  start-page: 248
  issue: 2
  year: 1975
  ident: 9732_CR15
  publication-title: J. Multivar. Anal.
  doi: 10.1016/0047-259X(75)90042-1
– volume: 27
  start-page: 298
  issue: 3
  year: 2013
  ident: 9732_CR13
  publication-title: J. Endourol.
  doi: 10.1089/end.2012.0147
– volume: 47
  start-page: 388
  issue: 1
  year: 2014
  ident: 9732_CR26
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2013.07.012
SSID ssj0009686
Score 2.2913795
Snippet We study a challenging problem in machine learning that is the reduced-rank multitask linear regression with covariance matrix estimation. The objective is to...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 809
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computer Science
Convexity
Covariance matrix
Critical point
Machine learning
Mathematics
Regression analysis
Regression models
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwEIBHPC7tgXdFykMWqsSBWsomsb0-Rjy0QsAJJE61Ej9AAgJit6g_vzOJswtVQeIaO85jPPbYnvkG4IdTokJFqHnQUvCiDhmqlNZcFqq2hZQuZBTgfH4hR1fF6bW4jkFh497bvT-SbEfqV8Fuhco4uRS0iBk-nIdFQWt37MVXWTlD7co2vyOBqzhOXnkMlfl_G2-mozgoz9-ST-Qrg_OfM9J26jlZgaVoM7KyE_IqzPlmDZb7fAwsqucafD2fMljH6_CrvI-bfc0NOzosGZqn7JlIrd5xStXOWmfCSTW-Y2RrVlR607nFNoz2Z5l9fMGlNPUL9kAo_z-MmBxdsOMGXJ4cXx6OeMymwC3aQBOeey2s0spZ5VObuqJQLhQiiBBylTqVWy1RuXUQvka7wqd55mUYiFCprB6q_BssNI-N3wSGJhxRy2rpncMhoNa4xMOVY4oNe41jQAKD_p8aG0njlPDi3swYySQHg3IwrRzMMIGD6T1PHWfjw9r7JCpDSogt2yrGEuD7Ec7KlIQhVASeSWAPpTltkmDao_LM0DX8QJycU_EySGC7F7aJKjw2mSa2PdGBEvjZd4BZ8fsv9_1z1bfgCz2m81vbhoXJ82-_g4bOpN5t-_VfmoDw7w
  priority: 102
  providerName: Springer Nature
Title Alternating DCA for reduced-rank multitask linear regression with covariance matrix estimation
URI https://link.springer.com/article/10.1007/s10472-021-09732-8
https://www.proquest.com/docview/2918202283
https://hal.univ-lorraine.fr/hal-03212805
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9MwEMBPdH2BBz4GiIxRWQiJB7BIkziOn1A62lXAKoQ2abxgJf4YEls61jLx53OXOC0gsadWdWslvQ-fnbvfAbywUlRoCDX3Khc8q32CJqUUzzNZmyzPrU-owPlokc9Psven4jQcuK1CWmXvE1tHbZeGzsjfJIpQ4wRreXv5g1PXKHq6GlpoDGCILrjAzddwMl18-rzF7uZtr0eCWHFcyNJQNhOK5zKZcEpRaJE1vPhraQoOevCN8iP_CD7_eV7aLkOz-3A3xI-s7AT-AG65Zhfu9b0ZWDDVXbhztOGxrh7C1_I8HPw1Z-zdQckwVGVXRG11llPbdtYmFq6r1XdGcWdFo2ddimzD6KyWmeU1bqtJR9gFYf1_MeJzdIWPj-B4Nj0-mPPQWYEbjIfWPHVKGKmkNdLFJrZZJq3PhBfepzK2MjUqR0NXXrgaYwwXp4nL_Vj4SiZ1IdPHsNMsG_cEGIZzRDCrc2ctuoNa4XYPd5ExTuwU-oMIxv1_qk2gjlPzi3O95SWTHDTKQbdy0EUErza_ueyYGzd--yWJSpNB4symCnUFeH2EttIlIQklQWgieI7S3ExJYO15-VHTZ3iDqD-xuB5HsN8LWwdzXumt8kXwuleA7fD_L27v5tmewm160-Ws7cPO-uqne4ZBzroewaCYHY5gWM4mkwW9Hn75MB0F_cbRk6T8Dc4J-j0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcKBQQgQIWAnEAq9nEideHCkUty5bu9rRIPWElfhSpbbZ0lwI_qv-xM4mzC0j01mucjBzP0_bMNwCvrcxKVISKe5VnXFQ-QZVSiudCVkbkufUJFTiPD_LhF_H5MDtcgcuuFobSKjub2BhqOzV0Rr6VKIIaJ7CWD2ffOXWNotvVroVGKxb77vdP3LLNtvd2kb9vkmTwcbIz5KGrADcYC8x56lRmpJLWSBeb2AohrReZz7xPZWxlalSOQq585ir0ry5OE5f7XuZLmVR9mSLZVbgl0lSRQvUHn5YYv3nTWJIQszh6zTTU6IRKPSETTvkQDT4O7__lB4M3WP1GyZh_RLr_XM42Pm9wH-6FYJUVrXQ9gBVXb8B61wiCBbuwAXfHC_DX2UP4WpyEU8b6iO3uFAzjYnZOELHOcuoRz5osxnk5O2YU5JY0etTm49aMDoaZmV7gHp4Ekp1SD4FfjMBA2irLRzC5iQV_DGv1tHZPgGHsSHBpVe6sRdtTKdxb4pY1RsJOofGJoNetqTYB4pw6bZzoJTgz8UEjH3TDB92P4N3im7MW4OPat98SqzRpP1I2ZShiwPkRjpYuCP9QEuJNBK-QmwuShOI9LEaanuEPYlQQZxe9CDY7ZutgO2Z6KekRvO8EYDn8_8k9vZ7aS7g9nIxHerR3sP8M7tDDNlluE9bm5z_cc4yu5tWLRqYZ6BvWoSucCzAn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dTxQxEMAngonRB0GUuILYEBMftGFvd9teHzfg5VQgPEDCk81uPyABF8KtxD_fmd3u3WnUxNdtt_sxnXbazvwG4K1TokJFqHnQUvCiDhmqlNZcFqq2hZQuZBTgfHQsp2fF53NxvhTF33m7D0eSfUwDUZqadu_Whb2lwLdCZZzcCzrcDB-vwEMcjkfUr8-ycoHdlV2uR4JYcZzI8hg28-c2fpma4gC9ckn-kUvG52_npd00NFmHp9F-ZGUv8GfwwDcbsDbkZmBRVTfgydGcxzp7Dl_L67jx11ywg_2SoanK7oja6h2ntO2scyxsq9kVI7uzotKL3kW2YbRXy-zNPS6rqY-wb4T1_8GIz9EHPr6A08nH0_0pj5kVuEV7qOW518IqrZxVPrWpKwrlQiGCCCFXqVO51RIVXQfha7QxfJpnXoaRCJXK6rHKN2G1uWn8S2BozhHBrJbeORwOao3LPVxFptiw1zgeJDAa_qmxkTpOyS-uzYKXTHIwKAfTycGME3g_v-e2Z278s_Y7EpUhhcSWbRXjCvD9CG1lSkISKoLQJLCL0pw3SWDtaXlo6Bp-IE7UqbgfJbA9CNtEdZ6ZTBPnnkhBCXwYOsCi-O8v9-r_qr-BRycHE3P46fjLFjymJ_bubNuw2t5996_R_mnrna6L_wRRsPge
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+DCA+for+reduced-rank+multitask+linear+regression+with+covariance+matrix+estimation&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Le+Thi%2C+Hoai+An&rft.au=Ho%2C+Vinh+Thanh&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=90&rft.issue=7-9&rft.spage=809&rft.epage=829&rft_id=info:doi/10.1007%2Fs10472-021-09732-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon